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Charting a biological atlas of an organ, such as the brain, requires us to spatially-resolve 

whole transcriptomes of single cells, and to relate such cellular features to the histological 

and anatomical scales. Single-cell and single-nucleus RNA-Seq (sc/snRNA-seq) can map cells 

comprehensively5,6, but relating those to their histological and anatomical positions in the 

context of an organ’s common coordinate framework remains a major challenge and barrier 

to the construction of a cell atlas7–10. Conversely, Spatial Transcriptomics allows for in-situ 

measurements11–13 at the histological level, but at lower spatial resolution and with limited 

sensitivity. Targeted in situ technologies1–3 solve both issues, but are limited in gene 

throughput which impedes profiling of the entire transcriptome. Finally, as samples are 

collected for profiling, their registration to anatomical atlases often require human 

supervision, which is a major obstacle to build pipelines at scale. Here, we demonstrate 

spatial mapping of cells, histology, and anatomy in the somatomotor area and the visual area 

of the healthy adult mouse brain. We devise Tangram, a method that aligns snRNA-seq data 

to various forms of spatial data collected from the same brain region, including MERFISH1, 

STARmap2, smFISH3, and Spatial Transcriptomics4 (Visium), as well as histological images 

and public atlases. Tangram can map any type of sc/snRNA-seq data, including multi-modal 

data such as SHARE-seq data5, which we used to reveal spatial patterns of chromatin 

accessibility. We equipped Tangram with a deep learning computer vision pipeline, which 

allows for automatic identification of anatomical annotations on histological images of mouse 

brain. By doing so, Tangram reconstructs a genome-wide, anatomically-integrated, spatial 

map of the visual and somatomotor area with ~30,000 genes at single-cell resolution, 

revealing spatial gene expression and chromatin accessibility patterning beyond current 

limitation of in-situ technologies.   
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INTRODUCTION 

An Human Cell Atlas6–8, and especially a Brain Cell Atlas, should combine high resolution 

molecular and histological mapping with anatomical and functional data. Achieving this goal relies 

critically on our ability to relate different levels of biological organization and data modalities to 

each other. In this context, molecular data, for example mRNA levels, has the potential to provide 

a unifying connector, especially if it can be quantified both spatially and at single cell resolution. 

In addition, such spatial measurements then relate cellular features across scales, including 

histological and anatomical, by mapping through a Common Coordinate Framework (CFF) of an 

organ9. However, to achieve this ultimate goal, we need to overcome two challenges: obtain 

molecular profiles at high spatial resolution, and relate those to both histological and anatomical 

information.  

 

Advances in single cell and spatial genomics10 opened the way to high resolution spatial profiles, 

but each of the currently available technologies only addresses some of the challenge of resolving 

whole transcriptomes in space at single-cell resolution. On the one hand, single cell and single 

nucleus RNA-seq (sc/snRNA-seq) profile single cells transcriptome-wide, from which we can 

recover cell types11, gene programs12,13, and developmental relations14,15, but by necessity loses 

spatial information. Conversely, spatial technologies resolve transcriptomes in space, but are 

limited in either gene throughput or spatial resolution. In general, targeted in situ technologies 

(e.g., ISS16, MERFISH1, smFISH3, osmFISH17, STARMap2, Targeted ExSeq18, seqFISH+19) are 

limited in the number measured genes measured, which must be pre-selected and are typically in 

the hundreds to thousands range, whereas adding more probes can reduce accuracy for some 

genes2. Spatial Transcriptomics methods (e.g., Spatial Transcriptomics (ST)4 (now available 
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commercially as Visium), Slide-seq20, or High Definition Spatial Trascriptomics21) spatially 

barcode entire transcriptomes, but with limited capture rate (and substantial “dropouts”, which 

increase at higher resolution) and a spatial resolution larger than a single cell, ranging from 50-

100 µm for ST to 10 µm for Slide-seq.  

 

Computational methods have previously bridged this gap by combining single cell and spatial 

measurements22–25. With targeted, high resolution, spatial measurements, mapping provides spatial 

measurements for additional genes based on their (mapped) single cell profiles. These methods 

can reconstruct key landmark genes by leveraging local alignment in transcriptome space22–24, or 

hypotheses such as continuity in gene expression25. However, intrinsically sparse or granularly 

distributed genes are difficult to predict. For measurements at coarse spatial resolution, 

computational methods aim to deconvolve these data20,26, by either learning a program dictionary20 

or a probability distribution of the data26, to infer a cell type composition within a spatial voxel. 

However, deconvolution is hindered by spatial “dropouts”, where cells types defined by sparse or 

dim markers are not correctly detected27.  

 

In many cases, only histological data is directly available for the specimens collected as part of 

single cell atlases, but those can serve as a bridge to pre-existing atlases, with measured in situ 

hybridization (ISH) data, and rich anatomical annotations in the context of a Common Coordinate 

Framework, as in the case of the Allen Brain Atlas28. Using these data should allow relating cellular 

features (e.g., gene expression, cell types) to the histological or organ scale, especially in the brain. 

However, typical methods from computer vision for registration of medical images29,30 require 

human supervision, such as identification of a few corresponding anatomical landmarks in 
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experimental and atlas images. Such supervision, albeit minimal, prevents complete automation. 

A common strategy to remove supervision uses machine learning for identifying the few key 

landmarks required in registration, as has been shown for registration of sagittal mouse brain 

slides31. However, this method is not suitable for images that are torn or contain holes, for example, 

if tissue has been first dissected for profiling sc/snRNA-seq data.  

 

Here, we present Tangram, a deep learning framework to address both challenges: learn spatial 

gene expression maps transcriptome-wide at single cell resolution, and relate those to histological 

and anatomical information from the same specimens. Tangram learns a spatial alignment of 

sc/snRNA-seq data from a reference spatial data of any kind – either fine or coarse grained, as we 

demonstrate by spatially mapping snRNA-seq data from the isocortex of the adult healthy mouse 

brain using each of five kinds of spatial supports, at different levels of resolution and gene 

coverage: ISH, smFISH, Visium (Spatial Transcriptomics), STARmap and MERFISH. Tangram 

produces consistent spatial maps of cell types, overcomes limitations in throughput or resolution, 

corrects low-quality genes, even in high resolution methods, provides single cell resolution for 

low-resolution methods, and provides genome-wide coverage for targeted methods. By mapping 

multi-modal single data (SHARE-seq5) on spatial support, Tangram visualizes spatial patterns of 

chromatin accessibility and transcription factor motif scores at single cell resolution. Finally, 

Tangram includes a dedicated novel computer vision module that leverages histological data, and 

maps it to anatomical positions in an existing Common Coordinate Framework in the brain. If a 

histology image is available, even without any further annotation, this module relates all scales, to 

a single integrated atlas.  
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RESULTS 

Tangram: Learning of spatially-resolved single cell transcriptomes by alignment  

We developed Tangram, an algorithm that uses sc/snRNA-seq as “puzzle pieces” to align in space 

to match “the shape” of the spatial data (Fig. 1a). The input to Tangram is sc/snRNA-seq data 

along with spatial data from the same region or tissue type, from any currently available spatial 

method (e.g., MERFISH, smFISH, STARmap, ISH, or Visium), requiring only that the two 

modalities share at least some subset of common genes. Intuitively, Tangram first randomly places 

the sc/snRNA-seq profiles in space, then computes an objective function that mimics the spatial 

correlation between each gene in the sc/snRNA-seq data and in the spatial data. Tangram then 

rearranges the sc/snRNA-seq profiles in space to maximize the total spatial correlation across the 

genes shared by the datasets. When Tangram finishes, the mapped sc/snRNA-seq profiles 

constitute the new spatial data: they now contain all genes at single cell resolution and with spatial 

position. From the learned mapping function, Tangram can (1) expand from a measured subset of 

genes to genome wide profiles (Fig. 1b); (2) correct low-quality spatial measurements (Fig. 1c); 

(3) map the location of cells of different types (Fig. 1d); (4) deconvolve low resolution 

measurements to single cells (Fig. 1e); and (5) resolve spatial patterns of chromatin accessibility 

at single-cell resolution by aligning multi-modal data (Fig. 1e). 

 

Technically, Tangram is based on non-convex optimization (for full details, see Methods), where 

the Tangram optimization function rewards the spatial alignment of sc/snRNA-seq data using two 

similarity functions: cell density distributions are compared using Kullback-Leibler (KL) 

divergence, whereas gene expression is assessed via cosine similarity. If the sc/snRNA-seq data 

contains more cells than the spatial data (which is the typical case), a filter term in the loss function 
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ensures that only the optimal subset of sc/snRNA-seq observations is selected. The output of 

Tangram is a probabilistic mapping, namely, a matrix denoting the probability of finding each cell 

from the sc/snRNA-seq data in each voxel of the spatial data. From this matrix, we can obtain a 

deterministic mapping by assigning the most likely sc/snRNA-seq cell to each spatial voxel. 

Optionally, we can also activate an entropy regularizer to ensure that the spatial probabilities of 

each cell are peaked over a narrow portion of space. We did not need to use such feature, as all 

probabilities were peaked in practice in all cases analyzed in this study.) Tangram does not contain 

any hyperparameters, maps a hundred thousand cells in a few minutes (using a single P100 GPU), 

and is released as PyTorch module.   

 

Tangram maps cells with MERFISH measurements to generate genome-scale high 

resolution expression maps 

To apply Tangram, we collected 160,000 snRNA-seq profiles using droplet-based RNA-seq 

(10Xv3, see for example32), as part of the BRAIN Initiative Cell Census Network (BICCN), from 

the primary motor area (MOp) of health adult mouse brain. Each profile contains the expression 

of ~27,000 genes, and was annotated following the recently delineated cell type taxonomy of 

neocortical areas33, to 22 subclasses (hereafter, “cell types”)34. We mapped these snRNA-seq data 

with a high resolution MERFISH dataset of 254 genes, on a section segmented to 4,234 cells (Fig. 

2). We trained Tangram using 253 MERFISH genes (all genes but one were detected in our 

snRNA-seq data). 50% of the aligned profiles were neuronal, with a 6:1 ratio between 

glutamatergic and GABAergic cells, in accordance with their ratios in snRNA-seq.  
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To reveal the spatial distribution of cell types, we combined the learned probabilistic mapping with 

the cell type annotations in the snRNA-seq data, and obtained the spatial probability distribution 

for each cell type (Fig. 2a). Glutamatergic cells show distinct cortical layer patterns of neuronal 

subpopulations whereas most, but not all, non-neuronal cells and GABAergic neurons are 

granularly distributed, as expected. Exceptions include non-neuronal VLMC cells (strongly 

localized in the first layer) and GABAergic Vip and Lamp5 cells, which appear more concentrated 

toward the upper layers. To verify that these distributions were not an artifact of our probabilistic 

approach, we also visualized the cell type assignment from the deterministic mapping (i.e. only 

the most-likely cell is assigned to each spatial location) and observed similar patterns (Fig. 2b). 

 

The learned Tangram model could predict spatial expression patterns well, as we demonstrated by 

a leave-one-out analysis. Specifically, we partitioned the genes into 252 training genes and a single 

test gene (unseen in the learning of the model). We repeated the training 253 times, each time 

leaving out a different gene, to obtain prediction for each gene. As an evaluation score, we 

computed the spatial correlation between each gene’s real measurement and the predicted spatial 

pattern of that gene by the learned model. Overall, 75% of the 253 MERFISH genes are predicted 

with correlation > 40% (Fig. 2d). To interpret these spatial correlations, we chose nine genes with 

varied scores and visually compared the predicted spatial patterns to the MERFISH measurements 

(Fig. 2c). Importantly, the spatial patterns had good qualitative agreement for a broad range of 

spatial correlation values. For example, the prediction for Tcap (40% correlation) is in good 

accordance with its measurement. This is because when spatial resolution is at the single-cell level, 

correlation is highly sensitive to noise in gene expression or its measurement, such that somewhat 

lower correlation does not imply qualitative disagreement. This phenomenon is especially evident 
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in highly sparse genes (e.g., Muc20): the sparse pattern is recapitulated, but the specific single cell 

locations are not precise, which may reflect the true nature of these patterns.  

 

Mapping snRNA-seq data on MERFISH increases gene throughput to 27,000 genes, which we 

validated for 11 selected genes with available ISH data in the Allen ISH dataset (Fig. 2e). Some 

genes exhibit strong, localized, patterns in striking similarity to those in the Allen images (Kcnh5, 

Nos1ap, Erbb4, Atp2b4, Celf2, Crispld1). For other genes the signal in the Allen ISH image is 

very dim compared to our predictions (Esrrg, Cdh4, Adamts3, Htr4, Prkg1), but a close inspection 

reveals agreement as well. This suggests that Tangram can reveal, spatial patterns for lowly-

expressed genes, as we will further demonstrate below (with Spatial Transcriptomics Visium data). 

Interestingly, we obtained similar results when we predicted withheld genes that were measured 

by MERFISH but had relatively lower-quality, possibly because of less optimal oligonucleotide 

probes used for these genes: the model predictions were consistent with ISH data, suggesting that 

the model can “correct” lower-quality signal (Fig. 2f). Correction of lower-quality measurements 

can also partly account for lower correlation scores between predictions and measurements (Figs. 

2c,f). 

 

Accurate correction of low-quality transcripts in STARMap 

To further investigate Tangram’s correction of low-quality transcripts, we analyzed a STARmap 

dataset2. STARmap is a targeted in-situ technology which has been used to measured ~1,000 genes 

in 3D resolution; however, increasing the number of measured genes trades-off with gene 

expression accuracy. In this dataset2, 1020 genes are measured in 972 cells in a mouse brain slice 
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from the visual area (VISp). We map 11,759 SMART-Seq235 snRNA-seq profiles from the VISp 

area using 995 training genes present in both STARmap and snRNA-seq data.  

 

Inspecting cell type distributions from either probabilistic (Fig. 3a) or deterministic (Fig. 3b) 

mapping, we confirmed that cell type patterns are consistent with those obtained with MERFISH 

from the motor area (Fig. 2a,b). Despite minor cell-type annotation difference between the VISp 

and MOp snRNA-seq datasets, our model provides robust mapping. For example, while only the 

VISp (but not MOp) snRNA-seq dataset has an annotated glutamatergic L4 (layer four) cell subset, 

the model successfully revealed L4 in the MOp data (Fig. 3a) from predicting its marker genes 

(e.g. Kcnh5 in Fig. 3e and Fig. 2e). Finally, the STARmap dataset also contains sub-cortical tissue 

(defined as cells below the L6b layer), which allows us to further validate predictions by observing 

an expected subcortical concentration of oligodendrocytes (Fig. 3a). 

 

Remarkably, Tangram not only predict expression for genes that were not measured by STARMap, 

but effectively corrects the spatial expression of low-quality genes (Fig. 3c,d,e), as compared to 

Allen Brain Atlas ISH. First, when holding out each individual STARmap gene from the training, 

the predicted expression was typically consistent with direct measurements (Fig. 3c). Interestingly, 

for some genes our predicted localized patterns were not observed in measurements, especially for 

lower-quality genes (Fig. 3d). Remarkably, in these cases, the predicted pattern agreed well with 

images from the Allen Brain ISH Atlas (Fig. 3d), confirming the accuracy of our predictions, and 

Tangram’s ability to correct gene expression of low-quality data. Finally, Tangram correctly 

predicted the expression of genes that were not measured by STARMap, including markers of 
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cortical layers (Tenm3, Cdh12, Kcng1, Igf2) or sub-cortical tissue (Opalin and Enpp6) as assessed 

by their consistency with the Allen Brain ISH Atlas (Fig. 3e). 

 

Single cell deconvolution and histological data incorporation with Spatial Transcriptomics  

Next, we focused on the deconvolution challenge in the context of lower-resolution Spatial 

Transcriptomics (Visium) data measuring 31,053 genes within 50	𝜇𝑚	diameter circular spots in 

three coronal mouse brain slices (Fig. 4). This is followed by an H&E stain of the slice (section 

1), with ~160 circular spots on a region of interest. As single cells are visible in the stained images, 

we segmented cells to directly estimate cell number within each spot, and overall counted 939 

cells.  

 

In Spatial Transcriptomics, unlike MERFISH and STARMap, we possess a histological image, 

which identifies a specific depth in the brain coronal sectioning (more precisely, an anterior-to-

posterior coordinate). This opens up two strategies for mapping: (1) map the full MOp snRNA-

seq data, constraining the cell number to 939 (as for MERFISH and STARmap); this is more 

suitable for deconvolution, given the direct assignment on segmented cells; alternatively (2) we 

can leverage the known anterior-to-posterior coordinate, and only map MOp snRNA-seq profiles 

collected at that depth (with a method we describe later on); this should resolve smoother gene 

patterns, given the higher number of profiles as we show in the following section.  

 

For deconvolution, we performed a deterministic mapping of each of the cells within each 

50	𝜇𝑚	voxel, to obtain cell type localization prediction at single-cell resolution (Fig. 4a). We 

trained Tangram with a subset of the >30,000 genes, by selecting 1,237 training genes as the union 
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of the top 100 marker genes of each cell type in the MOp snRNA-seq data (using a standard 

pipeline20, Methods) that are detected in the Visium profiles. Unlike probabilistic mapping, we 

assigned a discrete number of cells to each voxel (matching the number of segmented cells). 

Notably, rare cell types might not be assigned by deterministic mapping (e.g. Meis GABAergic 

neurons).  

 

Our deterministic mapping was successful, as demonstrated by comparing the mapped cell type 

ratios and those from the snRNA-seq data, which were consistent within Poissonian error 

(Extended Data Fig. 1b). Our mappings were also robust, as demonstrated by analyzing two other 

Visium datasets: a coronal section (section 2) consecutive to section 1 from the same specimen, 

and a coronal section collected at approximately the same posterior, provided publicly36 (section 

3) (Extended Data Fig. 1c). We note that assignment within a voxel is random: e.g., the model 

may predict that one microglia cell is contained in a certain voxel but not which cell it is.  

 

Tangram imputation of dropouts in Spatial Transcriptomics 

Next, leveraging the known anterior-to-posterior coordinates, we mapped only MOp snRNA-seq 

profiles collected at that depth to impute gene expression and correct low-quality data (mostly due 

to dropouts). Specifically, during collection our MOp snRNA-seq data, we tracked the dissected 

region, which we annotated as “anterior”, “mid” or “posterior” based on its own histological data, 

as we describe below (Fig. 7a, Methods). As all three Visium histological images were called as 

“posterior” MOp, we only mapped the 58,002 snRNA-seq profiles from “posterior” samples, using  

probabilistic mapping.  
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Tangram’s mapping yielded higher resolution, finely localized, cell types (Fig. 4b, Extended Data 

Fig. 1a). This included correct localization of L6b glutamatergic neurons, more concentrated 

presence of Vip+ and Lamp5+ GABAergic neurons in upper layers, positioning of Sst and Pvalb 

GABAergic neurons in deeper layers, and of Meis2+ and Sst+Chodl+ GABAergic neurons in rare 

sparse cell types. In a few cases, there is variation in the mapping between independent 

experiments, which is consistent with biological variation, for example, co-localization of cell 

types (e.g. Sncg and Vip GABAergic neurons) is detected across slices from the same batch 

(section 1 and section 2) but not in section 3; L6 IT cells are more localized in layer six in slice 3, 

and Vip neurons are more uniformly distributed in section 3 than in section 1 and section 2. Both 

findings are consistent with our expectations.  

 

Importantly, Tangram correctly predicted spatial expression patterns from the mapped cells, when 

we withheld those genes in the training and then compared them to the Visium measurements (Fig. 

4c-f). Specifically, we partitioned the genes into 1,237 training genes and 29,816 test genes unseen 

in the learning of the model, and used spatial correlation as before (Fig. 4c). The 90th quantile of 

spatial correlation coefficients of training genes is >62%, setting a prediction threshold for test 

genes (Fig. 4c,d): 50% of the testing genes exceed this threshold (Fig. 4c,d). As the number of 

training genes in reduced from 1,237 to 123, so does the relative prediction accuracy (Fig. 4d), 

although it remains substantial. Inspection of spatial patterns from select test genes shows that 

while our predictions always result in a localized pattern in the upper layer, agreement against 

Visium measurements deteriorates as the gene is more sparsely detected in the original Visium 

experiment (Fig. 4e, where sparsity is defined as the fraction of voxels in which the gene is 

undetected).  
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We hypothesized that this poor agreement could be due to technical “drop-outs” ( ~15,000 test 

genes are entirely undetected in our Visium datasets). Supporting this hypothesis, there is a strong 

correlation between our prediction scores and data sparsity (Fig. 4f): 98% of non-sparse genes 

(sparsity<50%) are correctly predicted by our model (spatial correlation >62% threshold, Fig. 4f, 

region i), with only ~70 non-sparse genes that are not well predicted (Fig. 4f, region ii). Non-

sparse test genes that are not well predicted have predicted patterns that are sparser than Visium 

measurements, suggesting that the disagreement might be due to drop-outs in the snRNA-seq data 

(Fig. 4g). Finally, ~80% of the transcriptome measured in Visium is highly sparse (Fig. 4f, region 

iii; the same genes are also too low to be detected by the Allen ISH atlas). This raises the possibility 

that our predictions may provide more accurate estimates of the real spatial expression for such 

genes. Supporting this, we compared our predictions to measurement for the two genes available 

in both MERFISH and our sparse genes. In both cases, our predicted spatial patterns agree with 

MERFISH measurements (Fig. 4h). Future studies with additional genes could help with further 

validations. 

 

Spatial localization of chromatin accessibility patterns with SHARE-seq 

We next used Tangram’s successful spatial mapping through RNA, as a scaffold to map additional 

molecular profiles with no available spatial data, but that can be measured by single cell multi-

omics. In particular, we set to map a joint single cell RNA and ATAC-Seq, which we profiled 

simultaneously in the >3000 cells from whole mouse brain by SHARE-Seq5 (detecting ~18,000 

genes) and annotated as nine glutamatergic cell subsets (EN, excitatory neurons), five GABAergic 

cell subsets (IN, inhibitory neurons) and five non-neuronal subsets (A1.E1, MX, NSC, OG1, P1)5 
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(no immune cells were captured, and cortical layer subsets were not annotated). We aligned the 

SHARE-seq data to the MERFISH data using the snRNA-seq profiles, then transferred the 

snATAC-seq profiles of the cells to space, to visualize inferred spatial patterns of chromatin 

accessibility and transcription factor motif scores at single cells resolution (Fig. 5).  

 

We mapped SHARE-seq data both probabilistically (Fig. 5a) and deterministically (Fig. 5b) and 

obtained cell type distributions. Our mapping reveals that EN01 are localized in layer L2/3, EN04 

in layer 4, EN07 in layer 5/6, EN05 in layers 5 and 6 and EN02 in layer 6. Interestingly, IN02 

seems more prominent in layer 6. Also, the non-neuronal cell type MX (labeled “Unconfirmed”5) 

appears concentrated to the bottom left part of the ROI, which does not resemble known patterns 

of cortical cell types. While the mapping is overall consistent, it is less biologically precise than in 

the previous cases, likely due to the lack of immune cells (missing “puzzle pieces” for Tangram) 

and the fact that the cells were not profiled specifically from the cortex. 

 

We used the snRNA-based mapping to infer spatial patterns of chromatin accessibility and 

transcription factor activity (Fig. 5c,d), and compared them to spatial expression patterns. In some 

cases, gene expression is higher at a particular cortical layer but localization is not observed in the 

projected snATAC-seq (C1ql3, Il1rapl2, Kcng1). In other cases, the projected snATAC-seq forms 

spatial patterns, even though the corresponding predicted gene does not show a spatial pattern 

(Scgn, Il4ra, Mrgprx2). In only a minority of cases, we observed correlation between snRNA-seq 

and snATAC-seq patterning (Dnase1l3, Egfr and Elfn1). We similarly visualized inferred spatial 

patterns of transcription factor motif activity scores (identified from the snATAC-Seq profile in 

each cell37) (Fig. 5d). Interestingly, some of them exhibit a slightly localized pattern (Msc, 
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Bhlhe22, Egr2), even for transcription factors whose predicted RNA was neither measured in 

MERFISH nor in SHARE-seq (e.g. Tcfeb and LINE10014).  

 

Integration of histological and anatomical atlas support  

In the mouse brain, there are already rich histological and anatomical atlases, with careful 

annotations and associated data, including in situ hybridization of individual markers. In those 

cases when histological data is directly available for specimens profiled in single cell atlases, those 

can serve as a bridge to these pre-existing atlases. This then both helps create a full atlas, in the 

context of a Common Coordinate Framework (CCF) for the brain, as well as provide spatial 

molecular data from legacy ISH.  

 

To this end, we developed an additional module in Tangram to connect across scales by registering 

histology/spatial data on an anatomically annotated CCF, such as the Allen CCF for the adult 

mouse brain28. As an alternative to methods that either require supervision or intact tissue, we 

combine a Siamese neural network model with a semantic segmentation algorithm to produce full 

segmentation masks of anatomical images (Figs. 6 and 7). The Siamese network model builds a 

latent space which allows a uniform encoding irrespective of technical artifacts in the images, such 

as the presence of “holes” in dissected regions (from which cells or nuclei were collected). The 

semantic segmentation model produces a segmentation mask with a color scheme that is 

compatible with the Allen ontology. Because we produce a mask with matching colors, we can 

then register the images automatically as we do not need to provide corresponding landmarks; 

instead the anatomical regions in the mask are the landmarks.  
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Building on methods for face recognition16, we learned a latent space using a Siamese network 

model17 trained on mouse brain images (Fig. 6a, Methods). We trained the model so that each 

image was encoded according to salient anatomical landmarks, whereas technical properties such 

as illumination or staining were factored out (Methods). The learned latent space displayed a one-

dimensional manifold structure, where the “head” of the manifold contains images from the 

olfactory bulb, and the “tail”, images from cerebellum (Fig. 6b). The model predicted the image 

from the Allen CCF at the same coronal depth of our histological image. We validated the 

predictions by checking consistency across the whole training set (Fig. 6c), and by visual 

inspection (Fig. 6d). We then used the trained model to retrieve the image from the Allen CCF 

onto which we register our histological image.  

 

Next, we segmented our images to generate a custom mask for our images using the same color 

scheme adopted by the Allen ontology. For this, we applied semantic segmentation18, and 

segmented five classes in our histological image (Fig. 7a): background, cortex, cerebellum, white 

matter and other grey matter. As the training set is scarce, we adopted a combination of transfer 

learning and heavy augmentation during training (Fig. 7b) and validated it by inspecting 

predictions on test atlases (Fig. 7d). Finally, we combined segmentation with the Siamese model, 

to obtain a fully automated registration pipeline (Fig. 7c), leveraging the fact that registering two 

masks (one on the Allen image and one on the image of our sample) is a simpler problem than 

registering the two images directly.  

 

A learned histological and anatomical atlas of single nuclei from the somatomotor mouse 

cortex 
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To demonstrate this final framework, we assembled an integrated atlas of the somatomotor area of 

the healthy adult mouse brain using publicly available atlases. As noted above, we collected 

~160,000 snRNA-seq profiles from three dissected regions of interest (ROIs) in the somatomotor 

area (Fig. 8a). We used a lab procedure38 where nuclei are isolated from a biopsy “punch” in a 

frozen dissected region. To help relate this region to the known anatomy, we also obtained stained 

histological sections on the punched section, which are approximately 200µm deep (Methods).  

 

We applied Tangram’s anatomical mapping module to the histological images to precisely locate 

the region of dissection on the Allen CCF, and then queried the Allen Mouse Atlas to estimate 

spatial gene expression at 200	𝜇𝑚 resolution and the Blue Brain Cell Atlas19 to compute the 

expected cell density in each spatial voxel (Fig. 8c). Tangram then computed an anatomical map 

from the Allen Reference Atlas, and used it post-mapping to estimate the anatomical region to 

which each cell has been mapped (Fig. 8a). We repeated this procedure for the three ROIs, and 

finally mapped the snRNA-seq profiles to their corresponding ROIs. (We used the same 

anatomical mapping module to select nuclei for mapping from a matching histological section to 

that measured by Spatial Transcriptomics; above.) 

 

The mapping predictions for cell types across the three ROIs, were self-consistent albeit less 

accurate than mappings using the higher resolution spatial technologies (Fig. 8d). Cortical layers 

were successfully recovered across the three ROIs, but L5 IT and L5/6 NP display a lower level of 

localization than in the other cases. GABAergic neurons predictions are biologically sound and we 

observed a more concentrated presence of Vip+ and Lamp5+ in upper layers, as observed with 

Visium-based mapping. Non-neuronal predictions did not recover sparse mPVM and overly 
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concentrated Peri, Endo and VLMC cells in the subcortical part. Overall, our mapping results 

confirmed that glutamatergic cell type patterning is simpler to reconstruct than sparse, granular, 

cell type patterns typical of non-neuronal cell types, the latter requiring finer signals from modern 

spatial technologies.  

 

DISCUSSION 

Gene expression in the brain and other organs exhibits a variety of spatially-organized patterns on 

different length scales from the microenvironment, to histology to anatomy, whose knowledge is 

central to unraveling biological function. Spatially resolved transcriptomic data provide an 

opportunity to reveal such patterns, but are currently limited by spatial resolution or the number 

of genes measured, and connecting them to other levels or organization can require substantial 

experimental efforts. Here, we harmonized snRNA-seq data with in-situ, histological and 

anatomical data, to address these limitations, towards a high resolution, integrated atlas.  

 

Here, we developed and used Tangram to tackle various scenarios, all of which involved aligning 

snRNA-seq data onto a certain type of spatial data collected from the adult mouse brain cortex, 

from high resolution MERFISH and STARMap, through mid-resolution Spatial Transcriptomics, 

and to ISH associated with histological and anatomical coordinates. In each case, we validated the 

computational alignments by recovering consistent spatial maps of cell types and predicting the 

expression of holdout genes.  

 

Each type of spatial measurement modality benefits particularly from one aspect of Tangram: for 

high resolution targeted datasets (smFISH, MERFISH, STARmap), Tangram expands from 
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signature to genome-wide patterns; for lower resolution Spatial Transcriptomics dataset (Visium), 

Tangram yields single-cell resolution; for datasets with higher gene throughput (STARmap and 

Visium), Tangram detects and corrects low-accuracy gene expression patterns; for multi-modal 

single cell data (SHARE-seq), Tangram uses one modality to generate spatial patterns for the other, 

thus generating spatial multi-modal maps. Finally, histology allows registration to the Allen CCF 

and integration between the cellular and the anatomical scale. 

 

In our analyses, a few hundreds of marker genes, stratified across cell types, sufficed to map the 

mouse brain cortex transcriptome-wide, observing consistent cell type patterns in all cases. 

Notably, while cell mapping can rely on even fewer genes (i.e., smFISH, 22 genes measured, Figs. 

1b,d), we could not successfully predict transcriptome-wide spatial gene expression in that case, 

in contrast to our success with MERFISH (254 genes measured). This suggests that at least a few 

hundred marker genes are required to comprehensively map the mouse brain cortex, at least in the 

context of cell types. As we expand studies of the brain to other patterns – such as short-term 

responses that characterize more transient cell states and programs – the optimal number of marker 

genes required for mapping could depend not only on the number and diversity of cell types in the 

tissue and specificity of marker genes, but on the structure of other gene programs and their inter-

relations. Tangram, using both genome-wide and targeted spatial scaffold data can help assess the 

extent of markers needed to capture a response.  

 

Future applications of Tangram with more than a single spatial scaffold at a time (e.g., taking both 

MERFISH, Visium and snRNA-seq as inputs simultaneously) should help reconcile a complete 

integrated spatial atlas of gene expression in the brain. Moreover, Tangram could be applied in an 
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iterative fashion across the modalities. For example, as we showed Tangram can correct gene 

expression in spatial methods when the measurements of the specific genes have lower quality. 

Such output can then be used as a novel spatial dataset onto which to re-align the snRNA-seq 

profiles. This technique, called active learning, will be explored in future studies. Finally, as 

additional spatial transcriptomics technologies arise, Tangram can flexibly take them as input. For 

example, it could be applied to SLIDE-seq2 data39, which has a spatial resolution of 10 µm 

(compared to Visium’s 50-55µm) and is more robust to technical dropouts39. 

 

An interesting case study of Tangram is its ability to resolve spatial patterns of multi-modal data, 

when only one modality is available in the spatial scaffold, as we demonstrated using SHARE-seq 

data to predict spatial patterns for scATAC-seq data. This approach can be adopted with every 

technology that profiles the transcriptome at single cell level with an additional modality: examples 

include CITE-seq40 (cellular proteins) and Patch-seq41 (electrophysiological and morphological 

properties of neurons). Alternatively, one can independently measure various modalities in 

different subpopulations at single-cell level, integrate them by learning a common latent 

space24,42,43, and then input this integrated multi-modal data to Tangram to resolve multi-modal 

spatial patterns. Aligning multi-modal data is particularity intriguing in cases for which there is no 

assay for spatially resolving data of a certain modality. For example, chromatin accessibility could 

not be spatially resolved at single-cell level until very recently44.   

 

Finally, while our work focused on a specific region in the mouse brain, Tangram is applicable to 

any brain region, towards its complete atlas, and to any other organ, as well as disease tissue. To 

integrate across scales, Tangram’s registration pipeline requires a CCF and is therefore currently 
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applicable to a few organs. At present, the mouse brain possesses the most advanced and well-

developed CCF 28, but efforts are underway to construct analogous reference maps for different 

organs9, towards the construction of cell atlases of all organ in mouse and human.    
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Figure legends 

 

Figure 1. Tangram learns spatial transcriptome-wide patterns at single cell resolution from 

sc/snRNA-seq data and corresponding spatial data.  

a. Overview. sc/snRNA-seq data and spatial data, collected from the same tissue are spatially 

aligned by comparing gene expression of their shared genes. b-f. Tangram use cases. b. Generating 

genome wide spatial patterns from gene signature data. Predicted expression patterns (color bar, 

normalized mRNA counts, Methods) for each of three genes not included in an input smFISH 

dataset validated against their corresponding images from the Allen ISH atlas (bottom). c. 

Correction of low-quality data for spatially measured genes. Predicted (top) and measured (bottom, 

by Visium) expression patterns (color bar, normalized mRNA counts, Methods) of four known 

markers whose correct localization is missing in direct Visium measurements, but recovered in the 

predicted patterns. d. Cell type localization. Spatial distribution of cell types defined by snRNA-

seq (legend) mapped on a an smFISH brain slide. e. Single cell deconvolution of lower-resolution 

Spatial Transcriptomics. Predicted single cells (colored dots, legend) in each Visium voxel (grey 

circle) based on snRNA-seq data mapped onto a Visium slide. f. Spatially resolved chromatin 

patterns. Predicted spatial gene expression (top, color bar, normalized mRNA counts, Methods) 

and chromatin accessibility (bottom, color bar, normalized ATAC peak counts, Methods) by 

mapping the RNA component of SHARE-Seq data to a MERFISH slide. 
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Figure 2. Tangram maps cells with high resolution MERFISH measurements and expands 

them to genome scale.  

a. Probabilistic mapping of snRNA-seq data on MERFISH data. Probability of mapping (color 

bar) of each cell subset (grey label) in each of 3 major categories. Bottom right: schematic of key 

layers. b. Deterministic mapping. MERFISH slide with segmented cells (dot) colored by the cell 

type annotation of the most likely snRNA-seq profile mapped on that position by tangram (legend). 

c,d. Predicted expression of test genes. c. Measured (top) and Tangram-predicted (bottom) 

expression (color bar signifies fluorescence at top and normalized mRNA counts at bottom, 

Methods) of select test gene (grey labels) with different extents of spatial correlation (bottom 

arrow, %) between measured and predicted patterns. d. Cumulative distribution function (CDF) of 

spatial correlation (x axis) between predicted and measured patterns for test genes. Dashed line: 

75% of test genes are predicted with spatial correlation >40%. e. Predicted expression of test genes. 

Tangram-predicted (bottom) expression (top; color bar, normalized mRNA counts, Methods) and 

corresponding ISH images from the Allen Brain Atlas (bottom) for 11 genes not measured by 

MERFISH. f. Correction of low-quality spatial measurements. MERIFSH measured (top), 

Tangram-predicted (middle) and Allen Brain Atlas ISH, for genes whose predicted patterns differ 

from MERFISH measurement but match direct inspection of Allen ISH images (color bar, 

normalized mRNA counts, Methods). 
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Figure 3. Correction of low-quality genes by mapping snRNA-seq on STARmap data.  

a. Probabilistic mapping of snRNA-seq data on STARmap data. Probability of mapping (color 

bar) of each cell subset (grey label) in each of 3 major categories. b. Deterministic mapping. 

STARmap slide with segmented cells (dot) colored by the cell type annotation of the most likely 

snRNA-seq profile mapped on that position by Tangram (legend). c.  Measured (top) and 

Tangram-predicted (bottom) expression (color bar signifies fluorescence at top and normalized 

mRNA counts at bottom, Methods) of select test gene (grey labels). d. Correction of low-quality 

spatial measurements. Tangram-predicted test genes (left), STARmap measurements (middle) and 

Allen atlas images (right) (color bar, normalized mRNA counts, Methods) of four genes (grey 

labels) whose predicted patterns differ from STARmap measurement but match direct 

measurement by MERFISH. e. Predicted expression of test genes. Tangram-predicted (top) 

expression (top; color bar, normalized mRNA counts, Methods) and corresponding ISH images 

from the Allen Brain Atlas (bottom) for 6 genes not measured by STARmap.  
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Figure 4. Mapping snRNA-seq data to Spatial Transcriptomics data (Visium) demonstrates 

deconvolution and imputation of dropouts.  

a. Single cell deconvolution. Predicted single cells (colored dots, legend) in each Visium voxel 

(grey circle) based on snRNA-seq data mapped onto Visium slide. Cell assignment within a voxel 

is random with respect to the specific segmented cell. b. Probabilistic mapping of snRNA-seq data 

on the Visium ROI. Probability of mapping (color bar) of each cell subset (grey label) in each of 

3 major categories. c,d. Predicted expression of test and training genes. c. Normalized (i.e. unit 

area) distribution of single-gene spatial correlation coefficients (y axis) between Tangram-

predicted and Visium measured patterns in training (orange) and test (blue) genes. d. Reducing the 

number of training genes decreases prediction performance. Spatial correlation (y axis, top) for 

training gene (orange) and test genes (blue), and scaled spatial correlation (y axis, bottom) for test 

genes (scaled by the correlation averaged across training genes) for Tangram models learned with 

different fractions of 1,237 input training genes (x axis). e-h. Impact of Visium data sparsity on 

prediction and correction. e. Tangram-predicted (top) and Visium measured (bottom) expression 

(color bar, normalized mRNA counts, Methods) of six select test genes (grey labels) with different 

extents of spatial correlation between measured and predicted patterns (top arrow, %) and of 

Visium data sparsity (bottom arrow, %). f. Spatial correlation of test genes is negatively correlated 

to sparsity in Visium data. Spatial correlation (y axis) between measured and predicted patterns 

for test genes (blue dots) and their corresponding measurement sparsity (x axis). Lines delineate 

three regions according to model performance. g. Few low sparsity genes are not predicted well. 

Tangram-predicted (top) and Visium measured (bottom) expression (color bar, normalized mRNA 

counts, Methods) of four genes (grey labels) with low sparsity that are not well-predicted by model 

(from region (ii) of panel f). h. Correction of low-quality spatial measurements. Tangram-predicted 
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(left), Visium (middle) and MERFISH (right) measurements (color bar signifies fluorescence for 

MERFISH figure, normalized mRNA counts for all others, Methods), of two genes (grey labels) 

whose predicted patterns differ from Visium measurements but match direct measurement by 

MERFISH, and are highly-sparse in Visium measurements (from region (iii) of panel f). 
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Figure 5. Tangram mapping of multi-omic SHARE-Seq profiles yields spatial patterns of 

chromatin accessibility and TF activity.  

 

a. Probabilistic mapping of SHARE-seq profiles on MERFISH data. Probability of mapping (color 

bar) of each cell subset (grey label) in each of 3 major categories based on the RNA component of 

SHARE-Seq profiles. b. Deterministic mapping. MERFISH slide with segmented cells (dot) 

colored by the cell type annotation of the most likely SHARE-Seq (RNA) profile mapped on that 

position by Tangram (legend). c. Predicted chromatin accessibility patterns. MERFISH measured 

expression (top, color bar, normalized fluorescence, Methods) and Tangram-predicted chromatin 

accessibility (bottom, color bar, normalized reads-in-peak count, Methods) of select genes (grey 

labels). c. Predicted TF activity patterns. Tangram predicted expression (top, color bar, mRNA 

counts) and activity normalized z-scores patterns (as inferred from snATAC-Seq, see Methods) 

(bottom, color bar, dimensionless) of select genes (grey labels) measured only by SHARE-Seq. 
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Figure 6. A Siamese network model learns a similarity metric for brain sections based on 

anatomical landmarks in mouse brain images.  

 

a. Schematic of neural network architecture. A pair of images is fed to two convolutional encoders, 

which encode them into a 512-dimensional latent space. The image pair is labeled by the spatial 

coordinate (i.e., coronal depth) difference between the two images. b. The learned latent space is 

a 1D-manifold ordered by spatial coordinates. UMAP plot of the encoded training images from 

individual atlases (legend) colored by spatial depth (color bar). Insets illustrate four anatomically 

similar images from three different atlases and a test image. c. Prediction of spatial coordinates for 

a test image. c. Predicted spatial coordinate distance (y axis) between a test image (inset, left panel) 

and each image of the training set obtained at different spatial coordinates (x axis). Dashed orange 

line: |𝑎𝑥 + 𝑏| fit via mean square error minimization (𝑎~ − 0.96, 𝑏~43).The minimum of the fit 

is the predicted spatial coordinate (associated image is in the inset, right panel). d. Examples of 

model predictions (right) on test images (left) from the Macosko lab (first column; Methods), 

BrainMaps atlas (second column) and Allen ISH dataset (third and fourth columns). 
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Figure 7. Anatomical region calling via semantic segmentation.  

a. Neural network model used for semantic segmentation. A U-net model is trained on mouse brain 

images from Allen atlas (left) to recognize five different classes on a mouse brain image (color 

legend, right). b. Augmentation pipeline. Each image undergoes a series of stochastic 

transformations including affine displacements, dropouts and color shifts (Methods). Four training 

samples are shown. c. Schematic of registration strategy. A segmentation mask of an experimental 

image is produced (I), the mask of each atlas image is extracted in parallel (II), the two masks are 

registered to each other (III); and finally the learned transformation is used to register the original 

images (IV). d. Prediction examples. Test images (left) and their predicted anatomical region calls 

(right). 
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Figure 8. Tangram mapping of snRNA-seq profiles to histological and anatomical mouse 

brain atlases.  

a. Regions of interests. Nissl-stained images of coronal mouse brain slices highlighting the three 

regions of interest from which snRNA-seq data from the motor area were collected. b,c. 

Registration pipeline generates anatomical region and cell density maps. Anatomical region (b, 

color legend, from the Allen Common Coordinate Framework) and cell map (c, color bar, from 

the Blue Brain Cell Atlas) maps of each of the three dissected ROIs . d. Probabilistic mapping of 

snRNA-seq data on the ROI. Probability of mapping (color bar) of each cell subset (grey label) 

from each of 3 major categories within each ROI (rows). 
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Extended Data Figure 1. Mapping results on Visium data are consistent across three 

datasets.  

a. Consistent probabilistic maps across models trained from replicate datasets. Probability of 

mapping (color bar) of each cell subset (grey label) from each of 3 major categories in models 

trained separately from three Visium sections (rows). Section I is the same shown in Fig. 3b. b,c. 

Consistent deconvolution across models trained from replicate datasets. b. Fraction of cells (y axis) 

of each cell type (x axis) obtained after deconvolution with models trained separately by each of 

three Visium sections and in snRNA-seq. c. Predicted single cells (colored dots, legend) in each 

Visium voxel (grey circle) based on snRNA-seq data mapped onto Visium section 2 (left) and 

section 3 (right) (compare to Fig. 3b). Cell assignment within a voxel is random with respect to 

the specific segmented cell. 
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Materials and Methods  

Tangram mapping algorithm 

Introduction. We use the index 𝑖 for cells (i.e. snRNA-seq data), 𝑘 for genes and 𝑗 for spatial 

voxels (circular spots, pucks, etc.). Our goal is to learn a spatial alignment for the cells, organized 

as a matrix 𝑆 with dimensions 𝑛:;<<= × 𝑛?;@;= , where 𝑛:;<<=  is the number of single cells, such that 

𝑆AB ≥ 0	is the expression level of gene 𝑘 in cell 𝑖. In order to map, we voxelize the spatial volume 

at the finest possible resolution (which depends on the mapping case, e.g. 200	𝜇𝑚 when mapping 

with the Allen Brain Atlas, individual cells when mapping with MERFISH, etc.), and index the 

voxels in an arbitrary one-dimensional fashion. We then introduce two quantities: the 

𝑛DEF;<= × 𝑛?;@;= gene expression matrix 𝐺, where 𝐺HB ≥ 0	denotes the expression of gene 𝑘	in 

voxel 𝑗 (we do not assume that 𝐺 and 𝑆 measure gene expression using the same unit of measures), 

and a 𝑛DEF;<-long vector 𝑑 of cell densities, where 0 ≤ 𝑑H ≤ 1 is the cell density in voxel 𝑗, and 

∑ 𝑑H
@NOPQR
H = 1.  

 

We aim to learn a mapping matrix 𝑀with dimension 𝑛:;<<= × 𝑛DEF;<=, such that 𝑀AH ≥ 0 is the 

probability of cell 𝑖 of being in voxel 𝑗. Therefore, we require a probability constraint ∑ 𝑀AH
@NOPQR
H =

1. Our mapping strategy is probabilistic, perform a soft assignment. From the mapping matrix 𝑀, 

we further define two quantities: 𝑀U𝑆,		the spatial gene expression as predicted by the mapping 

matrix, and the vector 𝑚VV⃗  with components 𝑚H = ∑ 𝑀AH/𝑛:;<<=
@XQRRY
A 	for the predicted cell density in 

voxel 𝑗. Finally, we define the softmax function along the voxel axis for any given matrix 𝑀Z (with 

dimensions 𝑛:;<<= × 𝑛DEF;<=). The resulting matrix 𝑀	has elements: 
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𝑀AH 	= 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀Z)AH =
;
àbc

∑ ;`dRaeNOPQRY
R

 . 

By applying the softmax, we ensure that 0	 ≤ 	𝑀AH	 ≤ 	1 and ∑ 𝑀AH
@NOPQR
H = 1. 

Mapping algorithm. To learn the mapping matrix, we minimize the following objective function 

with respect to 𝑀Z (note that in the objective we use 𝑀 = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑀Z)): 

 

𝛷g𝑀Zh = 𝐾𝐿g𝑚VV⃗ , 𝑑h − ∑ 𝑐𝑜𝑠=Al g(𝑀U𝑆)∗,B, 𝐺∗,Bh
@nQeQY
B 	− ∑ 𝑐𝑜𝑠=Al g(𝑀U𝑆)H,∗, 𝐺H,∗h

@NOPQRY
H ,	 (1) 

 

where 𝐾𝐿 indicates the Kullback–Leibler divergence and 𝑐𝑜𝑠=Al	is the cosine similarity function. 

The first term is the density term: we enforce that the learned density distribution is as similar as 

possible to the expected density. The second term is the gene/voxel expression term: it enforces 

that the predicted expression for each gene over the voxels is proportional to the expected gene 

expression over the voxels. The third term is the voxel/gene expression term: for each voxel, the 

predicted gene expression needs to be proportional to the expected gene expression. Minimization 

is obtained via gradient-based optimization using the PyTorch library.  

 

Using the objective (1), Tangram maps all sc/snRNA-seq profiles onto space. If the number of 

sc/snRNA-seq profiles is higher than the known number of cells in the spatial data, Tangram can 

instead filter the sc/snRNA-seq profiles and learn the optimal subset of sc/snRNA-seq profiles that 

best explains the spatial data. The latter approach is explained next. 

 

Mapping with a filter. We introduce a filter vector 𝑓 of dimension 𝑛:;<<=  so that cell 𝑖 can either 

be mapped (𝑓A = 1) or not mapped (𝑓A	 = 0). To filter, we multiply each row of the single-cell 
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matrix, 𝑆A,∗, and each row of mapping matrix, 𝑀A,∗, by 𝑓A, as shown below in the new objective. 

The filter values 𝑓A are learned during training, in order to retain the cells that best explain the 

spatial data. To explicitly promote Boolean values (i.e. 0s or 1s) in the filter values, we add a filter 

regularizer in the objective. To enforce the total number of filtered cells, we introduce a count 

term: a soft constraint in the objective that promotes a number of mapped cells in the filter equal 

to 𝑛opq?;o_:;<<= 	. With this in mind, we formally define the objective. We define a real vector 𝑓s⃗ of 

dimension 𝑛:;<<=  and define 𝑓A 	= 	𝜎(𝑓sA	), where we apply the sigmoid function 𝜎 to ensure that 

0	 ≤ 	𝑓A	 ≤ 	1. We then define 𝑆u = 𝑑𝑖𝑎𝑔(𝑓) ⋅ 𝑆 and 𝑀u = 𝑑𝑖𝑎𝑔(𝑓) ⋅ 𝑀, namely, the filtered 

versions of the single cell matrix and the mapping matrix, respectively. We also define 𝑚VV⃗ u, vector 

with components 𝑚u
H = ∑ 𝑀u/∑ 𝑓A	

@XQRRY
A

@XQRRY
A , as the predicted density of filtered cells in voxel 𝑗. 

The objective function, which we minimize with respect to 𝑀Z and 𝑓s⃗, is: 

 

𝛷 x𝑀Z, 𝑓s⃗y = 𝐾𝐿g𝑚VV⃗ u, 𝑑h − ∑ 𝑐𝑜𝑠=Al
@nQeQY
B g(𝑀U𝑆u)∗,B, 𝐺∗,Bh 	−

∑ 𝑐𝑜𝑠=Al ((𝑀U𝑆u)H,∗, 𝐺H,∗)
@NOPQRY
H 	− 𝜆q{ ∑ 𝑀AH 𝑙𝑜𝑔 g𝑀AHh

@XQRRY,	@NOPQRY
A,H 	+ 	𝑎𝑏𝑠(∑ 𝑓A	 −

@XQRRY
A

n~����~_�����) 	+ 	∑ (𝑓A − 𝑓A
�)@XQRRY

A .	(2) 

 

The last two terms correspond to the count term and the filter regularizer, respectively.  

 

Annotations transfer. The output of the mapping algorithm is the learned mapping matrix 𝑀 (with, 

optionally, the learned filter 𝑓). Once the mapping outcome is computed, any kind of annotation 

can be transferred from the sc/snRNA-seq data onto space.  
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We define 𝐴 as the annotation matrix with dimensions 𝑛:;<<= × 𝑛p@@EopoAE@= , where 𝑛p@@EopoAE@= 

is the number of different annotations characterizing single cells (e.g., genes, cell types, or any 

other modality). If annotations are categorical values (such as cell types), we one-hot encode them 

over multiple columns in 𝐴. Annotations in space are retrieved by computing: 

𝐴oqp@=u = 𝑀U𝐴, 

or, if the filter has also been learned, via: 

𝐴oqp@=u
u = 𝑀U(𝑑𝑖𝑎𝑔(𝑓) ⋅ 𝐴). 

The computed matrix 𝐴oqp@=u  has dimensions 𝑛DEF;< × 𝑛p@@EopoAE@= , and therefore denotes the 

annotations in space. 

 

Cell type calling. When 𝐴 describes cell types, 𝐴oqp@=u  describes the probabilistic counts for each 

cell type in each cell voxel. This corresponds to probabilistic mapping and can be interpreted as 

the mixture of cell types which best explain the in situ gene expression. When the technology 

allows for single-cell spatial resolution, voxels correspond to single cells in space. In this case, 

probabilistic mapping can be seen as an unnormalized probability distribution over cell types for 

the voxel/cell. As a consequence, for technologies with single-cell spatial resolution, we can define 

a deterministic mapping as the mapping assigning the most likely cell type in this distribution to 

each spatial voxel/cell. 

 

Mapping spatial data from targeted technologies. smFISH (Fig. 1), MERFISH (Fig. 2), and 

STARMap (Fig. 3) allow for single-cell spatial resolution, therefore, the number of spatial voxels 

needs to be equal to the number of cells. As snRNA-seq profiles are typically more numerous than 

MERFISH voxels, we can use the mapping with the learned filter, namely, Eq. (2). In this case, 
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𝑛opq?;o_:;<<= = 𝑛DEF;< and the expected density 𝑑 is uniform and equal to 𝑑H =
�

@NOPQR
 for all 𝑗. This 

enforces that each cell is mapped to one voxel only and vice versa. If the number of available 

single cells is lower than the number of spatial spots, we can instead map with Eq. (1), using the 

same constant density 𝑑. 

 

For the MERFISH case, we mapped 58,022 10Xv3 snRNA-seq profiles in 4,951 spatial spots. 

From the 26,944 genes in the snRNA-seq data, we selected 1,408 marker gene as the top 100 

marker genes stratified across the 22 cell types. We mapped using the intersection between these 

marker genes and the 254 MERFISH genes, which corresponded to 253 genes. 

 

For the smFISH case, we mapped 11,759 SMART-Seq2 snRNA-seq profiles in 4,840 spatial spots. 

In this case, 40,056 transcripts are measured in the snRNA-seq data. Only 22 genes were measured 

in smFISH, all of which were also present in the snRNA-seq data. Therefore, we used all 22 genes 

for mapping. 

 

For the STARMap case, we used the same snRNA-seq data as for smFISH, which we mapped on 

1,550 spatial spots. We took the intersection of 995 genes between the 1,020 STARmap transcripts 

and the 40,056 transcripts in the snRNA-seq data. We used these 995 genes for mapping. 

The algorithm converges after 1,200 epochs in all the experiments.   

 

Mapping Visium data. We began by identifying the Post ROI on the Visium histological image 

using our registration pipeline (below). Next, we segmented the cells within the ROI using the 

software ilastik (https://www.ilastik.org). We then built the density vector 𝑑, by computing the cell 
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density inside each voxel (i.e., Visium circle, as in Fig. 1e). We mapped using the objective 

described in Eq. (1). Mapping yields the matrix 𝑀, which we used to generate probability maps 

for the cell types within the ROI. To deconvolve, we mapped using Eq. (2), to constrain the 

expected number of cells in each Visium voxel. Specifically, we used 𝑛opq?;o_:;<<=	 = 	𝑛=;? , where 

𝑛=;? is the total number of segmented cells in the Visium ROI, to enforce that only a subset of 

cells is actually mapped. The count term combined with the density term led to the expected 

number of mapped cells in each Visium voxel. After training, we assigned the types of the cells 

mapped within each voxel randomly to specific segmented cells within that voxel. 

For probabilistic mapping on Visium data, we ran the optimizer for 300 epochs to reach 

convergence. At the end, more than 99% cells were assigned to an individual voxel with 

probability greater than 50%. For used deterministic mapping in deconvolution, we trained the 

optimizer for 6,000 epochs to reach convergence. At the end, more than 99% cells were assigned 

to an individual voxel with probability greater than 50%. For section 1 dataset, the number of cells 

filtered (𝑓A > 0.5) is 880 (89% of segmented cells). Segmented cells for which there is no filtered 

mapped cell are not shown in the figures. 

For both probabilistic and deterministic mapping, we used 58,022 10Xv3 snRNA-seq profiles for 

162, 161 and 134 spatial spots, respectively, in section 1, section 2 and section 3. Among the 

26,944 transcripts in the snRNA-seq data, 1,408 marker genes were selected. We mapped using 

the intersection of these genes with Visium genes (31,053), corresponding to 1408 genes. 

 

Mapping Allen atlas data. 
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We used 58,022 10Xv3 snRNA-seq data for 83, 38 and 43 spatial spots, respectively, in the 

anterior, mid and posterior ROIs. Among 26,944 transcripts in the snRNA-seq data, 1,408 marker 

genes were selected. We mapped using the intersection between these genes with Allen atlas genes 

measured coronally (overall, 4,345 genes); the intersection corresponds to 750 genes. The 

algorithm converged after 150 epochs.  

 

Data collection - snRNA-seq data and histological images 

Mouse experiments. Mice were group housed with a 12-hour light-dark schedule and allowed to 

acclimate to their housing environment for two weeks post arrival. All procedures involving 

animals at MIT were conducted in accordance with the US National Institutes of Health Guide for 

the Care and Use of Laboratory Animals under protocol number 1115-111-18 and approved by the 

Massachusetts Institute of Technology Committee on Animal Care. All procedures involving 

animals at the Broad Institute were conducted in accordance with the US National Institutes of 

Health Guide for the Care and Use of Laboratory Animals under protocol number 0120-09-16.  

 

Brain preparation prior to anatomical dissection and snRNA-seq. At 60 days of age, C57BL/6J 

mice (50% males, 50% females) were anesthetized by administration of isoflurane in a gas 

chamber flowing 3% isoflurane for 1 minute. Anesthesia was confirmed by checking for a negative 

tail pinch response. Animals were moved to a dissection tray and anesthesia was prolonged via a 

nose cone flowing 3% isoflurane for the duration of the procedure. Transcardial perfusions were 

performed with ice cold pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 25 mM 

glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM KCl to remove blood from the brain and 

other organs sampled. The brain was removed immediately and frozen for 3 minutes in liquid 
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nitrogen vapor and moved to -80oC for long term storage. A detailed protocol is available at 

protocols.io (dx.doi.org/10.17504/protocols.io.bcbrism6).   

 

Generation of MOp dissectates and snRNA-seq. Frozen mouse brains were securely mounted by 

the cerebellum onto cryostat chucks with OCT embedding compound such that the entire anterior 

half, including the primary motor cortex (MOp), was left exposed and thermally unperturbed. 

Dissection of 3 consecutive 500µm anterior-posterior (A-P) spans of the MOp was performed by 

hand in the cryostat using an ophthalmic microscalpel (Feather safety Razor #P-715) precooled to 

-20oC and donning 4x surgical loupes. Each 500µm step was accomplished by advancing the 

cryostat (Leica CM3050S) 100µm 5 times in trimming mode and cutting out each dissectate 

100µm at a time. This stepwise approach serves to ameliorate disruption of the brain tissue surface 

that occurs with large steps. Each excised tissue dissectate pool was placed into a pre-cooled 0.25 

ml PCR tube using pre-cooled forceps and stored at -80oC.  In order to assess dissection accuracy, 

10µm coronal registration sections were taken at each of the 500µm A-P dissection junctions and 

imaged following Nissl staining. Nuclei were extracted from the frozen tissue dissectates using 

gentle, detergent-based dissociation, according to a protocol 

(dx.doi.org/10.17504/protocols.io.bbseinbe) adapted from one generously provided by the 

McCarroll lab, and loaded into the 10x Chromium V3 system (10x Genomics). Reverse 

transcription and library generation were performed according to the manufacturer’s protocol.  

 

snRNA-seq data were analyzed using the scanpy package45. snRNA-seq data were pre-processed 

via the following steps: we removed cells with high mitochondrial gene content; we normalized 

the data to correct for library-size; we applied the function 𝑓(𝑥) = log	(1 + 𝑥) to the normalized 
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counts. The resulting snRNA-seq data are ready to be mapped with Tangram. To compute marker 

genes of snRNA-seq data, we applied a computational pipeline described in the tutorial of the 

scanpy package available at  https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html. 

 

We  used normalized quantities to visualize gene expression via mRNA counts (Figs 1b, 1c, 1f, 

2c, 2e, 2f, 3c, 3d, 3e, 4e, 4g, 4h, 5c and 5d), gene expression via fluorescence (Figs. 2c, 2f, 3c, 4h, 

and 5c) chromatin accessibility via ATAC peak counts (Figs. 1f and 1c), and transcription factor 

activity via z-scores (Fig. 5d). Normalization is performed by rescaling the colorbar in each image, 

so that the minimum (respectively, maximum) value of the image correspond to the color with 

minimum (respectively, maximum) value in the colorbar. This is the default behavior of the 

plotting functions of the Python library matplotlib (https://matplotlib.org) which we used 

throughout the manuscript. 

 

Data collection - Visium 

Mice. All mouse work was performed in accordance with the Institutional Animal Care and Use 

Committees (IACUC) and relevant guidelines at the Broad Institute, with protocol IACUC 0147-

02-17.  

 

Tissue processing. Fresh-frozen wild type C57BL/6 whole mouse brain was embedded in OCT 

(TissueTek Sakura) and cryo sectioned at 10 µm thickness at -20°C. Tissue sections were placed 

in 6.5 mm squared capture areas on pre-cold Visium Tissue Optimization slides (3000394, 10x 

Genomics) and Visium Spatial Gene Expression slides (2000233, 10x Genomics) and adhered by 

warming the backside of the slides and placed at -80°C for up to 3 days.  
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Visium spatial gene expression library generation. The tissue optimization sample slide and 

spatial gene expression slide were processed according to the manufacturer’s protocols 

(CG000238_VisiumSpatialTissueOptimizationUserGuide_Rev_A.pdf and 

CG000239_VisiumSpatialGeneExpression_UserGuide_Rev_A.pdf). Briefly, tissue sections were 

warmed to 37°C for 1 minute and fixed for 30 min in ice-cold methanol, followed by 1 min 

isopropanol incubation at room temperature. Tissues were then hematoxylin and eosin (H&E) 

stained according to the protocol. Morphology brightfield images were taken with a Zeiss Axio 

microscope with the Metafer slide-scanning platform (Metasystems) with a 10x objective. For the 

tissue optimization slide fluorescent images, a TRITC filter and 10x resolution was used. Images 

were joined together with the VSlide software (Metasystems) and exported as tiff files. To 

optimize tissue permeabilization time, six different time points with 3-minute increments were 

tested on the tissue optimization sample slide. 12 minutes of permeabilization was used for the 

spatial gene expression slide. RNA released from the tissue was converted to cDNA by priming to 

the spatial barcoded primers on the glass via reverse transcription in the presence of template 

switching oligo, to generate full-length, spatially barcoded, UMI containing cDNA. Subsequently, 

following second strand synthesis, a denaturation step released the cDNA, followed by PCR 

amplification. Finally, sequencing-ready, indexed spatial gene expression libraries were 

constructed. Two of the libraries were pooled together and sequenced on a NextSeq 500/550 High 

output kit at 1.8 pM concentration. The sequencing settings were: read 1, 28 cycles; read 2, 91 

cycles; index 1, 8 cycles.  
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MOp Visium raw read processing. Raw FASTQ files generated by Illumina’s BCL2FASTQ 

conversion and the histology H&E images were provided as input to the SpaceRanger software 

(10x Genomics) version 1.1.0, available at https://support.10xgenomics.com/spatial-gene-

expression/software/downloads/latest. Sequencing reads were mapped to the mm10 reference 

mouse genome using STARv2.5 mapping as part of SpaceRanger suite. Spatial barcodes were 

assigned by SpaceRanger to the barcoded spatial spots and aligned with the tissue image with the 

aid of the fiducial frames. Barcodes/UMI and genes were counted for the individual spots to 

generate an output gene expression per-spot matrix used as input for downstream data analysis. 

 

MOp MERFISH data preprocessing. We obtained MERFISH data from the Zhuang lab. We 

preprocessed the data to remove sub-cortical cells. To identify sub-cortical cells, we identify cells 

overly expressing Nxph4 (a marker gene of L6b region) and fit those cells with a square root 

polynomial. All cells below the fit were considered sub-cortical and removed. 

Image datasets for registration pipeline 

To locate ROIs, we used images of Nissl-stained coronal mouse brain slices collected in the 

Macosko lab. To train and test the models presented in Fig. 6-8, we used the following public 

image datasets: 

- (dataset avg): 1,320 images/segmentation masks of coronal slices from the average 

template of the Allen adult mouse brain atlas at resolution 10µm (available at 

http://download.alleninstitute.org/informatics-archive/current-

release/mouse_ccf/average_template/slice_images/). 

- (dataset ara): 1,320 images/segmentation masks of coronal slices from the Nissl template 

of the Allen adult mouse brain atlas at resolution 10µm (available at 
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http://download.alleninstitute.org/informatics-archive/current-

release/mouse_ccf/ara_nissl/). 

- (dataset p56c): 132 images/segmentation masks of coronal slices from the Allen P56 

coronal reference atlas (available at https://mouse.brain-

map.org/experiment/thumbnails/100048576?image_type=atlas). 

- (dataset p56d): 504 images of coronal slices from the Allen Development Atlas P56 

(available at http://help.brain-

map.org/display/atlasviewer/Allen+Developing+Mouse+Brain+Atlas). 

- (dataset brainmaps): 111 images of coronal slices from Nissl-stained BrainMaps atlas (ID: 

43) (available at http://brainmaps.org/index.php?action=viewslides&datid=43), and 87 

images of coronal slices from Nissl-stained BrainMaps atlas (ID: 38) (available at 

http://brainmaps.org/index.php?action=viewslides&datid=38). 

- (dataset ish): 30 images of coronal slices from the Allen ISH Data (available at . 

https://mouse.brain-map.org/search/index). 

 

Siamese network model for depth calling. We used datasets avg, ara, p56c and p56d for training. 

Training images were resized to 224x224 and casted to type float32. Pixel values were rescaled 

between zero and one, prior to training. All images were augmented using imgaug 

(https://github.com/imgaug) library. As training labels we used numerical coordinates, indicating 

the spatial coronal depth (i.e., posterior) of each mouse brain image on a scale of 10	𝜇𝑚. For the 

avg and ara datasets, labels were readily available from their tensor coordinates. Labels for the 

p56c and p56d datasets were also readily obtained using the AllenSDK API 
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(https://allensdk.readthedocs.io/en/latest/). Dataset brainmaps and ish were manually annotated 

and used as test sets.  

 

In designing the Siamese network model, we used a DenseNet169 encoder pretrained on the 

ImageNet dataset and open-sourced through Keras Applications. We fine-tuned the encoder by 

training the last convolutional layer. We added two fully connected layers on top of the encoder in 

order to map the extracted features to our 512-dimensional latent space. A last fully-connected 

layer was used to map the latent space to the model output as represented in Fig. 6. All fully 

connected layers were trained.  

 

A training sample consisted of two random images from the annotated datasets. The difference in 

spatial depth coordinates between the two images, denotes by 𝑑�� , was used as the label. For 

example, if the first image were at posterior (depth) 500	𝜇𝑚 and the second at a posterior 700	𝜇𝑚 

the corresponding label would be 𝑑�� = 200. We used as penalty the mean squared error between 

the spatial depth difference predicted by our network 𝑑A	, and the labels 𝑑�� : 

𝑀𝑆𝐸(𝑑, 𝑑�) 	= �
�
∑ (𝑑A − 𝑑�� )��
A�� , 

where 𝑁 indicates the number of training samples. We trained the model for 50 epochs using 

18,000 image pairs per epoch, partitioned to batches of 16 images.  

 

Semantic segmentation model for anatomical region calling. We used datasets avg, ara and p56c 

as training sets, since masks were available. Training images were resized to 512x512 and casted 

to type float32. Pixel values were rescaled between zero and one. As labels, we used 

superimposable segmentation masks with the same dimension as the training images. Each mask 
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was one-hot encoded into a 5-channel tensor to annotate each pixel into five different classes (Fig. 

7): background (black), cortex (green), cerebellum (yellow), other grey matter (grey), and white 

matter (brown). We used colors consistent with the Allen ontology to facilitate registration. For 

avg and ara datasets, we used masks from the Allen CCFv3 ontology 2017 (available at 

http://download.alleninstitute.org/informatics-archive/current-

release/mouse_ccf/annotation/ccf_2017/annotation_10.nrrd). For the p56c dataset, we 

downloaded the SVG masks from the Allen Institute website, and rendered them into images using 

the library released in this study, which builds on Cairo SVG (https://cairosvg.org). Both images 

and masks were augmented using the same pipeline adopted for the Siamese model. In 

transforming the masks, we ensured that the one-hot structure was preserved in the masks after 

augmentation.  

 

We used a semantic segmentation model from the Tensorflow Keras version of the 

segmentation_models library (https://github.com/qubvel/segmentation_models). Specifically, we 

chose a U-NET architecture18 with a ResNet50 backbone26. All weights have been randomly 

initialized following the He scheme, with the exception of the ResNet50 encoder which was pre-

trained on ImageNet. The model was trained to optimize the superposition of the cross entropy 

and Jaccard index (i.e. intersection-over-union). The loss function is defined as:  

𝐿(𝑔, 𝑝) 	= 		−𝑔 ⋅𝑙𝑜𝑔 (𝑝) 	−	 �	∩?
�	∪	?

. 

Where 𝑔a is the ground truth image and 𝑝 is the corresponding model prediction. The model last 

unit employs a softmax activation function, thus outputting the probability of each pixel to be in 

each of the five classes. By applying an argmax function, we assign each pixel to its most probable 
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class. Finally, we relied on test-time augmentation to increase model performances: each test 

image was augmented twelve times, and final predictions were de-augmented and averaged. 

 

Code availability.  Tangram code is available at https://github.com/broadinstitute/Tangram, along 

with the datasets used to generate Figure 1.  
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