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1 Abstract 
Computational models which predict the neurophysiological response from experimental stimuli 

have played an important role in human neuroimaging. One type of computational model, the 

population receptive field (pRF), has been used to describe cortical responses at the millimeter 

scale using functional magnetic resonance imaging (fMRI) and electrocorticography (ECoG). 

However, pRF models are not widely used for non-invasive electromagnetic field measurements 

(EEG/MEG), because individual sensors pool responses originating from several centimeter of 

cortex, containing neural populations with widely varying spatial tuning. Here, we introduce a 

forward-modeling approach in which pRFs estimated from fMRI data are used to predict MEG 

sensor responses. Subjects viewed contrast-reversing bar stimuli sweeping across the visual 

field in separate fMRI and MEG sessions. Individual subject’s pRFs were modeled on the 

cortical surface at the millimeter scale using the fMRI data. We then predicted cortical time 

series and projected these predictions to MEG sensors using a biophysical MEG forward model, 

accounting for the pooling across cortex. We compared the predicted MEG responses to 

observed visually evoked steady-state responses measured in the MEG session. We found that 

pRF parameters estimated by fMRI could explain a substantial fraction of the variance in 

steady-state MEG sensor responses (up to 60% in individual sensors). Control analyses in 

which we artificially perturbed either pRF size or pRF position reduced MEG prediction 

accuracy, indicate that MEG data are sensitive to pRF properties derived from fMRI. Our model 

provides a quantitative approach to link fMRI and MEG measurements, thereby enabling 

advances in our understanding of spatiotemporal dynamics in human visual field maps.  
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2 Introduction 
  
A fundamental goal in human neuroscience is to understand how sensory inputs are 

transformed and represented in the nervous system. One approach to reach this goal is to build 

encoding models. This approach uses a quantitative description of the operations that relate 

input to output, e.g. a visual image to fMRI blood-oxygen-level-dependent (BOLD) responses, 

providing a test of our understanding of how visual inputs are encoded in the visual pathways 

(Naselaris, Kay, Nishimoto, & Gallant, 2011; Holdgraf et al., 2017). Encoding models have been 

successful in predicting neural responses in human visual cortex. For example, visual field 

preferences of neural populations were predicted from fMRI BOLD responses (Dumoulin & 

Wandell, 2008; Kay, Winawer, Mezer, & Wandell, 2013) and intracranial field potentials, or 

electrocorticography (ECoG) (Yoshor, Bosking, Ghose, & Maunsell, 2007; Harvey, Vansteensel, 

et al., 2013; Winawer et al., 2013). In addition to providing a functional description of neural 

processes, encoding models can be used to compare data across different measurement 

techniques. For example, the fMRI BOLD signal measures vascular responses on the time 

scale of hundreds of milliseconds to seconds, whereas MEG measures magnetic flux at the 

millisecond scale; the data are not directly comparable but by applying a common encoding 

model with stimulus-referred parameters, such as position or size of the receptive field, the 

measurements can be compared. In this way, there is greater potential to integrate recordings 

with a high spatial resolution and recordings with a high temporal resolution, in order to study 

the visual system with greater precision. 

However, encoding models from stimulus to measurement are relatively uncommon for 

non-invasive electromagnetic field measurements, like magnetoencephalography (MEG) or 

electroencephalography (EEG). While both MEG and EEG are widely used and provide 

excellent time-resolved measurements of brain activity across the whole brain, the pooling area 

of a single EEG or MEG sensor spans large parts of the cortex (on the order of several 

centimeters). Since this pooling area is much coarser than the spatial scale at which stimulus-

selectivity tends to vary in visual cortex (on the order of millimeters for stimulus position, and 

sub-millimeter for orientation, spatial frequency, and other properties), building an encoding 

model to fit data from an MEG or EEG sensor is not straightforward, and may not be easily 

interpretable. For example, a population receptive field for a single MEG sensor is likely to 

reflect neural signals from many different parts of the visual field and from multiple visual areas. 

The other way around, estimating local pRFs on the cortex from MEG sensor responses would 

require a computational model that transforms magnetic flux from hundreds of sensors to 
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thousands of cortical locations. This inverse problem is ill-posed (under-constrained) and hence 

does not have unique solution. 

Here, we propose a novel, pRF modeling approach to predict MEG sensor responses 

from the stimulus. To do so, we extend the pRF model developed by Dumoulin and Wandell 

(2008), which has been a well-established approach to study the spatial properties of the human 

visual system in both healthy and diseased subjects (Wandell & Winawer, 2015; Dumoulin & 

Knapen, 2018). Our modeling approach can be divided into two steps. First, it estimates local 

pRFs on the cortex using fMRI, and predicts the neural response for a particular visual stimulus 

on the cortical surface. Second, the model projects these predicted responses to MEG sensors, 

using a biophysical model of the head. We compared predicted MEG sensor responses to 

observed MEG responses while subjects viewed a visual mapping stimulus. Using this modeling 

approach, we show that MEG responses to a visual stimulus can be predicted using pRF 

models estimated from fMRI.  
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3 Methods 

3.1 Subjects 
Ten subjects (5 female), ages 20-45 years (M = 29.7 years, SD = 7.3 years) with normal or 

correct-to-normal vision, participated in the study. MRI and MEG sessions were conducted on 

separate days. All scanning sessions took place at New York University. Subjects provided 

written informed consent. The experimental protocol was in compliance with the safety 

guidelines for MRI and MEG research and was approved by the University Committee on 

Activities involving Human Subjects at New York University, USA. 

3.2 Stimuli 
Stimuli were generated using MATLAB (MathWorks, MA, USA) and PsychToolbox (Brainard, 

1997; Pelli, 1997; Kleiner et al., 2007) on a Macintosh computer. In both MRI and MEG 

sessions, subjects were presented with contrast-reversing checkerboard stimuli (10 Hz), 

windowed within a bar aperture that swept across the visual field in discrete steps. The area 

outside the stimulus was set to a uniform gray, equal in luminance to the mean of the black and 

white checkerboards. Both MRI and MEG stimuli were confined to a circular aperture 10° in 

radius, contrast-reversal rate (10 Hz), bar width (2.5°, i.e. 1/4th of the full-field stimulus radius, 

10°), but differed in presentation length and sequence (see Experimental design). Details on the 

stimulus display and experimental design for the MRI and MEG sessions are separately 

described in the following paragraphs. 

3.2.1 Stimulus display - MRI 

All subject’s structural and functional data were acquired at the Center for Brain Imaging at New 

York University. We used a Siemens Allegra 3T head-only scanner for subjects S1 and S2, and 

a Siemens Prisma 3T full-body scanner for subjects S3-S10 after the NYU Center for Brain 

Imaging acquired a new scanner. Visual display setup was therefore also different for subjects 

S1 and S2, compared to subjects S3-S10. 

Siemens Allegra 3T: For subjects S1 and S2, stimuli were presented with an LCD 

projector (Eiki LC_XG250, CA, US) with a screen resolution of 1024 x 768 pixels and refresh 

rate of 60 Hz. Stimuli were displayed onto a translucent back-projection screen in the bore of 

the magnet. Subjects viewed the screen through an angled mirror mounted onto the coil of the 
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scanner at a distance of ~58 cm. The stimulus was confined to a circular aperture with a 

diameter of 20°. The display was calibrated and gamma-corrected using a linearized lookup 

table. 

Siemens Prisma 3T: For subjects S3-S10, stimuli were presented with a DPL LED 

PROPixx projector (VPixx, QC, Canada) with a screen resolution of 1920 x 1080 pixels and 

refresh rate of 60 Hz. Images were displayed on a translucent back-projection screen in the 

bore of the magnet. Subjects viewed the screen through an angled mirror mounted onto the coil 

of the scanner at a distance of ~83.5 cm. To match the stimuli to previous subjects’ scan 

sessions, we again confined the stimulus to a circular aperture with a diameter of 20°. The 

display was calibrated and gamma-corrected using a linearized lookup table. 

3.2.2 Stimulus display - MEG 

Images were presented using an InFocus LP850 projector (Texas Instruments, Warren, NJ) with 

a resolution of 1024 x 768 pixels and refresh rate of 60 Hz. Images were projected via a mirror 

onto a front-projection translucent screen at a distance of approximately 42 cm from the 

subject’s eyes. The display was calibrated with the use of a LS-100 luminance meter (Konica 

Minolta, Singapore) and gamma-corrected using a linearized lookup table. The stimuli were 

confined to a circular aperture with a diameter of 20°. 

3.2.3 Experimental design - fMRI 

Subjects participated in one 1.5-hr MRI session containing 6 functional runs, where each run 

was 6.1 minutes. For a given run, the bar apertures show contrast-reversing checkerboard 

stimuli. The checkerboard contrast pattern oscillated with a 5 Hz square wave, meaning 10 

reversals per second. The bar aperture swept across the visual field in discrete steps (1.5s per 

bar position, 31.5s per bar sweep, see Figure 1A) in 8 different bar configurations (4 different 

orientations: 0°, 45°, 90°, 135°, with two step directions for each orientation). Two step 

directions are required for fMRI to avoid biased pRF parameter estimates due to the lag of the 

hemodynamic response function. After the first, third, fifth and seventh bar sweep, there was a 

22.5s mean luminance or ‘blank’ period. In addition, each run started and ended with a 12s 

blank period. A fixation dot was presented in the center of the screen throughout the run, 

switching between red and green colors (32 switches per run, average of 7.2s). Subjects were 

instructed to fixate on the dot throughout the run and report a switch in color with a button press. 
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Figure 1. Retinotopic mapping stimuli for fMRI and MEG experiments. (A) FMRI stimuli were used to 
map pRFs on the cortical surface. Contrast-reversing (100% contrast) checkerboard bars swept in 
discrete steps across the visual field (diameter = 20 deg, 1 bar step per TR, TR=1.5 s), interleaved with 
blank periods (mean luminance). One run consisted of 8 bar sweeps along cardinal and off-cardinal axes 
in both directions. Subjects were instructed to fixate in the center of the screen and press a button every 
time the fixation dot changed color. Fixation dot is enlarged for visibility purposes. (B) Stimuli presented in 
the MEG experiment are used in the forward model to create predictions (hence ‘test’ stimuli). Stimuli 
were similar to fMRI (identical contrast, size, and contrast-reversal rate), except for its sequence and 
duration. One run contained 5 bar sweeps (3 cardinal, 2 off-cardinal) with shorter bar step durations (1.3 
s). Stimulus sweeps were interleaved with blank and blink periods. During blink periods, subjects were 
encouraged to make eye blinks to limit blinks during blank and stimulus periods. Blink periods were 
excluded in both data analysis and model predictions. 

3.2.4 Experimental design - MEG 

All subjects participated in one 2-hr MEG session containing 19 runs, where each run was 3 

minutes with short breaks of ~1 minute between runs. The breaks were terminated when the 

subject indicted by button press that they were ready for the next run. For a given run, the bar 

apertures showing the contrast-reversing checkerboard stimuli (10 Hz reversal rate) swept 

across the visual field in discrete steps (1.3s per bar position, 28.6 s per bar sweep) in 5 

different bar configurations for a given run (4 different orientations: 0°, 45°, 90°, 135° with two 

step directions for 0° and one step direction for 45°, 90° and 135°) (see Figure 1B). MEG runs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.28.272534doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.28.272534
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

did not require bar sweeps in both directions for each orientation, because the measured 

magnetic flux does not contain a time-lag. 

Before every bar sweep and after the last bar sweep, there was a 2.6-s mean luminance 

or ‘blank’ period and then a 3.8-s ‘blink’ period indicated by a mean luminance display with a 

small black square in the center of the screen. A fixation dot was presented in the center of the 

screen throughout the run, switching between red and green colors (32 switches per run, 

average of 5.6s). 

Subjects were instructed to fixate on the dot throughout the run and report a switch in 

color (every few seconds) with a button press. Subjects were encouraged to blink during the 

blink period and minimize their blinking during the rest of the run. Blink periods were excluded 

from analyses. 

3.3 Data acquisition - MRI 
Siemens Allegra 3T: Functional data were collected with a Nova Medical phased array, 8-

channel receive surface coil (NMSC072). BOLD fMRI data were acquired using a T2*-sensitive 

echo planar imaging (EPI) pulse sequence (1500 ms TR, 30 ms TE, and 72° flip angle; 2.5 mm3 

isotropic voxels, with 24 slices). The slice prescription was placed approximately perpendicular 

to the calcarine sulcus and covered most of the occipital lobe, and the posterior part of both the 

temporal and parietal lobes. An additional field map was collected in the middle of the MRI 

session to correct functional data for B0 field inhomogeneity during offline image reconstruction 

using an in-house Center for Brain Imaging algorithm. 

         Structural data were collected in the same (S2) or separate MRI session (S1) with a 

Nova Medical head transmit/receive coil (NM011). Data consisted of T1 weighted whole brain 

anatomical images using a 3D rapid gradient echo sequence (MPRAGE, 1 mm3 isotropic 

voxels). Additionally, a T1 weighted “inplane” image was collected with the same coil and slice 

prescription as the functional scans to aid alignment of the functional images to the high-

resolution T1 weighted anatomical images. This scan had a resolution of 1.25 × 1.25 mm and a 

slice thickness of 2.5 mm. 

Siemens Prisma 3T: Both structural and functional data were collected with a 64-

channel phased array receive coil. BOLD fMRI data were acquired using a T2*-sensitive echo 

planar imaging pulse sequence (1-s TR; 30 ms echo time; 75° flip angle; 2 mm3 isotropic voxels, 

multiband acceleration 6). Two additional scans were collected with reversed phase-encoded 

blips, resulting in spatial distortions in opposite directions. These scans were used to estimate 

the spatial distortions in the EPI runs and used to correct the EPI runs during preprocessing. 
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Structural data were collected in the same session consisting of T1-weighted whole brain 

anatomical images (1 mm3 isotropic voxels) using a 3D rapid gradient echo sequence 

(MPRAGE). No additional inplane image was needed for alignment for sessions in the Prisma 

scanner, because the spatial resolution of the EPIs and the whole-brain coverage enabled direct 

alignment between the functional images the whole brain T1w anatomical image. 

3.3.1 Data acquisition - MEG 
MEG data were acquired continuously with a whole head Yokogawa MEG system (Kanazawa 

Institute of Technology, Japan) containing 157 axial gradiometer sensors to measure brain 

activity and 3 orthogonally-oriented reference magnetometers located in the dewar but facing 

away from the brain, used to measure environmental noise. The magnetic fields were sampled 

at 1000 Hz and were actively filtered during acquisition between 1 Hz (high pass) and 500 Hz 

(low pass). 

Before recording, each subject’s head shape was digitized with a handheld FastSCAN 

laser scanner (Polhemus, VT, USA). Digital markers were placed on the forehead, nasion, left 

and right tragus and peri-auricular points. To calibrate the digital head shape with the MEG 

sensor space, five electrodes were placed on the identical location of five digital markers (3 

forehead and left/right peri-auricular points). Before and after the main MEG experiment, 

separate recordings were made of the marker locations within the MEG dewar. 

3.3.2 MRI Preprocessing 

Structural data (both MRI scanners): Structural T1-weighted scans were auto-segmented with 

FreeSurfer’s recon-all algorithm (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999; 

Fischl & Dale, 2000; Fischl, Liu, & Dale, 2001), available at http://surfer.nmr.mgh.harvard.edu/. 

For three subjects, small errors in white/gray matter voxel segmentation around the occipital 

pole were manually corrected. Visually responsive regions of interest (ROIs) were defined on 

the inflated cortical surface of individual subjects using the probabilistic atlas of visual areas by 

(Wang, Mruczek, Arcaro, & Kastner, 2015) resulting in boundaries for areas V1-V3, hV4, V3A/B, 

VO1/2, LO1/2, TO1/2, PHC1/2, IPS0-5, SPL1, and FEF. 

Siemens Allegra 3T functional data: Using the VistaSoft toolbox available at 

https://github.com/vistalab/vistasoft, functional scans were re-oriented to a standardized NifTi 

orientation (RIA to LAS), slice-time corrected by resampling the time series in each slice within 

the 1.5s-volume to the center slice, and motion corrected by aligning all volumes of all scans to 

the first volume of the first scan. The first 8 volumes of each functional scan were removed to 
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avoid unstable magnetization of the scanner. Functional scans were aligned to the T1-weighted 

anatomical scan using the additional inplane scan. 

Siemens Prisma 3T functional data: Functional scans were converted from dicom into 

BIDS format (Gorgolewski et al., 2016) using NYU Center for Brain Imaging in-house version of 

NIPY’s heudiconv, available at http://as.nyu.edu/cbi/resources/Software.html. The following in 

house preprocessing workflow was implemented with the nipype toolbox (Gorgolewski et al., 

2011), and is available via GitHub 

(https://github.com/WinawerLab/MRI_tools/blob/master/preprocessing/prisma_preproc.py). 

Using the FSL toolbox (Smith et al., 2004), all volumes from all EPIs were realigned to the 

single-band reference image of the first EPI scan. This single band reference image was then 

registered to the additional spatial distortion scan with the same phase encoding direction. The 

two additional spatial distortion scans with opposite phase-encoding direction were then used to 

estimate the susceptibility-induced warp field using a method similar to (Andersson, Skare, & 

Ashburner, 2003). Motion correction, registration to the spatial distortion scan and unwarping 

were then applied in a single step to each volume of each EPI. The unwarped EPIs were 

aligned to the high-resolution whole-brain T1 using FreeSurfer. 

Siemens Allegra & Prisma 3T functional data: Time series from EPIs were resampled 

to 1 mm3 isotropic voxels within the gray matter voxels using trilinear interpolation. Time series 

within the gray matter voxels were converted into percent signal change by dividing the signal 

by its mean. Baseline drifts were removed from each run with high-pass temporal filtering using 

3 discrete cosine terms (0 cycles or ‘DC’; 0.5 cycle and 1 cycle). At last, all 6 runs were 

averaged given that subjects saw the same stimuli within a dataset. 

3.3.3 MEG Preprocessing 

The FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) was used to read the raw 

data files. For all subsequent MEG analyses, custom code was written in MATLAB. With use of 

the triggers from the stimulus presentation computer, MEG data were first divided into 1300 ms 

epochs (i.e. matching the duration of 1 bar step) for every MEG sensor. For all subjects, 

epoching resulted in an initial 2660 epochs per sensor: 22 consecutive epochs per bar sweep, 

with 2 consecutive epochs for blank and 3 consecutive epochs for blink periods before each 

sweep, and after the last bar sweep of every run, 5 bar sweep directions, for 19 runs. To avoid 

the transient response associated with a change in the stimulus (either a change in bar position 

or from a blank period to a stimulus period), we then shortened each epoch to 1100 ms, 

skipping the first 150 ms and last 50 ms of each 1300-ms epoch. 
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Outlier epochs were removed in the following way. First, epoched data were high-pass 

filtered with a 1 Hz Butterworth filter (with a high-pass amplitude of 3 dB and a passband 

frequency of 0.1 Hz and amplitude of 60 dB). We then computed the variance within every 

1100-ms epochs (across time points), for each MEG sensor. We labeled an epoch as ‘bad’ if its 

variance was 20 times smaller or 20 times larger than the median variance across all epochs 

and sensors. If more than 20% of the epochs were labeled bad for a given sensor, then we 

removed the entire sensor from analysis. If more than 20% of sensors contained the same ‘bad’ 

epoch, we removed the entire epoch from analysis (i.e., for all sensors). If a given epoch was 

labeled ‘bad’ for some sensors, but was not removed for all sensors, the data of the removed 

sensors were replaced by the time series spatially interpolated across nearby sensors 

(weighting sensors inversely with the distance). We removed on average ~21% of each dataset, 

including all epochs from 5 sensors with long-term hardware problems. 

  We used the Noisepool-PCA algorithm to increase the signal-to-noise ratio (SNR) of our 

MEG time-series (Kupers et al., 2018). This algorithm was adapted from an fMRI algorithm 

called GLMdenoise (Kay, Rokem, Winawer, Dougherty, & Wandell, 2013). In short, for each 

subject the algorithm defines a noise pool: a subset of sensors that contains little to no 10 Hz 

visually evoked steady-state response. Time series within each epoch and sensor of the 

noisepool were then filtered to remove all 10 Hz (and harmonics) components. Using principal 

components analysis (PCA), we defined global noise regressors from the filtered noise pool 

time series. For each subject, the first 10 PCs were used to create 10 new denoised datasets: 

the first denoised dataset had the PC 1 projected out of the data in each sensor, epoch by 

epoch. The second denoised dataset had PC1 and PC2 projected out, etc. For each denoised 

dataset, we calculated the median R2 across bootstrapped epochs. The optimal number of PCs 

to project out was the smallest number of PCs that resulted in a denoised data with a median R2 

within 5% of the maximum possible median R2 of 10 datasets. This resulted in removing 6 PCs 

on average across subjects, ranging between 2-8 PCs. At last, we reshaped the denoised MEG 

Data into a 4D array: t time points x k epochs x n sensors x m runs. 

3.3.4 MEG data quality check 

We calculated two parameters to check the quality of the measured MEG data: 10 Hz 

coherence and split-half reliability of the 10 Hz steady-state visually evoked responses. The 

coherence of the 10 Hz steady-state visually evoked fields (SSVEFs) provides an estimate of 

the signal-to-noise ratio of the steady-state response within stimulus periods. The 10 Hz SSVEF 

coherence was defined by dividing the average 10 Hz amplitude across epochs of all runs by 
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the average amplitudes of 10 Hz and neighboring frequencies (i.e. 9 to 11 Hz) across epochs of 

all runs.  

The second metric was the split-half reliability of the 10 Hz steady-state amplitudes, 

providing an estimate of how reliable the steady-state responses are across runs. We computed 

the split-half reliability by dividing the 19 repeated runs into two groups. After taking the sensor-

wise average time series across runs for each of the two data splits, we applied the FFT to the 

two run averages and extracted the 10 Hz amplitude per epoch. The 10 Hz amplitudes for the 

first data half were then pairwise correlated to the 10 Hz amplitudes for the other data half 

(Pearson’s ⍴). This split-half reliability procedure is repeated 1000 times and summarized as the 

mean correlation across repetitions, resulting in one split-half reliability sensor map per subject. 

3.3.5 MRI-MEG head model and alignment 

The head model, also referred to as the ‘lead field’ or ‘gain matrix’, describes the contribution of 

cortical locations (or ‘sources’) to the activity at each individual MEG sensor. To generate this 

head model, we align the individual’s anatomy and the MEG helmet in a common coordinate 

space using the Brainstorm toolbox (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). 

Specifically, we defined the nasion and left/right peri-auricular points in the T1-weighted 

image of each individual subject. We used Brainstorm’s automated alignment algorithm to align 

the fiducials marked in the T1-weighted image, the recorded locations of electrodes attached to 

the subject's face while lying in the MEG scanner, and points in the 3D head shape. Small 

manual translational adjustments were applied to the rotation matrix if necessary. After 

alignment, we computed the individual subject’s head model using Brainstorm’s implementation 

of the overlapping spheres algorithm (Huang, Mosher, & Leahy, 1999) using the subject’s 

FreeSurfer pial surface (~290,000 vertices per hemisphere). We did not downsample the 

number of vertices as is often a standard implementation in MEG/EEG software packages, as 

we do not need to reduce computational cost for our forward model (in contrast to inverse 

modeling), enabling us to avoid interpolation errors introduced by downsampling of the pRF 

parameters from a high to a low resolution cortical surface. We constrained our head model to 

one perpendicular dipole per vertex, resulting in a matrix of Freesurfer vertices (~300,000, 

depending on the subject) by 157 sensors. 
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3.4 A stimulus-to-sensor model for MEG responses 
We developed a modelling framework that learns cortical pRFs from fMRI data, a biophysics 

model (gain matrix) from anatomical MRI co-registered to MEG data. The model takes as input 

a visual stimulus and predicts as output the MEG SSVEF amplitude at each sensor and each 

stimulus position. The voxel-wise pRF parameters, fit to fMRI data, are projected to the cortical 

surface and used to predict neural population responses to the MEG stimuli. These predicted 

values are in the form of one number per voxel per bar position. Because both our stimulus and 

our pRFs are defined as non-negative, the predicted cortical responses are all also non-

negative. These predictions are then projected to the MEG sensor space using the gain matrix 

from the overlapping-spheres head model (Huang et al., 1999). The values projected to the 

sensors are signed because the gain matrix is signed. These Predicted MEG data are 

compared to the measured phase-referenced steady-state MEG response using a linear 

regression, fitting a reference phase 𝜃ref and a gain parameter 𝛽 per sensor to estimate the 

variance explained (Figure 2, training model). The optimal reference phases were then cross-

validated across data halves to recompute the phase-referenced 10 Hz steady-state responses 

and averaged across halves.  The corresponding gain factors were averaged across halves and 

used to scale the initial predicted sensor responses. A final goodness of fit of the average 

predicted MEG responses was computed on the average measured MEG responses (Figure 2, 

test model). We explain each of these steps in detail below.
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Figure 2. MEG forward modeling approach. The model starts with preprocessed fMRI and MEG data 
and their corresponding stimuli as inputs. Train model. Step 1: FMRI stimuli are binarized into apertures 
and used to solve pRFs within each cortical location and projected to the cortical surface. Step 2: 
Estimated pRFs are multiplied with MEG stimulus apertures to predict time series on the cortical surface. 
Step 3: Predicted cortical responses are multiplied with the gain matrix from the MEG forward model to 
get predicted MEG responses. The gain matrix describes the contribution of each source to magnetic 
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fields measured in MEG sensors and is computed by the overlapping spheres algorithm (1Huang et al., 
(1999)). Predicted responses are fitted to measured MEG responses, using a split-half cross-validation 
procedure. Step 4.1: MEG training runs are averaged and its time series are transformed to the Fourier 
domain. Step 4.2: 10 Hz amplitudes and phases are extracted per epoch and sensor. Step 4.3: 10 Hz 
phase and amplitudes are combined into phase-referenced 10 Hz SSVEF amplitudes by fitting the 
predicted MEG responses from pRFs to measured MEG responses. This model fit uses two free 
parameters (gain 𝛽 and reference phase 𝜃ref) and is optimized by finding the reference phase where the 
prediction explains most variance in the data. Test model. Both free parameters are cross-validated: the 
optimal reference phases from training are used to compute phase-referenced 10 Hz SSVEF responses 
of the test runs as in Step 4. The gain parameters are summarized by the weighted average across the 
two training iterations and used to scale the predicted MEG responses. At last, measured MEG 
responses are averaged across split-halves and compared to predicted MEG responses using the 
coefficient of determination. 

3.4.1 Step 1.1: Solve pRFs with fMRI 
Using the Vistasoft toolbox (https://github.com/vistalab/vistasoft), we solved linear, circularly 

symmetric 2D Gaussian pRF models on the functional MRI data, as previously described in 

Dumoulin and Wandell (2008). In brief, pRF models were solved by a two-stage coarse-to-fine 

optimization procedure on the gray matter voxels, using the binarized MRI stimulus apertures 

and Vistasoft built-in ‘difference between two gammas’ hemodynamic response function. The 

first stage of the optimization procedure started with a coarse grid-fit. The best fitting parameters 

for each voxel from the coarse grid-fit were used as the seed for the fine grid-fit. This fitting 

procedure resulted in an estimated preferred size (σ, 1 SD of 2D Gaussian), center location (x, 

y), scaling factor (beta) and variance explained for every voxel. The pRF parameters computed 

at gray matter voxels are interpolated to surface vertices and an MEG response time series is 

predicted for every surface vertex. 

3.4.2 Step 1.2: Smooth pRF parameters across gray matter voxels 

The pRF parameters are interpolated from the gray matter voxels to the surface vertices using a 

nearest neighbor interpolation algorithm. To reduce sensitivity to noise, we smooth pRF 

parameters across the cortical surface by calculating a weighted average over a normalized 

truncated gaussian kernel (as demonstrated by (Andrade et al., 2001)). The gaussian kernel 

(approximately, a FWHM of 3 mm at 1 cubic mm of voxel resolution) is created at every gray 

matter voxel, only covering the neighboring voxels. However, neighboring voxels in which 

estimated pRF model fit did not explain any variance of the data (i.e. a variance explained of 

0%) were excluded. We smoothed the position (x, y) and size (sigma) parameters, but not the 

beta weights. Although the pRF model is linear, it is not linear with respect to its parameters, 

and smoothing of the parameters can have unwanted effects, particularly in the amplitude of the 

response (controlled by the pRF beta weights). We recomputed the pRF beta weights such that 
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the maximum response to the stimulus at each voxel was smoothed, rather than the pRF beta 

weights themselves being smoothed. 

3.4.3 Step 2: Predict neural responses to MEG stimuli from pRF 

parameters 

To predict the steady-state responses in MEG sensors, we first created a predicted response 

from estimated pRF parameters on the cortical vertices. Vertices were constrained by those 

whose pRF parameters explained more than 10% of the variance in the MRI data, whose pRF 

centers fell within our stimulus aperture (10 degrees of visual angle), and those which fell inside 

the visual ROIs from Wang et al.’s probabilistic atlas (2015). For all other vertices, the predicted 

response was 0. For each vertex, a 2D Gaussian receptive field was constructed using its 

preferred center and size. The height of this receptive field was scaled by the vertex’ beta value. 

A dot product of these receptive fields and the binarized MEG stimulus resulted in the predicted 

surface response (one value per aperture position). As mentioned earlier, blink periods were 

excluded. Blank periods were predicted as zero responses, assuming that blank screen epochs 

elicit a negligible 10 Hz steady-state visually evoked response with a random phase. Vertices 

with a maximum predicted response that was larger than 10 times the median of the maximum 

response across time for all vertex responses were considered outliers and excluded. 

3.4.4 Step 3: Predict MEG sensor responses from neural responses 

The matrix containing the predicted pRF responses on the cortical surface S was then multiplied 

with the gain matrix from the MEG head model G, resulting in predicted MEG sensor responses 

Ŷ (Equation 1). We compared these predicted MEG sensor responses to the measured MEG 

responses. 

 

Equation 1:     Ŷ = 𝐺 ⋅ 𝑆 

 
Where Ŷ (k epochs x m sensors) are the predicted pRF responses for MEG sensors, G 

(n vertices x m sensors) is the head model, and S (k epochs x n vertices) is the predicted pRF 

response on the cortical surface. 
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3.4.5 Step 4: Fitting the model to MEG training data 

The observed MEG responses were computed as the phase-referenced 10 Hz steady-state 

visually evoked fields (SSVEFs), using cross-validation. Phase referencing the amplitude is 

done when the expected oscillations can be either positive or negative, which can occur 

because the gain matrix created by the head model is signed (i.e. contains both positive and 

negative numbers). Moreover, the reference phase itself may be of interest, as it can capture 

differences in timing between sensors driven by different regions of cortex, with different 

response properties. 

For each subject, epoched MEG data were split into two halves: a training half 

containing the 10 odd runs and a test half containing the 9 even runs. We then computed the 

sensor-wise average time series within each epoch across training runs and transformed the 

average to the Fourier domain by applying the FFT to the time series data (Figure 4, Step 4.1). 

We extracted both amplitude and phase information from the spectral MEG data at 10 Hz (i.e. 

the contrast-reversal rate of the stimulus) to compute a phase-referenced steady-state response 

(Figure 4, Step 4.2). To calculate this response, we describe the 10 Hz Fourier component of a 

given epoch as a vector with amplitude length and phase angle (i.e. cosine of the phase). We 

then scale the 10 Hz amplitude by the difference in angle between the measured phase and a 

reference phase 𝜃ref , resulting in the phase-referenced steady-state response Y for sensor m 

and epoch k (Figure 4, Step 4.3). The reference phase was obtained separately for every 

sensor by choosing the phase leading to the highest variance explained in the MEG time series. 

The variance explained was computed by a linear regression of the model predictions to the 

phase referenced time series with one free parameter 𝛽 (i.e. a gain factor). This gain factor 

scales the predicted time series into units of femto Tesla. Fits were optimized by minimizing the 

error of the coefficient of determination between model and data (i.e. the residuals of sum of 

squares divided by the total sum of squares). 

3.4.6 Test model: Comparing predicted to measured MEG responses 

The model predictions were tested using a split-half cross-validation approach. Once the 

optimal reference phases were selected for every sensor for the training half, they were applied 

to compute the phase-referenced MEG 10 Hz steady-state response in the test half (see 

Equation 2). This was repeated for each of the two split halves. 

 
Equation 2:    𝑌)	(𝑘) = 𝐴(𝑘)),0120	210 	 ⋅ 𝑐𝑜𝑠(𝜃(𝑘)),0120	210 	−	𝜃718,079:;:;<	210) 
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Where Am(k) is the average 10 Hz amplitude across test runs, for every epoch k and 

sensor m. θm(k) is the average 10 Hz phase across all test runs at 10 Hz, for every epoch k and 

sensor m. θref m(k) is the reference phase for every epoch k and sensor m, computed by fitting 

the training data to the predicted responses. 

 

Training both data halves resulted in two sets of gain parameters corresponding to the 

model fit with the optimal reference phase. Because the predicted cortical responses were 

identical for both data halves, we scaled the predicted MEG responses with the weighted 

average of the two gain parameters, resulting in one predicted time series per sensor. We used 

a weighted average because the two halves had an unequal number of runs. 

The entire cross-validated phase-referencing procedure resulted in two arrays: one with 

phase-referenced SSVEF responses (k epochs x 2 groups of runs x m sensors) and one with 

scaled predicted MEG responses (k epochs x m sensors). Measured MEG data were averaged 

across the two run groups, resulting in a matrix of k epochs x m sensors. To summarize the 

goodness of fit across the entire data set, we computed the coefficient of determination 

(variance explained, R2) for the average predicted MEG responses to the average measured 

MEG responses. 

3.4.7 Sensitivity of prediction to rotating pRF centers 

To evaluate how sensitive our model predictions are to pRF parameters estimated by fMRI, we 

systematically altered the fMRI pRF parameters. We estimate the sensitivity to pRF center 

position by systematically rotating the pRF centers. We do so by first calculating the polar angle 

for a given vertex using the x and y pRF parameters, and then adding an angle rotation from -

180 to 180 degrees in one of 8 equal steps of 45 degrees. For every rotation step, we fit and 

test the model in exactly the same was as we did for the data without rotation, including fitting 

the reference phase and beta weight per sensor and evaluating by cross-validation. 

The variance explained differs for each sensor. We summarize the variance explained 

for a subject by averaging across a subset of sensors. The subset of sensors is the union of the 

10 sensors with highest variance explained in each of the rotation steps. 
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3.4.8 Sensitivity of prediction to scaling pRF sizes 

We estimate the sensitivity of our model to pRF size by systematically scaling the originally 

estimated pRF size. We scaled original pRF sizes from 0.2 times smaller to 10 times larger, in 

19 log-spaced steps, where a scale factor of 1 is the pRF size estimated with fMRI. Similar to 

the rotation manipulation, we re-computed the predicted MEG responses and optimal reference-

phases after applying a particular scale factor, and summarized the effect of scaling by taking 

the average across the group of sensors selected as the top 10 sensors with highest variance 

explained in each of the scaling steps. 

3.5 Group average model fits 
A challenge in group analysis of MEG or EEG is that the same sensor in two subjects do not 

sample from the identical parts of the brain. An advantage of a forward model of the MEG signal 

is that group average data can be computed in the model space, fit separately for each subject. 

The sensor-wise average prediction across subjects accounts for the differences in cortical 

sampling between subjects, because each prediction is based on that subject’s fMRI data, head 

model, and MEG training data. The average prediction can then be compared to the average 

group data. 

We computed the group average model fit by taking each subject’s cross-validated 

predicted MEG responses (thus scaled by the individual subject’s 𝛽) and observed MEG 

responses (phase-referenced using a reference phase optimized to the individual subject’s 

predicted responses). We then average the predicted MEG responses across subjects and 

separately average the measured MEG responses across subjects, resulting in two matrices: 

both n epochs by m sensors. We compare the goodness of fit using the coefficient of 

determination. 

In the case where we altered the pRF parameters, for each rotation or scaling iteration, 

we bootstrapped the average measured and predicted MEG responses across subjects 10,000 

times. We compute the coefficient of determination between the two averages for each 

bootstrap, resulting in a variance explained distribution for each sensor. From this distribution, 

we extracted the mean variance explained and the 14th and 86th percentile for upper and lower 

bounds of the 68%-confidence intervals. 

Data were summarized for individuals, by selecting the union across the 10 sensors with 

the highest variance explained for each iteration. This resulted in a matrix of estimated means 

(number of iterations by selected sensors) and an array of estimated 68%-confidence intervals 
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(number of iterations by selected sensors by 2 bounds). Finally, we took the average across 

selected sensors for both matrices resulting in two vectors of variance explained per rotation or 

scaling iteration and its corresponding confidence interval. 

To assess whether variance explained reliably peaked at the original pRF parameter, we 

computed a two-tailed p-value from the bootstrapped distribution averaged across the selected 

sensors.  
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4 Results 
In separate MRI and MEG sessions, subjects viewed high contrast retinotopic bar stimuli 

traversing across the visual field, where the checkerboards inside the aperture reversed 

contrast 10 times per second. Data from the MRI session were used to reconstruct population 

receptive fields (pRFs) on the cortical surface for each individual subject, using the modeling 

approach described by Dumoulin and Wandell (2008). These pRFs on the cortical surface were 

the building blocks of our forward modeling approach, as they were used to predict the 

observed MEG response. Below we describe the observed steady-state components within the 

MEG data and report the MEG forward model performance using the pRFs estimated from the 

MRI session. Finally, we show the effect of artificially altering the initially estimated pRFs on our 

MEG model. 

4.1 Retinotopic stimuli produce reliable steady-state responses in posterior 

MEG sensors 
MEG data from individual subjects were divided into 1.1-s non-overlapping time bins (epochs), 

for every sensor and run. These epochs contained either a contrast-reversing bar at a particular 

location in the visual field (‘stimulus periods’), a zero-luminance screen (‘blank periods’), or a 

square stimulus prompting subjects to rest and make excessive eye blinks (‘blink periods’). The 

latter were removed from all following analyses. Both stimulus and blank periods were averaged 

across multiple runs, before transforming the MEG time series to the Fourier domain. 

We found a large steady-state response at 10 Hz (the contrast-reversal rate of the 

stimuli) and multiples of 10 Hz (i.e. harmonics) during stimulus periods compared to blank 

(Figure 3A). These 10 Hz steady-state visually evoked fields (SSVEFs) were largest in 

posterior MEG sensors. To estimate how robust 10 Hz steady-state responses were across 

identical stimulus runs, we computed two data metrics of the 10 Hz amplitudes: its coherence 

and split-half reliability. 
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Figure 3. Steady-state visually evoked amplitudes from the MEG experiment. (A) Example spectra 
from two posterior MEG sensors (location indicated by dot on schematic head) and two subjects (S1 and 
S9). Fourier transformed stimulus periods (black line) show a large peak at the contrast reversal rate (10 
Hz, i.e. the steady-state visually evoked field or ‘SSVEF’) and multiples of 10 Hz (harmonics) compared to 
blank periods (grey line). Note that these amplitudes contain only positive values and are not yet 
referenced by the corresponding phases. (B) MEG sensor topography of 10 Hz SSVEF coherence (10 Hz 
amplitude divided by mean of 9-11 Hz amplitude) for subjects S1 and S9 and sensor-wise average across 
all subjects (N=10). (C) Split-half reliability of the 10 Hz SSVEF amplitudes for subjects S1 and S9 and 
sensor-wise average across all subjects (N=10). 
 

The coherence metric provides a signal-to-noise ratio of the steady-state response 

within stimulus periods for every MEG sensor, without regard to the particular stimuli giving rise 

to the response. This metric is computed by dividing the average 10 Hz amplitude of all stimulus 

periods by the sum of the amplitudes from 9 to11 Hz. We found that the coherence of the 
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steady-state response is largest in posterior MEG sensors (Figure 3B), in line with the 

expectation that posterior sensors are located over the visual cortex and maximally driven by 

the stimulus contrast-reversals. 

The specific 10 Hz coherence sensor topography varied across subjects. For example, 

subject S1 (Figure 3B, left panel) showed extended regions of high 10 Hz coherence in lateral 

and anterior MEG sensors, whereas subject S9 did not (Figure 3B, middle panel). When 

sensor-wise averaging 10 Hz coherence topographies across subjects, the coherence values 

are highest in posterior sensors (Figure 3B, right panel). This indicates that across subjects 10 

Hz steady-state amplitudes are most robust in posterior MEG sensors, as expected due to 

proximity of these sensors to visual cortex. 

To estimate how reliable the 10 Hz steady-state amplitudes are across the 19 repeated 

runs in the MEG experiment, we computed the split-half reliability. Unlike the coherence metric, 

which average across epochs, the split-half reliability was sensitive to the specific pattern of 

responses as a function of bar position. We found that split-half reliability is largest in posterior 

MEG sensors (up to Pearson’s ⍴ = ~80%) in both individual maps and across-subjects maps 

(see Figure 3C). Many posterior sensors with high reliability overlap those sensors with the 

largest coherence within individual subjects (see Supplementary Figure 1). The sensors with 

high 10 Hz coherence, however tend to spread out more to lateral and frontal MEG sensors 

compared to those with high split-half reliability, which are confined to posterior MEG sensors. A 

possible explanation for this topography discrepancy is that some sensors in anterior locations 

are broadly sensitive to the stimulus (high coherence) but have little to no position sensitivity 

(low split-half reliability). 

4.2 Forward model predicts phase-referenced MEG responses in posterior 

sensors 
Thus far, we focused on the 10 Hz steady-state spectral amplitudes and ignored the 

corresponding 10 Hz phases. This phase component can vary across epochs and MEG sensors 

due to processing delays in the visual system and depend on stimulus features, such as 

contrast (Shapley & Victor, 1978) and eccentricity (Jeffreys, 1971; Burkitt, Silberstein, Cadusch, 

& Wood, 2000; Ales, Yates, & Norcia, 2013; Inverso, Goh, Henriksson, Vanni, & James, 2016). 

Because our stimulus was a bar sweeping in different directions across the visual field and likely 

activated both early and later visual areas which differ in response timing, we expected 

variability in the 10 Hz phases across MEG sensors. Additionally, the gain matrix from the MEG 
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head model is signed, causing predicted MEG responses to be signed. Therefore, to use all 

available information in the MEG data, we combined 10 Hz amplitudes and phases into 10 Hz 

phase-referenced steady-state responses. We did so by scaling the 10 Hz amplitudes by the 

cosine of the difference between the observed phase and a reference phase (see Methods). 

This way both predicted responses and measured MEG responses are signed. 

To predict the MEG responses to retinotopic stimuli for each individual subject, we 

developed a forward model (Figure 2). In short, our forward model predicted the MEG 

responses for every sensor by first multiplying pRF models estimated from fMRI at every cortical 

location with the MEG stimulus, for every time point. We then multiplied the resulting pRF time 

series at every cortical location with the gain matrix from the MEG head model based on 

subject’s anatomy and head position in the MEG. For the measured MEG responses, we 

combined amplitude and phase information into a phase-referenced amplitude for every sensor. 

We used split-half cross-validation to determine the optimal reference phase for every MEG 

sensor by fitting observed MEG responses to the predicted MEG responses, optimizing for 

variance explained by the model. By splitting the MEG runs into two groups, reference phases 

of the first half were used to compute the phase-referenced SSVEFs for the second half. Finally, 

to determine the overall goodness of fit of the model, we compared the predicted time series 

with the observed phase-referenced 10 Hz SSVEFs averaged across both split-halves for every 

MEG sensor. 
By combining local pRFs on the cortical surface with the biophysical head model, our 

forward model was able to capture ~60% of the variance in phase-referenced steady-state MEG 

data in posterior MEG sensors (Figure 4). The predicted MEG responses in sensors with high 

variance explained usually contained five peaks across the 154-s experiment, corresponding to 

the five orientated bar sweeps across the visual field. This result was found both at the group 

level (Figure 4C), as well as individual subject level (Supplementary Figure S2). Those MEG 

sensors with highest variance explained by the forward model approximately overlap with 

subset of posterior sensors that contain large 10 Hz coherence and split-half reliability values on 

an individual subject basis (see Figure 3 and Supplementary Figure S1-S2). 
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Figure 4. MEG forward model captures variance in observed MEG responses across posterior 
sensors. (A) Left panels show two example time series of observed 10 Hz phase-referenced MEG 
responses (black dots with dashed line) and predicted MEG responses by the model (red line). The 
predicted MEG responses explain 60% and 58% of the variance in the observed MEG responses. Data 
are from two posterior sensors (indicated by the black dot on the head schematic) in two different 
subjects (top: S1, bottom: S9). Every dot in the observed MEG time series is the phase-referenced 10 Hz 
amplitude of a single stimulus bar position. Light and dark gray boxes indicate blink and blank periods 
respectively. Blink periods were excluded from the analysis, blank periods were modeled as zeros. (B) 
Topographic sensor maps of variance explained by forward model. Left side shows the same two 
subjects as in panel (A) (top: S1, bottom: S9). Right side shows group average model fit (N=10). In this 
case, measured MEG data are averaged across subjects and compared to the average across subject’s 
model fits. 
 

One advantage of our forward model is that individual subject’s predicted MEG responses can 

be averaged to compare against the average observed data. We find that the group average 

model prediction could explain up to ~70% of the variance in the average time series of several 

posterior sensors (Figure 4B, right panel). Because averaging across subjects’ data reduces 

measurement noise, the model fit is able to capture more variance in those sensors with high 

signal (posterior MEG sensors), compared to individual subjects. The group average model fit 

shows an asymmetry in captured variance explained, with higher variance explained on the left 

compared to right. However, individual subject maps do not support a systematic asymmetry in 

model accuracy between left and right sensors (Suppl. Figure 2), hence the observed laterality 

in the group model fit is likely due to sensors with good data being more closely aligned across 

subjects on the left side than right side. 
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4.3 Forward model predictions are sensitive to changes in pRF 

parameters 
Because MEG sensors pool over large regions of the cortex, the measured steady-state 

responses are the sum of many cortical pRF responses sampling visual space. This large 

pooling function poses the question, to what extent do the parameters of cortical pRFs in our 

forward modeling approach affect the accuracy of the predicted MEG responses. In the most 

extreme scenario, a forward model that uses scrambled pRFs across the cortex might predict 

MEG responses as well as the initially estimated pRFs. This would occur if each sensor pooled 

signals about equally from all of visual cortex. In this case, the MEG responses only contain 

information about stimulus onset and offset, not the specific spatial positions. A more likely 

possibility is that MEG sensor responses carry some information about the visual field position 

of stimuli, but at a lower spatial resolution compared to pRFs estimated by fMRI. In this case, it 

is an empirical question how much MEG sensor responses are affected by slight changes in 

underlying pRF models. 

To quantify the extent to which our model accuracy depends on the measured pRF 

parameters, we artificially changed the pRF model parameters estimated from fMRI. First, we 

systematically alter pRF positions on the cortex, such that pRFs rotate around the fovea, leaving 

pRF sizes intact. Then, we systematically scale pRF sizes, leaving pRF positions intact. In both 

cases, we observe that the forward model predictions generally become less accurate. 

4.3.1 MEG data are best predicted by pRF positions estimated from fMRI 

When rotating pRF away from their estimated positions, the variance explained by the forward 

model decreases. For example, in subject S1 variance explained by the model decreased by 

~23% when rotating the pRFs from 90 degrees clockwise or counter-clockwise around the fovea 

and slightly recovers when rotating 180 degrees (Figure 5A, top panel). In other subjects, such 

as S9, variance explained peaked at the estimated pRF position, but the fall off with rotation 

angle was less steep (Figure 5A, bottom panel). For 6 out of 10 subjects, variance explained by 

the model peaked at 0 (the initial pRF position) or close to 0 (Supplementary Figure S5). On 

average, we observed the highest variance explained with 0 rotation (p < 0.05), with a maximum 

drop of ~15% when pRF positions were rotated around the fovea (Figure 5B). 

The artificial pRF rotation also affected the spatial topography of variance explained 

across posterior MEG sensors. When pRF positions were rotated away from their initial position, 

the sensors with the highest variance explained were confined to a single region in posterior 
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MEG sensors and not as widespread as without rotation, indicating that sensors differ in the 

extent to which the signal that they pick up is sensitive to pRF position (Supplementary Figure 
S4). 

 
Figure 5. Systematic variation of pRF position decreases ability to explain variance in data by 
model predictions. (A) Variance explained by the forward model as a function of pRF center position for 
two subjects (top: S1, bottom: S9). The original pRFs estimated using fMRI (0 degrees, black vertical line) 
were systematically rotated around the fovea, by -180 degrees to 180 degrees from initial pRF position in 
steps of 45 degrees. Predicted MEG responses were recomputed and fitted to observed MEG responses 
for each rotation condition. Data were summarized as the average (red line) across the union of 10 
sensors with the highest variance explained for each rotation condition (i.e. including all sensors that are 
among the 10 sensors with highest variance explained for at least 1 rotation direction; red dots in 
schematic head). Error bars show 68%-confidence interval of the average across the selected sensors. 
Highest variance explained is observed for the initial pRF position (0 degrees rotation). (B) Variance 
explained by group average model fit (red line) and 68%-confidence interval obtained by bootstrapping 
10,000 times the group average across 10 subjects (gray) for the sensor selection shown in the inset at 
the top of the panel. A schematic of different rotation angles for an example pRF are shown below. On 
average, variance explained by the model fit decreases ~15% when using pRF positions rotated away 
from the initial pRF position. 
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4.3.2 Artificially changing pRF sizes affects model accuracy 

When artificially altering pRF sizes 5x smaller or 10x larger, variance explained by the model 

gradually decreases up to 5-15%. We observed that our forward model explained on average 

most variance when using sizes close to, but slightly larger than, the pRF size estimated with 

fMRI (Figure 6). Some subjects showed a peak at slightly larger sizes (subject S1; Figure 6A, 

top panel), whereas other subjects had a peak at slightly smaller pRF sizes (subject S9; Figure 
6A, bottom panel). Overall, for 6 out of 10 subjects we observed a peak in variance explained 

by the model at or close to the initially estimated pRF (most of them overlap with those subjects 

showing a reliable effect of pRF position manipulation, see Supplementary Figure S4). Across 

subjects, we observed a similar drop in variance explained as a function pRF scale factor 

(around 15%), with a plateau between the initial pRF size and doubling the pRF size (Figure 
6B). This indicates that MEG responses are less sensitive to changes in pRF size compared to 

pRF positions, or similarly, our forward model’s ability to capture pRF size changes. Changing 

the pRF size caused subtle changes in the spatial topography of the variance explained sensor 

map, but these changes were neither systematic nor large (Supplementary Figure S6). 
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Figure 6. Systematic variation of pRF size decreases ability to explain data by model predictions. 
(A) Variance explained by the forward model as a function of scaled pRF sizes, i.e. larger or smaller than 
initial pRF size estimated with fMRI (black line at 1). Top and bottom panels represent subjects S1 and 
S9, respectively. PRF sizes are systematically scaled from 0.2x to 10x the original size. Similar to 
variations in pRF position, variance explained is averaged (red line) for the union of 10 sensors with the 
highest variance explained from each of the 19 scaling conditions (red dots in the schematic head). Error 
bars show 68%-confidence interval of the average across the selected sensors. Largest variance 
explained is observed close to the initial pRF size, with a slightly smaller size for S9 and a slightly larger 
size for S1. (B) Variance explained by group average model fit (red line) and 68%-confidence interval 
obtained by bootstrapping 10,000 times the group average across 10 subjects (gray). A schematic of 
selected sensors are shown in the inset at the top of the panel. Different scale factors for an example pRF 
is shown below the x-axis. On average, variance explained by the model fit decreases ~15% when using 
pRF sizes that are 5x smaller or 10x larger than the initial pRF position.  
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5 Discussion 
Population receptive field modeling is an important tool that has made significant contributions 

to our understanding of the functional architecture and underlying computations of the human 

visual cortex. The successes of pRF models have been widespread and large in fMRI, with a 

few applications in intracranial data, and little applications for MEG forward models. Here, we 

developed a stimulus-to-sensor forward model that combines pRFs estimated from fMRI with a 

biophysical forward model to predict the steady-state visually evoked MEG responses when 

subjects viewed moving bar stimuli. Our results demonstrate that we can reliably measure and 

predict visually-evoked responses for these stimuli. The model was sensitive to cortical pRF 

model parameters, as we found a decrease in variance explained when artificially changing the 

underlying pRF model parameters estimated with fMRI. 

This combination of fMRI and MEG measurements allows future studies to investigate the 

time-resolved spatiotemporal dynamics of human visual field maps as well as the relationship 

between the fMRI BOLD response and electromagnetic field measurements. In principle, our 

forward model can be implemented without solving pRF models using fMRI data. This can be 

done by applying a retinotopic template to an anatomical MR image, for example (Benson et al., 

2012; Benson, Butt, Brainard, & Aguirre, 2014; Benson & Winawer, 2018), or by predicting 

retinotopic structure from the cortical curvature pattern via machine learning algorithms (e.g. 

deep neural networks (Agrawal, Stansbury, Malik, & Gallant, 2014; Khaligh-Razavi & 

Kriegeskorte, 2014; Guclu & van Gerven, 2015; Eickenberg, Gramfort, Varoquaux, & Thirion, 

2017; Guclu & van Gerven, 2017)). Such applications would simplify and shorten the solution to 

the model parameters and reduce MRI scanning time which is useful when studying special 

populations like children or patients or individuals having difficulty holding fixation. 

5.1 Relationship to reconstructing cortical retinotopy from MEG sensor 

responses 
Several MEG studies have aimed at reconstructing retinotopy responses on the cortical surface 

from MEG sensor measurements (e.g. (Moradi et al., 2003; Poghosyan & Ioannides, 2007; 

Sharon, Hamalainen, Tootell, Halgren, & Belliveau, 2007; Brookes et al., 2010; Perry et al., 

2011; Cicmil, Bridge, Parker, Woolrich, & Krug, 2014; Nasiotis, Clavagnier, Baillet, & Pack, 

2017)). In those studies, instead of a forward model from stimulus to sensors, the cortical 

sources are estimated by inverse modeling: going from sensors to cortical sources, i.e., 

estimated sources are derived by multiplying the sensor responses by the pseudo-inverse of the 
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gain matrix in the head model. These estimated source responses are then compared to visual 

field maps measured with fMRI, where the fMRI maps are assumed to be the ‘ground truth’, 

aiming to minimize localization error. 

This inverse modeling approach can localize the retinotopic responses within a 

centimeter on the cortex of the correct hemifield, but it is limited to early visual areas and fails to 

accurately capture known features of visual field maps. For example, stimuli in the upper visual 

field (i.e. the lower bank of the calcarine sulcus) cannot be captured due to low SNR or signal 

cancellation in MEG sensors (e.g. see (Nasiotis et al., 2017)). Additionally, changes in stimulus 

polar angle and eccentricity—a hallmark of visual field maps—can only be distinguished at a 

coarse scale (i.e. visual quadrants or fovea versus periphery) (Moradi et al., 2003; Brookes et 

al., 2010; Perry et al., 2011; Cicmil et al., 2014). One reason for these limitations is that the 

inverse problem is ill-posed: a measured magnetic flux from a single sensor can result from an 

infinite number of cortical source combinations. The solution to this inverse problem is ill-defined 

and can only be achieved by making assumptions to limit the possible solutions (Cicmil et al., 

2014). Several research groups have used the known location of visual field maps as a prior to 

constrain the number of possible solutions, also known as ‘Retinotopy Constrained Source 

Estimation’ (Hagler et al., 2009; Ales, Carney, & Klein, 2010; Hagler & Dale, 2013; Hagler, 

2014; Cottereau, Ales, & Norcia, 2015; Inverso et al., 2016). These constraints resolved some 

of these reconstruction errors (e.g. cross-talk between sources in visual areas with close 

proximity, see (Hagler et al., 2009; Cottereau et al., 2011; Cottereau et al., 2015)), but the 

overall approach of source reconstruction still relies on regularizers coming with certain 

assumptions. 

Our forward model takes a different approach from previous MEG studies: we turn 

inverse modeling on its head. With our approach, model predictions are not limited to early 

visual areas, but only by the extent of reliably estimating local pRFs on the cortex. Also, our 

approach is not constrained by cancellation effects of opposite facing dipoles. On the contrary, 

our approach can be used to investigate the effect of source cancellation on sensor responses 

by simulating different temporal patterns in visual cortex (Kupers, Benson, & Winawer, 2019). 

We first predict neural time series at a millimeter-scale on the cortical surface using local pRF 

models estimated with fMRI, before predicting sensor responses with the MEG forward model. 

Because we use a purely forward modeling approach, our model is well-defined and avoids the 

need for additional constraints. By introducing an intermediate step, i.e. modeling responses on 

the cortical surface, between the stimulus and the MEG sensor responses, our model has the 

ability to implement a quantitative description of the stimulus representation at the cortical 
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source level; information one usually does not have access to and aims to reconstruct. Because 

our model is informed by local pRFs, it can create predictions at the millimeter scale, hence 

incorporating stimulus-selectivity at a local scale, and thereby make meaningful and accurate 

predictions at the MEG sensor level. In addition, having a computational encoding model that 

predicts sensor responses at an individual subject level introduces an alternative way of 

summarizing group data. Instead of computing sensor-wise average of the summary statistic 

(for example, variance explained), it is possible to average individual data and individual 

predictions separately and fit the average group prediction to the average group data. This 

alternative approach can reduce measurement noise and avoids blurring of inter-subject 

variability of the summary metric at the sensor level. 

5.2 The relationship between MEG and fMRI measurements 
MEG and fMRI are two of the most widely used non-invasive measurement techniques in 

human neuroscience capturing different types of aggregated responses across neural 

populations. MEG captures the magnetic flux from local field potentials, whereas fMRI captures 

the neurovascular response. The neural signals giving rise to each measurement are likely to 

differ. For example, the MEG signal is most sensitive to pyramidal neurons whose dendrites are 

perpendicular to the cortical surface (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 

1993), which may differ from sensitivity of the fMRI BOLD signal. Moreover, the neural signals 

giving rise to the fMRI signal have been shown to be most similar to those giving rise to the 

broadband component of the field potential, not the evoked signal which we used here 

(Foucher, Otzenberger, & Gounot, 2003; Winawer et al., 2013; Hermes, Nguyen, & Winawer, 

2017). These factors will put an upper limit on how well our model can perform. Nonetheless, 

differences in tuning of the neural populations giving rise to different signals are likely to be 

modest in the domain of position tuning, considering that position tuning is mapped at a 

relatively large scale in cortex (millimeter), compared to other features such as orientation, eye 

of origin preference, or spatial frequency preference, which may vary at a finer spatial scale. 

5.3 Sensitivity differences in predicting pRF position and size for fMRI vs 

MEG 
We showed that when artificially rotating pRF positions on the cortical surface, the model 

explained most variance in the data for the pRF positions obtained by fMRI. This indicates that 

the optimal pRF position explaining fMRI BOLD data also predicts the steady-state responses 
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best in MEG sensors. On the other hand, artificially scaling pRF sizes did not cause our model 

performance to peak at the estimated pRF size. For several subjects, the model explained the 

most variance for sizes slightly larger, while others for slightly smaller pRF sizes, than those 

estimated from fMRI. Given that we observed 10 Hz steady-state amplitudes with high reliability 

and signal-to-noise ratio in posterior MEG sensors, it is unlikely that the differences between 

data and model predictions are solely caused by measurement noise. In addition, our model is 

fairly conservative and unlikely to overfit MEG data as it contains relatively few free parameters 

(one gain factor and one reference phase per MEG sensor) which undergo a cross-validation 

procedure. 

In terms of modeling, the pRF size discrepancy can arise if the initial fMRI estimates 

overpredict pRF size, our MEG forward model underpredict pRF size, vice versa, or a 

combination of both. Several neural and non-neural factors have been reported to bias 

estimated pRF sizes with fMRI, whereas pRF position estimates appear to be more robust. 

Non-neural factors. One non-neural factor that has a large effect on the estimated pRF 

size (and less so for pRF position) is the mismatch between the assumed and actual underlying 

hemodynamic response function (HRF). This mismatch can cause both over- and 

underestimation of pRF sizes, depending on the experimental design or whether the spatial or 

temporal component of the assumed HRF is inaccurate (Dumoulin & Wandell, 2008; Lerma-

Usabiaga, Benson, Winawer, & Wandell, 2020). Since our fMRI session used stimuli that swept 

across the visual field in both directions for a given orientation, we believe that our experimental 

design minimized any bias in the estimated pRF size caused by the sluggish HRF. We did not 

estimate HRF functions separately for individual subjects or visual areas. We also did not model 

the spatial component of the HRF. However, our presentation time of sweeping bars was 

relatively long (31s/bar sweep), which largely reduces the impact of pRF size biases caused by 

the HRF mismatch (Lerma-Usabiaga et al., 2020). 
Another possible non-neural factor that has been reported to bias pRF sizes are eye 

movements. As shown by simulation (Levin, Dumoulin, Winawer, Dougherty, & Wandell, 2010; 

Klein, Harvey, & Dumoulin, 2014) and empirically (Hummer et al., 2016), gaze instability can 

introduce overestimation of pRF sizes across eccentricity. It also increases the absolute mean 

error for pRF position, but with no systematic bias within polar angle or eccentricity maps 

compared to gaze-corrected fMRI data. In the present study, eye movements were monitored 

during fMRI and MEG experiments for most subjects and did not show large eye movements. 

However, we cannot rule out the presence of small fixational eye movements (i.e. 

microsaccades and drift) in both MRI and MEG sessions. At least, if microsaccades were 
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present in the MEG data they would not cause an electromagnetic field response that overlaps 

with the 10 Hz steady-state response, as microsaccades are reported as increased gamma-

band power (> 60 Hz) (Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008). 
Neural factors. A neural factor that could affect pRF properties is visuo-spatial attention. 

FMRI and MEG sessions contained the same stimuli and similar experimental design where 

subjects were performing a fixation task. However, we cannot rule out fluctuations in covert 

spatial attention shifts towards the moving bar stimulus (either voluntary or involuntary). Several 

fMRI studies that explicitly manipulated voluntary visuo-spatial attention reported changes for 

pRF positions, and no changes or much less so for pRF sizes (Klein et al., 2014; Kay, Weiner, & 

Grill-Spector, 2015; Vo, Sprague, & Serences, 2017; van Es, Theeuwes, & Knapen, 2018). 

While individual subjects could employ different amounts of visuo-spatial attention in one 

session compared to the other, on average our initial estimates of pRF position seem more 

robust compared to pRF size. This suggests that visuo-spatial attention is unlikely the main 

factor causing a difference in optimal pRF size for MEG versus fMRI. 

5.4 Choice of MEG data component 
In this study, we compared the phase-referenced steady-state amplitudes against the predicted 

retinotopy response. We chose SSVEFs because this signal contains stimulus-specific 

information (i.e. the contrast-reversal rate) and has a high signal-to-noise ratio. However, we do 

not exclude the possibility that other MEG data components are a better proxy for the predicted 

retinotopy responses in MEG sensors. 

Our model predictions are based on local pRFs estimated from fMRI BOLD responses, 

but the measured SSVEFs originate from high coherence between neural sources—a signal 

type fMRI is less sensitive compared to electric field measurements like ECoG (Foucher et al., 

2003; Hermes et al., 2017). For example, the ECoG study by Winawer et al. (2013) used a 

similar experimental design as the current study: presenting high contrast-reversing 

checkerboard bars traversing across the visual field while recording local field potentials from 

early visual cortex. They found that when a bar crossed the estimated pRF of the ECoG 

electrode, there was an increase in steady-state amplitude at the stimulus frequency and a 

broad increase in power across many frequencies, i.e. a parallel shift of the 1/f spectrum 

compared to baseline (“broadband response”). When comparing both data components to 

BOLD responses of pRFs at the same cortical location in healthy controls, the broadband 

response was a better predictor of spatial summation compared to the steady-state response. 

This difference becomes clear when using test stimuli that vary in bar width or size. In this case, 
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both the fMRI and the broadband signal show sub-additive summation, whereas the evoked 

response does not.  Had we used stimuli with multiple bar widths and sizes in our MEG 

experiment, model accuracy for the SSVEF would likely have been lower. 

5.5 Choice of model parameters 
Currently, our model predicts responses from stimulus to cortex without free parameters (after 

the pRF models are solved for fMRI) and fits two free parameters per MEG sensor (a reference 

phase and scale factor). Using a limited number of free parameters makes our model 

predictions interpretable: the reference phase allows for a sign reversal of the MEG prediction 

and potential delays in visual processing across the visual hierarchy, and the gain factor puts 

the model predictions in units of femto tesla. Allowing additional free parameters (such as an 

offset or scale factor for pRF estimates on the cortex) or refitting our gain factor to the average 

of all MEG data runs is likely to improve model performance but can also cause overfitting or 

reduce its interpretability. 

Additionally, other encoding models predicting visual preferences of neural populations 

could capture more complex dynamics compared to the current model. Examples of such 

models are the difference of Gaussian (DoG) pRF model (Zuiderbaan, Harvey, & Dumoulin, 

2012) or the compressive spatial summation (CSS) model (Kay, Winawer, et al., 2013). Since 

our model implements the step from stimulus to predicted cortical responses in a separate 

function, the model component can be interchangeable and allows the general modeling 

approach to adapt to different experiments. 

5.6 Individual differences 
We observed that the amount of variance explained by our model was considerably different 

across subjects, using both the originally estimated pRFs with fMRI and when artificially varying 

pRF size or position. This inter-subject variability could be the result of methodological errors, 

measurement noise, or a true difference between subjects. Methodological errors include the 

possibility of improper alignment of the MEG sensor positions to subject anatomy, and the type 

and resolution of the head model.  

MEG and EEG head models have become increasingly more complex (for an overview, 

see (Vorwerk et al., 2014)). For example, we used the overlapping spheres method (Huang et 

al., 1999), but there are more biologically accurate models like the boundary element method 

(‘BEM’, (Kybic et al., 2005; Gramfort, Papadopoulo, Olivi, & Clerc, 2010)). Since our model 

explains more than half of the variance in individual MEG sensor data with the overlapping 
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spheres head model, thus providing a proof of principle, we did not run our model with different 

types of head models. However, we do not exclude the possibility that a more complex head 

model could increase our model accuracy. Non-neural physiological noise, such as head and 

eye movements, could also differ between subjects and decrease our model accuracy. 

5.7 Future applications and extensions 
Our forward model provides a proof of principle that MEG responses can be reliably predicted 

from stimulus to cortex to sensors. One interesting potential application to use our model is to 

characterize the changes in pRF properties over time. As mentioned previously, several fMRI 

studies have observed changes pRF center of mass with visuospatial attention (Klein et al., 

2014; Kay et al., 2015; Vo et al., 2017; van Es et al., 2018). Our MEG forward model could be 

used to predict these changes and capture the time-resolved effects of visuo-spatial attention. A 

second application of our model would be the combination of spatial pRF models estimated with 

models that capture pRF preferences in temporal processing (Stigliani, Jeska, & Grill-Spector, 

2017; Zhou, Benson, Kay, & Winawer, 2018) or replace the local pRF models on the cortex with 

topological maps coding for other types of perception (such as audition (Saenz & Langers, 

2014)), cognition (such as numerosity (Harvey, Klein, Petridou, & Dumoulin, 2013)) or action 

(Mattay & Weinberger, 1999). 

Future studies can extend our forward modeling approach and apply it to study a variety 

of questions aiming at spatiotemporal dynamics of visual processing. For example, one 

consideration is changing the experimental design of the MEG session. In the current study, 

MEG stimuli were designed such that they were similar to the retinotopic stimuli used for fMRI 

studies. However, because fMRI experiments sample BOLD responses at second time 

resolution and need to take into account the sluggish hemodynamic response, it does not mean 

that MEG measurements need to be sampled at the same time resolution with the same 

temporally predictable stimulus sequence. Since our model predicts the MEG responses to 

arbitrary stimulus apertures in the visual field based on the cortical spatial tuning preferences, it 

can predict other temporal sequences and give insight to a variety of spatiotemporal dynamics 

at sub-second temporal resolution. 

5.8 Conclusion 
Neuroscientists use a number of techniques to measure neural activity, each providing different 

information about brain activity. MEG measures the magnetic field induced by electric currents 

present in neural activity, whereas fMRI measures the metabolic demands associated with 
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neural activity. In this paper, we demonstrate a forward model that can capture MEG sensor 

responses to retinotopic mapping stimuli, by combining pRFs estimated from fMRI responses 

with the biophysical MEG head model. Our results support a common underlying mechanism of 

neural processing measured with the two modalities, and provide new opportunities to study 

time-resolved spatiotemporal dynamics in visual processing.  
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7 Supplementary figures 
 

 
Figure S1. Coherence and split-half reliability of individual subjects of 10 Hz SSVEF amplitudes. 
(A) Coherence metric is computed as the amplitude of 10 Hz divided by the sum of 9 to 11 Hz. All 
subjects are plotted with the same color bar limits shown on the right. (B) Split-half reliability is calculated 
as the mean Pearson’s ⍴ correlation of 10 Hz amplitudes across 1000x iterations. Amplitudes within a 
single iteration are averaged across runs within each split-half and not phase-referenced. All subjects are 
plotted with the same color bar limits shown on the right. 
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Figure S2. Topographic MEG sensor maps of variance explained by the model for all 10 individual 
subjects. The model is able to predict the measured 10 Hz phase-referenced steady-state MEG 
responses up to 50% of the variance in the measured MEG responses in posterior sensors for many 
subjects. 
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Figure S3. Variance explained by the forward model as a function of pRF center angle rotation for 
all 10 individual subjects. The pRFs estimated with fMRI were systematically rotated around the fovea, 
by -180 degrees to 180 degrees from their original position in steps of 45 degrees. Predicted MEG 
responses were then recomputed for each of the rotation conditions. Per subject, variance explained 
values from a group of posterior sensors selected as the top 10 sensors with highest variance explained 
in each of the 9 rotation conditions were selected (red dots in schematic head) and averaged (red line). 
Error bars show 95%-confidence interval of the average across the selected sensors. While there are 
large individual variations, 6 out of 10 subjects have most variance explained in the MEG data when the 
original pRF positions or close to original were used in the forward model.  
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Figure S4. Topographic maps of variance explained by the forward model for different rotation 
angles of the initially estimated pRF position. Top and middle row show maps for 2 individual subjects 
(S1 and S9). Bottom row shows average group model fit. Initial pRF position estimated by fMRI is outlined 
(0 deg). All maps use the same color scale as shown on the right.  
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Figure S5. Variance explained by the forward model as a function of pRF size scale factor for all 
10 individual subjects. PRF sizes were systematically scaled from 5x smaller to 10x larger the original 
size. Similar to variations in pRF position, variance explained is averaged for a group of sensors including 
the top 10 sensors with the highest variance explained from each of the 19 size scaling conditions (red 
dots in the schematic head). Error bars show 95%-confidence interval of the average across the selected 
sensors. Although there are large variations between individual subjects, 6 out of 10 subjects showing a 
clear peak in variance explained for pRF sizes that are slightly smaller than the original pRF size (a 
scaling factor of 1). All subjects show a decrease in variance explained when the pRF size is scaled 
larger than the original pRF size. In some, but not all subjects this decrease is followed by an increase in 
variance explained for very large-scale factors. 
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Figure S6. Topographic maps of variance explained by the forward model for different size scale 
factors of the initially estimated pRF size. Top and middle row show maps for 2 individual subjects (S1 
and S9). Bottom row shows average group model fit. Initial pRF size estimated by fMRI is outlined (1x), 
note that only a subset of all scale factors (9 out of 19) are displayed. All maps use the same color scale 
as shown on the right. 
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