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ABSTRACT 

A virtual metabolic human model is a valuable complement to experimental biology and 

clinical studies, because in vivo research involves serious ethical and technical issues. A 

whole-body dynamic model is required not only to reproduce a variety of physiological 

and metabolic functions, but also to analyze pathology and design drugs. I first proposed 

a virtual metabolic human model, a multi-organ and multi-scale kinetic model of the 

whole-body metabolism that formulates the reactions of enzymes and transporters with 

the regulation of enzyme activities and hormonal actions under prandial and rest 

conditions. To accurately simulate metabolic changes and robustness, the model 

incorporates nucleotide cofactors that are critically responsible for global feedback 

regulations to adapt to metabolic changes. The model predicted a two-phase hepatic fatty 

acid production that consists of the synthesis of malonyl-CoA and the NADPH-dependent 

synthesis of fatty acid. The model performed pathological analysis of type 2 diabetes. I 

divided type 2 diabetes into specific disorders of steatosis,  cell dysfunction and insulin 

resistance for each organ, and analyzed the effect of the individual disorders on the 

dynamics of plasma glucose (hyperglycemia) and hepatic TG (steatosis). The model 

suggested that a chronic or irreversible change in hepatic TG accumulation plays a critical 

role in disease progression. The model predicted a glycerol kinase inhibitor to be a new 

medicine for type 2 diabetes, because it not only decreased hepatic TG but also reduced 

plasma glucose, unexpectedly. The model also enabled us to rationally design 

combination therapy. 
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INTRODUCTION 

Virtual physiological human is a final goal for synthetic biology, systems biology and 

bioinformatics, which greatly contributes to advances in medicine and life science. Many 

scientists have raised concepts and plans of the computer model of human physiology, 

and are developing computational frameworks on genome-scale gene networks and 

whole-body scale omics data (1, 2). In 2019, the virtual metabolic human database has 

been presented to facilitate computational modeling by linking genome-scale networks 

of human metabolism to diseases and nutrition (3). On the other hand, multi-scale, large-

scale dynamic models have been extensively developed for human metabolism (4-11). A 

virtual metabolic human model is highly expected as a core model toward the virtual 

physiological human.  

Metabolism plays a critical role in human health and diseases (12). Perturbation of 

genetics and changes in lifestyle habitats, including excess sugar, excess fat and inactivity, 

result in the development and progression of complex metabolic diseases, such as 

hyperglycemia, hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) (13, 

14) and diabetes(13, 15-17). A systems approach is necessary to elucidate the molecular 

mechanisms causing such metabolic dysfunctions and to propose the strategies for the 

prevention and treatment of them (18). Since in vivo studies of human metabolism are 

hampered with serious ethical and technical problems, computational models are required 

to complement the in vivo studies (19-21). 

So far many mathematical models have simulated human metabolism. Early models 

extensively investigated glucose-insulin metabolism to analyze the effect of insulin 

secretion on glucose homeostasis (22). They used the compartment models that regarded 

particular metabolites as the representatives responsible for their associated functions 

such as glycolysis, gluconeogenesis, glycogenolysis, glycogenesis, and triglyceride (TG) 

synthesis/degradation. Compartment models simulated the glucagon/insulin-controlled 

glucose homeostasis by linking liver to other organ compartments (23-25), and suggested 

the mechanisms by which changes in a ratio of carbohydrate to lipid alter hepatic TG 

synthesis through insulin action (26) and generate different types of diabetes (27).  

Since those compartment models were the coarse-grained models, their applications were 

limited to an understanding of the specific functions. To overcome this limitation, 

biochemistry-based models were constructed that assigned a rate equation to each 

metabolic reaction within a cell of liver and skeletal muscle while considering allosteric 

effectors, enzyme activity regulation, and hormone-dependent reversible phosphorylation 

(5, 6, 11). The kinetics were measured by means of in vitro assays. In 2019 Berndt et al 

developed a genome-scale, detailed kinetic model of hepatic cells that formulated 

thousands of enzymes, transporters, and hormone-dependent regulations. It is the largest 

kinetic model for all the models (11). 

Those biochemistry-based models pay attention to cells of liver and skeletal muscle, 

while it is important to consider the rest of the human body because organs are tightly 

connected with each other through blood (7, 8, 28). Xu et al integrated hepatic glycogen 

regulation with extra-hepatic fuel metabolism under prandial and rest conditions in the 
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whole-body context (28). Sluka et al. proposed a liver-centric model for acetaminophen 

pharmacology and metabolism in the whole-body context (7). They integrated three scale 

modules of enzyme reactions within a cell, physiologically based pharmacokinetics of 

acetaminophen at organs, and its distribution at the whole-body level. Ashworth et al 

developed a spatial kinetic model of liver glucose and lipid metabolism and treated the 

sinusoidal tissue units instead of the single hepatocyte (8). They identified critical 

differences between periportal and pericentral cells, indicating high susceptibility to 

pericentral steatosis during the development of steatosis. Berndt et al. also presented a 

dynamic model of the sinusoidal tissue units to suggest that structural properties, 

enzymatic properties and regional blood flows are equally important for an understanding 

of liver functionality (9, 10). Kim et al proposed a whole-body computational model to 

simulate hormonal control over plasma glucose and TG during physical exercise (4). They 

decomposed the whole body into seven organs, assigned each major metabolite within 

organs to an ordinary differential equation. Palumbo et al. added details of subjects’ 

characteristics to the Kim’s model to simulate the effects on personal metabolic 

homeostasis during exercise (29).  

Construction of the whole-body metabolism models has just started, but their application 

is still limited due to lack of comprehensive and systematic mechanisms. At present a 

virtual metabolic human model that integrates multi-scale, comprehensive molecular 

mechanisms is expected not only to reproduce a variety of physiological and metabolic 

functions, but also to analyze pathology and design therapy. To achieve these 

requirements, I have developed a multi-organ, multi-scale kinetic model of the whole-

body metabolism that accurately simulates the dynamics in key metabolites of glucose, 

lactate, alanine, glycerol, glycogen, free fatty acid (FFA) and TG under prandial and rest 

conditions, without impairing any essential reaction pathways of carbohydrates and lipids. 

To enhance the accuracy and applicability, the model incorporated nucleotide cofactors 

that are critically responsible for global metabolic regulations and energy balance. Use of 

the model performed pathological analysis of steatosis, hyperglycemia, hyperinsulinemia 

and diabetes, discovered a novel medicine for type 2 diabetes, and proposed a 

combination therapy. 

 

METHODS 

Homeostasis of metabolites in blood 
Glucose and hormone 

Plasma glucose in human is controlled with a set-point of 5 mM by hormones of insulin 

and glucagon (12). Insulin is the only hormone that decreases the plasma glucose 

concentration, while multiple glucose increasing hormones are known. Glucagon is a 

counter partner of insulin. The plasma concentrations of insulin and glucagon directly 

respond to changes in plasma glucose. The plasma glucose concentration is maintained 

in a narrow range between a minimum value of 3 mM after prolonged fasting or exercise 

and a maximum value of 9 mM after a meal (30). Glucose enters blood in three ways: 

absorption from the intestine, glycogenolysis in liver, and gluconeogenesis in liver and 

kidney. After an overnight fast, 95% of glucose production comes from liver (4). Liver 

produces glucose through glycogenolysis and gluconeogenesis with almost equal 
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contribution at rest. Lactate, pyruvate, alanine and glycerol are the major gluconeogenic 

precursors. 50% of glucose at rest is utilized by brain, while skeletal muscle uses 20%. 

The gastrointestinal (GI) tract consumes only 10% of glucose. The organs except brain 

use FFA as metabolic fuels to save glucose. 

Lactate, pyruvate and alanine 

Liver and heart primarily consume plasma lactate, while skeletal muscle, adipose tissue 

and other tissues, including inactive upper body muscles and red blood cells, produce 

lactate. Pyruvate exchange occurs primarily between skeletal muscle and other tissues. 

Plasma pyruvate concentration is very small or negligible. Only liver consumes amino 

acids, especially alanine, for gluconeogenesis, while skeletal muscle is the main source 

of alanine and the inactive muscle in other tissues is an additional source. 

FFA, glycerol and TG 

FFA and glycerol are mainly produced from lipolysis of TG in adipose tissue. Liver 

uptakes FFA from blood and utilizes FFA as a main fuel. A half of the liver-taken FFA is 

oxidized; the half is re-esterified into TG (4, 12). Since adipose tissue lacks glycerol 

phosphorylase, lipolysis-produced glycerol is not utilized for TG synthesis in adipose 

tissue. Liver uptakes the glycerol released from adipose tissue and utilize it as a 

gluconeogenic precursor, i.e., a substrate for TG synthesis. 

Ketone body 

Ketone bodies including -hydroxybutyrate (Bhb) are synthesized from acetyl-CoA 

produced through -oxidation. Synthesis of ketone bodies are stimulated mainly by 

glucagon in liver under a fasted condition. Ketone bodies are utilized exclusively by brain.  

Metabolic reactions of each organ 
Liver and pancreas 

Liver plays a central role in buffering or controlling plasma glucose. Switching between 

the glucose utilization (glycolysis and glycogenesis) and glucose production 

(gluconeogenesis and glycogenolysis) is dependent on the plasma glucose level. The 

glucose utilization occurs at glucose concentration exceeding a critical threshold value; 

the glucose production occurs below the critical concentration. Insulin alters the 

phosphorylation state of multiple key interconvertible enzymes of hexokinase (HK), 

glycogen synthase (GS), glycogen phosphorylase (GP), phosphofructokinase (PFK), 

fructose-1,6-bisphosphatase (FBP), pyruvate kinase (PK) and pyruvate dehydrogenase 

(PDH) to shift a remarkable metabolic state. Liver temporally stores substantial amounts 

of glucose as glycogen, synthesizes glucose from small carbohydrates, including lactate, 

pyruvate, glycerol and alanine, and converts excess glucose into FFA. It also synthesizes 

TG and cholesterol and secretes them into blood. Under a fasted condition, liver 

synthesizes Bhb from acetyl-CoA as a metabolic fuel for brain. In pancreas  cells serve 

as a controller of insulin synthesis and release in response to a plasma glucose 

concentration.  

Skeletal muscle and heart 

Insulin activates glucose transporter 4 (GLUT4) in skeletal muscle to uptake glucose and 

to accumulate glycogen. To control substantially glucose uptake rates, a few key enzymes 

of HK, GS, and PDH are activated (31, 32). In this study skeletal muscle represents the 

lean muscles in the lower extremity. Skeletal muscle uptakes FFA as fuels and releases 
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lactate and alanine into blood. Heart consists of specialized muscle cells (cardiomyocytes) 

and constantly uptakes metabolic fuels, including glucose, lactate, and FFA to generate 

ATP to maintain contractile function without any fatigue. In contrast to skeletal muscle, 

GLUT1, which is not controlled by insulin, is dominant. The major metabolic fuel for the 

heart is FFA. 

Adipose tissue and GI tract 

Adipose tissues are producers and reservoirs of TG. Plasma TG is degraded by lipase on 

the adipose tissue surface into FFA and glycerol. FFA enters the adipose cells; glycerol 

returns to blood. Within adipose tissue, FFA and glycerol-3-P are synthesized into TG. 

Since adipose tissue lacks glycerol kinase, glycerol-3-P comes just from glucose-derived 

glycelaldehyde-3-phosphate (GAP). Insulin activates the TG synthesis and lipase reaction, 

facilitating TG accumulation. GI tract includes the splanchnic region (stomach, spleen, 

intestines) except liver. It utilizes glucose, accumulates TG, and releases FFA and glycerol 

into blood.  

Brain and other tissues 

Brain constantly takes only glucose and Bhb as metabolic fuels, neither utilizes FFA nor 

TG, because the blood-brain barrier prevents such large-size molecules from entering 

brain. It has Bhb degradation pathways to degrade Bhb into acetyl-CoA for energy. The 

other tissue compartment includes kidney, upper extremity muscles, and the rest of tissues. 

Mathematical model 
Model overview 

A schematic diagram of the whole body is shown in Figure 1. I constructed the union of 

all the metabolic networks of the organs (Figure 2). I lumped associated enzyme reactions 

into a chemical reaction equation based on Recon2.2 (33). Each organ metabolic network 

was built by selecting organ-specific reactions from the union network. The whole-body 

model formulates the metabolic enzyme and transporter reactions with regulation of 

enzyme activities and hormonal actions for all the organs. A meal of glucose and TG is 

inputted into blood through the GI tract. The model focuses on insulin hormone, assuming 

that glucagon effect is approximately opposite to insulin. Note that detailed kinetics of 

glucagon in vivo remains to be measured (34, 35). The model takes account for glucose, 

lactate, glycerol, alanine, Bhb, TG, FFA and insulin in blood, assuming the perfect mixing 

that there is no spatial gradient of metabolites, oxygen and carbon dioxide in each organ. 

In this study alanine represents the gluconeogenic amino acids and Bhb represents ketone 

bodies. Notably, the nucleotide cofactors of ATP, GTP, UTP, NADH, NADPH, and 

FADH2 are incorporated to reflect realistic metabolic changes. The resultant kinetic model 

consists of 217 reaction rate equations, 147 ordinary differential equations (ODEs) for 

metabolites, and 1132 kinetic parameter constants, as shown in Supplemental Equation, 

Supplemental Table S1, and Supplemental Table S2. Abbreviations of the kinetic 

parameter constants are defined in Supplemental Table S3. The differential equations 

are integrated with ode15s (MATLAB R2019a, Mathworks) to simulate their dynamics. 

Module decomposition 

A divide and conquer strategy is employed for model construction (36, 37). The whole 

body is decomposed into blood (B) and eight distinct tissue/organ modules (Figure 1): 

liver (L), skeletal muscle (M) adipose tissue (A), GI tract (G), heart (H), brain (N), 
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pancreas (P), and other tissues (T). Blood acts as the principal transport/exchange medium 

for metabolites between the different organs. Glucose and TG are inputted to blood 

through the GI tract, following ingestion of a meal (Supplemental Equations S1, S2). 

Insulin secretion from pancreas is controlled by plasma glucose and FFA concentrations 

(Supplemental Equations S4, S5). Pancreas is simplified as an insulin controller. In liver, 

many rate equations are derived from several previous works (4, 8, 10, 11, 25). I lump 

multiple associated enzyme reactions and simplify signal transduction pathways 

including glucose-controlled insulin secretion, phosphorylation of metabolic enzymes, 

and gene regulations by carbohydrate responsive element binding protein (ChREBP) and 

sterol-regulatory element binding protein 1c (SREBP-1c). When no experimental rate 

equation is available, I derive plain Michaelis-Menten type equations based on chemical 

reaction equations and then estimate the value of Vmax of rate equations. The parameter 

estimation is carried by genetic algorithms (38, 39) so that the model reproduces the 

experimental transport/exchange fluxes at rest between blood and each organ (4) without 

changing the experimental values of the Michaelis and dissociation constants. In the other 

organs, where little measured kinetic data is available, I estimate Vmax of enzyme 

reactions so as to reproduce the experimental transport fluxes at rest (4), while fixing the 

experimental values the Michaelis and dissociation constants. I assume that gene 

expression profiles depend on organs but the employed enzymes are common to all the 

organs. The other tissue has no specific regulation. 

Module assembly 

I combine all the organ modules. To connect blood to each organ, I define 

 and  ( , , , , )X X X = L M A G H   as the insulin and glucagon factors for each organ, 

respectively, which alters the activity of insulin- and glucagon-controlled enzymes 

(Equations S7-16). Organs of B, N, P, and T do not have the insulin/glucagon factors. I 

connect the liver module to the blood module. Subsequently, I add the skeletal muscle, 

adipose tissue, GI, heart and brain modules. The values of the insulin-related kinetic 

parameters are estimated so that the model can reproduce the experimental time course 

data of plasma insulin, plasma glucose, plasma lactate (40), plasma FFA, hepatic 

glycogen (41), and plasma TG (42).  

Dynamic sensitivity analysis 
To investigate the robustness of the model, the relative change of metabolite 

concentrations with respect to a change in a kinetic constant were evaluated. Sensitivity 

analysis explores some mechanisms by which a system of interest generates robustness 

and remarkable changes (43). The dynamic sensitivity of target parameter y with respect 

to a change in specific constant parameter p is given by: 

y p
Sensitivity

p y





. 

In this study, I changed each of parameter constants by 1.1-fold and simulated the 

metabolite concentrations after 10 h. 

Pathological analysis 
A long-term excess supply of glucose develops steatosis, lipotoxicity, or ectopic TG 

accumulation by increasing synthesis of ChREBP, a transcription factor whose expression 
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is more exclusively regulated by sugars than insulin (31, 32, 44). It also leads to the 

synthesis of SREBP-1c, which is stimulated by insulin under metabolically normal 

conditions. In steatosis, the activities of enzymes regarding de novo lipogenesis (DNL) 

(synthesis from acetyl-CoA to TG) and cholesterol synthesis abnormally increase in liver. 

Steatosis or ectopic TG accumulation can cause metabolic diseases, such as 

hyperglycemia, hyperlipidemia, hyperinsulinemia, obesity, NAFLD and type 2 diabetes 

(14, 45-47). Chronic exposure to high plasma glucose and obesity, leading to oxidative 

stress and inflammation, induce changes in the regulation of gene expression that 

converge on impaired glucose-stimulated insulin secretion(48, 49) and insulin resistance 

(IR). Specifically, a lipid metabolite of diacylglycerol (DAG) activates protein kinase C 

isoforms (PKCs), impairing insulin signaling in organs (16, 50).  cell dysfunction in 

pancreas suppresses glucose-stimulated insulin secretion. 

Individual disorder decomposition 

While complex mechanisms of metabolic diseases may not be exactly defined, I 

conveniently decomposed the diseases into individual disorders to perform pathological 

analysis. I decomposed the diabetes into steatosis,  cell dysfunction, and IR. Steatosis is 

the underlying disease. Cell dysfunction of pancreas is a major cause of shifting a set-

point of plasma glucose concentration (15, 50). IR is further classified with respect to 

each organ of liver, skeletal muscle, and adipose tissue. IR of each organ is also a major 

cause. To build a steatosis model, I increased the values of kinetic parameters regarding 

the DNL and cholesterol synthesis in liver (Vmax_accoat_Accoa_LM_LC, 

Vmax_lipog1_Accoa_LC, Vmax_lipog2_Malcoa_L, Vmax_tgsyn_FFA_L, 

Vmax_cholsyn1_Accoa_LC) by 2-fold. cell dysfunction was represented by 

multiplying Km_inssyn_Glc_B by 1.5-fold. The IR for liver, skeletal muscle, and adipose 

tissue, denoted by IR_L, IR_M, and IR_A, were represented by multiplying Km_Ins_B_L, 

and Km_Ins_B_M, and Km_Ins_B_A by 1.5-fold, respectively.  

Diabetes reconstruction 

Type 2 diabetes consists of steatosis,  cell dysfunction and IR (13, 15, 17). I built three 

types of type 2 diabetes to analyze the effect of IR on disease progression. The first type 

is the model that consists of steatosis,  cell dysfunction, and IR_M; the second one is the 

model that consists of steatosis,  cell dysfunction, IR_M and IR_A; the third one is the 

model that consists of steatosis,  cell dysfunction, IR_L, IR_M and IR_A. Type 1 

diabetes, once known as juvenile diabetes or insulin-dependent diabetes, is the extreme 

case of  cell dysfunction in which pancreas produces little or no insulin. Differing from 

the type 2 diseases, type 1 diabetes results from genetic defects or some viruses and it has 

no cure. To build a type 2 diabetes model,  cell dysfunction, IR_L, IR_M or IR_A was 

added to the steatosis model. Specifically, I increased the values of Km_inssyn_Glc_B, 

Km_Ins_B_L, Km_Ins_B_M, and Km_Ins_B_A by 1.5-fold, respectively. 

Medication analysis 
I used three types of widely prescribed type 2 diabetes medicines: sulfonylurea, 

metformin and thiazolidinedione to perform medication analysis. In addition to the three 

medicines, a glycerol kinase inhibitor was used to inhibit TG synthesis (51). Sulfonylurea 

promotes insulin secretion by pancreas (52). Metformin is active in the suppression of 

hepatic gluconeogenesis. (DeFronzo et al 1991; Stumvoll et al 1995) (46). Specifically, it 
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suppresses LDH in liver, accompanied by lactic acidosis (53). It also activates AMP-

activated protein kinase (AMPK) that regulates energy homeostasis (53, 54) or activate 

-oxidation. Thiazolidinediones are a family of drugs that have been used in the treatment 

of type 2 diabetes since the late 1990s (46). The thiazolidinedione derivatives, 

pioglitazone and rosiglitazone, are synthetic ligands for peroxisome proliferative-

activated receptor γ (PPARγ) that improve insulin sensitivity. PPARγ is mainly expressed 

in adipose tissue; PPARγ agonists promote adipocyte differentiation and promote the FFA 

uptake and storage in subcutaneous adipose tissue rather than visceral sites (55). In this 

study, for inhibition the corresponding kinetic rate constant was set to zero; for activation 

the corresponding kinetic rate constant was multiplied by 2. Specifically, sulfonylurea 

multiples Vmax_inssyn_Glc_B by 2. Metformin reduces Vmax_ldh_Pyr_L to zero and 

multiplies Vmax_boxid_FFA_L by 2. Thiazolidinedione multiplies Vmax_tgsyn_FFA_A 

by 2. A  

Experimental data and subject 
The model targets a healthy young adult man with 70kg body weight. A single meal 

consists of 100 g glucose and 33 g TG. The model employs the experimental 

transport/exchange fluxes at rest between blood and each organ (4) and the experimental 

time course data of plasma insulin, plasma glucose, plasma lactate (40), plasma FFA, liver 

glycogen (41), plasma TG (42), and plasma ketone body (56). 

 

RESULTS 

Model validation by experimental data 
The proposed kinetic model simulated the time course of plasma glucose and insulin 

concentrations after an overnight fast and following a single meal of 100 g glucose and 

33 g TG, as shown in Figure 3. The plasma glucose concentration increased to a peak 

around 60 min, then decreased to approximately 5 mM. An increase in plasma glucose 

triggered the insulin secretion from pancreas to enhance the uptake of plasma glucose by 

the organs of liver, skeletal muscle, GI, and adipose tissue. The plasma insulin 

concentration greatly increased to a peak, which was caused by an increase in plasma 

glucose, and then decreased with a decrease in plasma glucose. In liver and skeletal 

muscle, the glycogen concentration increased due to insulin action after a meal. At rest, 

liver glycogen was degraded into glucose (glyocogenolysis), which was released into 

blood. Skeletal muscle glycogen remained to be degraded, as suggested by (57). Plasma 

lactate increased to a peak after the meal and then decreased. Skeletal muscle and adipose 

tissue converted a part of the utilized glucose into lactate and released it into blood. Liver 

utilized plasma lactate to synthesize glucose at rest (gluconeogenesis). Insulin 

dramatically changed the liver status between glucose utilization and production. 

Plasma FFA decreased after the meal, showing a dump, and then gradually increased. In 

adipose tissue, insulin induced TG synthesis from FFA and glycerol-3-P after the meal, 

which decreased the release of FFA from adipose tissue. On the other hand, insulin hardly 

affected the uptake of FFA by liver and skeletal muscle. Consequently, plasma FFA 

decreased soon after a meal. Plasma TG, ingredient of chylomicrons, slowly increased 

after a meal, and then decreased. Plasma TG was absorbed mainly by adipose tissue.  
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As shown in Figure 4, the simulated exchange fluxes between each organ and blood at 

rest were consistent with the experimental data. At rest, skeletal muscle released alanine 

and lactate; adipose tissue released glycerol and lactate. Liver utilized the three carbon 

metabolites of lactate, glycerol and alanine to synthesize glucose and released it into 

blood, indicating that liver recycled the three metabolites into glucose through 

gluconeogenesis. I confirmed that utilized glycerol was converted to GAP through 

glycerol-3-P (GRP) in liver (data not shown), indicating that plasma glycerol is used for 

gluconeogenesis. The model reproduced the glucose-lactate/glycerol/alanine cycles. 

Liver synthesized TG and cholesterol and then released them into blood. Heart utilized 

glucose, lactate, and FFA. GI utilized glucose and degraded TG storage into plasma FFA 

and glycerol. Adipose tissue utilized glucose and TG; it released lactate, FFA and glycerol. 

Brain exclusively utilized plasma glucose. 

Discrepancy between experimental data and simulation 
I illustrated some discrepancies between experimental data and simulation. The simulated 

insulin pulse was sharper than the experimental pulse with a long tail (Figure 3). While 

the simulated glycogen concentration in liver increased to a peak 1 h after the glucose 

peak, the duration achieving the peak was shorter than that of the experimental data (4-

6h). In other words, the simulated glycogen synthesis was faster than experimental data. 

In addition, the simulated glycogen decrease more rapidly than experimental data. While 

the simulated plasma lactate increased to a peak at 2 h following the glucose peak, the 

duration (2h) achieving the peak was longer than the experimental lactate data. 

Feature reproduction 
The proposed model simulated the switching function between DNL and Bhb synthesis 

with respect to pyruvate in liver, as shown in Figure 5. A high concentration of pyruvate 

increased DNL flux; a very low concentration of pyruvate induced Bhb synthesis flux. 

The -oxidation flux gradually decreased with an increase in pyruvate, while the DNL 

flux and PDH flux increased. It indicates the typical, reverse relationships between DNL 

and -oxidation and between glycolysis and -oxidation (12). 

Dynamic sensitivity analysis 
I performed dynamic sensitivity analysis of metabolite concentrations with respect to 

specific kinetic parameters, as shown in Figure 6. The plasma glucose level was highly 

robust with respect to changes in the kinetic parameters except the insulin-related 

parameters including Km_inssyn_Glc_B, Km_Ins_B_L and Km_Ins_B_M. The set-point 

of plasma glucose is controlled just by insulin. Km_inssyn_Glc_B, which determines 

glucose-stimulated insulin secretion, was the most effective parameter that altered the set-

point of plasma glucose. Km_Ins_B_L and Km_Ins_B_M, which determine insulin-

stimulated glucose uptake, were the second and third critical parameters, respectively. 

Km_Ins_B_A hardly affected the set-point, because the glucose uptake rate of adipose 

tissue was much less than that by skeletal muscle. In addition to the insulin-related 

parameters, nucleotide synthesis-related parameters showed high sensitivities of some 

metabolites. 

Prediction of hidden mechanisms 
As shown in Figure 7, the proposed model suggested two phases of hepatic FFA synthesis 

the former phase was the malonyl-CoA increasing phase (lipog1) of 0.5-1.8 h, the latter 
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was its decreasing phase (lipog2) of 1.8-3.5 h. They corresponded to the glucose 

utilization and production phases. During the former phase, an increase in pyruvate 

enhanced malonyl-CoA production (Figure 2), while a decrease in G6P reduced the 

pentose phosphate pathway flux and NADPH production. Since NADPH, which is 

required for the conversion from malonyl-CoA to FFA (lipog2), was decreased, malonyl-

CoA was accumulated. During the latter phase, an increase in G6P enhanced the pentose 

phosphate pathway flux and NADPH production. The accumulated malonyl-CoA was 

converted into FFA using NADPH. As shown in Supplemental Figure S1, the simulated 

Bhb production increased at the early phase of a fasted condition, as indicated by the 

experimental data (56), but it gradually decreased after 150 h with a decrease in plasma 

FFA, which was not consistent with the experimental data that gradually increased with 

time. The decrease in the simulated Bhb production under the fasted condition can be 

divided into the two phases: the former phase that both GI and adipose tissue secrete FFA 

and the latter phase that only adipose tissue releases FFA due to depleted TG in GI. We 

need to uncover novel mechanisms increasing plasma FFA under the fasted condition. 

Pathological analysis 
Individual disorders 

The proposed model was used to perform pathological analysis of metabolic diseases. 

First I simulated the effects of the individual disorders on marker metabolites such as 

plasma glucose, plasma insulin and hepatic TG, as shown in Figure 8ABC. In general, 

high plasma glucose and hepatic TG accumulation develop or exacerbate metabolic 

diseases (13, 15). In the steatosis model, hepatic TG increased due to acceleration of 

lipogenesis. Cholesterol synthesis also increased in liver (data not shown), while the 

dynamics of plasma insulin and plasma glucose were almost the same as that of the 

normal condition. In  cell dysfunction of pancreas, where glucose-stimulated insulin 

secretion function is impaired or Km_inssyn_Glc_B is increased, the plasma insulin 

concentration decreased; the peak and set-point of plasma glucose increased. Plasma 

glucose was less utilized by liver, skeletal muscle and adipose tissue due to the impaired 

insulin secretion. Interestingly, hepatic TG decreased, which conflicted with the fact that 

the  cell dysfunction exacerbates the diseases. Type 1 diabetes is an extreme case of the 

 cell dysfunction, where Km_inssyn_Glc_B approaches to infinity or insulin is hardly 

produced in pancreas. 

IR_L increased the peak and set-point of plasma glucose. Hyperinsulinemia, which is a 

compensatory response to IR (58, 59), was observed, as indicated by the experimental 

data (58). Plasma glucose dropped after 8 h due to reduced glycogenesis. It is because 

IR_L reduces the hepatic glycogen synthesis, resulting in insufficient accumulation of 

glycogen after the meal (data not shown). Interestingly, hepatic TG decreased, which 

presents a paradox or conflict that IR_L recovers hepatic steatosis or ectopic TG 

accumulation that is a major cause of IR_L (16). IR_M increased the peak and set-point 

of plasma glucose slightly. The plasma insulin slightly increased due to hyperglycemia. 

IR_M increased TG and DNL (data not shown) in liver. While skeletal muscle decreased 

the uptake of plasma glucose due to IR_M, liver utilized glucose for DNL in response to 

hyperinsulinemia and hyperglycemia. It indicates that plasma glucose is diverted away 

from muscle glycogen storage to hepatic TG. IR_A hardly increased the set-point of 

plasma glucose, while increasing hepatic TG and DNL in liver (data not shown). It is 

because insulin-regulated TG synthesis in adipose tissue is repressed and lipolysis is 
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enhanced. The increased plasma FFA enters liver to synthesize TG. 

Combined disorders 

The proposed model was applied to pathological analysis for type 2 diabetes. Particularly, 

I analyzed the effect of IR on progression of type 2 diabetes. I added the single disorders 

of IR_M, IR_A, and IR_L one by one to the base model consisting of steatosis and  cell 

dysfunction, as shown in Figure 8DEF. Addition of IR_M to the steatosis and  cell 

dysfunction base model decreased plasma insulin and increased the peak and set-point of 

plasma glucose more than that of the normal condition, indicating hyperglycemia. IR_M 

decreased the glucose uptake by skeletal muscle, increasing hepatic TG. When IR_A was 

added to the steatosis,  cell dysfunction and IR_M model, the plasma insulin and glucose 

hardly changed; hepatic TG increased due to the enhanced release of FFA from adipose 

tissue. Addition of IR_L further increased the set-point of plasma glucose, while 

increasing plasma insulin. Interestingly, it decreased hepatic TG. 

Medication analysis 
The proposed model was employed to investigate how three medicines of widely 

prescribed type 2 diabetes of sulfonylurea, metformin and thiazolidinedione and a 

glycerol kinase inhibitor recover type 2 diabetes, as shown in Figure 9ABC. Sulfonylurea 

administration successfully decreased plasma glucose with an increase in plasma insulin, 

but increased hepatic TG as a side effect. Metformin not only act on LDH but also -

oxidation through AMPK. The LDH inhibition by metformin decreased plasma glucose 

and hepatic TG, while increasing plasma lactate (data not shown). Activation of -

oxidation by metformin decreased hepatic TG without changing plasma glucose. 

Thiazolidinedione activated TG synthesis in adipose tissue, which decreased hepatic TG 

and hardly changed plasma glucose. Administration of a glycerol kinase inhibitor 

decreased hepatic TG accumulation. Unexpectedly, it decreased plasma glucose. The 

glycerol kinase inhibitor was referred to as a drug candidate that cures type 2 diabetes. 

Design of combination therapy 
To investigate the feasibility of combination therapy, I employed three medicines 

(metformin, thiazolidinedione and sulfonylurea) and a glycerol kinase inhibitor. Figure 

9DEF shows the simulation results of three combination therapies. Expectedly metformin 

decreased plasma glucose and hepatic TG. The combination of metformin and 

thiazolidinedione additively decreased hepatic TG; it hardly changed the insulin and 

glucose dynamics. Addition of the glycerol kinase inhibitor to the two medicines further 

decreased plasma glucose and hepatic TG; it hardly changed the insulin concentration. 

The combination of all the four compounds further decreased plasma glucose, while 

increasing plasma insulin (by sulfonylurea). It hardly changed hepatic TG compared to 

the combination of metformin, thiazolidinedione, and glycerol kinase inhibitor. These 

simulation results revealed that the combination therapy is effective in reducing plasma 

glucose and hepatic TG. The combination therapy presented explicitly additive effects 

because the four medicine acted on different reactions. 

 

DISCUSSION 

Modular model construction 
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I have constructed a computational model that integrated eight organ modules and 

formulates the whole-body metabolism at the three scales of body, organ, and molecule. 

It is the most comprehensive and highly predictive model of the human metabolism. All 

the organ modules are connected through blood. The divide and conquer strategy at the 

organ scale allows us to run the individual organs separately and to exchange organs 

without any extensive rework at other scales. This modular dynamic model accurately 

reproduced the dynamics of experimental data of insulin, glucose, lactate, FFA, and TG 

concentrations and transport/exchange fluxes between blood and other organs after a meal 

and at rest. This model captured key features of human-whole body metabolism: lactate-

glucose, alanine-glucose, glycerol-glucose cycles between liver and other organs. The 

model reproduced the two typical features of DNL suppressing -oxidation and of 

glycolysis or PDH reaction decreasing -oxidation. The former is effective in avoiding 

their futile cycles; the latter is effective in adjusting the energy balance between glycolysis 

and -oxidation. In addition, the model presented a critical switching function between 

DNL and Bhb synthesis with respect to pyruvate in liver (Figure 5). Pyruvate played a 

critical role in determining the entry of acetyl-CoA into TCA cycle, DNL or synthesis of 

FFA from citrate (CIT), and Bhb synthesis. Since the entry reaction of the TCA cycle in 

mitochondria is presented by oxaloacetate (OAA)+acetyl-CoA->CIT, OAA that comes 

from pyruvate is essential to drive the TCA reaction. Shortage of pyruvate, which 

decreases the supply of OAA, suppresses the entry reaction of the TCA cycle. When 

plasma glucose decreases under a fasted condition, a low glycolysis flux causes shortage 

of pyruvate or repression of the TCA cycle. In this case, -oxidation-produced acetyl-

CoA is not consumed by the TCA cycle, but utilized for the synthesis of Bhb. On the other 

hand, at high plasma glucose, abundant pyruvate activates the TCA cycle flux, enhancing 

CIT production in mitochondria. The CIT is transported into cytoplasm, converted into 

acetyl-CoA, a precursor of FFA synthesis. Consequently, high plasma glucose enhances 

DNL.  

I discuss some discrepancies between experimental data and simulation. This model 

reproduced the experimental plasma glucose pulse, but did not exactly reproduce the 

experimental insulin pulse. It was inevitable in this model, because the insulin dynamics 

was tightly coupled with the glucose pulse (Supplemental Equation S4). The insulin 

pulse was tailed probably due to some hidden mechanisms. The simulated glycogen 

concentration in liver increased to a peak 2-3 h before experimental peak, and it decreased 

more rapidly than experimental data. The fast glycogen synthesis may result from the 

assumption that the model lumps many reactions involved in glycogen synthesis. The fast 

degradation may be caused by the fact that the model does not include kidney. Kidney is 

known to release glucose after the meal, which facilitates substantial liver glycogen 

repletion or suppression of glycogenolysis (60). In addition, the model simulated a 

gradual decrease in Bhb production after 150 h (Supplemental Figure S1), which was 

opposite to the experimental time course data indicating an increase in Bhb (56). It 

suggested some mechanisms enhancing FFA production in a fasted condition. 

Model validity 
The employed experimental data were a collection of different references, i.e., the 

experimental data were not obtained under the exactly same conditions. For example, the 

time course data of plasma insulin, plasma glucose, and plasma lactate derived from (40), 
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while the experimental data of their transport fluxes came from (4). The proposed model 

did not insist on the exact fitting, but pursued capturing critical metabolic features. In 

human metabolism studies, direct measurements of in vivo kinetics are very hard and in 

vivo experiments are seriously limited due to ethical issues. Since it is difficult to obtain 

a sufficient amount of data for kinetic modeling at present and in the near future, we have 

to manage fragmental, heterogeneous quantitative data, qualitative data, and biological 

knowledge to build a mathematical model (38, 39). The important thing is not to precisely 

measure or evaluate the exact values of kinetic parameters, but to capture essential 

functions underlying metabolic networks without insisting on the exact values in vivo nor 

on complexity in detailed biochemistry (61, 62). 

I derived the rate equations from precise chemical reaction equations (33) when the 

experimentally validated equations are not available. Due to shortage of measured data, I 

did not uniquely determine the kinetic parameter values. However, existing experimental 

data including in vitro measured kinetic constants, qualitative data and biological 

information rather constrained the parameter space of the kinetic model. They were 

feasible enough for constructing kinetic models, for understanding the mechanisms by 

which the metabolic networks generate physiological functions and robustness, and for 

performing pathological and medication analysis. The resolution of the model is 

appropriate enough for the given experimental data and biological information. It may be 

no use to build much more detailed mathematical equations, if there is little experimental 

data to validate them. 

Robustness 
I discuss the dynamic sensitivity of metabolite concentrations with respect to a kinetic 

parameter. Generally, high sensitivity-providing parameters point out critical mechanisms 

such as ultrasensitivity, positive feedback loop, and bottleneck reactions. The insulin-

related kinetic parameters of Km_inssyn_Glc_B, Km_Ins_B_L and Km_Ins_B_M 

showed high sensitivity, because they were employed by Hill equations providing 

ultrasensitivity. Such ultrasensitivity makes it possible for insulin to induce the distinct 

shift between glucose utilization and production. The coenzyme (ATP, GTP, UTP, NADH, 

NADPH, and FADH2) synthesis-related parameters greatly affected the major pathways 

of -oxidation, TCA cycle, and PDH reaction, while previous whole-body models hardly 

considered nucleotide cofactors (4, 28, 29). NAD+ affects the reactions of TCA cycle, -

oxidation, LDH, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). G3PD is the 

critically responsible enzyme for linking glycolysis to TG synthesis. NADH, which is 

produced through glycolysis, -oxidation, and TCA cycle, is essential to generate ATP 

through oxidative phosphorylation. NADPH, which is produced in the pentose phosphate 

pathway, is utilized for DNL. UTP, which is essential for glycogen synthesis, is 

regenerated by nucleotide diphosphate kinase reaction of ATP +UDP-> ADP + UTP. GTP, 

which is necessary for gluconeogenesis (Figure 2), is also regenerated by nucleotide 

diphosphate kinase reaction of ATP +GDP-> ADP + GTP. Those nucleotide cofactors 

conjugate multiple cofactor-coupled reactions to form global positive feedback loops, 

which is exemplified by glycolysis pathways with TCA cycle and oxidative 

phosphorylation (63, 64). Glycolysis requires ATP at the initial step (HK, PFK) (Figure 

2). An increase in glycolysis flux enhances the TCA cycle with oxidative phosphorylation 

to further produce ATP, which activates the initial step of glycolysis in a positive feedback 

manner. This ATP amplification is called turbo-design or self-replenishment cycle (63, 
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64). It accelerates the glucose utilization (HK, PFK) to reduce plasma glucose. -

oxidation in each organ and Bhb degradation in brain also employ the similar positive 

feedback loops. Thus, incorporation of nucleotide cofactors is effective in understanding 

the mechanisms of global metabolic changes.  

While the insulin-related parameters including Km_inssyn_Glc_B, Km_Ins_B_L and 

Km_Ins_B_M played a critical role in changing a set-point (5mM) of plasma glucose 

concentration, the set-point provided a highly robust property against changes in the other 

kinetic parameters. The set-point of plasma glucose is rigorously controlled by insulin. 

To confirm the robustness of the set-point, we boldly set Vdif_glut3_Glc_B_N = 0 to stop 

the glucose uptake by brain. Surprisingly, the set-point was held (data not shown) by the 

insulin-based feedback switching between glucose utilization and production in liver. In 

addition, nucleotide cofactors conjugate multiple cofactor-coupled reactions to generate 

global negative feedback loops. The negative loops control the balances of NADH redox 

energy and ATP energy. For example, an increase in NADH suppresses -oxidation and 

PDH reaction, while inducing LDH reaction, due to the decreased NAD+, which results 

in suppression of TCA cycle and NADH synthesis. Excess ATP would promote the 

synthesis of TG, cholesterol and glycogen, which consumes ATP.  

Prediction of hidden mechanism 
The proposed model suggested a two-phase mechanism of FFA synthesis in liver, which 

consists of the former malonyl-CoA accumulation phase; the latter malonyl-CoA 

decreasing phase (Figure 6). This separation is caused by the fact that NADPH synthesis 

in the pentose phosphate pathways is coupled with DNL (Figure 2). Malonyl-CoA is a 

key intermediate metabolite for the FFA synthesis. During the former phase, G6P in liver 

decreases, which decreases the pentose phosphate pathway flux and NADPH. Malonyl-

CoA is accumulated due to shortage of NADPH. During the latter phase, G6P increases, 

which enhances the pentose phosphate pathway flux and NADPH. The accumulated 

malonyl-CoA is converted with NADPH into FFA. The two phases correspond to the 

glucose production and utilization phases. Consequently, the DNL occurs shortly after the 

glucose pulse.  

Pathological analysis 
A computer model has an advantage in analysis of the individual disorders and in 

understanding some mechanisms by which the individual ones are combined to cause 

complex pathologies. Metabolic diseases take a matter of years to develop, but short-term 

simulation is effective in considering some signs of such diseases and in capturing typical 

pathological features. NAFLD or one of the most common chronic liver disorders 

worldwide is the build-up of excess TG in liver cells. It covers a wide range of liver 

dysfunctions, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), 

liver cirrhosis, and hepatocellular carcinoma (8, 14, 44). NAFLD has strong association 

with type 2 diabetes, 90% of obese patients with type 2 diabetes have NAFLD. NAFLD 

with IR progression leads to type 2 diabetes (16). I considered that NAFLD is hepatic 

steatosis with some IRs, while I did not simulate NAFLD due to its broad definition. 

The proposed kinetic model was applied to pathological analysis for diabetes (8, 44, 65). 

There are two types of diabetes: type 1 and type 2. In type 1 diabetes, little or no insulin 

is produced by pancreas. Type 2 diabetes is characterized by steatosis, IR and  cell 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.29.269399doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.269399
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

dysfunction. Of course steatosis is the underlying disease. I investigated the effect of IR 

and  cell dysfunction on diabetes progression. IR_A alone hardly increased the plasma 

glucose set-point. The set-point increased in the order of IR_M, IR_L, and  cell 

dysfunction. The  cell dysfunction is the first major contribution; the IR_L is the second 

major one; IR_M is the third major one.  cell dysfunction and IR_L induced serious 

progression. The small difference in the plasma glucose set-point between IR_A and 

IR_M reflects that skeletal muscle accounts for 80% of the whole insulin-mediated 

glucose uptake (66-68). Quantitative understanding of the mechanisms responsible for 

insulin-controlled glucose uptake in each disorder is useful to evaluate the contribution 

of each disorder to type 2 diabetes. 

The simulation results supported the widely-recognized experimental data that IR_M and 

IR_A promote hepatic TG synthesis. However, Figure 8 suggests a paradox or conflict 

that  cell dysfunction and IR_L, which are known to exacerbate diabetes, recover the 

steatosis or ectopic TG accumulation that is a major cause of IR. I solve the paradox as 

follows. When IR occurs, hepatic TG accumulation may be no longer controlled by 

insulin (69, 70), but be transformed into a chronic or irreversible state through oxidation, 

ER stress, and inflammation (71). 

Medication and combination therapy 
Medication is a very popular way to treat type 2 diabetes. Out of many medications, I 

employed the three medicines of metformin, thiazolidinedione, and sulfonylurea and a 

glycerol kinase inhibitor that act on different reactions. Curative remedies are to reduce 

plasma glucose and to decrease ectopic TG accumulation. The three compounds of 

metformin, thiazolidinedione, glycerol kinase inhibitor were predicted to be effective in 

reduction of plasma glucose or hepatic TG. The model demonstrated a side effect of 

metformin that increased plasma lactate as lactic acidosis (simulation data not shown), as 

described elsewhere (46, 53). Interestingly, the proposed model revealed that the glycerol 

kinase inhibitor decreased not only hepatic TG but also plasma glucose. The reduced 

plasma glucose results from the shortage of glycerol-3-phosphate. Specifically, the 

shortage of glycerol-3-phosphate decreases the backward reaction from GRP to GAP, 

which results in reduced gluconeogenesis. The glycerol kinase inhibitor is found to be a 

promising medicine for type 2 diabetes. Out of several medications, activation of -

oxidation, which burns FFA, can be a powerful remedy to cure type 2 diabetes, because 

it has an advantage in removing not only TG but also its precursors. Metformin acts on 

-oxidation through AMPK activation, while its action is marginal. Thus, new medicines 

should be developed that effectively activate -oxidation. Sulfonylurea successfully 

reduced plasma glucose, but increased hepatic TG, suggesting a limitation or side effect 

of sulfonylurea. The model not only accurately predicted the essential results of 

medications but also achieved a rational design of combination therapy. The combination 

therapy of metformin, thiazolidinedione, glycerol kinase inhibitor, and sulfonylurea was 

found to be a promising therapy to reduce plasma glucose and hepatic TG. The successful 

combination results from the fact that the four compounds act on different reactions. The 

enhanced TG synthesis by sulfonylurea, which is a side effect, was compensated by the 

other three compounds. 

Model limitation 
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IR can be caused by ectopic TG accumulation (16, 50). Specifically, DAG activates PKCs, 

impairing insulin signaling in organs. In IR-inducing processes, the ratio of saturated FFA 

to monounsaturated FFA plays a major role in disease progression (72). Saturated FFA 

leads to inflammation, ER stress and apoptosis. Since the present model is neither able to 

consider DAG nor saturated FFA, more detailed models are necessary that consider the 

IR-inducing mechanisms. The proposed model seems a mono-stable model (I have not 

found any bistability yet in the model), while real disorders are often chronical and 

irreversible. Actually, accumulated TG may be aggregated and denatured due to 

inflammation, oxidation and ER stress to cause chronic and irreversible dysfunctions (16). 

Such irreversible disorders should be considered in the next model. 

Standard model of virtual metabolic human 
Due to shortage of in vivo human measured data, the regulatory mechanisms on each 

organ metabolism are poorly understood. Nevertheless, to quantitatively understand the 

whole-body human metabolism from the limited data, a biochemistry-based mathematical 

model is very useful and rapidly becoming feasible. The proposed biochemistry-based 

model including the regulation of enzyme activities, allosteric reactions, nucleotide 

coenzyme reactions, and hormonal actions was able to reproduce many critical features 

of the whole human-body metabolism at the molecular level. It can be a standard model 

of the virtual metabolic human for pathological analysis and therapy design. The virtual 

metabolic human model is a valuable complement to experimental biology and clinical 

studies, because in vivo research involves serious ethical and technical problems. 
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Figure 1 Schematic diagram of the human whole-body metabolism. 

(A) Realistic multi-organ model. (B) Perfect mixing model of the whole body  

Oxygen and carbon dioxide concentrations are assumed to be constant in the whole body, thus the kinetic model 

does not include lung and them. 
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Figure 2 Union map of all organ metabolic networks 
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Figure 3 Time course of key metabolites in blood, liver and skeletal muscle after an overnight fast and 

following a single meal of 100 g glucose and 33 g fat. 

(A) Circles and lines indicate the experimental and simulated concentrations of plasma glucose (blue) 

and insulin (red), respectively.  

(B) Circles and lines indicate the experimental and simulated concentrations of plasma lactate (blue), 

plasma FFA (green), plasma TG (cyan), hepatic glycogen (red) and skeletal muscle glycogen 

(magenta). 
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Figure 4 Transport/exchange fluxes at rest between blood and each organ. 

Red and blue bars indicated the simulated and experimental fluxes, respectively.  
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Figure 5 Changes in the simulated fluxes of key reactions with respect to hepatic pyruvate. 

The proposed model was simulated during 480 h after an overnight fast and following a single meal of 100 g 

glucose and 33 g fat. The four fluxes of the PDH reaction (red), DNL (green), Bhb synthesis (blue), and -

oxidation (black) were plotted with respect to pyruvate concentration in liver. 
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Figure 6 Prediction of a two-phase mechanisms of de novo lipogenesis in liver 

The proposed model was simulated during 10 h after an overnight fast and following a single meal of 100 g 

glucose and 33 g fat. 

(A) The time course of G6P (green), pyruvate (red), acetyl-CoA (black), malonyl-CoA (cyan) and NADPH 

(blue) concentrations were simulated. 

(B) The time course of TCA cycle (black), lipog1(green), lipog2 (blue), -oxidation (magenta) and pentose 

phosphate pathway (cyan) fluxes were simulated. The lipog1 and lipog2 indicate the conversion from acetyl-

CoA to malonyl-CoA and the conversion from malonyl-CoA to FFA, respectively. 
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Figure 7 Dynamic sensitivity analysis of metabolite concentrations at rest with respect to a kinetic constant  

The proposed model was simulated during 10 h after an overnight fast and following a single meal of 100 g 

glucose and 33 g fat, while changing the value of each kinetic parameter by 1.1-fold. The dynamic sensitivity 

was calculated at 10 h. 
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Figure 8 Pathological analysis using the proposed kinetic model. 

(A-C) Single disorder. Time courses of plasma insulin (A), plasma glucose (B), and hepatic TG (C) for each 

disorder were simulated after an overnight fast and following a single meal of 100g glucose and 33 g TG. The 

lines indicate the normal condition (blue), steatosis (red), IR_A (black), IR_M (green), IR_L (cyan), and -cell 

dysfunction (magenta). 

Specifically, steatosis is built by multiplying Vmax_accoat_Accoa_LM_LC, Vmax_lipog1_Accoa_LC, 

Vmax_lipog2_Malcoa_L, and Vmax_tgsyn_FFA_L, Vmax_cholsyn1_Accoa_LC by 2. -cell dysfunction is 

built by multiplying Km_inssyn_Glc_B by 1.5. IR_A is built by multiplying Km_Ins_B_A by 1.5. IR_M is built 

by multiplying Km_Ins_B_M by 1.5. IR_L is built by multiplying Km_Ins_B_L by 1.5.  

(D-F) Combined disorders. Time courses of plasma insulin (D), plasma glucose (E), and hepatic TG (F) for each 

combined disorder model were simulated after an overnight fast and following a single meal of 100g glucose 

and 33 g TG. The lines indicate normal condition (blue), the combination of steatosis, -cell dysfunction and 

IR_M (red), the combination of steatosis, -cell dysfunction, IR_M, and IR_A (black), and the combination of 

steatosis, -cell dysfunction, IR_M, IR_A, and IR_L (green). 
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Figure 9 Single medication analysis and prediction of combination therapy for type 2 diabetes by using the 

proposed model. 

(A-C) Single medication: Time courses of the concentration of plasma insulin (A), plasma glucose (B), and 

hepatic TG (C) for type 2 diabetes were simulated after an overnight fast and following a single meal of 100g 

glucose and 33 g TG. The lines indicate the type 2 diabetes model without any medication (blue), LDH inhibition 

by metformin (red), -oxidation activation by metformin (black), thiazolidinedione (green), sulfonylurea (cyan), 

and glycerol kinase inhibitor (magenta). The type 2 diabetes model is the same as the green line of Figure 8DEF. 

Specifically, metformin reduces Vmax_ldh_Pyr_L to zero or multiplies Vmax_boxid_FFA_L by 2. 

Thiazolidinedione multiplies Vmax_tgsyn_FFA_A by 2. Sulfonylurea multiples Vmax_inssyn_Glc_B by 2. 

Glycerol kinase inhibitor reduces Vmax_glyk_Glyc_L to zero. 

(D-F) Combination therapy: Time courses of the concentration of plasma insulin (D), plasma glucose (E), and 

hepatic TG (F) for type 2 diabetes were simulated after an overnight fast and following a single meal of 100g 

glucose and 33 g TG. The lines indicate no medication (blue), metformin (red), the combination of metformin 

and thiazolidinedione (black), the combination of metformin, thiazolidinedione and glycerol kinase inhibitor 

(green), and the combination of metformin, thiazolidinedione, glycerol kinase inhibitor, and sulfonylurea (cyan). 
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