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Recent advances in genetic engineering technologies has made it possible to construct artificial
genetic circuits and use them to control how cells respond to their surroundings. This has been used
to generate spatial patterns of differential gene expression. In addition to the spatial arrangement of
different cell types, another important aspect of spatial structure lies in the overall shape of the group
of cells. However, the question of how cells can be programmed, and how complex the rules need to
be, to achieve a desired tissue morphology has received less attention. In this paper, we attempt to
address these questions by developing a mathematical model to study how cells can use diffusion-
mediated local rules to grow into clusters with different shapes. Within our model, cells are allowed
to secrete diffusible chemicals which can either directly regulate the growth rate of cells (‘growth
regulator’), or indirectly affect growth by changing the secretion rate or the effect of other growth
regulators. We find that (1) a single growth inhibitor can be used to grow a rod-like structure, (2)
multiple growth regulators are required to grow multiple protrusions, and (3) the length and shape
of each protrusion can be controlled using growth-threshold regulators. Based on these regulatory
schemes, we also postulate how the range of achievable structures scales with the number of signals:
(A) the maximum possible number of protrusions increases exponentially with the number of growth
inhibitors involved, and (B) to control the growth of each set of protrusions, it is necessary to have
an independent threshold regulator. Together, these experimentally-testable findings illustrate how
our approach can be used to guide the design of regulatory circuits for achieving a desired target
structure.

Keywords: programming cell growth, spatial structure, diffusion-reaction, local rules, cellular self-
organization, synthetic development

I. INTRODUCTION

A fundamental goal in synthetic biology is to under-
stand how cells can be programmed to generate a desired
spatial configuration. In order to achieve such a collec-
tive goal, individual cells must make appropriate local
decisions depending on where they are in the cluster and
the current global state of the system. However, cells do
not have direct access to these quantities and can only
sense their immediate surroundings. Global information
that needs to be accessible for cellular decision making
must therefore be encoded in their local environment.

Recent advances in genetic engineering technologies
have made it possible to encode desired sets of rules
within the genetic programs of cells, and these have been
used to create distinct spatial patterns [1–5]. For exam-
ple, the use of a synthetic notch receptor system to en-
code changes in expression levels of cadherin molecules
(in ‘receiver cells’ engineered with receptors that trig-
ger downstream cellular responses when activated) upon
contact with another cell type (‘sender cells’ engineered
with ligands on cell surface) led to self-organization of
clusters with distinct spatial arrangements of different
cell types [3, 6]. In addition to juxtacrine signaling i.e.
signaling through direct cell-cell contact (ligand/receptor
systems), cells can also be engineered to communicate via
diffusible signals [4–6]. In particular, a graded pattern of
signaling activity was obtained by culturing engineered
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Hedgehog-responding cells next to engineered Hedgehog-
secreting cells [4], and Turing-like patterns were gener-
ated by reconstituting an activator-inhibitor circuit of
two diffusible molecules [5].

In addition to spatial patterns within a cell cluster (i.e.
spatial arrangement of cells with different gene expression
profiles), another important aspect of spatial structure
lies in the form of the overall tissue shape. Even though
this has received less attention in the field of synthetic
biology, synthetic circuits can potentially be engineered
to produce other forms of physiological outputs such as
the regulation of growth/proliferation and death rates
[1, 7], which would enable cells to grow into different
cluster shapes. Nevertheless, before any experimental
attempts, it is useful to first ask what are the rules that
would enable cells to grow into a desired shape.

The question of how tissue morphology emerges has
been widely studied in many biological systems, and
there are many possible strategies cells can adopt [8, 9].
The ability to respond to local external chemical en-
vironments is particularly important in many develop-
mental processes, where some cells can secrete mor-
phogens which diffuse in extracellular space to induce
concentration-dependent responses in other cells [10, 11].
In response to their local environment, cells can move
[12], rearrange among themselves [13–16], produce differ-
ent levels of actin/myosin [17, 18], undergo oriented cell
division [19, 20], vary their growth rates [17, 18, 20, 21],
amongst others. The precise regulation of any specific
biological phenomenon is typically very complex, involv-
ing a combination of these mechanisms [17–20] or many
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types of signals or even multiple cell types, each following
a different set of rules [14, 18]. However, when trying to
grow a certain target structure in the lab, it is desirable
to achieve a minimal working model, or to work with the
minimal number of components. This requires an un-
derstanding of what elements are necessary to achieve a
desired structural phenotype, and more generally, how
does developmental complexity scale with complexity of
these elements, or the cell-to-cell interaction rules [22].

In this paper, we attempt to address these questions by
developing a framework for studying how different clus-
ter shapes can emerge from cells regulating their growth
rates based on their local chemical environment. Within
our model, cells are allowed to secrete diffusible chemicals
which can either directly regulate the growth rate of cells
(‘growth regulator’), or indirectly affect growth by chang-
ing the secretion rate or the effect of other growth regu-
lators. We find that (1) a single growth inhibitor can be
used to grow a rod-like structure, (2) multiple growth reg-
ulators are required to grow multiple protrusions, and (3)
the length and shape of each protrusion can be controlled
using growth-threshold regulators. With these regulatory
schemes, we also illustrate how our approach can be used
to infer how developmental complexity (i.e. the range of
achievable structures) scales with model complexity (i.e.
the number of signals) for any given initial cluster. In
particular, we find that the maximum possible number
of protrusions increases exponentially with the number
of growth inhibitors involved, and to control the growth
of each set of protrusions, it is necessary to have an in-
dependent threshold regulator.

II. RESULTS

A. Modeling diffusion-based morphogenesis

Suppose every cell has the potential to secrete q differ-
ent chemicals, with the secretion rate µi(~c) of chemical i
potentially regulated by the local chemical environment
~c of the cell (Fig. 1):

µi(~c) = µi,max(~c)

q∏
j=1

H(cj |Kij(~c), nij), (1)

where µi,max is the maximum secretion rate of i, and
H(c|K,n) = cn/(Kn + cn) is the Hill function.

We consider a 2D cluster of cells in a liquid medium
and assume that the growth rate is much slower than the
secretion, degradation and diffusion rates, such that the
spatial profile of chemical concentrations satisfy the set
of steady-state reaction-diffusion equations:

Di∇2ci + µi(~c)− γici = 0, (2)

for i = 1, ..., q, where Di is the diffusion coefficient, γi is
the degradation rate of i, and we assume the concentra-
tions vanish far from the cell cluster.

We also allow the chemicals to be growth regulators
that regulate the growth and division rate g of each cell
(Fig. 1):

g(~c) =

q∏
j=1

H(cj |Kj(~c), nj), (3)

where we have taken the maximum growth rate to be 1.
In both the secretion and growth regulatory functions

(Eqns. 1, 3), we take the Hill coefficients nij and nj to
be either 0 (when j does not participate in the regula-
tion), or very large in magnitude (negative when j is an
inhibitor, positive when j is an activator) such that the
Hill functions can be thought of as threshold functions.

Within a tissue, or a cellular cluster, the growth zone,
which marks the region where cells can grow and divide,
is determined by Eqns.1-3. To simulate the dynamics
given the growth zone, we model the cell cluster as an
incompressible cellular ‘fluid’ of constant density, such
that the velocity u of cell flow is given by (Fig. 1):

∇ · u = g, (4)

with u = −∇P and we impose the condition that the
pressure is P = 0 at the cluster boundary. For any g(x),
the velocity of the tissue along its boundary can then
be obtained using boundary integral methods (Appendix
A).
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FIG. 1. Schematic of the model. We consider a cluster of
cells, each having the potential to secrete q different diffusible
chemicals. The secretion rate µi(~c) of each of these chemicals
i = 1, ..., q, and the growth rate g(~c) of each cell depend on
the local external chemical environment ~c of the cell. Given
the spatial profile of growth rate inside the cluster, we can
then solve for the velocity of cell flow ~u, which specifies how
the shape of the tissue changes over time (blue arrows).

The equations above specify the dynamics for any reg-
ulatory mechanism, including the number of chemicals
involved and the role of each of these chemicals i.e. how
they affect growth and secretion of other chemicals.

Given a fixed set of growth rules, the resulting cell
cluster will also depend on the initial configuration. In
particular, with an initial circular cell cluster, if there
are no spontaneous instabilities, concentration profiles
and hence the cluster will remain circularly symmetric
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as it grows. For more complex shapes to emerge, there
must be some symmetry breaking mechanism. In biolog-
ical systems, the initial cluster shape is often determined
by external conditions such as an external concentration
gradient. Furthermore, during the early stages of de-
velopment, the timing, order and plane of cell divisions
are typically highly regulated and possibly governed by
a separate set of rules encoded within the cell. When
trying to grow these tissues in the lab, one can imagine
creating molds or patterned environments for initializing
the arrangement of cells. However, our goal here is not to
explore what can be achieved throughout the whole space
of initial conditions. Instead, we will illustrate how our
framework can be used to inform how regulatory circuits
should be designed in order to grow desired structural
features from a given initial cluster shape.

Inspired by the example of developing bird beaks,
which has been shown to be conic sections with a local-
ized growth zone near the tip [23], we choose to initialize
the system with a 2-dimensional parabolic cell cluster,
and assume that because of an initial symmetry break-
ing event, only cells in the front half of the initial cluster
(i.e. cells with x−coordinate greater than L0/2, where
x = 0 corresponds to the vertical edge of the cluster and
x = L0 is the location of the initial parabolic tip) can
divide. Nevertheless, we find that an initial elliptic cell
cluster gives rise to qualitatively similar structural fea-
tures (Fig. S1).

In the rest of the paper, we will make use of con-
crete examples of this model to explore how the range of
achievable structures varies with the type of regulatory
mechanism and the number of signals involved in the
growth regulation. The regulatory schemes we explore
in this paper do not exhibit spontaneous instability, and
we return to this point in the discussion section (Section
III).

B. Single growth inhibitor can give rise to an
elongating rod-like structure

If all cells within the tissue were to grow uniformly at
the same rate, the cluster will expand in all directions,
maintaining its shape while it grows. Within our model,
in order for the tissue to elongate preferentially in one
direction, there must therefore be growth heterogeneity
across the cluster, something that can only be achieved
with a growth regulator.

We first consider the simplest scenario where all cells
are secreting only a single growth inhibitor X at a con-
stant rate µX . The inhibitor concentration cX satisfies
the following non-dimensional equation:

∇̃2c̃X + µ̃X − c̃X = 0, (5)

where the rescaled length scale x̃ =
√

γX
DX

x, the rescaled

inhibitor concentration c̃X = cX
KgX

with KgX being the

threshold concentration above which cells stop growing

(i.e. g(c̃X) = H(c̃X |1,−100) in Eqn. 3), and the effective
secretion rate µ̃X = µX

γXKgX
.

Given any initial cluster size, the subsequent dynamics
are therefore determined only by a single parameter µ̃X ,
with the growth zone being the region where c̃X ≤ 1
(Fig.2a). If µ̃X is too low, no cells will be inhibited; if µ̃X
is too high, no cells can grow. For intermediate values of
µ̃X , we find that the growth zone is localized near the tip
of the parabolic cluster, and the size of the growth zone
decreases with increasing µ̃X (Fig.2b). With the growth
zone at the tip, the cluster grows a rod-like structure
regardless of the size of the growth zone (Fig.2b). In the
long time limit, the chemical environment at the tip and
hence the size of the growth zone stays approximately
constant during growth (Fig.2c,d), with this steady-state
size also decreasing with µ̃X (Fig.2d).

(a) (b)
𝑋 𝑔𝑟𝑜𝑤𝑡ℎ
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𝑔

𝜇𝑋 = 7:

𝜇𝑋 = 9:

(c) (d)

FIG. 2. Dynamics of a parabolic 2-D cluster with cells se-
creting a single growth inhibitor. (a) We treat X is a growth
inhibitor, such that cells can only grow if the concentration of
X is below a threshold i.e. c̃X < 1. (b) Only cells at the tip
of the tissue can grow, with the initial size of the growth zone
(black region) decreasing with increasing effective secretion
rate of inhibitor µ̃X . As cluster grows, a rod-like extension
emerges. The different colored regions represent the growth
zones at different times. (c) Rescaled inhibitor concentra-
tion c̃X,min at the tip initially increases but reaches a steady-
state level where it stays approximately constant. (d) Area
of growth zone eventually stays approximately constant as
the rod-like extension grows. The steady-state area decreases
with µ̃X . [Other parameters: initial tissue length x̃0 = 1.5,
initial tissue width ỹ0 = 1]

Such a mechanism can therefore potentially be used for
growing rod-like extensions, with the cluster stop growing
when cells encounter depletion in nutrients, oxygen or
other signals necessary for growth.
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This result also implies that within our model and for
an initial parabolic cell cluster, a single growth inhibitor
alone cannot give rise to anything other than a single pro-
trusion with approximately constant width. We therefore
ask how more complex shapes can develop with the use
of more chemical signals. In the rest of the paper, we will
focus on two specific features: (a) the growth of multiple
protrusions and (b) the control over how the width of a
protrusion varies as it grows.

C. Growing multiple protrusions with multiple
growth inhibitors

In order for multiple protrusions to develop, there has
to be multiple peaks in the normal velocities along the
cluster boundary. One way for this to occur is for the
tissue to have multiple growth zones - these do not nec-
essarily need to be present at the initial state as long
as there is potential for these distinct growth zones to
emerge during growth.

Within the framework of our model, a chemical can
either influence the secretion rate of other chemicals
(Eqn. 1), affect growth rate regulation by other chem-
icals through the growth threshold or is itself a growth
regulator (Eqn. 3). We find that since the concentration
of growth regulators most directly determines whether
a cell can grow, including additional growth regulators
can change growth zone shapes most drastically. Nev-
ertheless, for each additional growth regulator to pro-
vide spatial information that the other growth regulators
could not have provided, the secretion of these additional
growth regulators must be regulated such that not all
cells are producing the same set of growth regulators.

A simple mechanism for increasing the number of pos-
sible protrusions (through introducing the potential for
growth zones to split) is to allow cells within a growth
zone to produce an additional growth inhibitor. We will
first illustrate how this works with two growth inhibitors,
before generalizing to the scenario of having multiple
growth inhibitors.

It is possible to grow up to three protrusions with just
two growth inhibitors

We consider here the case where X, in addition to be-
ing a growth inhibitor, also inhibits the secretion of a
second growth inhibitor Y (Fig. 3a). This implies that
Y is only produced when X is below some threshold level
cX < Ks (Fig. 3a), i.e.

µY (cX) = µY 0H(cX |Ks,−100). (6)

The steady-state concentrations therefore satisfy the
following set of non-dimensional equations:

∇̃2c̃X + µ̃X − c̃X = 0

∇̃2c̃Y + µ̃Y (c̃X)− γr c̃Y = 0
(7)
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FIG. 3. Dynamics of cluster when cells secrete two growth
inhibitors. (a) We consider here the case where both X and
Y inhibits growth. In addition, X also inhibits the produc-
tion of Y , such that its secretion rate µ̃Y (c̃X) is a threshold
function with Y only produced near the tip of the cluster
where c̃X < K̃s. (b) The growth zone (in red) takes on dif-

ferent shapes depending on the values of K̃s and µ̃Y . When
K̃s = 0.9, the region of the growth zone closer to the tis-
sue tip stops growing first as µ̃Y 0 is increased (top row, left:

µ̃Y 0 = 150, right: µ̃Y 0 = 200). When K̃s = 1, growth zone
depletes from its center as µ̃Y 0 increases (middle row, left:
µ̃Y 0 = 56, middle: µ̃Y 0 = 60, right: µ̃Y 0 = 65). When the

ratio of secretion threshold to growth threshold K̃s = 1.2, the
growth zone shrinks from the left boundary as µ̃Y 0 increases
(bottom row, left: µ̃Y 0 = 20, right: µ̃Y 0 = 22). The growth
zone therefore remains attached to the tip of the tissue. The
blue regions consist of blue arrows perpendicular to the tis-
sue boundary, with the length of the arrows proportional to
the boundary velocity at that point. (c) Cluster dynamics for

different secretion thresholds K̃s, with the different colored re-
gions representing the growth zones at different time points.
Cluster grows multiple protrusions when K̃s = 1. There is
only a single growth zone and hence a single protrusion when
K̃s = 1.2. When K̃s = 0.9, the cluster grows a single rod-
like protrusion even though there are initially multiple growth
regions. [Other dimensionless parameters: µ̃X = 8, γr = 1.]

where the rescaled length scale x̃ =
√

γX
DX

x, rescaled

concentrations c̃X = cX
KgX

, c̃Y = cY
KgY

and K̃s =
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Ks

KgX
, effective secretion rates µ̃X = µX

γXKgX
and µ̃Y =

µ̃Y 0H(c̃X |K̃s,−100) with µ̃Y 0 = µY 0

γXKgY

DX

DY
, and the

rescaled Y degradation rate γr = γY
γX

DX

DY
.

The corresponding growth condition is given by:

g(c̃X , c̃Y ) = H(c̃X |1,−100)H(c̃Y |1,−100). (8)

Fixing the secretion rate ofX to be µ̃X = 8, we find the
inclusion of Y allows the growth zone to take on different
shapes depending on the values of K̃s and µ̃Y 0 (Fig.3b).
In the low µ̃Y 0 limit, the growth zone is determined solely
by cX . As µ̃Y 0 increases, some of the cells that were not
inhibited by X may now be inhibited by Y . This reduces
the size of the growth zone. However, the way in which
the shape of the growth zone changes with increasing µ̃Y 0

depends on the secretion threshold K̃s (Fig.3b). This
is because the growth zone starts being depleted at the
point where cY is the highest,

In particular, if cells secrete Y only when their growth
is inhibited by X (K̃s = 1), the growth zone is depleted
from the center of the original growth zone (Fig.3b). The
presence of this ‘hole’ changes the velocity profiles along
the boundary, leading to multiple peaks in velocity along
the boundary. This in turn gives rise to a pair of pro-
trusions extending from opposite sides of the tissue, in
addition to the middle tip protrusion. The tip protrusion
eventually stops growing as cX (which includes contribu-
tions from cells in both side protrusions) increases. De-
pending on the value of µ̃Y , which determines the initial
fraction of growing cells and hence how fast cX increases,
the tip protrusion can reach different lengths before it
stops growing (Fig. 3c). However, the side protrusions
continue to grow because the increase in number of cells
(and hence total production of X) is offset by these pro-
trusions getting further away from the main bulk of the
cluster.

This mechanism shows that having two growth in-
hibitors can give rise to a maximum of 3 protrusions.
This is nevertheless only an upper bound. If K̃s is suf-
ficiently large such that the growth zone depletes from
the boundary closer to the bulk of the tissue (Fig.3b),
there will be just a single growth zone and hence a sin-
gle protrusion (Fig. 3c). Furthermore, even with multi-
ple distinct growth zones, it is possible for the cluster to
grow a single rod-like structure similar to when cells only
produce X (Fig.3c).

The potential number of protrusions scales
exponentially with the number of growth regulators

This same strategy can be repeated with more than
2 growth inhibitors. If for example a third growth in-
hibitor Z is produced within the existing growth zone
(i.e. when both X and Y levels are low), this can again
split the existing growth zones, doubling the number of
potential protrusions. This argument therefore implies
that with q ≥ 2 growth regulators, it is possible to get a

maximum of zmax = 3× 2q−2 protrusions. Equivalently,
qmin = log2(z/3) + 2 is the minimum number of growth
regulators we would need to get z protrusions. Together,
the potential number of protrusions scales exponentially
with the number of growth regulators.

D. Regulating the growth of individual protrusions
using threshold-regulators

In addition to growing multiple protrusions, one may
also wish to regulate the growth of each of them i.e. con-
trol how the width changes over time and for the clus-
ter to stop growing by itself. We first ask how this can
be achieved for a single protrusion, before discussing the
general case of controlling multiple protrusions.

A growth threshold regulator, together with a growth
inhibitor, can give rise to a cone-like protrusion.

We saw previously that with a single growth inhibitor,
the protrusion will grow with approximately constant
width. This implies that for its width to change over
time, additional chemicals are required. A mechanism
for the protrusion to grow a sharp tip is for the growth
zone to shrink and the center of the growth zone to shift
closer to the tip as the protrusion grows. This is in fact
what happens in the development of bird beaks [23].

Inspired by this, we ask here how such a phenomenon
can arise. One way this could happen is if the growth
threshold KgX of the growth inhibitor X decreases over
time. However, since any growth rule must be local, the
time dependence of KgX must occur through the depen-
dence on the chemical environment i.e. KgX(~c). We
therefore considered the possibility of having a second
chemical Y that reduces KgX . For simplicity, we chose a
linear function for this threshold regulation (Fig.4a):

KgX(cY ) = KgX0(1− acY ), (9)

where KgX0 is the baseline growth threshold when Y is
absent, and a controls how strongly Y regulates KgX .

Nevertheless, we find that the secretion of this thresh-
old regulator is not a sufficient condition for the growth
zone to decrease in size − it is necessary for the secretion
of Y to be regulated such that only certain regions of the
tissue are secreting Y . This is because if Y is secreted at
a constant rate by all cells, cY at the tip will not increase
as the tissue grows (just like for the growth inhibitor X).
In this case, cells at the growing tip does not have any
information of how far they are from the bulk of the tis-
sue, and the cluster again grows a rod-like structure (Fig.
4b).

In order for only certain regions of tissue to secrete
Y , we allow the secretion rate of Y to depend on the
concentration of X as in the case of 2 growth inhibitors
(Eqn. 6). The steady-state diffusion-reaction equations
for this context are the same as if there were 2 growth

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.29.273607doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.273607


6

inhibitors (Eqn.7), except that the rescaled concentra-

tions are now c̃X = cX
KgX0

, c̃Y = acY and K̃s = Ks

KgX0
,

the effective secretion rates µ̃X = µX

γXKgX0
and µ̃Y =

µ̃Y 0H(c̃X |K̃s,−100) with µ̃Y 0 = aµY 0

γX
DX

DY
.

(d)

(a) (b)
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FIG. 4. Dynamics of cluster when cells secrete a growth
threshold regulator in addition to a growth inhibitor. (a)
Y reduces the growth threshold of X. Here, we have chosen

the rescaled growth threshold K̃g =
Kg

Kg0
to decrease linearly

with the rescaled concentration c̃Y = acY . (Eqn.9) (b) The
cluster grows a rod-like structure when all cells secrete Y at
a constant effective rate µ̃Y = aµY

γ1

D1
D2

. (c) We consider the
scenario where X inhibits the production of Y such that only
a region at the tip of the tissue can secrete Y . (d) For the
scenario described in (c), it is possible for the protrusion to
become narrower over time if the secretion threshold is less
than the growth threshold K̃s = Ks

Kg0
< 1 (top: µ̃Y = 6, bot-

tom: µ̃Y = 15). (e) We also allow the maximum secretion
rate of Y to decrease linearly with cX . (Eqn.10). (f) When

K̃s = 0.9, a stronger regulation of µY,max (more negative b̃)
produces sharper cone-like structures (top: µ̃Y = 15, middle:
µ̃Y = 30, bottom: µ̃Y = 50) .[Other dimensionless parame-
ters: µ̃X = 8, γr = 0.2.]

For the growth zone to decrease in size, cY at the tip
needs to increase as the tissue grows. We find that an
effective way for this to occur is for cells to secrete Y only
when c̃X < K̃s (Fig. 4c), and for K̃s < 1 such that only
a subset of growing cells (close to the tip of the tissue)

are producing Y (Fig. 4d). As the tissue grows, the
secretion region of Y increases and hence the maximum
value of cY increases. This increase in cY reduces the size
of the growth zone over time, giving rise to a narrowing of
the protrusion (Fig.4d). The protrusion eventually stops
growing when the the area of the growth zone vanishes.

The length of the cone-like protrusion can be controlled
by regulating the rate at which the size of the growth zone
decreases. We find that this can be achieved through
regulating the maximum secretion rate µY,max of Y in the

regime where Y is being secreted (i.e. c̃X < K̃s). More
specifically, we allow µY,max to increase with decreasing
cX (Fig. 4e):

µ̃Y,max = µ̃Y 0max((1 + b̃c̃X), 0), (10)

where as before the overhead ∼ indicates the correspond-
ing rescaled variables, and b̃ ≤ 0 is a dimensionless pa-
rameter that controls how strongly X regulates µY,max.
We find that a stronger regulation of µY,max can give
sharper cones (Fig. 4f). This is because as the protru-
sion grows, cX decreases. A more negative b therefore
results in a greater increase in the production of Y , and
hence a faster shrinkage of the growth zone.

An independent threshold-regulator should be used to
control the growth of each set of protrusions

If there are multiple protrusions such as in the pres-
ence of multiple growth inhibitors, we would expect that
having a single growth threshold regulator would affect
all protrusions in a similar or correlated way. Therefore,
to control the lengths of these protrusions independently,
we should have a different growth-threshold regulator for
each set of protrusions. This set of growth-threshold reg-
ulators can regulate the same growth inhibitor, but their
secretion rates (including the condition under which they
are secreted) and their effect on the growth threshold
may vary. Therefore, each regulator may be active only
in the chemical environment of the protrusion it controls.
Note however that due to the parabolic symmetry in our
problem, the side protrusions can only be controlled in
pairs.

III. DISCUSSION

There are many possible ways by which tissues can
change their shape during the developmental process.
In the context of tissue elongation [24], this can occur
through localized proliferation such as in bird beaks [23],
oriented cell divisions such as in the Drosophila wing disc
epithelium [20], cell intercalation [15, 16, 25], and elonga-
tion of individual cells [24]. All of these mechanisms fun-
damentally require cells to sense their local environment
and respond by varying gene expression levels, which in
turn regulate the growth rate of cells, the production
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rate of various intracellular proteins, the secretion rate
of diffusible signals, the polarization of cells, amongst
others. How these responses can be programmed, and
how complicated the regulatory mechanisms need to be,
to achieve a desired tissue shape and structure is a fun-
damental question in biology.

Here we explore changes in shape that arise solely from
differential growth rates across the tissue, and investigate
this in the context of growth rate regulation via diffusible
morphogens. By using a bottom-up approach, we find
with an initial parabolic cell cluster that it is possible
to grow a rod-like extension with just a single growth
inhibitor, and that having multiple growth inhibitors al-
low for multiple protrusions while growth threshold reg-
ulators can be used to regulate the shape and length of
each protrusion, allowing protrusions to be cone-shaped
rather than rod-like. In addition to what is achievable
with chemicals with different functions, the limits of each
regulatory circuit can also be inferred from these results
given a fixed initial condition. In our example, a single
growth inhibitor alone (with or without growth threshold
regulators) cannot give rise to multiple protrusions. More
generally, with the regulatory schemes studied here, the
maximum possible number of protrusions grows exponen-
tially with the number of growth inhibitors involved, and
there should be an additional growth-threshold regulator
for each set of protrusions one wishes to control indepen-
dently. These results provide a lower bound for the num-
ber of signals cells need to achieve a certain goal. Presum-
ably similar analyses and general arguments can be made
for other structural features and the corresponding regu-
latory mechanisms. Furthermore, there may be multiple
sets of rules that could give rise to qualitatively similar
structural features. Such an analysis can therefore also
be useful for comparing different regulatory schemes in
terms of their capacity to generate complex structures.

Turing-like instabilities have been used to explain pat-
tern formation in many biological systems and can give
rise to digit patterning [26]. Even though Turing patterns
may be a convenient way of getting a large number of pro-
trusions with very few chemicals, they typically operate
over narrow parameter ranges, and the nature of the Tur-
ing mechanism suggests that the type and features of the
patterns may change drastically as the tissue grows and
changes its shape. Coupling such a mechanism to growth
regulation therefore entails another degree of complexity
that would probably require fine-tuning of the parame-
ters. Here, we take a different approach and our results
show that it is possible to obtain multiple protrusions
with other regulatory schemes that do not involve such
spontaneous instabilities.

Identifying possible regulatory mechanisms and the
minimum number of signals needed for achieving a cer-
tain structural feature may provide insight into natural
developmental systems, and is especially useful for engi-
neering these clusters synthetically. Given the advance-
ment in genetic engineering techniques, the concrete pre-
dictions we have could potentially be tested in the lab.

More importantly, our framework can be used to guide
the design of regulatory circuits for achieving a desired
target structure. In particular, this model could be used
to test if a proposed/hypothesized regulatory scheme can
achieve a particular structure and if so, what are the rel-
evant parameter regimes. Furthermore, even though we
have assumed that all cells in the cluster follow the same
set of rules, our framework may potentially be extended
to include multiple cell types, with each cell type follow-
ing a different growth rule, or other processes such as cell
differentiation (where cells change from one type to an-
other based on local rules) and cell reorganization driven
by differential adhesion.

MATERIALS AND METHODS

All simulations are carried out using custom
code written in MATLAB (R2019a). These
codes can be found in the GitHub repository:
https://github.com/yipeiguo/ProgrammingGrowth
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Appendix A: Solving for velocities at tissue
boundary

The velocity of the tissue boundary given any spatial
growth rate profile g(~x) is found from solving the equa-
tion:

∇ · u = g, (S1)

with u = −∇P and we impose the condition that the
pressure is P = 0 at the cluster boundary.

To derive the boundary integral equation used for find-
ing the boundary velocities, we follow closely the ap-
proach used in Ref. [27].

To deal with the boundary condition P = 0, we de-
compose the potential P into 2 components:

P = P̂ + P̃ , (S2)

where

P̂ (z) =

∫
g(z̃)

2π
ln(|z − z̃|)dz̃ (S3)
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is the contribution from the growth rates of all cells
within the tissue, while P̃ is the contribution due to the
presence of the tissue boundary and satisfies:

∇2P̃ = 0 (S4)

inside the tissue, with P̃ = −P̂ on the tissue boundary
∂Ω.

The total cell velocity can therefore also be written
as the sum of the two contributions: u = û + ũ, with
û = −∇P̂ and ũ = −∇P̃ . Since P is constant on ∂Ω, the
tangential component of the velocity uτ = 0, and to solve
for the evolution of the tissue shape, we are interested in
finding the normal velocity component un = ũn + ûn.

To do so, it is convenient to consider ∂Ω as a contour
of total length L in complex plane, and parameterise it
with the arc length s such that that z(s) = x(s) + iy(s)
describes ∂Ω in the anticlockwise direction with 0 ≤ s ≤
L.

The unit normal and tangent vectors on ∂Ω are then
given by:

~n =

(
dy

ds
,−dx

ds

)
(S5)

~τ =

(
dx

ds
,
dy

ds

)
. (S6)

To reformulate Eqn. S4 in terms of a complex contour
integral, we define the streamline function ψ̃ such that
∂ψ̃
∂y = ∂P̃

∂x and ∂ψ̃
∂x = −∂P̃∂y (and hence ∇2ψ̃ = 0). The

complex potential f(z) = P̃ (z)+iψ̃(z) is then an analytic

function, and so is its derivative ∂f
∂z = w = ũ− iṽ, where

ũ and ṽ are respectively the x and y components of ũ.

We then define the function F (z) = ∂f/∂z
z−zm , such that

F (z) is a analytic function inside the tissue except at the
simple pole z = zm. If the pole zm lies on the boundary,
based on Cauchy’s integral formula,

∮
∂Ω

F (z)dz = iπ
∂f

∂z

∣∣∣∣
zm

, (S7)

which can be rewritten as:

−
∫ L

0

ũ(s)− iṽ(s)

z(s)− z(sm)

dz

ds
ds = iπ(ũ− iṽ)

∣∣∣∣
sm

. (S8)

Since (ũ− iṽ)dzds = ũτ + iũn, this can be expressed as:

−
∫ L

0

ũτ (s) + iũn(s)

z(s)− z(sm)
ds = iπ(ũτ (s) + iũn(s))

(
dz

ds

)−1 ∣∣∣∣
sm

.

(S9)
since P = 0 on ∂Ω, ũτ = −ûτ on the tissue boundary.

We therefore have

−
∫ L

0

−ûτ (s) + iũn(s)

z(s)− z(sm)
ds = iπ(−ûτ + iũn)

(
dz

ds

)−1 ∣∣∣∣
sm

(S10)
for any 0 ≤ sm ≤ L, and ûτ (s) known from Eqn. S3.

By discretizing the boundary and setting sm to be the
mid-points of the mesh, these set of equations can be
solved numerically to obtain ũn at each of the discrete
mesh points. The total velocity is then found by adding
this to ûn (which is also known from Eqn. S3).

Appendix B: Initialization with an ellipse

Initialization with an elliptic (instead of parabolic)
cluster of the same dimensions can give qualitatively sim-
ilar structural features.

𝑋

𝑔𝑟𝑜𝑤𝑡ℎ

𝑋

𝑔𝑟𝑜𝑤𝑡ℎ

𝑌 𝑋

𝑔𝑟𝑜𝑤𝑡ℎ

𝑌(a) (b) (c)

FIG. S1. Growth dynamics with an initial elliptic clus-
ter for the following regulatory schemes: (a) Single growth
inhibitor [parameters: µ̃X = 7], (b) 2 growth inhibitors

[parameters:µ̃X = 7, µ̃Y 0 = 59, K̃s = 1, γr = 1], and
(c) 1 growth inhibitor and 1 growth-threshold regulator

[parameters:µ̃X = 7, µ̃Y = 50, K̃s = 0.9, γr = 0.2, b̃ = −0.8].
[Other parameters: initial tissue length x̃0 = 1.5, initial tissue
width ỹ0 = 1]
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