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Abstract The eukaryotic transcription cycle consists of three main steps: initiation, elongation,
and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well15

as coupled with each other, their in vivo dissection has remained challenging because available
experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from

each of these steps. Here, we describe a novel computational technique to simultaneously infer the

effective parameters of the transcription cycle in real time and at the single-cell level using a

two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method20

enables detailed investigations into cell-to-cell variability in transcription-cycle parameters with

high precision. These measurements, combined with theoretical modeling, reveal a significant

variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the

power of this technique by uncovering a novel mechanistic connection between RNA polymerase

density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on25

the regulatory mechanisms in play during each step of the transcription cycle in individual, living

cells at high spatiotemporal resolution.

Main Text
Introduction30

The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage

of the nascent RNA transcript (Fig. 1A; Alberts (2015)). Crucially, each of these three steps can
be controlled to regulate transcriptional activity. For example, binding of transcription factors to

enhancers dictates initiation rates (Spitz and Furlong, 2012), modulation of elongation rates helps
determine splicing efficiency (De La Mata et al., 2003), and regulation of cleavage controls aspects35

of 3’ processing such as alternative polyadenylation (Tian and Manley, 2016).
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The steps of the transcription cycle can be coupled with each other. For example, elongation

rates contribute to determining mRNA cleavage and RNA polymerase (RNAP) termination efficiency

(Pinto et al., 2011;Hazelbaker et al., 2013; Fong et al., 2015; Liu et al., 2017), and functional linkages
have been demonstrated between transcription initiation and termination (Moore and Proudfoot,40

2009; Mapendano et al., 2010). Nonetheless, initiation, elongation, and transcript cleavage have
largely been studied in isolation. In order to dissect the entire transcription cycle, it is necessary to

develop a holistic approach that makes it possible to understand how the regulation of each step

dictates mRNA production and to unearth potential couplings among these steps.

To date, the processes of the transcription cycle have mostly been studied in detail using45

in vitro approaches (Bai et al., 2006; Herbert et al., 2008) or genome-wide measurements that
require the fixation of cellular material and lack the spatiotemporal resolution to uncover how

the regulation of the transcription cycle unfolds in real time (Roeder, 1991; Saunders et al., 2006;
Muse et al., 2007; Core et al., 2008; Fuda et al., 2009; Churchman and Weissman, 2011). Only
recently has it become possible to dissect these processes in living cells and in their full dynamical50

complexity using tools such as MS2 or PP7 to fluorescently label nascent transcripts at single-cell

resolution (Bertrand et al., 1998; Golding et al., 2005; Chao et al., 2008; Larson et al., 2011a). These
technological advances have yielded insights into, for example, intrinsic transcriptional noise in yeast

(Hocine et al., 2013), kinetic splicing effects in human cells (Coulon et al., 2014), elongation rates
in Drosophila melanogaster (Garcia et al., 2013; Fukaya et al., 2017), and transcriptional bursting55

in mammalian cells (Tantale et al., 2016), Dictyostelium (Chubb et al., 2006;Muramoto et al., 2012;
Corrigan and Chubb, 2014), fruit flies (Garcia et al., 2013; Lucas et al., 2013; Bothma et al., 2014;
Fukaya et al., 2016; Falo-Sanjuan et al., 2019; Lammers et al., 2020) and Caenorhabditis elegans
(Lee et al., 2019).
Despite the great promise of MS2 and PP7, using these techniques to comprehensively analyze60

the transcription cycle is hindered by the fact that the signal from these in vivo RNA-labeling
technologies convolves contributions from all aspects of the cycle. Specifically, the fluorescence

signal from nascent RNA transcripts persists throughout the entire cycle of transcript initiation,

elongation, and cleavage; further, a single gene can carry many tens of transcripts. Thus, at any

given point, an MS2 or PP7 signal reports on the contributions of transcripts in various stages of65

the transcription cycle (Ferraro et al., 2016). Precisely interpreting an MS2 or PP7 signal therefore
demands an integrated approach that accounts for this complexity.

Here, we present a method for analyzing live-imaging data from the MS2 and PP7 techniques

in order to dynamically characterize the steps—initiation, elongation, and cleavage— of the full

transcription cycle at single-cell resolution. This method combines a dual-color MS2/PP7 fluorescent70

reporter (Hocine et al., 2013; Coulon et al., 2014; Fukaya et al., 2017) with statistical inference
techniques and quantitative modeling. As a proof of principle, we applied this analysis to the

transcription cycle of a hunchback reporter gene in the developing embryo of the fruit fly Drosophila
melanogaster. We validate our approach by comparing our inferred average initiation and elongation
rates with previously reported results.75

Crucially, our analysis also delivered novel single-cell statistics of the whole transcription cycle

that were previously unmeasurable using genome-wide approaches, making it possible to generate

distributions of parameter values necessary for investigations that go beyond simple population-

averaged analyses (Raj et al., 2006; Zenklusen et al., 2008; Sanchez et al., 2011; Coulon et al., 2013;
Little et al., 2013; Sanchez et al., 2013; Sanchez and Golding, 2013; Jones et al., 2014; Serov et al.,80

2017; Lucas et al., 2018; Zoller et al., 2018; Ali et al., 2020). We show that, by taking advantage of
time-resolved data, our inference is able to filter out experimental noise in these distributions and

retain sources of biological variability. By combining these statistics with theoretical models, we

revealed substantial variability in RNAP stepping rates between individual molecules, demonstrating
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the utility of our approach for testing hypotheses of the molecular mechanisms underlying the85

transcription cycle and its regulation.

This unified analysis enabled us to investigate couplings between the various transcription cycle

parameters at the single-cell level, whereby we discovered a surprising correlation of cleavage

rates with nascent transcript densities. These discoveries illustrate the potential of our method to

sharpen hypotheses of the molecular processes underlying the regulation of the transcription cycle90

and to provide a framework for testing those hypotheses.

Results
To quantitatively dissect the transcription cycle in its entirety from live imaging data, we developed a

simple model (Fig. 1A) in which RNAP molecules are loaded at the promoter of a gene of total length

L with a time-dependent loading rate R(t). For simplicity, we assume that each individual RNAP95

molecule behaves identically and independently: there are no interactions between molecules.

While this assumption is a crude simplification, it nevertheless allows us to infer effective average

transcription cycle parameters. We parameterize this R(t) as the sum of a constant term ⟨R⟩
that represents the mean, or time-averaged, rate of initiation, and a small fluctuation term given

by �R(t) such that R(t) = ⟨R⟩ + �R(t). After initiation, each RNAP molecule traverses the gene at100

a constant, uniform elongation rate velon. Upon reaching the end of the gene, there follows a
deterministic cleavage time, �cleave, after which the nascent transcript is cleaved. We do not consider
RNAP molecules that do not productively initiate transcription (Darzacq et al., 2007) or that are
paused at the promoter (Core et al., 2008), as they will provide no experimental readout. Based on
experimental evidence (Garcia et al., 2013), we assume that these RNAP molecules are processive,105

such that each molecule successfully completes transcription, with no loss of RNAP molecules

before the end of the gene (see Section S5 for a validation of this hypothesis).

Dual-color reporter for dissecting the transcription cycle
Here we studied the transcription cycle of early embryos of the fruit fly D. melanogaster. We focused
on the P2 minimal enhancer and promoter of the hunchback gene during the 14th nuclear cycle110

of development; the gene is transcribed in a step-like pattern along the anterior-posterior axis of

the embryo with a 26-fold modulation in overall mRNA count between the anterior and posterior

end (Fig. 1B; Driever and Nusslein-Volhard (1989);Margolis et al. (1995); Perry et al. (2012); Garcia
et al. (2013)). As a result, the fly embryo provides a natural modulation in mRNA production rates,
with the position along the anterior-posterior axis serving as a proxy for mRNA output.115

To visualize the transcription cycle, we utilized the MS2 and PP7 systems for live imaging of

nascent RNA production (Garcia et al., 2013; Lucas et al., 2013; Fukaya et al., 2016). Using a
two-color reporter construct similar to that reported in Hocine et al. (2013), Coulon et al. (2014),
and Fukaya et al. (2017), we placed the MS2 and PP7 stem loop sequences in the 5’ and 3’ ends,
respectively, of a transgenic hunchback reporter gene (Fig. 1C; see Fig. S1A for full construct de-120

tails). The lacZ sequence and a portion of the lacY sequence from Escherichia coli were placed as
a neutral spacer (Chen et al., 2012) between the MS2 and PP7 stem loops. As an individual RNAP
molecule transcribes through a set of MS2/PP7 stem loops, constitutively expressed MCP-mCherry

and PCP-GFP fusion proteins bind their respective stem loops, resulting in sites of nascent tran-

script formation that appear as fluorescent puncta under a laser-scanning confocal microscope125

(Fig. 2A and Video S1). The intensity of the puncta in each color channel is linearly related to

the number of actively transcribing RNAP molecules that have elongated past the location of the

associated stem loop sequence (Garcia et al., 2013), albeit with different arbitrary fluorescence
units (Section S4). Upon reaching the end of the gene, which contains the 3’UTR of the �-tubulin
gene (Chen et al., 2012), the nascent RNA transcript undergoes cleavage. Because the characteristic130
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Figure 1. Overview of theoretical model of the transcription cycle and experimental setup. See caption on next
page.
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Figure 1. Overview of theoretical model of the transcription cycle and experimental setup. (A) Simple model of
the transcription cycle, incorporating nascent RNA initiation, elongation, and cleavage. (B) The reporter

construct, which is driven by the hunchback P2 minimal enhancer and promoter, is expressed in a step-like
fashion along the anterior-posterior axis of the fruit fly embryo. (C) Transcription of the stem loops results in

fluorescent puncta with the 5’mCherry signal appearing before the signal from 3’ GFP. Only one stem loop per

fluorophore is shown for clarity, but the actual construct contains 24 repeats. (D) Intuition for how MS2 and PP7

fluorescence depend on the model parameters. (i) Example transcription activity that consists of a pulse of

transcription initiation of constant magnitude R. (ii) At first, the zero initiation rate results in no fluorescence.
(iii) When initiation commences, RNAP molecules load onto the promoter and elongation of nascent transcripts

occurs, resulting in a constant increase in the MS2 signal. (iv) After time tloop =
d

velon
, the first RNAP molecules

reach the PP7 stem loops and the PP7 signal also increases at a constant rate. (v) After time telon =
L

velon
, the first

RNAP molecules reach the end of the gene, and after the cleavage time �cleave, these first nascent transcripts are
cleaved. The total time a nascent RNA transcript spends on the gene is given by tdwell = telon + �cleave. The
subsequent loss of fluorescence is balanced by the addition of new nascent transcripts, resulting in a plateauing

of the signal. (vi) Once the initiation rate shuts off, no new RNAP molecules are added and the overall

fluorescence signal starts to decrease due to cleavage of the nascent transcripts still on the gene. Data in (B)

adapted from Garcia et al. (2013); the line represents the mean and error bars represent standard error across
24 embryos.

timescale of mRNA diffusion is about two order of magnitudes faster than the time resolution of our

experiment, we approximate the cleavage of a single transcript as resulting in the instantaneous

loss of its associated fluorescent signal in both channels (Section S2). The qualitative relationship

between themodel parameters and the fluorescence data is described in Figure 1D, which considers

the case of a pulse of constant initiation rate.135

Transcription cycle parameter inference using Markov Chain Monte Carlo
Our statistical framework extracts quantitative estimates of transcription-cycle parameters (Fig. 1A)

from fluorescence signals. From microscopy data (Fig. 2A and Video S1), time traces of mCherry

and eGFP fluorescence intensity are extracted to produce a dual-signal readout of nascent RNA

transcription at single-cell resolution (Fig. 2B, data points). To extract quantitative insights from140

the observed fluorescence data, we used the established Bayesian inference technique of Markov

Chain Monte Carlo (MCMC) (Geyer (1992) and Section S3.1) to infer the effective parameter values in
our simple model of transcription: the time-dependent transcription initiation rate, separated into

the constant term ⟨R⟩ and fluctuations �R(t), the elongation rate velon, and the cleavage time �cleave.
We included a few additional free parameters: basal levels of fluorescence in each channel, the145

time of transcription onset after the previous mitosis, and the scaling factor between the arbitrary

fluorescence units of the two different fluorophores (Section S1 and S3.1). Altogether, the model

produced the best-fit to the data shown in Figure 2B. The inference was run at the single-cell level,

resulting in separate parameter estimates for each cell. Additionally, we used a two-step process

to sequentially determine parameters with higher accuracy (Section S3.2). Inference results were150

filtered both automatically and via manual curation to disregard results that were obscured by

experimental limitations such as incomplete fluorescent signals; this curation process did not

substantially affect the ultimate inference results (Section S3.3 and Fig. S3). To aggregate the results,

we constructed a distribution from the single-cell results for each inferred parameter. Intra-embryo

variability between single cells was greater than inter-embryo variability (Section S6 and Fig. S6). As155

a result, unless stated otherwise, all statistics reported here were aggregated across single cells

combined between embryos, and all shaded errors reflect the standard error of the mean.

The aggregated inference results produced a suite of quantitative measurements of transcrip-

tion initiation, elongation, and cleavage dynamics for the hunchback reporter gene as a function
of the position along the anterior-posterior axis of the embryo (Fig. 2C-H), as well as an inferred160
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Figure 2. Inferred transcription-cycle parameters. (A) Snapshots of confocal microscopy data over time, with
MS2-mCherry (red) and PP7-eGFP (green) puncta corresponding to transcription activity. (B) Sample single-cell

MS2 and PP7 fluorescence (points) together with best-fits of the model using MCMC inference (curves). (C)

Mean inferred transcription initiation rate as a function of embryo position (blue), along with rescaled,

previously reported results (black, Garcia et al. (2013)). (D, top) CV of mean initiation rate along the embryo. (D,
bottom) Comparison of the squared CV of mean initiation rate inferred using our approach (blue) or obtained

from examining the fluorescence of transcription spots in a single snapshot (purple). While snapshots captured

a significant amount of experimental noise (light purple), our inference accounts mostly for biological noise

(blue vs. dark purple). See Section S7 and Fig. S7 for details. (E) Inferred elongation rate as a function of embryo

position, along with previously reported results (black, Garcia et al. (2013); teal, Fukaya et al. (2017)). (F)
Distribution of inferred single-cell elongation rates in the anterior 40% of embryo (blue), along with best fit to

mean and standard deviation using single-molecule simulations with and without RNAP-to-RNAP variability

(gold and brown, respectively). Although the distribution of the brown curve approaches 1, the y-axis here is cut
off at 0.2 for ease of visualization. (G) Inferred cleavage time as a function of embryo position. (H) CV of
cleavage time as a function of embryo position. (C,E,G, shaded error reflects standard error of the mean across

299 nuclei in 7 embryos, or of previously reported mean results; D,H, shaded error or black error bars represent

bootstrapped standard errors of the CV or CV2 for 100 bootstrap samples each; E, error bars reflect standard

error of the mean for Garcia et al. (2013) and lower (25%) and upper (75%) quintiles of the full distribution fromFukaya et al. (2017).)
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scaling factor between the mCherry and eGFP fluorescence units (Section S4 and Fig. S5). This

inferred fluorescence scaling factor agreed with an independent calibration control experiment

(Section S4 and Fig. S5), showing that our methodology calibrates the intensities of distinct fluores-

cent proteins without resorting to independent control experiments. Furthermore, investigations

with simulated data validated the accuracy of our inference method (Section S3.4 and Fig. S4).165

Inference of single-cell initiation rates recapitulates and improves on previous
measurements
Control of initiation rates is one of the predominant, and as a result most well-studied, strategies

for gene regulation (Roeder, 1991; Spitz and Furlong, 2012; Lenstra et al., 2016). Thus, comparing
our inferred initiation rates with previously established results comprised a crucial benchmark for170

our methodology. Our inferred values of the mean initiation rate ⟨R⟩ exhibited a step-like pattern
along the anterior-posterior axis of the embryo, qualitatively reproducing the known hunchback
expression profile (Fig. 2C, blue). As a point of comparison, we also examined the mean initiation

rate measured by Garcia et al. (2013), which was obtained by manually fitting a trapezoid (Figure 1D)
to the average MS2 signal (Fig. 2C, black). The quantitative agreement between these two dissimilar175

analysis methodologies demonstrates that our inference method can reliably extract the average

rate of transcription initiation across cells.

Measurements of cell-to-cell variability in transcription initiation rate have uncovered, for ex-

ample, the existence of transcriptional bursting and mechanisms underlying the establishment of

precise developmental boundaries (Raj et al., 2006; Sanchez and Golding, 2013; Zenklusen et al.,180

2008; Little et al., 2013; Jones et al., 2014; Lucas et al., 2018; Zoller et al., 2018). Yet, to date, these
studies have mostly employed techniques such as single-molecule FISH to count the number of

nascent transcripts on a gene or the number of cytoplasmic mRNA molecules (Femino et al., 1998;
Raj et al., 2006; Pare et al., 2009; Zenklusen et al., 2008; So et al., 2011; Boettiger and Levine, 2013;
Little et al., 2013; Jones et al., 2014; Senecal et al., 2014; Padovan-Merhar et al., 2015; Xu et al.,185

2015; Skinner et al., 2016; Bartman et al., 2016; Hendy et al., 2017; Zoller et al., 2018). In principle,
these techniques do not report on the variability in transcription initiation alone; they convolve this

measurement with variability in other steps of the transcription cycle (Padovan-Merhar et al., 2015;
Lenstra et al., 2016).
Our inference approach isolates the transcription initiation rate from the remaining steps of the190

transcription cycle at the single-cell level, making it possible to calculate, for example, the coefficient

of variation (CV; standard deviation divided by the mean) of the mean rate of initiation. Our results

yielded values for the CV along the embryo that peaked around 35% (Fig. 2D, top). This value is

roughly comparable to that obtained for hunchback using single-molecule FISH (Little et al., 2013;
Xu et al., 2015; Zoller et al., 2018).195

One of the challenges in measuring CV values, however, is that informative biological variability

is often convolved with undesired experimental noise. Although we currently cannot separate

these sources with our data and inference method, a strategy for this separation was recently

implemented in the context of snapshot-based fluorescent data (Zoller et al., 2018). Building on
this strategy, we took a single snapshot from our live-imaging data and calculated the total squared200

CV of the fluorescence of spots at a single time point (Fig. 2D, bottom, purple).

Following Zoller et al. (2018) and as described in detail in Section S7 and Figure S7, we calculated
the biological and experimental noise in this snapshot-based measurement. The bar graph shown

in the bottom of Figure 2D shows that, once the experimental noise (light purple) is subtracted

from the total noise of our snapshot-based measurement, the remaining biological variability (dark205

purple) is comparable to the variability of our inference results (blue). Thus, our inference mostly

captures biological variability and filters out experimental noise, similarly to techniques such as
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single-molecule FISH (Zoller et al., 2018) but with the added advantage of also being able to resolve
temporal information. These results further validate our approach and demonstrate its capability

to capture measures of cell-to-cell variability in the transcription cycle with high precision.210

Elongation rate inference reveals single-molecule variability in RNAP stepping
rates
Next, we investigated the ability of our inference approach to report on the elongation rate velon.
Nascent RNA elongation plays a prominent role in gene regulation, for example, in dosage com-

pensation in Drosophila embryos (Larschan et al., 2011), alternative splicing in human cells (De215

La Mata et al., 2003; Batsché et al., 2006), and gene expression in plants (Wu et al., 2016). Our
method inferred an elongation rate velon that was constant along the embryo (Fig. 2E), lending
support to previous reports indicating a lack of regulatory control of the elongation rate in the early

fly embryo (Fukaya et al., 2017). We measured a mean elongation rate of 1.84 ± 0.04 kb/min (SEM;
n = 299), consistent with previous measurements of the fly embryo (Fig. 2E, black and teal; Garcia220

et al. (2013); Fukaya et al. (2017)), as well as with measurements from other techniques and model
organisms, which range from about 1 kb/min to upwards of 4 kb/min (Golding et al., 2005; Darzacq
et al., 2007; Boireau et al., 2007; Ardehali and Lis, 2009; Hocine et al., 2013; Coulon et al., 2014;
Fuchs et al., 2014; Tantale et al., 2016; Lenstra et al., 2016).
Like cell-to-cell variability in transcription initiation, single-cell distributions of elongation rates225

can provide crucial insights into, for example, promoter-proximal pausing (Serov et al., 2017), traffic
jams (Klumpp and Hwa, 2008; Klumpp, 2011), transcriptional bursting (Choubey et al., 2015, 2018),
and noise propagation (Ali et al., 2020). While genome-wide approaches have had huge success in
measuring mean properties of elongation (Core et al., 2008; Carrillo Oesterreich et al., 2010), they
remain unable to resolve single-cell distributions of elongation rates. We examined the statistics230

of single-cell elongation rates in the anterior 40% of the embryo, where the initiation rate was

roughly constant, and inferred a broad distribution with a standard deviation of around 0.5 kb/min

and a long tail extending to values upwards of 4 kb/min (Fig. 2F, blue). This large spread was

consistent with observations of large cell-cell variability in elongation rates (Palangat and Larson,
2012; Lenstra et al., 2016), as well as with measurements from similar two-color live imaging235

experiments (Hocine et al. (2013); Fukaya et al. (2017); Section S8; Fig. S8).
To illustrate the resolving power of examining elongation rate distributions, we performed

theoretical investigations of elongation dynamics. Following Klumpp and Hwa (2008), we considered
a model where RNAP molecules stochastically step along a gene and cannot overlap or pass each

other (Section S9). First, we considered a scenario where the stepping rate of each RNAP molecule240

is identical. As shown in brown in Figure 2F, this model cannot account for the wide distribution

of observed single-cell elongation rates. In contrast, the model can reasonably describe data by

allowing for substantial variability in the elongation rate of individual RNAP molecules. As shown in

gold in Figure 2F, the model can quantitatively approximate the inferred distribution. This single-

molecule variability is consistent with in vitro observations of substantial molecule-to-molecule245

variability in RNAP elongation rates (Tolić-Nørrelykke et al. (2004); Larson et al. (2011b)), thus
demonstrating the ability of our approach to engage in the in vivo dissection of the transcription
cycle at the single-molecule level.

Inference reveals functional dependencies of cleavage times
Finally, we inferred values of the cleavage time �cleave. Through processes such as alternative250

polyadenylation (Tian and Manley, 2016; Jung et al., 2009) and promoter-terminator crosstalk
(Moore and Proudfoot, 2009; Mapendano et al., 2010), events at the 3’ end of a gene exert sub-
stantial influence over overall transcription levels (Bentley, 2014). Although many investigations of
mRNA cleavage and RNAP termination have been carried out in fixed-tissue samples (Richard and
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Manley, 2009; Kuehner et al., 2011), live-imaging studies with single-cell resolution of this impor-255

tant process remain sparse; some successes have been achieved in yeast and in mammalian cells

(Lenstra et al., 2016). We inferred a mean mRNA cleavage time in the range of 2-4 min (Fig. 2G), con-
sistent with values obtained from live imaging in yeast (Larson et al., 2011a) and mammalian cells
(Boireau et al., 2007; Darzacq et al., 2007; Coulon et al., 2014; Tantale et al., 2016). Interestingly, as
shown in Figure 2G, the inferred mRNA cleavage time was strongly dependent on anterior-posterior260

positioning along the embryo, with high values (∼4 min) in the anterior end and lower values
toward the posterior end (∼2 min). Such a modulation could not have been easily revealed using
genome-wide approaches that, by necessity, average information across multiple cells. The CV

of the cleavage time also increased toward the posterior end of the embryo (Fig. 2H), providing

fertile ground for uncovering the molecular underpinnings of these processes using theoretical265

models analogous to those discussed previously. Thus, although cleavage remains an understudied

process compared to initiation and elongation, both theoretically and experimentally, these results

provide the quantitative precision necessary to carry out such mechanistic analyses.

Uncovering mechanistic correlations between transcription cycle parameters
In addition to revealing trends in average quantities of the transcription cycle along the length of270

the embryo, the simultaneous nature of the inference afforded us the unprecedented ability to

investigate single-cell correlations between transcription-cycle parameters. The mean initiation

rate and the cleavage time exhibited a slight negative linear correlation ([R2 = 0.10, p = 1 × 10−8],

Fig. 3A). This negative correlation at the single-cell level should be contrasted with the positive

relation between these magnitudes at the position-averaged level, where the mean initiation275

rate and cleavage time both increased in the anterior of the embryo (Fig. 2C and G). Thus, our

analysis unearthed a quantitative relationship that was obscured by a naive investigation of spatially

averaged quantities, an approach often used in fixed (Zoller et al., 2018) and live-imaging (Lammers
et al., 2020) studies, as well as in genome-wide investigations (Combs and Eisen, 2017; Haines and
Eisen, 2018). We also detected a small positive correlation (R2 = 0.09, p = 1 × 10−7) between cleavage280

times and elongation rates (Fig. 3B). These results are consistent with prior studies implicating

elongation rates in 3’ processes such as splicing and alternative polyadenylation: slower elongation

rates increased cleavage efficiency (De La Mata et al., 2003; Pinto et al., 2011). We detected no
significant correlation (R2 = 0.01, p = 0.08) between elongation rates and mean initiation rates
(Fig. 3C).285

The observed negative correlation between cleavage time and mean initiation rate (Fig. 3A),

in conjunction with the positive correlation between cleavage time and elongation rate (Fig. 3B),

suggested a potential underlying biophysical control parameter: the mean nascent transcript

density on the reporter gene body �:

� =
⟨R⟩
velon

. (1)

Possessing units of (AU/kb), this mean transcript density estimates the average number of nascent290

RNA transcripts per kilobase of template DNA. Plotting the cleavage time as a function of the mean

transcript density yielded a negative correlation that, while moderate (R2 = 0.18, p = 5 × 10−15), was

stronger than any of the previous correlations between transcription-cycle parameters (Fig. 3D).

Mechanistically, this correlation suggests that, on average, more closely packed nascent transcripts

at the 3’ end of a gene cleave faster. Further investigations using simulations indicated that295

these relationships did not arise from spurious correlations in the inference procedure itself

(Section S3.4 and Fig. S4E-H), but rather captured real correlations in the data.

Using an absolute calibration for a similar reporter gene (Garcia et al., 2013) led to a rough
scaling of 1 AU ≈ 1molecule corresponding to a maximal RNAP density of 20 RNAP molecules/kb
in Figure 3D. With a DNA footprint of 40 bases per molecule (Selby et al., 1997), this calculation300
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Figure 3. Single-cell correlations between transcription cycle parameters. Correlations between (A) mean
initiation rate and cleavage time, (B) elongation rate and cleavage time, (C) mean initiation rate and elongation

rate, and (D) mean RNAP density and cleavage time. Blue points indicate single-cell values; black points and

error bars indicate mean and SEM, respectively, binned across x-axis values. Line and shaded region indicate

generalized linear model fit and 95% confidence interval, respectively. Adjusted R2 values and p-values were
calculated using a generalized linear regression model (see Methods and Materials for details).

suggests that in this regime, the RNAP molecules are densely distributed enough to occupy 80% of

the reporter gene. We hypothesize that increased RNAP density could lead to increased pausing as a

result of traffic jams (Klumpp and Hwa, 2008; Klumpp, 2011). Due to this pausing, transcripts would
be more available for cleavage, increasing overall cleavage efficiency. Regardless of the particular

molecular mechanisms underlying our observations, we anticipate that this ability to resolve single-305

cell correlations between transcription parameters, combined with perturbative experiments, will

provide ample future opportunities for studying the underlying biophysical mechanisms linking

transcription processes.

Discussion
Over the last two decades, the genetically encoded MS2 (Bertrand et al., 1998) and PP7 (Chao310

et al., 2008) RNA labeling technologies have made it possible to measure nascent and cytoplasmic
RNA dynamics in vivo in many contexts (Golding et al., 2005; Chubb et al., 2006; Darzacq et al.,
2007; Larson et al., 2011a; Garcia et al., 2013; Lucas et al., 2013; Hocine et al., 2013; Coulon et al.,
2014; Bothma et al., 2014; Lenstra et al., 2016; Fukaya et al., 2016; Tantale et al., 2016; Fukaya
et al., 2017; Chen et al., 2018; Dufourt et al., 2018; Fritzsch et al., 2018; Falo-Sanjuan et al., 2019;315

Li et al., 2019; Lee et al., 2019; Lammers et al., 2020; Eck et al., 2020). However, such promising
experimental techniques can only be as powerful as their underlying data-analysis infrastructure.

For example, while initial studies using MS2 set the technological foundation for revealing tran-

scriptional bursts in bacteria (Golding et al., 2005), single-celled eukaryotes (Chubb et al., 2006;
Larson et al., 2009), and animals (Garcia et al., 2013; Lucas et al., 2013), only recently did analysis320

techniques become available to reliably obtain parameters such as transcriptional burst frequency,

duration, and amplitude (Coulon et al., 2014; Desponds et al., 2016; Corrigan et al., 2016; Lammers
et al., 2020).
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In this work, we established a novel method for inferring quantitative parameters of the entire

transcription cycle—initiation, elongation and cleavage—from live imaging data. Notably, this325

method offers high spatiotemporal resolution at the single-cell level. These features are unattain-

able by widespread, but still powerful, genome-wide techniques that examine fixed samples, such

as global run-on sequencing (GRO-seq) to measure elongation rates in vivo (Danko et al., 2013;
Jonkers and Lis, 2015).
From elucidating the nature of mutations (Luria and Delbruck, 1943) and revealing mechanisms330

of transcription initiation (Zenklusen et al., 2008; Sanchez et al., 2011; So et al., 2011; Sanchez
et al., 2013; Sanchez and Golding, 2013; Little et al., 2013; Hocine et al., 2013; Jones et al., 2014;
Xu et al., 2015; Choubey et al., 2015; Zoller et al., 2018; Choubey et al., 2018), transcription elonga-
tion (Boettiger et al., 2011; Serov et al., 2017; Ali et al., 2020), and translational control (Cai et al.,
2006), to enabling the calibration of fluorescent proteins in absolute units (Rosenfeld et al., 2005,335

2006; Teng et al., 2010; Brewster et al., 2014; Kim et al., 2016; Bakker and Swain, 2019), examining
single-cell distributions through the lens of theoretical models has made it possible to extract molec-

ular insights about biological function that are inaccessible through the examination of averaged

quantities. The single-cell measurements afforded by our approach made it possible to infer full

distributions of transcription parameters (Fig. 2D, F, and H). This single-cell resolution motivates a340

dialogue between theory and experiment for studying transcription initiation, elongation, and cleav-

age at the single-cell level. Specifically, we showed how our inferred distributions of initiation rates

effectively filter out experimental noise while retaining temporal information, and how elongation

rate distributions make it possible to test molecular models of RNAP transit along the gene.

Finally, the simultaneous inference of various transcription-cycle parameters granted us the345

novel capability to investigate couplings between aspects of transcription initiation, elongation, and

cleavage, paving the way for future studies of mechanistic linkages between these processes. In

particular, the observed coupling of the mRNA cleavage time with RNAP density (Fig. 3D) suggests

potential avenues for investigating mechanisms underlying this phenomenon, such as RNAP traffic

jams (Klumpp and Hwa, 2008; Klumpp, 2011), inefficient or rate-limiting nascent RNA cleavage (Fong350

et al., 2015; Jung et al., 2009), and promoter-terminator looping (Hampsey et al., 2011).
Our statistical methodology can be readily applied beyond the regulation of a hunchback reporter

in Drosophila melanogaster to other genes and organisms in which MS2 and PP7 have been already
implemented (Golding et al., 2005; Chubb et al., 2006; Darzacq et al., 2007; Garcia et al., 2013;
Lucas et al., 2013; Tantale et al., 2016; Lee et al., 2019; Sato et al., 2020), or where non-genetically355

encoded RNA aptamer technologies such as Spinach (Paige et al., 2011; Sato et al., 2020) are
available. Further studies could extend this technique to account for bursty genes (Rodriguez
and Larson, 2020), where the initiation rate fluctuates much more rapidly in time such that our
assumption of a constantmean transcription initiation rate breaks down, or to encompass questions

of intrinsic and extrinsic noise by performing inference on the transcriptional dynamics of two360

identical alleles (Elowitz et al., 2002; Raser and O’Shea, 2004; Raj et al., 2006). Finally, while our
experimental setup utilized two fluorophores, we found that the calibration between their intensities

could be inferred directly from the data (Section S4 and Fig. S5), rendering independent calibration

and control experiments unnecessary. Thus, we envision that our analysis strategy will be of broad

applicability to the quantitative and molecular in vivo dissection of the transcription cycle and its365

regulation across many distinct model systems.

Methods and Materials
DNA constructs
The fly strain used to express constitutive MCP-mCherry and PCP-eGFP consisted of two transgenic

constructs. The first construct, MCP-NoNLS-mCherry, was created by replacing the eGFP in MCP-370
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NoNLS-eGFP (Garcia et al., 2013) with mCherry. The second construct, PCP-NoNLS-eGFP, was
created by replacing MCP in the aforementioned MCP-NoNLS-eGFP with PCP, sourced from Larson
et al. (2011a). Both constructs were driven with the nanos promoter to deliver protein maternally
into the embryo. The constructs lacked nuclear localization sequences because the presence

these sequences created spurious fluorescence puncta in the nucleus that decreased the overall375

signal quality (data not shown). Both constructs were incorporated into fly lines using P-element

transgenesis, and a single stable fly line was created by combining all three transgenes.

The reporter construct P2P-MS2-lacZ-PP7 was cloned using services from GenScript, and was

incorporated into a fly line using PhiC31-mediated Recombinase Mediated Cassette Exchange

(RMCE), at the 38F1 landing site.380

Full details of construct and sequence information can be found in a public Benchling folder.

Fly strains
Transcription of the hunchback reporter was measured by imaging embryos resulting from crossing
yw;MCP-NoNLS-mCherry,Histone-iRFP;MCP-NoNLS-mCherry,PCP-NoNLS-GFP female virgins with yw;P2P-
MS2-LacZ-PP7males. The Histone-iRFP transgene was provided as a courtesy from Kenneth Irvine385

and Yuanwang Pan.

Transcription from the hunchback promoter was measured by imaging embryos resulting from
crossing female virgins yw;HistoneRFP;MCP-NoNLS(2) with male yw;P2P-MS2-lacZ-PP7/cyo;+ (Garcia
et al., 2013).
Sample preparation and data collection390

Sample preparation followed procedures described in Bothma et al. (2014), Garcia and Gregor
(2018), and Lammers et al. (2020). Embryos were collected and mounted in halocarbon oil 27
between a semipermeable membrane (Lumox film, Starstedt, Germany) and a coverslip. Data

collection was performed using a Leica SP8 scanning confocal microscope (Leica Microsystems,

Biberach, Germany). The MCP-mCherry, PCP-eGFP, and Histone-iRFP were excited with laser395

wavelengths of 488 nm, 587 nm, and 670 nm, respectively, using a White Light Laser. Average laser

powers on the specimen (measured at the output of a 10x objective) were 35 �W and 20 �W for
the eGFP and mCherry excitation lasers, respectively. Three Hybrid Detectors (HyD) were used to

acquire the fluorescent signal, with spectral windows of 496-546 nm, 600-660 nm, and 700-800 nm

for the eGFP, mCherry, and iRFP signals, respectively. The confocal stack consisted of 15 equidistant400

slices with an overall z-height of 7 �m and an inter-slice distance of 0.5 �m. The images were
acquired at a time resolution of 15 s, using an image resolution of 512 x 128 pixels, a pixel size

of 202 nm, and a pixel dwell time of 1.2 �s. The signal from each frame was accumulated over 3
repetitions. Data were taken for 299 cells over a total of 7 embryos, and each embryo was imaged

over the first 25 min of nuclear cycle 14.405

Image analysis
Images were analyzed using custom-written software following the protocols in Garcia et al. (2013)
and Lammers et al. (2020). Briefly, this procedure involved segmenting individual nuclei using the
Histone-iRFP signal as a nuclear mask, segmenting each transcription spot based on its fluorescence,

and calculating the intensity of each MCP-mCherry and PCP-eGFP transcription spot inside a410

nucleus as a function of time. The Trainable Weka Segmentation plugin for FIJI (Arganda-Carreras
et al., 2017), which uses the FastRandomForest algorithm, was used to identify and segment the
transcription spots.
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Data Analysis
Inference was done using MCMCstat, an adaptive MCMC algorithm (Haario et al., 2001, 2006).415

Figures were generated using the open-source gramm package for MATLAB, developed by Pierre

Morel (Morel, 2018). Generalized linear regression used in Fig. 3 utilized a normally distributed
error model and was performed using MATLAB’s glmfit function. All scripts relating to the MCMC
inference method developed in this work are available at the associated GitHub repository.
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Supplementary Information705

S1 Full Model
To predict MS2 and PP7 fluorescence traces, we utilized a simple model of transcription initiation,

elongation, and cleavage. The entire model has the following free parameters:

• ⟨R⟩, the mean transcription initiation rate
• �R(t), the time-dependent fluctuations in the transcription initiation rate around the mean ⟨R⟩710

• velon, the RNAP elongation rate
• �cleave, the mRNA cleavage time
• ton, the time of transcription onset after the previous mitosis, where t = 0 corresponds to the
start of anaphase.

• MS2basal, the basal level of MCP-mCherry fluorescence715

• PP7basal, the basal level of PCP-eGFP fluorescence

• �, the scaling factor between MCP-mCherry and PCP-eGFP arbitrary fluorescence units (see
Section S4 for more details)

First, the parameters ⟨R⟩, �R(t), ton, velon, and �cleave were used to generate a map xi(t) of the
position of each actively transcribing RNAP molecule i along the body of the reporter gene, as a720

function of time. Given a computational time step dt, R(t)dt RNAP molecules are loaded at time
point t at the promoter x = 0, where

R(t) =

⎧

⎪

⎨

⎪

⎩

0 t < ton
⟨R⟩ + �R(t) t ≥ ton.

(S1)

After initiation, each RNAP molecule then proceeds forward with the constant elongation rate velon.
Once an RNAPmolecule reaches the end of the gene, an additional cleavage time �cleave elapses, after
which the nascent transcript is cleaved and disappears instantly. This assumption of instantaneous725

disappearance following cleavage is justified in Section S2 based on the diffusion time scale of

individual mRNA molecules.

From this position map, and based on the locations of the stem loop sequences along the

reporter construct (Fig. S1A), we calculate the predicted MS2 and PP7 fluorescence signals. the

contribution to the MS2 signal FMS2
i (t) of an individual RNAP molecule i at position xi(t) is given by730

FMS2
i (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 xi(t) < xstartMS2
xi(t)−xstartMS2
xendMS2−x

start
MS2

FMS2 xstartMS2 ≤ xi(t) < xendMS2

FMS2 xi(t) ≥ xendMS2

, (S2)

where xstartMS2 and x
end
MS2 are the start and end positions of the MS2 stem loop sequence, respectively,

and FMS2 is the mCherry fluorescence produced by a single RNAP molecule that has transcribed the

entire set of MS2 stem loops. Here, we also assume that RNAP molecules that have only partially

transcribed the MS2 stem loops result in a fractional fluorescence given by the fractional length

of the MS2 stem loop sequence transcribed. Similarly, the contribution to the PP7 signal F PP7
i (t) is735

given by

F PP7
i (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 xi(t) < xstartPP7
xi(t)−xstartPP 7
xendPP 7−x

start
PP 7
FPP7 xstartPP7 ≤ xi(t) < xendPP7

FPP7 xi(t) ≥ xendPP7

, (S3)
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Figure S1. Detailed description of reporter construct and model used throughout this work. (A) Graphical map
of the reporter construct used in this work. Labeled positions are xstartMS2 = 0.024 kb, xendMS2 = 1.299 kb,
xstartPP7 = 4.292 kb, and xendPP7 = 5.758 kb, where x = 0 corresponds to the 3’ end of the promoter. Distances are
d = 4.27 kb and L = 6.63 kb. (B) Idealized scenario with a step of initiation rate that starts at zero and switches to
magnitude < R > at time t = ton. (C) Relationship between fluorescence trace profiles and model parameters for
the scenario in (B). Here, the two fluorescence traces are already rescaled by � to be in the same arbitrary units –
see Section S4 for how this is achieved.
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where xstartPP7 and x
end
PP7 are the start and end positions of the PP7 stem loop sequence, respectively,

and FPP7 is the GFP fluorescence produced by a single RNAP molecule that has transcribed the
entire set of PP7 stem loops.

The temporal dynamics of the total MS2 and PP7 signals FMS2(t) and FPP7(t) are then obtained
by summing over all the individual RNAP molecule contributions for each timepoint

FMS2(t) =
N
∑

i=1
FMS2
i (t) (S4)

FPP7(t) =
N
∑

i=1
F PP7
i (t), (S5)

where i is the index of each individual RNAP molecule and N is the total number of loaded RNAP740

molecules. The final signal is then modified by accounting for the scaling factor � and the basal
fluorescence values of MS2basal and PP7basal. � is necessary because the two fluorescent protein
signals have different arbitrary units (see Section S4). Further, the two basal fluorescence values

are incorporated to account for the experimentally observed low baseline fluorescence in each

fluorescent channel. The final signals F ′
MS2(t) and F

′
PP7(t) are then given by745

F ′
MS2(t) =

⎧

⎪

⎨

⎪

⎩

MS2basal∕� FMS2(t) < MS2basal
FMS2(t)∕� FMS2(t) ≥ MS2basal

(S6)

and

F ′
PP7(t) =

⎧

⎪

⎨

⎪

⎩

PP7basal FPP7(t) < PP7basal
FPP7(t) FPP7(t) ≥ PP7basal.

(S7)

All of the model parameters introduced in this section were used as free parameters in the fitting

procedure described in Section S3.

Figure S1B and C show a qualitative description of how the various parameters influence the

shape of the simulated MS2 and PP7 fluorescence traces. Here, we consider an idealized scenario750

where the initiation rate consists of a pulse that starts at zero and switches to a constant magnitude

< R > at time t = ton (Fig. S1B).
Figure S1C show the resulting simulated fluorescence values. As a baseline, the basal fluores-

cence of MS2 and PP7 cause both signals to always be nonzero (red and green horizontal dashed

lines). Once the simulation time exceeds the value of ton (blue dashed line), RNAP molecules begin755

initiating transcription at the promoter.

MS2 fluorescence (red curve) begins to rise once the first RNAP molecule reaches the start of

the MS2 sequence (red vertical bar). The slope of the increase in MS2 fluorescence value is given by

the mean initiation rate ⟨R⟩ (black triangle).
When the first RNAP molecule reaches the start of the PP7 sequence (green bar), the PP7760

fluorescence also begins to rise with the same slope (green curve). The time between MS2 and PP7

signal onset is given by the distance d between the start of the two stem loop repeats divided by
the elongation rate, velon.
After a time

L
velon
, where L is the total length of the reporter gene, the first RNAP molecule

reaches the end of the gene (black dashed line). From here, after the cleavage time �cleave has765

elapsed (brown dashed line), nascent RNA transcripts begin cleaving and the two fluorescence

signals plateau at a constant value.
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S2 Justification for approximating transcript cleavage as instantaneous
In the model presented in Section S1, we assumed that, when a nascent RNA transcript is cleaved

at the end of the reporter gene, its MS2 and PP7 fluorescence signals disappear instantaneously.770

Here, we justify this assumption by demonstrating that the timescale of mRNA diffusion away from

the active locus is much shorter than the experimental resolution of our system.

When a nascent RNA transcript is cleaved, it diffuses away from the gene locus. For a free

particle with diffusion coefficient D, the characteristic timescale � to diffuse a length scale L is given
by775

� ∼ L2

D
. (S8)

In the context of the experiment performed here, this can interpreted as the timescale for a cleaved

mRNA transcript to diffuse away from the diffraction-limited fluorescence punctum at the locus

due to labeled nascent transcripts.

We can estimate the characteristic timescale � by plugging in the following values. Assume that
the completed transcript possesses a typical mRNA diffusion coefficient of D ∼ 0.1 �m2∕s (Gorski780

et al., 2006). The length scale L corresponds to the Abbe diffraction limit, which yields L ∼ 250 nm
for green light with a wavelength of about 500 nm and a microscope with a numerical aperture of 1.
Plugging these values into the equation yields a diffusion time scale of

� ∼
(250nm)2

0.1�m2∕s
∼ 0.625 s. (S9)

As a result, a newly cleaved mRNA transcript will typically diffuse away from the locus in less than

a second, meaning that its MS2 and PP7 fluorescence signal will vanish much faster than the785

experimental time resolution of 15 s. For this reason, we can justify approximating the cleavage
process as instantaneously removing the fluorescent signals of newly cleaved transcripts.

S3 MCMC Inference Procedure
S3.1 Overview and application of MCMC
The inference procedures described in the main text were carried out using the established tech-790

nique of Markov Chain Monte Carlo (MCMC). Specifically, we used the MATLAB package MCMCstat,

an adaptive MCMC technique (Haario et al., 2001, 2006). For detailed descriptions, we refer the
reader to the the MCMCstat website (https://mjlaine.github.io/mcmcstat/), as well as to a technical

overview of MCMC (Geyer, 1992). Briefly, MCMC allows for an estimation of the parameter values
of a model that best fit the experimentally observed data along with an associated error. In this795

work, we use MCMC to infer the best fit values of the transcription cycle parameters given observed

fluorescence data at the single-cell level. Then, we combine these inference results across cells to

construct distributions of inferred values across the ensemble of cells.

MCMC calculates a Bayesian posterior probability distribution of each free parameter given

the data by stochastically sampling different parameter values. For a given set of observations D800

and a model with parameters �, the so-called posterior probability distribution of � possessing a
particular set of values is given by Bayes’ theorem

p(�|D)
⏟⏟⏟
posterior

=

likelihood
⏞⏞⏞
p(D|�)

prior

⏞⏞⏞
p(�)

p(D)
⏟⏟⏟
evidence

. (S10)

This posterior distribution is a combination of three components – the likelihood, prior, and

evidence. This latter term represents the probability of the observations possessing their particular
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values, and allows the overall posterior distribution to be normalized. In practice, the evidence term805

is often dropped since MCMC can still yield accurate results without requiring this normalization.

Thus, we have

p(�|D)
⏟⏟⏟
posterior

∝

likelihood
⏞⏞⏞
p(D|�)

prior

⏞⏞⏞
p(�) . (S11)

The prior function contains a priori assumptions about the probability distribution of parameter
values �, and the likelihood function represents the probability of obtaining the observations, given
a particular set of parameters �. Thus, themost likely set of parameters � occurs when the product810

of the likelihood and prior is maximized, resulting in a maximum in the posterior function. MCMC

extends this by sampling different values of � such that an approximation of the full posterior
distribution is also obtained.

The prior distributions for the inferred parameters were set as follows. The prior distribution for

the fluctuations in the initiation rate �R(t) at each time point was assumed to be a Gaussian prior815

centered around 0 AU/min with a standard deviation of 30 AU/min. This penalized fluctuations that
strayed too far from zero, smoothing the overall initiation rate R(t). For the rest of the parameters,
a uniform distribution was chosen using the following uniform intervals:

• velon: [0, 10] kb/min
• ton: [0, 10] min820

• �: [0, 1]
• �cleave: [0, 20] min
• MS2basal: [0, 50] AU

• PP7basal: [0, 50] AU

• ⟨R⟩: [0, 40] AU/min825

For the likelihood function, a Gaussian error function was used

p(D|�) = e−SS , (S12)

where SS is a sum-of-squares residual function given by

SS =
∑

t
(Fdata − Fprediction)2. (S13)

Here, the summation runs over individual time points, Fdata corresponds to the MS2 or PP7 fluo-
rescence at a given timepoint, and Fprediction corresponds to the predicted MS2 or PP7 fluorescence
according to the model, for a given set of parameter values. That is,830

Fdata =
{

MS21,… ,MS2N ,PP71,…PP7N
}

(S14)

where the subscripts indicate the time index over N time points. Similarly,

Fprediction =
{

MS2
pred
1 ,… ,MS2predN ,PP7pred1 ,…PP7predN

}

(S15)

where the superscripts indicate that these are model predictions evaluated at the experimental

time points.

The MCMC approach samples values of parameters � to approximate the posterior probability
distribution. There are several algorithms that achieve this – the adaptive technique used in the835

MCMCstat package is an efficient algorithm that updates the sampling technique to more quickly

arrive at the converged distribution.

For each inference run, an initial condition of parameter values is chosen. The algorithm then

stochastically updates the next set of parameter values based on the current and previous values
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of the posterior distribution function. After a preset number of updates (typically at least on the840

order of thousands), the algorithm stops, resulting in a chain of MCMC parameter value samples.
The initial period following the initial condition, known as the burn-in time, is typically discarded
since the results are not reliable. The remaining values of the chain comprise an approximation of

the underlying posterior probability distribution, with smaller errors for longer run times.

For the purposes of this work, the MCMC procedure was run by separately inferring parameter845

values for the data corresponding to each single cell. For each inference, random parameter values

were chosen for the initial condition of the sampling algorithm in order to prevent initial condition

bias from affecting the inference results. The algorithm was run for a total of 20, 000 iterations,
which, after removing a burn-in window of length 10, 000, resulted in a chain of length 10, 000 for
each of the 299 cells examined. To assess whether or not the algorithm was run for a sufficient850

number of iterations, the final chain was examined for rapid mixing, where the sampled values
of a particular parameter rapidly fluctuate around a converged value. Figure S2A highlights this

rapid mixing in the inferred transcription cycle parameters of a sample single cell. The lack of

long-timescale correlations, also exemplified by the quick decay of the autocorrelation function of

each chain (Fig. S2B), indicates that the algorithm has converged. In addition, a corner plot of the855

three transcription cycle parameters (Fig. S2C) illustrates the pairwise correlations between them,

demonstrating that the inference did not encounter degenerate solutions, and that each parameter

has a fairly unimodal distribution.

These diagnostics provided a check on the quality of the inference results. Afterwards, the mean

value of each parameter’s final chain was then retained for each single cell for use in the further860

statistical analysis carried out in the main text.

S3.2 Hierarchical inference procedure
Naively running the MCMC inference on the entire 18 min window of time for each single cell’s

worth of data compromised the quality of the inferred elongation rate. This is highlighted in

Figure S3A, which shows the results of running the MCMC procedure on the entire 18 min window865

of fluorescence data for sample data from a single cell. The fit deviates from the true MS2 and PP7

signals at early timepoints (black lines), resulting in an unreliable measure of the elongation rate.

This deviation stems from the inference procedure treating each time point as equally important,

whereas, in reality, earlier time points are more important for estimating the elongation rate since

they capture the onset of the MS2 and PP7 fluorescence signals.870

To resolve this problem, we split the inference procedure into a hierarchy, where we chose to

first run the MCMC procedure on an initial subset of the whole time window, consisting of the

first 10 min of fluorescent signal. This time window was long enough to capture the initial rise in

both fluorescent channels, but neglected the later time points that did not matter as much for

the estimation of the elongation rate. Figure S3B shows the best fit of the MCMC procedure run875

on only this initial period, where the fit better captures the onset of signal in both fluorescent

channels. Comparing the overall inferred elongation rates using the short and long time windows

indicated that the long time-window inference scheme yielded systematically lower and more

variable single-cell elongation rate values, with a mean and standard deviation of 1.90 kb/min and

1.24 kb/min, respectively (Fig. S3D, purple). In contrast, the inference performed over the short time880

window yielded a more constrained distribution, with a mean and standard deviation of 1.84 kb/min

and 0.75 kb/min, respectively (Fig. S3D, yellow).

We next we ran the MCMC procedure on the whole 18 min time window for each single cell,

but fixed the value of the elongation rate, velon, to the best-fit value from the initial inference done
previously for that same cell. This did not introduce significant error to the fit, as seen in Figure S3C.885

Instead, this hierarchical method simply biased earlier time points to be more important for the

elongation rate in particular. Thus, with this scheme, we were able to establish a robust procedure
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Figure S2. Diagnostics of MCMC inference procedure. (A) Raw chains for elongation rate velon, cleavage time
�cleave, and mean initiation rate ⟨R⟩ for the inference results of a sample single cell. (B) Autocorrelation function
for the raw chains in (A). (C) Corner plot of the same raw chains.
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for reliably estimating the elongation rate while still analyzing the whole time window of data to be

able to measure the other parameters such as the cleavage time.

S3.3 Curation of inference results890

Individual single cell inference results were filtered automatically and then curated manually for

final quality control. First, due to experimental and computational imaging limits, some MS2 or PP7

trajectories were too short to run a meaningful inference on. As a result, we automatically skipped

over any cell with an MS2 or PP7 signal with fewer than 10 datapoints. This amounted to 260 cells

skipped out of a total of 1053, with 567 (54%) retained.895

Second, some single cells yielded poor fits, due to effects such as low signal-to-noise ratio. For

example, some single-cell fluorescent signals did not capture enough of the early part of the nuclear

cycle, resulting in ambiguity over when the locus actually began transcribing (Fig. S3E). In such cases,

the resulting inferred parameter values were not reliable, and we rejected these fits. Additionally,

the model failed to fit to the some fluorescent traces (Fig. S3F). For these cases, we surmised that900

this poor fit could be due to a multitude of factors, ranging from experimental acquisition noise to

intrinsic biological deviation from the model. Due to our inability to further resolve these details,

there was no one-size-fits-all approach to automatically filtering these inference results, and so we

opted for conservative manual curation, retaining only the fits that were decent.

In sum, 299 cells of data were retained out of 567 total after this curation process. We reasoned905

that, since we still ended up with hundreds of single cells of data, the resultant statistical sample

size was large enough to extract meaningful conclusions. To verify that the curation process did

not introduce substantial bias into our results, we compared the mean inferred transcription cycle

parameters from the 299 curated cells with those from the entire 567 cells, both curated and

uncurated (Fig. S3G). The inferred results were nearly identical, with a minor systematic decrease in910

the mean initiation rate and cleavage time in the case of the uncurated results that nevertheless

did not alter any position-dependent trends. Thus, we were confident that the curated dataset

constituted a representative sample of the whole embryo.

S3.4 Validation of inference results
To assess the accuracy of the inference method, we validated our MCMC approach against a915

simulated dataset. Using the inferred distribution of model parameters from the experimental

data, we generated a simulated dataset with our theoretical model (Section S1) and ran the MCMC

inference on it.

The simulated dataset consisted of 100 cells. The model parameters used to simulate each
individual cell’s MS2 and PP7 fluorescences were drawn randomly from a Gaussian distribution, with920

mean � and standard deviation � calculated from the distribution of inferred model parameters
from the experimental data. Table S1 shows the parameters used in the Gaussian distributions

generating each single cell’s model parameters.

In addition, fluorescence measurement error was generated by drawing a Gaussian random

number with mean 0 and standard deviation 40 AU for each time point of data, for each single925

cell, and adding this random number to the MS2 or PP7 fluorescence at that time point (prior to

rescaling the MS2 fluorescence with the scaling factor �).
After fitting with the MCMC procedure, the data were curated according to the protocol outlined

in Section S3.3. 76 cells were retained out of a total of 100 simulated cells, with the 24 discarded cells
exhibiting poor fits. These traces presented the same problems as their experimental counterparts930

described in Section S3.3, such as poor signal-to-noise. Figure S4A shows an example of the

simulated MS2 and PP7 fluorescence from a single cell along with their corresponding fits. The

resulting MCMC-sampled values of the mean initiation rate, elongation rate, and cleavage time are

shown in the histograms in Figure S4B (blue), along with the ground truth for that single cell (red

27 of 41

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2020. ; https://doi.org/10.1101/2020.08.29.273474doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.273474
http://creativecommons.org/licenses/by/4.0/


bioRχiv preprint

tfi lanfilangis laitini no tfiwodniw emit elohw no tfi evian

example of poor fluorescent signal example of poor fit

4 6 8 10 12 14
time (min)

0

50

100

150

200

fl
uo

re
sc

en
ce

 (
A

U
)

4 6 8 10 12 14
time (min)

0

50

100

150

200

fl
uo

re
sc

en
ce

 (A
U

)

4 6 8 10 12 14
time (min)

0

50

100

150

200

fl
uo

re
sc

en
ce

 (A
U

)

2 4 6
elongation rate (kb/min)

0

10

20

30

40

50

co
un

t

4 6 8 10 12 14
time (min)

0

50

100

150

200
fl

uo
re

sc
en

ce
 (A

U
)

4 6 8 10 12 14
time (min)

0

50

100

150

200

fl
uo

re
sc

en
ce

 (A
U

)

)C()B()A(

(D)

(G)

)F()E(

inferred elongation rate
= 1.79 kb/min

inferred elongation rate
= 1.85 kb/min

deviation

MS2 data
PP7 data
MS2 fit
PP7 fit

naive fit
final fit

20 30 40 50
percent embryo length

10

12

14

16

18

20

22

m
ea

n 
in

it
ia

ti
on

 r
at

e 
(A

U
/m

in
)

20 30 40 50
percent embryo length

1.4

1.6

1.8

2

2.2

2.4

el
on

ga
ti

on
 r

at
e 

(k
b/

m
in

)

20 30 40 50
percent embryo length

1.5

2

2.5

3

3.5

4

cl
ea

va
ge

 t
im

e 
(m

in
)

curated
uncurated

Figure S3. Overview of hierarchical fit and curation process. (A) Naive inference run on the entire 18 min time
window showing a deviation of the fit from data at early time points (black lines). (B,C) Hierarchical fit where

inference is run on (B) initial 10 min time window, yielding a more accurate measure of the elongation time,

which is then held fixed for the final fit on the (C) entire 18 min time window. (D) Distribution of single-cell

inferred elongation rate values using naive (purple) or hierarchical (yellow) fit schemes. (E, F) Examples of

rejected fits due to (E) poor fluorescent signal quality in the beginning of the nuclear cycle, or (F) poor fit results.

(G) Mean inferred transcription cycle parameters as a function of embryo position, for curated (blue) and

uncurated (brown) data. Shaded regions represented standard error of the mean.
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mean (�) standard deviation (�)

⟨R⟩ 16.6 AU/min 5.1 AU/min

velon 1.8 kb/min 0.8 kb/min

�cleave 3.1 min 1.4 min

ton 3.5 min 1.6 min

� 0.16 0.05

MS2basal 50 AU 10 AU

PP7basal 50 AU 10 AU

Table S1. Mean and standard deviation of model parameters used in single-cell simulations.

line). As described in Section S3.1, the mean value of each sampled distribution was retained for935

downstream statistical analysis.

The accuracy of the inference was investigated on three levels: 1) systematic errors affect-

ing mean analyses, 2) random errors affecting measurements of distributions, and 3) spurious

correlations between parameters affecting inter-parameter correlations.

First, the scaled error " for each parameter was calculated on a single-cell basis as defined by940

" =
xinfer − xtrutℎ

�x
, (S16)

where x represents the model parameter being investigated, the subscripts indicate whether the
quantity is the inferred result or the ground truth for that single cell, and �x is the population
mean of the parameter value from the experimental data (i.e., the values of the “mean” column in

Table S1). For example, for the mean initiation rate ⟨R⟩, �
⟨R⟩ takes the value 16.6 AU/min. " gives a

unitless measure of the magnitude of inference error of each single cell, where a value of 1 indicates945

an error that is as large as the population mean itself.

Figure S4C shows the histogram of single-cell scaled errors "
⟨R⟩, "velon , and "taucleave for the inferred

mean initiation rate, elongation rate, and cleavage time, respectively. The majority of the scaled

errors fall between −0.5 and 0.5, indicating that most inferred results possess relatively small error.
The systematic error on measurements of the ensemble mean can be estimated by calculating950

the mean of the scaled errors shown in Figure S4C. Doing so results in a value of 0.03 ± 0.03,
0.003 ± 0.03, and −0.09 ± 0.03 (mean and SEM) for the mean scaled error of the mean initiation rate,
elongation rate, and cleavage time, respectively. For context, this means that, if the mean cleavage

time is ∼ 3min, then the systematic error in the cleavage time is ∼ 20 sec, about the time resolution
of the data. Thus, the systematic error for each parameter is several orders of magnitude below955

that of the experimental mean value of each parameter, indicating that the inference provides an

accurate and precise readout of the mean.

While the inference’s systematic error may be small, the presence of random errors will affect

measurements of distributions of parameters. To investigate the impact of these random errors, we

quantified the fraction of total measured experimental variability that consisted of random inference960

error. Specifically, for a parameter x, we separated the variance of single-cell measurements as

�2
x,total = �2

x,true + �
2
x,random, (S17)

where �2
x,total represents the overall single-cell variability observed in the data, �

2
x,random represents

the random error inherent to our inference process, and �2
x,true represents the true variability after

subtracting out random inference error �2
x,random. Note that �

2
x,total is the square of the values in the

standard deviation column in Table S1.965
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Figure S4. Overview of MCMC inference validation. (A) Example single-cell simulated data and inferred fits. (B)
MCMC inference results for the simulated data in (A) for the mean initiation rate, elongation rate, and cleavage

time. The histogram represents the raw MCMC sampled values, and the red line is the ground truth for this

particular cell. The mean value of each histogram is then retained for further statistical analysis. (C) Scaled error

of initiation, elongation, and cleavage for each simulated cell. (D) Comparison of relative magnitudes of random

inference error and true experimental variability for the initiation, elongation, and cleavage parameters. (E, F, G,

H) Single-cell correlations for simulated data between mean initiation rate and cleavage time, mean initiation

rate and elongation rate, elongation rate and cleavage time, and mean RNAP density and cleavage time,

respectively.
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Dividing by the squared population means � yields

�2
x,total

�2
x

=
�2
x,true

�2
x

+
�2
x,random

�2
x

. (S18)

Note that these are just squared CV terms, and that the last term is simply the square of the scaled

error " defined earlier
CV 2

x,total = CV 2
x,true + "

2
x. (S19)

Thus, the overall impact of the inference’s random error can be quantified by calculating the relative

magnitudes of the contributions of CV 2
x,true and "

2 to the total variability CV 2
x,total. Figure S4D shows970

this separation, where the dark bars represent the squared scaled error "2, the light bars represent
the true variability CV 2

x,true, and the overall bars represent the total variability CV
2
x,total obtained from

the values of � and � in Table S1.
All three model parameters—initiation, elongation, and cleavage—possess no more than ap-

proximately 50% random error. Nevertheless, the presence of this much error indicates that975

measurements of distributions of these parameters will be confounded by the random error

present in our inference method, highlighting the general difficulty in measuring values beyond the

mean. However, these errors in the inference of the variability of the transcription cycle parameters

should not impact the results of investigating the distribution of elongation rates in Figure 2F,

since the the widths of the simulated distributions in the presence or absence of single-molecule980

elongation variability differed by essentially an order of magnitude (see Section S9 for details).

Future improvements on increasing the accuracy of measurements of distributions could be

achieved, for example, by utilizing interleaved loops such as those introduced in Figure S5. Here,

two orthogonal species of mRNA binding proteins fused to different fluorescent proteins would

bind to interleaved loops located at the 5’ end of the construct. In addition, a second pair of mRNA985

binding proteins would bind to an analogous set of interleaved loops located at the 3’ end. The

result would be a four-color experiment, with two colors reporting on transcription at the 5’ end

of the transcript, and two different colors reporting on transcription the 3’ end. In this scenario,

the data would provide independent readouts of the same underlying signal, making it possible to

perform two independent inferences on the same nucleus. This would allow for the decomposition990

of the inference into biological variability and inferential error using techniques analogous to those

presented in S7.

Finally, we examined the inference method for spurious correlations to investigate the accuracy

of the experimental single-cell correlations shown in Figure 3. The presence of spurious correlations

would reflect inherent couplings in the inference method itself, since the simulation parameters995

were generated independently and stochastically.

Figure S4E-H show the single-cell correlations using a generalized linear regression between

model parameters for the simulated dataset, as well as between the mean RNAP density and the

cleavage time, as defined in the main text. We discovered a positive correlation (adjusted R2 = 0.25)
between the mean initiation rate and the cleavage time (Fig. S4E, p = 3 × 10−6). In contrast, there was1000

no significant correlation between the mean initiation rate and elongation rate (Fig. S4F, adjusted

R2 = −0.01 and p = 0.55) or between the elongation rate and cleavage time (Fig. S4G, adjusted
R2 = −0.01 and p = 0.98). There was also a slight positive correlation between the mean RNAP
density and the cleavage time, with adjusted R2 = 0.10 and p = 0.004 (Fig. S4H). Nevertheless, these
spurious correlations were actually the opposite of the correlations discovered in the experimental1005

data, which exhibited a negative correlation between the mean initiation rate and cleavage time, as
well as between the mean RNAP density and cleavage time. The comparisons of adjusted R2 and

p-values between the data and simulations are summarized in Table S2.
Thus, our results validated the single-cell correlations discovered in the main text, since the

simulated inference results either found no correlation or the opposite correlation of that found1010
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initiation

cleavage

initiation

elongation

elongation

cleavage

RNAP density

cleavage

data R2 = 0.10 R2 = 0.01 R2 = 0.10 R2 = 0.18
p = 1 × 10−8 p = 0.08 p = 1 × 10−7 p = 5 × 10−15

negative insignificant positive negative

correlation correlation correlation correlation

simulation R2 = 0.25 R2 = −0.01 R2 = −0.01 R2 = 0.10
p = 3 × 10−6 p = 0.55 p = 0.98 p = 0.004
positive insignificant insignificant positive

correlation correlation correlation correlation

Table S2. Comparison of adjusted R2 and p-values between experimental and simulated single-cell correlations.

in the actual data, indicating that the experimental results were not the product of spurious

correlations.

S4 Calibration of MS2 and PP7 signals
In the inference scheme presented in the main text, we allowed the scaling factor between the

MS2 and PP7 fluorescence signals to be a free model parameter. Allowing this scaling factor to1015

be a free parameter facilitates adoption of the method and obviates the need for an external

control measurement to calibrate the MS2 and PP7 signals. Here, we show that the inferred scaling

parameter is comparable to that resulting from such calibration measurements.

Due to the fact that the MS2 and PP7 stem loop sequences were associated with mCherry

and eGFP fluorescent proteins, respectively, the two experimental fluorescent signals possessed1020

different arbitrary fluorescent units, related by the scaling factor �

� =
FMS2

FPP7
, (S20)

where FMS2 and FPP7 are the fluorescence values generated by a fully transcribed set of MS2 and PP7
stem loops, respectively. Although � has units of AUMS2∕AUPP7, we will express � without units in
the interest of clarity of notation. The value of � was inferred as described above in Section S3. As
an independent validation, we measured � by using another two-color reporter, consisting of 241025

alternating, rather than sequential, MS2 and PP7 loops (Wu et al., 2014; Chen et al., 2018) inserted
at the 5’ end of our reporter construct (Fig. S5A).

Figure S5B shows a representative trace of a single spot containing our calibration construct.

For each time point in nuclear cycle 14, the mCherry fluorescence in all measured single-cell traces

was plotted against the corresponding eGFP fluorescence (Fig. S5C, yellow points). The mean � was1030

then calculated by fitting the resulting scatter plot to a line going through the origin (Fig. S5C, black

line). The best-fit slope yielded the experimentally calculated value of � = 0.154 ± 0.001 (SEM). A
distribution for � was also constructed by dividing the mCherry fluorescence by the corresponding
eGFP fluorescence for each datapoint in Figure S5D, yielding the histogram in Figure S5D (yellow),

which possessed a standard deviation of 0.0733.1035

Binning the cells by position along the embryo revealed a slight position dependence in the

scaling factor, with higher values of � in the anterior, about 0.15, and lower values in the posterior,
about 0.1 (Fig. S5E, yellow).

We then compared the values of � from the single-cell inference in the main text to those of
the control experiment. Figure S5D shows a histogram of inferred values of � from the inference1040

procedure (blue), with a mean of 0.161±0.003 (SEM) and a standard deviation of 0.049, in agreement
with the independent measurement described above. Furthermore, the inference revealed the
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Figure S5. Calibration of MS2 and PP7 fluorescence signals. (A) Schematic of construct used to measure the
scaling factor � using interlaced MS2/PP7 loops. (B) Sample single-cell MS2 and PP7 traces from this control
experiment. (C) Scatter plot of MS2 and PP7 fluorescence values for each time point along with linear best fit

resulting in � = 0.154 ± 0.001. (D) Histogram of inferred values of � at the single-cell level from data in the main
text, along with histogram of � values from the control experiment. (E) Position-dependent mean value of � in
both the main text inference and the control experiment. (F) Representative raw and rescaled MS2 and PP7

traces for a sample single cell in the main text data set. (C,D,E, data were collected for 314 cells across 4

embryos for the control experiment, and for 299 cells across 7 embryos for the experiment from the main text;

shaded regions in E reflect standard error of the mean.)
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same position-dependent trend as the control experiment, with higher mean values of � in the
anterior of the embryo (Fig. S5E, blue line).

The position dependence observed both in the calibration experiments and inference suggests1045

that this spatial modulation in the value of � is not an artifact of the constructs or our analysis, but a
real feature of the system. We speculated that this spatial dependence could stem from differential

availability of MCP-GFP and PCP-GFP along the embryo, leading to a modulation in the maximum

occupancy of the MS2 stem loops versus the PP7 stem loops. Regardless, our data demonstrate

that the inferred and calibrated � can be used interchangeably.1050

With the inference of � validated against the independent control calculation, the MS2 signals
for each single cell could be rescaled to the same units as the PP7 signal (Fig. S5F). All plots in the

main text and supplementary information, unless otherwise stated, reflect these rescaled values

using the overall mean value of � = 0.1539 obtained from the inference.

S5 Validation of the RNAP processivity assumption1055

The calibration between the MS2 and PP7 (Section S4) signals provided an opportunity to test

the processivity assumption presented in the main text, namely that the majority of loaded RNAP

molecules transcribe to the end of the gene without falling off. To estimate the processivity

quantitatively, we assume that a series of N RNAP molecules transcribes past the MS2 stem loop
sequence at the 5’ end of the reporter gene, and that only pN successfully transcribe past the PP71060

stem loop sequence at the 3’ end. Here, we define p to be the processivity factor, and require
0 < p < 1. Thus, p = 1 indicates maximal processivity where every RNAP molecule that transcribes
the MS2 sequence also transcribes the PP7 sequence, and p = 0 indicates minimal processivity,
where no RNAP molecules make it to the PP7 sequence.

We assume that no RNAP molecules fall off the gene while they transcribe the interlaced1065

MS2/PP7 loops used in the calibration experiment described in Figure S5A. Under this assumption,

N RNAP molecules will fully transcribe both sets of stem loop sequences, allowing us to define the
scaling factor as the ratio of total fluorescence values

�
calib

=
NFMS2

NFPP7
=
FMS2

FPP7
. (S21)

Note that, in this simple model, RNAP molecules can still fall off the gene after they transcribe the

set of MS2/PP7 loops. Now, we consider the construct with MS2 and PP7 at opposite ends used in1070

the main text. Allowing a fraction p of RNAP molecules to fall off the gene between the MS2 and
PP7 loops, we arrive at a scaling factor

�
infer

=
NFMS2

pNFPP7
=
FMS2

pFPP7
. (S22)

We can thus calculate the processivity p from taking the ratio of the true and biased scaling factors

p =
�
calib

�
infer

. (S23)

Taking the mean value of �
calib

from our control experiment to be the true value and the mean

value of �
infer

from the inference from the main text to be the biased value, we calculate a mean1075

processivity of p = 0.96, with a negligible standard error of 4.81 × 10−5. Thus, on average, 96% of
RNAP molecules that successfully transcribe the 5’ MS2 stem loop sequence also successfully

transcribe the 3’ PP7 stem loop sequence, confirming previous results (Garcia et al., 2013) and
lending support to the processivity assumption invoked in our model.
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Figure S6. Comparison of intra- and inter-embryo variability for inferred (A) mean initiation rates, (B) elongation
rates, and (C) cleavage times, as a function of embryo position. Data were taken over 299 cells across 7

embryos, with approximately 10-90 cells per embryo in the region of the embryo examined here.

S6 Comparing intra- and inter-embryo variability1080

In the analysis in the main text, we treated all single cell inference results equally within one

statistical set. In principle, this is justified only if the variability between single cells is at least as

large as the variability between individual embryos. In this section we prove this assumption.

Here, we examine two quantities: the intra-embryo variability, defined as the variance in a
parameter across all single cells in a single embryo, and the inter-embryo variability, defined as1085

the variance across embryos in the single-embryo mean of a parameter. We examined these two

quantities for the three primary inferred parameters – the mean initiation rate, elongation rate, and

cleavage time.

Figure S6 shows the results of this comparison, where the red (blue) lines indicate the intra- (inter-

) embryo variability and the red (blue) shaded regions indicate the standard error (bootstrapped1090

standard error) in the intra- (inter-) embryo variability. For all of the parameters, the intra-embryo

variability is at least as large as the inter-embryo variability, validating our treatment of all of the

single-cell inference results as a single dataset, regardless of embryo.

S7 Comparison of variability in mean initiation rate reported by our infer-
ence with static measurements1095

A widespread strategy to measure variability in transcription initiation relies on techniques such as

single-molecule FISH (smFISH), which count the number of nascent transcripts at a transcribing locus

in a fixed sample (Femino et al., 1998; Raj et al., 2006; Zenklusen et al., 2008; Little et al., 2013;
Zoller et al., 2018). These single time point measurements are typically interpreted as reporting on
the cell-to-cell variability in transcription initiation. Further, under the right conditions, the variability1100

reported by this method has been shown to be dominated by biological sources of variability and

to have a negligible contribution from experimental sources of noise (Zoller et al., 2018).
We sought to determine how well our approach could report on biological variability. To do so,

we contrasted the inference results of the transcriptional activity of our hunchback reporter with
a snapshot-based analysis inspired by single-molecule FISH (Zoller et al., 2018). Specifically, we1105

calculated the CVs in the raw MS2 and PP7 fluorescence in snapshots taken at 10 minutes after

the start of nuclear cycle 14. We reasoned that, since this calculation does not utilize the full time-

resolved nature of the data, it provides a baseline measurement of total noise that encompasses

both experimental and biological variability. As a point of comparison, we also calculated the CV in

the instantaneous MS2 signal from another work using a similar P2P-MS2-lacZ construct (Eck et al.,1110
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2020).
Figure S7A shows the CV as a function of embryo position as reported by these different

approaches. For the static measurements (red, green, and blue), the CV lay around 20% to 40%,

reaching a peak near 40% along the length of the embryo. The CV of the inferred mean initiation

rate (purple) exhibited similar values, although it was slightly lower in a systematic fashion. This1115

difference was likely due to the fact that the inference relies on time-dependent measurements that

can average out certain sources of error such as experimental noise, whereas such time averaging

is not possible in the context of single time point measurements.

To test whether the discrepancy in the CV between time-resolved and snapshot-based mea-

surements arose from differences in the experimental error of each technique, we utilized the1120

alternating MS2-PP7 reporter used in the calibration calculation (Section S4) to separate out ex-

perimental sources of variability from true biological sources. Specifically, because the MS2 and

PP7 fluorescent signals in this reporter construct should, in principle, reflect the same underlying

biological signal, deviations in each signal from each other should report on the magnitude of the

experimental error.1125

Following the formalism introduced by Elowitz et al. (2002), we identify the correlated noise be-
tween the MS2 and PP7 signals as true biological variability. In contrast we identify the uncorrelated

noise with experimental variability. We then used the two-color formalism (Elowitz et al., 2002) to
separate out experimental noise from biological noise using the MS2 and PP7 fluorescent signals at

each point in time presented in Figure S5C . First, we defined the deviations �MS2 and �PP7 of each
instantaneous MS2 and PP7 fluorescent signal from the mean MS2 and PP7 fluorescence signals,

averaged across nuclei and time

�MS2 =
FMS2

⟨FMS2⟩
− 1 (S24)

�PP7 =
FPP7
⟨FPP7⟩

− 1, (S25)

where FMS2 and FPP7 are the instantaneous MS2 and PP7 fluorescences for a given nucleus and
time point, respectively, and ⟨FMS2⟩ and ⟨FPP7⟩ are the mean MS2 and PP7 fluorescences, averaged
across nuclei and time points, respectively. Using these deviations, the uncorrelated and correlated

noise terms are defined as

�2uncorr =
1
2
⟨

(

�MS2 − �PP7
)2
⟩ (S26)

�2corr = ⟨�MS2�PP7⟩, (S27)

where the brackets indicate an ensemble average over time points and cells. From this, the total

noise �2tot, defined as the variance �
2 divided by the mean squared �2, is simply the uncorrelated

and correlated noise components added in quadrature

�2tot =
�2

�2
= �2uncorr + �

2
corr. (S28)

Note that the total noise �2tot is simply the squared coefficient of variation. Thus, the squared
coefficient of variation (CV2) of our data is equal to �2tot and can be separated into the uncorrelated1130

and correlated components.

Figure S7B shows this CV2 (averaged across embryo position) compared with the separated

uncorrelated and correlated noise sources. Intriguingly, the uncorrelated and correlated noise

(yellow) each contribute about half to the overall noise, which is quantitatively comparable to the

CV2 of the static snapshot of MS2 and PP7 data used in the main text (red, green), roughly 20%.1135

Furthermore, the CV2 of the inferred mean initiation rate is roughly half of the CV2 of the static

fluorescence measurements and is quantitatively comparable to the correlated noise, at about 10%.
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As a result, the MCMC inference method can quantitatively capture the true biological variability

in the mean initiation rate while separating out the uncorrelated contribution due to experimental

noise. Thus our results support the power of model-driven inference approaches in providing clean1140

readouts of variability in transcriptional parameters.

S8 Comparison of distribution of elongation rates with other works
As an additional validation of our inference results, we compared the distribution of single-cell

inferred elongation rates with those reported in two similar works by Hocine et al. (2013) and
Fukaya et al. (2017). Both of these works used a two-color live imaging reporter like the one utilized1145

in this work, and measured the time delay between the onset of each stem loop signal to estimate

a single-cell mean elongation rate. Fukaya et al. (2017) studied a similar hunchback reporter to the
one used here, while Hocine et al. (2013) used a reporter construct in yeast.
Figure S8 shows the comparison of distributions of elongation rates. Because the reporter

constructs and analysis techniques differed between works, a quantitative comparison is not1150

possible. Nevertheless, all three sets of results report a significant cell-to-cell variability in mean

elongation rate, ranging from 1 kb/min to 3 kb/min.

S9 Theoretical investigation of single-cell distribution of elongation rates
To investigate the molecular mechanisms underling single-cell distributions of elongation rates

obtained from the inference, we developed a single-molecule theoretical model. We were interested1155

in how the observed variability in single-cell elongation rates could constrain models of the single-

molecule variability in RNAP elongation rates. To disregard effects due to position-dependent

modulations in the transcription initiation rate, we only studied cells anterior of 40% along the

embryo length, where the initiation rate was roughly constant.

The model was adapted from the stochastic Monte Carlo simulation used in Klumpp and Hwa1160

(2008), which accounts for the finite size of RNAP molecules (Fig. S9). Here, single RNAP molecules
are represented by one-dimensional objects of size Nfootprint that traverse a gene consisting of a

one-dimensional lattice with a total number of sites, corresponding to single base pairs, equal to

Nsites. The position of the active site of molecule i is given by xi, which takes integer values—each
integer corresponds to a single base pair of the gene lattice. Because RNAP molecules have a finite1165

size, given by Nfootprint, an RNAP molecule i thus occupies the lattice sites from xi to xi +Nfootprint.

New RNAPmolecules are loaded at the start of the gene located at x = 0. Due to the exclusionary
interactions betweenmolecules, simultaneously simulating themotion of all molecules is unfeasible,

and a simulation rule dictating the order of events is necessary. At each simulation timestep dt, a
randomized sequence of indices is created from the following sequence1170

 = {0, 1,… , N}, (S29)

where {1,… , N} correspond to any RNAP molecules i = 1,… , N already existing on the gene, and 0
corresponds to the promoter loading site for new RNAP molecules. The process is repeated until a

total simulation time T has elapsed.
Choosing indices i from the random sequence  obtained above, the following actions are taken.

If the promoter loading site is chosen (i = 0), an RNAP molecule is loaded with probability �, only if1175

no already existing RNAP molecules overlap with the footprint of the new RNAP molecule. If such

an overlap occurs, then no action is taken. To calculate the probability of loading, a random number

is drawn from a Poisson distribution with parameter � dt. Recall that, for a Poisson distribution with
parameter � dt, the resulting random variable corresponds to the number of occurrences in a time
frame dt. Here, if this number is one or higher, then the loading event is considered a success.1180
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Figure S7. Comparison of coefficients of variation (CV) between inferred mean initiation rates and
instantaneous counts of number of nascent RNA transcripts. (A) Position-dependent CV of inferred mean

initiation rate (purple) compared with static measurements of MS2 and PP7 raw fluorescence (red, green), as

well as with static measurements of MS2 data from Eck et al. (2020). (B) Position-averaged squared CVs of the
same measurements, where the entire dataset is treated as a single sample and embryo position information is

disregarded. In addition, separation of experimental (uncorrelated) and biological (correlated) sources of

variability are shown, calculated using the reporter described in Section S4. (A, Shaded regions indicate

bootstrapped standard error of the mean; B, error bars indicate bootstrapped standard error of the mean.)
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Figure S8. Comparison of distribution of elongation rates (green) with previous studies (Hocine et al. (2013),
red and Fukaya et al. (2017), blue). Distributions of previous studies were adapted from Figs. 2D and 2A ofHocine et al. (2013) and Fukaya et al. (2017), respectively.

If the index i indicates that an RNAP molecule was chosen i > 0, then that RNAP molecule
advances forward with stochastic rate �. This probability is simulated by drawing a random number
from a Poisson distribution with parameter � dt, thus giving an expected distance traveled of � dt
per timestep. If this movement would cause the RNAP molecule to overlap with another RNAP

molecule, then no action is taken. Otherwise, the RNAP molecule moves forward the number of1185

steps given by the generated random variable.

To simulate potential single-molecule variability, each RNAP molecule can possess a different

stepping rate �. For a given RNAPmolecule i, its stochastic stepping rate �i is drawn from a truncated
normal distribution T r with mean �� and standard deviation �� and lower and upper limits 0 and
infinity, respectively1190

�i = T r(�, �� , 0,∞). (S30)

Once the position of the active site of an RNAP molecule exceeds that of the total number of

sites Nsites, i.e. the molecule reaches the end of the gene, it is removed from the simulation. The

simulation does not incorporate any cleavage or RNAP termination processes, since it only focuses

on studying elongation dynamics in the body of the gene. Additionally, we do not incorporate

sequence-dependent RNAP pausing along the gene.1195

To calculate a mean elongation rate, we first computed a mean elongation rate for each single

RNAP molecule in the simulation. This single-molecule elongation rate was obtained by taking

the finite difference in position divided by the timestep dt for each RNAP molecule loaded during
a single simulation rate. Then, we averaged these single-molecule elongation rates to obtain a

simulation-wide mean elongation rate.1200

We treated each simulation as an individual cell such that we interpreted this quantity as

precisely the single-cell elongation rate inferred from the data in themain text. Thus, the distribution

of mean elongation rates across a simulated population of cells was compared to the experimentally

inferred distribution of single-cell elongation rates. The simulation was run for 200 cells.
Finally, to account for single-cell variability in the transcription initiation rate, the loading rate1205

� was allowed to vary across each simulated cell j and was drawn from a Gaussian distribution
with parameters reflecting the actual data. Since hunchback is known to load new nascent RNA
transcripts at a rate of 1 molecule every 6 seconds in the anterior of the embryo (Garcia et al.,
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Parameter Description Value
T total simulation time 600 sec
dt simulation timestep 0.5 sec
Nsites size of lattice 6626 bp
Nfootprint RNAP footprint (Selby et al., 1997) 40 bp
�� mean loading rate 0.17 sec−1

�� standard deviation of loading rate 0.05 sec−1

�� mean elongation rate free parameter

�� standard deviation of elongation rate free parameter

Table S3. Parameters used in single-molecule Monte Carlo simulation of elongation rates.

2013), we thus chose the mean of this distribution �� to be 1molecule∕6 s = 0.17 s−1. The standard
deviation �� was chosen to be this mean multiplied by the CV in the initiation rate in the anterior1210

inferred in the main text, resulting in a value of 0.05 s−1. Thus, for simulated cell j

�j = N(�� , ��), (S31)

where any negative value was replaced with zero.

The values of each simulation parameter are summarized in Table S3.

To investigate the nature of molecular variability in elongation rates, we attempted to fit the

mean and variance of the simulated distribution of elongation rates with those of the inferred1215

single-cell distribution from the data.

First, we fixed �� to zero and left �� as a free parameter (Fig. 2F, brown). Because here each RNAP
molecule had the same stepping rate, the exclusionary interactions between molecules did not

appear to substantially alter the single-cell mean elongation rate and the model could not produce

the high single-cell variability in elongation rate seen in the data (Fig. 2F, blue).1220

In contrast, if we also left the single-molecule variability in elongation rate �� as a free parameter,
the model could reasonably produce the distribution observed in the data (Fig. 2F, gold). The model

produced a simulated mean (standard deviation) of 1.83(0.75) kb/min compared to the inferred
values of 1.84(0.75) kb/min from the data.
The best fit parameters were �� = 2.76 kb/min and �� = 3.72 kb/min, indicating that substantial1225

variability in the single-molecule elongation rate was necessary. In addition, the value of �� was
much larger than the overall mean elongation rate of 1.84 kb/min seen in the data, likely due to
the fact that the high densities of RNAP molecules here resulted in traffic jams, effectively slowing

down the overall single-cell elongation rate despite the high single-molecule stepping rates of each

individual RNAP molecule.1230

S10 Supplementary Videos
S1. Video 1. Measurement of reporter construct. Movie of P2P-MS2-lacZ-PP7 reporter construct

used in an embryo in nuclear cycle 14. Time is defined with respect to the previous anaphase.
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Figure S9. Cartoon overview of simulation. RNAP molecules with footprint Nfootprint stochastically advance

one-dimensional gene represented as a lattice with Nsites unique sites, with each site equivalent to a single base

pair. Each RNAP molecule i possesses an intrinsic stepping rate �i, and each cell j stochastically loads new RNAP
molecules at the promoter with rate �j .
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