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Abstract6

Recent advances in Hi-C techniques have allowed us to map genome-wide chromatin inter-7

actions and uncover higher-order chromatin structures, thereby shedding light on the principles8

of genome architecture and functions. However, statistical methods for detecting changes in9

large-scale chromatin organization such as topologically-associating domains (TADs) are still10

lacking. We proposed a new statistical method, DiffGR, for detecting differentially interacting11

genomic regions at the TAD level between Hi-C contact maps. We utilized the stratum-adjusted12

correlation coefficient to measure similarity of local TAD regions. We then developed a non-13

parametric approach to identify statistically significant changes of genomic interacting regions.14

Through simulation studies, we demonstrated that DiffGR can robustly and effectively discover15

differential genomic regions under various conditions. Furthermore, we successfully revealed cell16

type-specific changes in genomic interacting regions in both human and mouse Hi-C datasets,17

and illustrated that DiffGR yielded consistent and advantageous results compared with state-18

of-the-art differential TAD detection methods. The DiffGR R code is published under the GNU19

GPL ≥ 2 license and is publicly available at https://github.com/wmalab/DiffGR.20
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Detecting Differential Regions by DiffGR

1 Introduction21

Recent developments of chromatin conformation capture (3C)-based techniques—including 4C [1],22

5C [2], Hi-C [3–5], ChIA-PET [6], and Hi-ChIP [7]—have allowed high-throughput characterization23

of pairwise chromatin interactions in the cell nucleus, and provided an unprecedented opportunity to24

investigate the three-dimensional (3D) chromatin structures and to elucidate their roles in nuclear25

organization and gene expression regulation. Among these techniques, Hi-C and its variants [8–10]26

are of particular interest because of their ability to map chromatin interactions at a genome-wide27

scale.28

A Hi-C experiment yields a symmetric contact matrix in which each entry represents the chro-29

matin contact frequency between the corresponding pair of genomic loci. A particularly important30

characteristic of Hi-C contact matrices is the presence of the topologically-associating domains31

(TADs), which are functional units of chromatin with higher tendency of intra-domain interactions32

[11]. TADs are largely conserved across cell types and species. Moreover, CTCF and other chro-33

matin binding proteins are enriched at the TAD boundaries, indicating that TAD boundary regions34

form chromatin loops and play an essential role in gene expression regulation [11, 12].35

Several computational methods have been developed to detect TADs in Hi-C contact maps.36

These methods can be categorized into two groups: one-dimensional (1D) statistic-based methods37

and two-dimensional (2D) contact matrix-based methods [13]. Of these, 1D statistic-based methods38

often take a sliding window approach along the diagonal of Hi-C contact matrix and compute a39

1D statistic for each diagonal bin to detect TADs and/or TAD boundaries. For instance, Dixon40

et al. [11] introduced a statistic named directionality index (DI) to quantify whether a genomic41

locus preferentially interacts with upstream or downstream loci and developed a hidden Markov42

model to call TADs from DIs. Later, Crane et al. [14] proposed a novel TAD detection method,43

which computes an insulation score (IS) for each genomic bin by aggregating chromatin interac-44

tions within a square sliding through the diagonal and then searches for the minima along the45

IS profile as TAD boundaries. Unlike the 1D statistic-based methods which calculate statistics46

using local information, the 2D contact matrix-based methods utilize global information on the47

contact matrix to capture TAD structures. For example, the Armatus algorithm [15] identifies48

consistent TAD patterns across different resolutions by maximizing a quality scoring function of49

domain partition using dynamic programming. In addition, Lévy-Leduc et al. [16] proposed a TAD50

boundary detection method named HiCseg, which performs a 2D block-wise segmentation via a51

maximum likelihood approach to partition each chromosome into its constituent TADs. Recently,52

several review papers have quantitatively compared the performances of the aforementioned TAD-53

calling methods and demonstrated that HiCseg detects a stable number of TADs against changes54

of sequencing coverage and maintains the highest reproducibility among Hi-C replicates across all55

resolutions when compared with other TAD-calling methods [17, 18].56

With the fast accumulation of Hi-C datasets, there has been a growing interest in performing57

differential analysis of Hi-C contact matrices. To date, several computational tools have been58

developed for comparative Hi-C analysis, but the majority of them focused on the identification59

of differential chromatin interactions (DCIs), which represent different chromatin looping events60

between two Hi-C contact maps. In early studies, the most common strategy for DCI detection was61

to use the fold change values between two Hi-C contact maps. For instance, Wang et al. [19] used a62

simple fold-change strategy to detect the influence of estrogen treatment on chromatin interactions63

in MCF-7 Hi-C samples. Additionally, Dixon et al. [20] utilized the fold change values of chromatin64

interactions to train a random forest model to discover the epigenetic signals that were more65
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predictive of changes in interaction frequencies. In addition to these fold change-based approaches,66

another commonly utilized method for detecting DCIs was the binomial model implemented by the67

HOMER software [21]. In contrast, in more recent studies, count-based statistical methods, such68

as edgeR [22] and DESeq [23], have been adopted to identify pairwise chromatin interactions that69

show significant changes in contact frequencies. Among them, Lun and Smyth [24] presented a tool70

named diffHic for rigorous detection of differential interactions by leveraging the generalized linear71

model (negative binomial regression) of edgeR, and demonstrated that edgeR outperformed the72

binomial model. Later, Stansfield et al. [25] introduced MD normalization and performed Z-tests73

to detect statistically significant DCIs. While all these methods assumed independence among74

pairwise interactions, which holds true only in coarse-resolution Hi-C maps, Djekidel et al. [26]75

presented a novel method, named FIND, that takes into account the dependency of adjacent loci76

at finer resolutions. Briefly, FIND utilizes a spatial Poisson process model to detect DCIs that77

show significant changes in interaction frequencies of both themselves and their neighborhood bins.78

Lastly, Cook et al. [27] introduced ACCOST to identify differential chromatin contacts by extending79

the DESeq model used in RNA-seq analysis and repurposing the “size factor” to account for the80

notable genomic-distance effect in Hi-C contact matrices.81

In the cell nucleus, chromatin is organized at multiple levels, ranging from active and inactive82

chromosomal compartments and sub-compartments (on a multi-Mb scale) [3, 9], TADs (0.5–2 Mb83

on average) [11], to fine-scale chromatin interacting loops [8, 9]. Chromatin structures also exhibit84

multi-scale differences among different cell types in their compartments, TADs, and chromatin85

loops. Among these, changes in TAD organizations are of particular interest as TADs are strongly86

linked to cell type-specific gene expression [11]. For example, Taberlay et al. [28] have shown that87

genomic rearrangements in cancer cells are partly guided by changes in higher-order chromatin88

structures, such as TADs. They discovered that some large TADs in normal cells are further89

segmented into several smaller TADs in cancer cells, and these changes are tightly correlated with90

oncogene expression levels. Current differential analyses of TAD structures between different cell91

types and conditions are limited to the detection of TAD boundary changes. Recently, Chen et al.92

[13] proposed a TAD boundary detection approach named HiCDB, which is constructed based93

on local measures of relative insulation and multi-scale aggregation. In addition to calling TAD94

boundaries in single Hi-C sample, HiCDB also provides differential TAD boundary detection using95

the average values of relative insulation across multiple samples. Later, Cresswell and Dozmorov96

[29] developed TADCompare, which uses a spectral clustering-derived metric named eigenvector gap97

to identify differential and consensus TAD boundaries and track TAD boundary changes over time.98

Lastly, TADreg [30] introduced a versatile regression framework which generalizes the insulation99

score by estimating the relative insulating effects of genomic loci and adding a sparsity constraint.100

The TADreg framework was designed for TAD boundary detection, but also allowed differential101

TAD analysis across various conditions. The HiCDB, TADCompare and TADreg methods focused102

on detecting changes in TAD boundaries rather than changes in chromatin organization within103

TADs. However, differential TAD boundaries do not necessarily indicate differential chromatin104

conformation within those regions. First, Hi-C contact matrices are often sparse and noisy, which105

might lead to unstable detection of TAD boundaries. Second, chromatin interactions within a106

TAD could be strengthened or weakened in another Hi-C sample, which would suggest different107

patterns of chromatin organization within the same TAD region. Unfortunately, few methods have108

been developed to detect differential TAD regions instead of boundaries. Recently, the Hi-C pre-109

processing and analysis tool HiCExplorer [31–33] expanded its functions to capture differential TAD110

regions by comparing the precomputed TAD regions on the target Hi-C map with the same regions111

on the control map by accounting for the information in both intra-TAD and inter-TAD regions.112
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However, such comparison was only limited to the precomputed genomic regions in only one of113

the Hi-C conditions. Thus, appropriate statistical methods for detecting differentially interacting114

regions by considering TAD regions across both conditions are still lacking.115

To tackle this problem, we developed a novel statistical method, DiffGR, for detecting differ-116

ential genomic regions at TAD level between two Hi-C contact maps. Briefly, DiffGR utilizes the117

stratum-adjusted correlation coefficient (SCC), which effectively eliminates the genomic-distance118

effect in Hi-C data, to measure the similarity of local genomic regions between two contact matri-119

ces. Subsequently, DiffGR applies a nonparametric permutation test on those SCC values to detect120

genomic regions with statistically significant differential interactions. We demonstrated, through121

simulation studies and real data analyses, that DiffGR can effectively and robustly identify differ-122

entially interacting genomic regions at TAD level.123

2 Methods124

A BStep 1: Idenfity candidate regions

Hi-C matrix

TAD boudaries

Candidate genomic regions

Condition 1 Condition 2

Step 2: Measure similarity

Step 3: Detect differential regions

Hi-C matrix

TAD boudaries

Condition 1

Condition 2

Single-TAD Hierarchical-TAD Complex-TAD

Figure 1: Overview of DiffGR. A. Workflow of the DiffGR algorithm. B. Illustration of three
candidate types of differential genomic regions. The gray vertical bars represent the common
TAD boundaries between two conditions, which partition the genome into three types of candidate
regions. The blue points stand for unique TAD boundaries in only one of the two conditions.

125

The DiffGR method detects differentially interacting genomic regions in three steps, as shown in126

Figure 1A and described below in Sections 2.1-2.3. In addition, the simulation settings are outlined127

in Section 2.4 and real data preprocessing and analyses are described in Section 2.5.128

2.1 Identifying candidate genomic regions129

Suppose we have two sets of Hi-C data and their corresponding contact frequency matrices as130

the input. First, we detect the TAD boundaries in each Hi-C data, separately. Specifically, we131

apply HiCseg [16] to the raw contact matrices and obtain the corresponding TAD boundaries.132

Note that in this step one can change HiCseg with any other TAD caller, whose detected TADs133

satisfy the non-overlapping and continuous properties. We choose HiCseg because it has been134

shown that HiCseg produces more robust and reliable TAD boundaries than other TAD-calling135

methods [17, 34]. We next combine the TAD boundaries from both Hi-C contact maps to identify136

the candidate genomic regions for subsequent analyses. TAD boundaries within two-bin distance137

are considered to be a common boundary shared by both Hi-C datasets and replaced by the middle138
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bin locus. We then partition the genome into non-overlapping candidate regions using the common139

TAD boundaries, and categorize these candidate regions into the following three groups: (1) single-140

TAD candidate regions, (2) hierarchical-TAD candidate regions, and (3) complex-TAD candidate141

regions, as illustrated in Figure 1B.142

We expected different patterns of differential features in these three kinds of candidate genomic143

regions. As to the differential single-TAD region, we would expect strength changes occurred in such144

areas. For differential hierarchical-TAD regions, one large interacting domain could be evidently145

split into two or more sub-domains, or vice versa, boundaries between TADs disappeared and thus146

the corresponding domains merged in one of the contact maps. Lastly, domains might be split,147

merged, or shifted in a more complicated manner thereby constructing an entirely new structure,148

which would be defined as differential complex-TAD regions. Unlike differential single-TAD regions,149

the differential hierarchical-TAD and complex-TAD regions represent more disruptive changes in150

the 3D structure of the chromatin.151

2.2 Measuring similarity of candidate regions between two Hi-C contact maps152

In the second step, we evaluate the similarity of each candidate region between the two samples.153

Suppose a candidate genomic region is bounded by two common TAD boundaries shared by both154

Hi-C maps, and contains k unique TAD boundaries in either one of the two Hi-C maps (shown as155

blue points in Figure 1B). In the single-TAD candidate region, k = 0; in the hierarchical-TAD or156

complex-TAD candidate regions, k >= 1. For each candidate region, we consider all
(
k+2

2

)
possible157

(sub)TADs, which are separated by any pair of TAD boundaries within that region, as potential158

differential TADs. For each potential differential TAD, we calculate the stratum-adjusted correla-159

tion coefficient (SCC) [35] rather than the standard Pearson or Spearman correlation coefficients160

(CCs) to measure the similarity of intra-TAD chromatin interactions between two Hi-C samples.161

The advantages of using SCC instead of standard CCs are shown in Supplementary Results in File162

S1.163

The SCC metric was introduced by Yang et al. [35] as a measure of similarity and reproducibility164

between two Hi-C contact matrices. To account for the pronounced distance-dependence effect165

in Hi-C contact maps, chromatin contacts are first stratified into K stratum according to the166

genomic distances of the contacting loci pairs, and the correlation coefficients of contacts within167

each stratum are calculated between two samples. These stratum-specific correlation coefficients168

are then aggregated to compute the SCC value using a weighted average approach, where the169

weights are derived from the Cochran-Mantel-Haenszel (CMH) statistic [36]. That is, the SCC ρ170

is calculated as171

ρ =

K∑
k=1

(
Nkr2k∑K
k=1Nkr2k

)
ρk,

where Nk is the number of elements in the k-th stratum, r2k is the product of standard deviations172

of the elements in the k-th stratum of both samples, and ρk denotes the correlation coefficient of173

the k-th stratum between two samples.174

The original SCC metric is computed using the intra-chromosomal contact matrices with a175

predefined genomic distance limit. The resulting value has a range of [−1, 1] and can be interpreted176

in a way similar to the standard correlation coefficient. Here we use SCC as a local similarity177

measurement to evaluate each potential differential TAD between two Hi-C samples. In the SCC178
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calculation, an upper limit of genomic distance is set to 10 Mb because TADs are commonly179

smaller than 10 Mb and distal interactions over a genomic distance larger than 10 Mb are often180

sparse and highly stochastic. In addition, as the sparsity of Hi-C matrices might affect the precision181

of SCC values, the loci pairs with zero contact frequencies in both samples are excluded from the182

calculation.183

Hi-C contact maps are often sparse due to sequencing coverage limits and contain various184

systematic biases. To solve these issues, when preprocessing the Hi-C contact matrices, we first185

smooth each contact map by a 2D mean filter [35], which substitutes the contact count observed186

between each bin pair by the average contact count in its neighborhood. This smoothing process187

improves the contiguity of the TAD regions with elevated contact frequencies, thereby enhancing188

the domain structures. Next, we utilize the Knight-Ruiz (KR) normalization [37] on the smoothed189

matrices to remove potential biases.190

2.3 Detecting statistically significant differential regions191

In the third step, we identify differential genomic regions by first finding differential TADs within192

these candidate regions. In each candidate genomic region, we calculate the SCC values for all193

potential differential TADs as described above. Then we develop a nonparametric permutation test194

to estimate the p-values for these local SCC values. Additionally, we propose a quantile regression195

strategy to speed up the permutation test (see details in Supplementary Method in File S1). Finally,196

we consider a candidate region to be a differentially interacting genomic region, if at least one TAD197

within that region exhibits a statistically significant difference between the two samples and the size198

of the largest differential TAD meeting this criterion is greater than one third of the length of the199

entire candidate region. The longest differential TADs within the detected differentially interacting200

genomic regions are defined as the noticeable differential areas.201

Specifically, we perform the following nonparametric permutation test for each unique TAD202

size, as the local SCC values are calculated for all potential differential TADs of various sizes.203

Suppose s is a potential differential TAD whose length is ls and SCC value between two Hi-C204

samples is ρs. To assess the statistical significance of the observed SCC value ρs, the null distribution205

of SCC values for TADs of the same size is estimated via the following permutation procedure. To206

generate a random TAD with length ls, we first randomly select ls positions from main diagonal of207

Hi-C contact matrix, then ls − 1 position from the first off-diagonal, ..., and lastly 1 position from208

the (ls − 1)-th off-diagonal. We subsequently extract contact counts of these randomly selected209

positions from the two Hi-C contact matrices to construct the permuted TAD pair and calculate210

its SCC value. We repeat the above random TAD generation step N times (N = 2000) and obtain211

the corresponding SCC values {ρlsi }, i = 1, · · · , N . Then the p-value of the observed SCC value ρs212

can be computed as:213

ps =

∑N
i=1 I(ρlsi < ρs)

N
,

where I(·) is the indicator function. Lastly, we compare the p-values with a pre-defined significance214

level α (by default α = 0.05) to determine differential TADs meeting the significance thresh-215

old. Note that the permutation framework accounts for the multiple testing correction using the216

Benjamini-Hochberg procedure [38].217

One potential issue of this permutation framework is the false detection of significantly differen-218
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tial TADs when the two samples are highly similar (e.g., biological replicates from same experiment).219

This is because the high similarity between biological replicates would lead to high SCC values of220

the corresponding random TAD patterns. As a result, some non-differential TADs with relatively221

low SCC values would be falsely detected as differential ones. In order to reduce the number of false222

positives, we provide an option to filter the p-values ps by an empirical or automatically calculated223

threshold. This optional filtering step allows us to pre-specify the meaningful SCC between the224

two Hi-C datasets that should be reached in order to call a differential TAD truly significant.225

padjs =

{
0.5 if ps < α and ρs > θ
ps otherwise

The threshold θ can normally be defined as 0.85, which corresponds to a clear margin separating226

non-replicates from biological/pseudo-replicates in the whole-chromosome similarity comparison227

between multiple cell lines [39]. Alternatively, θ can be calculated automatically as θ =
ρlsnr+ρlsbr

2 ,228

where ρlsnr represents the mean α quantile of SCCs between non-replicate data and ρlsbr is the mean229

α quantile of SCCs between their corresponding biological/pseudo-replicate data. Here, we call230

matrices from different cell lines as non-replicates, matrices from the same cell type as biological231

replicates, and matrices sampled from pooled biological replicates as pseudo-replicates.232

2.4 Simulation settings233

To evaluate the performance of the DiffGR method, we conducted a series of simulation experi-234

ments by varying the proportion of altered TADs, proportion of TAD alternation, noise level, and235

sequencing coverage level. Specifically, we utilized the published chromosome 1 contact matrix of236

K562 cells at 50-kb resolution [9] as the original Hi-C data and simulated the altered Hi-C contact237

matrices as described below.238

2.4.1 Single-TAD alternation239

Since TADs are conserved genomic patterns and TAD boundaries are relatively stable across cell240

types and even across species [11], our simulations primarily focused on the scenarios of single-TAD241

alternations. Suppose we had an original Hi-C contact matrix M and its identified TAD boundaries.242

Each of our simulated Hi-C matrices contained two components: the signal matrix S and the noise243

matrix N , with a certain signal-to-noise ratio.244

First, to construct the signal matrix S, we randomly selected a subset of TADs from original245

contact matrix to serve as the true differential TADs. Then we replaced a certain portion of246

contact counts in each selected TAD by randomly sampling contact counts from the corresponding247

diagonals of the contact matrix. Second, we simulated the noise matrix N which represents the248

random ligation events in Hi-C experiments. Briefly, we generated these contacts by randomly249

choosing two bins, i and j, and adding one to the entry Nij in the noise matrix. The probability250

of sampling each bin in the bin pair was set proportional to the marginal count of that bin in the251

original matrix. The sampling process was repeated C times, where C was the total number of252

contacts in the original Hi-C contact matrix M . The resulting random ligation noise matrix N253

contained the same number of contacts as the original contact matrix M .254

To summarize, we had the following parameters in our single-TAD simulations.255
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• proportion of altered TADs. Using HiCseg, we detected 189 TADs with a mean size of 1.2 Mb256

in the original K562 chromosome 1 contact matrix (Supplementary Figure S1). By default,257

we set the proportion of altered TADs to be 50%, which can vary from 20% to 70%.258

• proportion of TAD alternation. In the default setting, we substituted all contact counts in259

the selected TADs by random counts permuted from the matching diagonals in Hi-C maps.260

To reduce the degree of intra-TAD alternation, we gradually decreased the proportion of261

randomly substituted intra-TAD contacts from 100% to 10%.262

• noise level, i.e., the ratio between the noise and signal matrices. The noise level was set to263

10% by default, and varied from 1% to 80%.264

For each simulation parameter setting, we generated 100 altered Hi-C contact matrices to com-265

pare against the original contact matrix. To evaluate the accuracy of the detection results, we used266

the false detection rate which defines as inaccurate percentage and is computed as 1−Accuracy =267

FP+FN
N , where FP denotes the falsely detected differential regions, FN represents the the falsely268

detected non-differential regions, and N is the total number of candidate regions being tested.269

2.4.2 Hierarchical-TAD alternation270

In addition to single-TAD alternation, we also simulated the alternation pattern of hierarchical271

TADs. We randomly selected 50% of the large TADs whose size was greater than 10 bins in the272

signal matrix to serve as the true differential TADs. For each of the selected large TAD, we chose273

a random subTAD boundary to split it into two smaller subTADs (each with size > 5 bins). We274

then replaced all inter-subTAD contact counts by randomly sampled counts in Hi-C maps. Next,275

we validated the performance of DiffGR under the hierarchical-TAD condition with respect to276

different noise levels similar to the single-TAD simulations. Because the complex-TAD condition277

has complicated TAD boundaries between two samples and occurs less frequently in real data, we278

did not generate simulation data for this condition.279

2.4.3 Simulating low-coverage contact matrices280

Low sequencing depth of Hi-C experiments would lead to low-coverage and sparse contact matrices,281

thus it could potentially affect the performance of the detection of differentially interacting regions.282

To simulate low-coverage contact matrices, we started with a deep-sequenced Hi-C contact map283

obtained from human GM12878 cells [9], and down-sampled the contact counts to generate lower-284

coverage matrices. Specifically, for each non-zero contact count Mij in the original matrix, we285

assumed that the simulated contact count follows a binomial distribution M ′ij ∼ Binomial(Mij , p),286

where the binomial parameter p = {0.2, 0.4, 0.6, 0.8, 1.0} represents the relative coverage level of287

the down-sampled contact matrix M ′. In addition, 10% noise were added to the down-sampled288

matrices.289

2.5 Real data preprocessing steps290

In our real data analysis, we used two published Hi-C datasets by Rao et al. [9] (GEO accession291

GSE63525) and Dixon et al. [11](GEO accession GSE35156). The Rao et al. [9] dataset include five292

human cell types: B-lymphoblastoid cells (GM12878), mammary epithelial cells (HMEC), umbilical293

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2022. ; https://doi.org/10.1101/2020.08.29.273698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.273698


Detecting Differential Regions by DiffGR

vein endothelial cells (HUVEC), erythrocytic leukemia cells (K562), and epidermal keratinocytes294

(NHEK). The GM12878 dataset contains two replicates, which were also pooled together in cell295

type-specific comparison. The Dixon et al. [11] dataset are from mouse embryonic stem (ES)296

and cortex cells. Two replicates from mouse ES cells were merged together in cell type-specific297

comparison. We applied DiffGR to detect differential genomic regions between each pair of cell298

types at 25-kb, 50-kb, and 100-kb resolutions. Since some of these Hi-C datasets were not deeply299

sequenced, the local variations introduced by low sequencing coverage made it challenging to capture300

large domain structures, especially in fine-resolution analyses. Therefore, to enhance the domain301

structures, all contact matrices were first preprocessed by a 2D mean filter smoothing and then302

normalized by the KR method to eliminate potential biases.303

In addition to Hi-C contact maps, ChIP-seq and RNA-seq data from the same cell lines were also304

included in real data analyses. For ChIP-seq analysis, CTCF and histone modification (H3K4me1,305

H3K4me2, H3K27me3, and H3K36me3) datasets from five human cell lines in Rao et al. [9], and306

CTCF, Polr2a, and histone modification (H3K4me1, H3K4me3, and H3K27ac) datasets from mouse307

cell lines in Dixon et al. [11] were obtained from the ENCODE project [40, 41] (https://www.308

encodeproject.org/). The ChIP-seq peak files were in narrowpeak/broadpeak BED format. The309

ChIP-seq peaks were aggregated into fixed-size bins with the same resolution as the Hi-C data, and310

the bin-wise peak counts were normalized by the total number of peaks in each ChIP-seq dataset.311

The absolute mean differences of the normalized bin-wise peak counts were calculated for each pair312

of cell lines for the subsequent analyses. In addition, RNA-seq datasets were also obtained from313

the ENCODE project [41] for human GM12878 and K562 cells (GEO accession GSE78552 and314

GSE78625) in read count format, and for mouse ES and cortex cells (GEO accession GSM723776315

and GSM723769) in FPKM format.316

3 Results317

3.1 DiffGR accurately detected single-TAD differences in simulated datasets318

To validate the accuracy and efficiency of our DiffGR method, we first generated pairs of original319

and simulated Hi-C contact matrices, where a given proportion of TADs in the simulated contact320

matrices were altered (see Methods). We used the intra-chromosomal contact matrix of chromosome321

1 in K562 cells at 50-kb resolution to serve as the original contact matrix. At the default setting,322

we altered 50% of the original TADs by completely replacing the intra-TAD contact counts by323

randomly sampled counts outside the TAD regions. In addition, we added 10% random-ligation324

noise into the altered contact matrices.325

We first simulated Hi-C matrices with various proportions of altered TADs (20%, 30%, 40%,326

50%, 60%, and 70%). With each proportion setting, we completely mutated the intra-TAD counts327

and added 10% noise, and repeated this simulation procedure 100 times. As expected, the perfor-328

mance of the DiffGR method depended on the proportion of altered TADs. As shown in Figure 2A329

and Supplementary Table S1, when the proportion of altered TADs changed from 20% to 70%,330

the false detection rate increased from 0.01 to 0.21. One possible explanation of this observed331

trend is that when the majority of TADs were altered, the large differences between the original332

and altered matrices would affect the permutation test and therefore lead to inaccurate detection.333

However, differential TADs rarely exist in large proportion in real data. The false detection rates334

of our method remained below 0.07 when the proportion of altered TADs was smaller than or335

equal to 50%, which demonstrated that our method can accurately and reliably detect single-TAD336
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Figure 2: Performance of single-TAD simulations.
The curves display the mean false detection rates at different levels of A. proportion of altered
TADs, B. proportion of TAD alternation, C. noise, and D. sequencing coverage. Vertical bars
represent 95% confidence intervals.

differences under these conditions.337

In the default simulation setting, we completely altered the selected TADs by substituting all338

intra-TAD contact counts by randomly sampled counts from the matching diagonals outside the339

TADs. To investigate the influence of the degree of TAD alternation on the DiffGR performance,340

we generated a series of simulated contact matrices, in which half of original TADs were altered341

and the proportion of intra-TAD alternation varied from 10%, to 20%, 30%, 50%, 80%, and 100%.342

In theory, TADs with higher degrees of alternation are easier to identify, whereas TADs with minor343

changes remain difficult to be detected. As illustrated in Figure 2B and Supplementary Table S2,344

the performance of DiffGR improved resulting in higher accuracy as the percentage of randomly345

substituted counts in altered TADs increased. Even with the most challenging case where only346

10% of the intra-TAD counts were altered, the accuracy of our method was 0.73, suggesting that347

DiffGR can effectively detect subtle TAD differences.348
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Figure 3: Performance of hierarchical-TAD simulations. The curve shows the mean false
detection rates at various noise levels. Vertical bars represent 95% confidence intervals.

3.2 DiffGR performed stably against changes in noise and coverage levels349

Next we sought to evaluate the robustness of our method under various noise levels and sequencing350

coverage conditions.351

In the earlier simulations, we added 10% noise to the simulated differential contact matrices.352

To evaluate the performance of our method under different noise levels, we fixed the proportion353

of altered TADs at 50% and the proportion of intra-TAD alternation at 100%, and simulated the354

differential contact matrices with a wide range of noise levels (1%, 5%, 10%, 20%, 50%, and 80%).355

Intuitively, a good detection method should easily discover the differential regions in the less noisy356

matrices, and it becomes more challenging to detect the differential regions in the noisier cases. Our357

results demonstrated that DiffGR was able to correctly rank the simulated datasets. We observed a358

monotonic increasing trend of the false detection rate and a decreasing tendency of other precision359

measures as the noise levels raised (Figure 2C and Supplementary Table S3). With moderate noise360

levels that were not greater than 20%, the accuracy of DiffGR remained above 0.93, indicating that361

our method can correctly detect differential TAD regions in such noisy cases.362

The sequencing coverage of the Hi-C contact maps is another major factor that could affect the363

performance of our method. Considering two Hi-C replicates that have the same underlying TAD364

structures but different sequencing coverage levels, we questioned whether our DiffGR method can365

correctly categorize them as non-differential. In other words, we intended to estimate the false pos-366

itive rates caused by low-coverage and sparse Hi-C data. To directly investigate the influence of the367

sequencing coverage on the detection of differential regions, we utilized the GM12878 chromosome368

1 contact matrix as the original matrix, and generated a series of down-sampled contact matrices369

with lower coverage levels (20%, 40%, 60%, 80%, and 100%). Figure 2D and Supplementary Table370

S4 show that the average false detection rates remained below 0.05 for most coverage levels, except371

for the lowest coverage level of 20%, demonstrating the robustness of our DiffGR method under372

low-coverage conditions.373
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3.3 DiffGR successfully detected hierarchical-TAD changes374

In addition to single-TAD differences, hierarchical-TAD changes also exist in some genomic regions375

between different cell types. In these regions, one of the Hi-C contact maps exhibits a single dom-376

inant TAD structure, while the other Hi-C contact map presents two or more subTADs separated377

by additional boundaries in between. Hierarchical TADs are computationally challenging to detect.378

Although the two Hi-C maps have different TAD boundaries, the chromatin interaction patterns379

within the subTADs could be very similar. Consequently, the correlation coefficients (CCs) for380

the strata with small genomic distances might still remain high between two contact maps. In381

addition, as the genomic distance increases, the weight of the corresponding stratum in the SCC382

calculation gradually declines. As a result, the SCC values are primarily contributed by CC values383

from strata with smaller genomic distances, which makes it difficult to detect differential regions384

in the hierarchical-TAD cases.385

To evaluate the performance of DiffGR in this more challenging situation, we simulated contact386

matrices containing hierarchical-TAD structures with respect to varying noise levels (see Methods)387

and then computed the false detection rate in a similar manner as in the single-TAD simulations.388

As demonstrated in Figure 3 and Supplementary Table S5, the trend of the false detection rates389

and other measure statistics across various noise levels under the hierarchical-TAD setting was390

similar to the pattern observed in the single-TAD case (Figure 2C and Supplementary Table S3).391

Furthermore, the false detection rates remained lower than 0.05 when the noise level was within392

50%. Taken together, these results indicated that DiffGR can reliably detect the differentially393

interacting genomic regions with hierarchical-TAD patterns.394

3.4 DiffGR revealed cell type-specific genomic interacting regions395

Besides validating our method on simulated datasets, we further applied DiffGR to detect cell type-396

specific differences in five human cell types (GM12878, HMEC, HUVEC, K562, and NHEK) [9] and397

in two mouse cell types (ES and cortex cells) [11]. In total, we conducted two comparisons between398

biological replicates in human GM12878 and mouse ES cells, and eleven pairwise comparisons399

between different cell types (ten pairs among five human cell types and one pair between two400

mouse cell types). In each pairwise comparison, we first applied HiCseg to identify TAD boundaries401

from the 50-kb contact matrix for each data and then partitioned the genome into three types of402

candidate regions: single-TAD candidate regions, hierarchical-TAD candidate regions, and complex-403

TAD candidate regions. Statistically significant differential genomic regions were identified between404

each comparison with FDR cutoff 0.05.405

We first sought to evaluate the performance of our method on biological replicates of Hi-C data.406

Previous studies have shown that the high degree of similarity between biological replicates and407

dominant consistence between TAD boundaries in replicate data [9, 11, 39]. For the comparison408

between human GM12878 replicates, consistent with our expectations, the majority (89.55%) of409

the 2325 candidate genomic across the genome regions belonged to single-TAD type and very few410

(2.45%) candidate genomic regions were detected as differential by our method (Supplementary411

Figure S2). Specifically, only 1.97% of single-TADs were identified as differential, whereas 6.17%412

and 4.94% were detected in hierarchical-TAD and complex-TAD cases respectively. Similar results413

were also witnessed in the comparison between replicates in mouse ES cells: 83.42% candidate414

genomic regions were classified as single-TAD type and few (6.02%) were identified as differential415

(Supplementary Table S6). Overall, our DiffGR results confirmed that these biological replicates416
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Figure 4: Piecharts of DiffGR results obtained from human Hi-C datasets.
The center piechart presents the proportions of three categories of candidate regions. The three
outer piecharts display the proportions of DiffGR-detected differential genomic regions, one for each
candidate category.

displayed highly consistent chromatin structures with minor biological variations.417

Next, we applied DiffGR to detect cell-type-specific differences and the results are illustrated in418

Figure 4 and Supplementary Table S7. For the ten pairwise comparisons among human cell types,419

55.57% of all candidate genomic regions belonged to the single-TAD category (consistent with pre-420

vious observations indicating that TAD boundaries are stable across cell types [11]), 31.88% to421

the hierarchical-TAD category, and 12.55% to the complex-TAD category. Our DiffGR analyses422

showed that only 24.26% of the single-TAD candidate regions showed statistically significant dif-423

ferences between two samples; 59.24% of the hierarchical-TAD candidate regions were determined424

to be differential; while the differential proportion of the complex-TAD category was as high as425

89.82%. In addition, we found that the proportion of detected differential regions varied largely426

across chromosomes, ranging from 0.14 to 0.76 (Supplementary Figure S3). For the comparison427

between mouse ES and cortex cells, 20.22% of the candidate genomic regions in the single-TAD cat-428

egory were identified as differential, while the proportion increased to 75.94% in the complex-TAD429

category. These observations indicated that candidate genomic regions with more distinct patterns430

of TAD boundaries are more likely to be detected as differential between two Hi-C samples.431

In addition to partitioning the genome at 50-kb resolution, we also performed differential analy-432

ses on the five human Hi-C datasets at 25-kb and 100-kb resolutions, separately. We calculated the433
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overlapping rate (that is, the proportion of the genome that was classified into the same differential434

or non-differential status) between different resolutions. Overall, we observed a high consistency435

between the detected differential regions across different resolutions, where the overlapping rate was436

0.9856 between the detection results at 50-kb and 100-kb resolutions, and 0.9480 between those at437

25-kb and 50-kb resolutions. These results demonstrated that DiffGR can robustly and consistently438

detect cell type-specific differential genomic regions across various resolutions.439

3.5 Changes in CTCF and histone modification patterns were consistent with440

DiffGR detection results441

Table 1: Agreements between ChIP-seq data and DiffGR-detected differential genomic regions

in human Hi-C datasets.

100 kb 50 kb 25 kb

CTCF 76 (34.55%) 124 (56.36%) 142 (64.55%)
H3K4me1 57 (25.91%) 110 (50.00%) 136 (61.82%)
H3K4me2 56 (25.45%) 91 (41.36%) 116 (52.73%)
H3K27me3 53 (24.09%) 86 (39.09%) 114 (51.82%)
H3K36me3 36 (16.36%) 72 (32.73%) 110 (50.00%)

Note: A total of 220 t-tests (10 pairwise comparisons between five human cell types, 22 chromosome-wide tests for each
comparison) were conducted. If the mean absolute differences of a ChIP-seq signal at the TAD boundaries in the differential
regions were significantly higher than those in non-differential regions, the results were labeled significant consistent. The counts
and percentages of significant consistent results were reported for each ChIP-seq dataset at each resolution.

As there is no ground truth of differential chromatin interacting regions in real data, we sought to442

evaluate the performance of our method by investigating the association between the changes in443

1D epigenomic features and 3D genomic interaction regions. The chromatin architectural protein444

CTCF plays an essential role in establishing higher-order chromatin structures such as TADs. In445

addition, it has been shown that transcription factors and histone marks are enriched or depleted at446

TAD boundaries. Therefore, we hypothesized that differential bindings of transcription factors such447

as CTCF and histone modifications would also be present at the TAD boundaries in differential448

genomic interacting regions.449

To test this hypothesis, we first combined TAD boundaries from both Hi-C datasets and clas-450

sified them into two categories: those within the DiffGR-detected differential regions and those451

outside the differential regions. We then utilized the ChIP-seq datasets of transcription factors like452

CTCF and histone modifications from the ENCODE project [40]. For each ChIP-seq dataset, we453

calculated the mean absolute difference of ChIP-seq peaks between the two cell types within the454

neighborhood (+/- 1 bin) of each TAD boundary. We expected that if two cell lines have highly455

different chromatin structures in certain genomic regions, different patterns of CTCF bindings and456

histone modifications in these regions would be observed. Therefore, we performed the following457

t-test for each ChIP-seq dataset using the DiffGR detection results. In each chromosome, we eval-458

uated whether the mean absolute differences of the ChIP-seq signal at the TAD boundaries in459

differential regions were significantly different from those in non-differential regions. If the ChIP-460

seq signal differences at the TAD boundaries in differential regions were significantly higher (with461

a significant level 0.1) than those in non-differential regions, we considered the ChIP-seq changes462

to be consistent with our DiffGR differential detection results.463
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Table 1 and Supplementary Table S8 summarize the ChIP-seq analyses on the DiffGR detection464

results obtained from five human Hi-C datasets [9] and two mouse Hi-C datasets [11]. For each465

human ChIP-seq dataset, we performed 220 t-tests (ten pairwise comparisons between cell types,466

22 chromosome-wide tests one for each autosome) at 100-kb, 50-kb, and 25-kb resolutions; for467

each mouse ChIP-seq dataset, we conducted 19 t-tests one for each autosome at 50-kb resolution.468

Overall, DiffGR-detected differential genomic regions were supported by 1D epigenomic features in469

both human and mouse data. Furthermore, we observed that the agreement between the changes470

in ChIP-seq signal and chromatin structures was improved in finer-resolution analyses. As shown in471

Table 1, 76 out of 220 (34.55%) tests showed significantly higher absolute mean differences of CTCF472

values at the TAD boundaries in DiffGR-detected differential genomic regions than those in non-473

differential regions at 100-kb resolution. Whereas in the results at 25-kb resolution, 142 (64.55%)474

tests exhibited significantly larger changes in CTCF bindings in differential regions than non-475

differential ones. In addition, the histone modification datasets showed similar results in agreement476

with the detection results of differentially interacting regions in Hi-C contact maps. At 25-kb477

resolution, the majority of the t-tests showed significantly larger changes of ChIP-seq signal in478

differentially interacting regions for all four histone modification datasets, including H3K4me1,479

H3K4me2, H3K27me3, and H3K26me3. Collectively, these results indicated that the changes in480

CTCF bindings and histone modifications were in good agreements with the differences in genomic481

interacting regions. Furthermore, at finer resolution our DiffGR method produced more accurate482

identification of differentially interacting genomic regions in higher agreement with the CTCF and483

histone modification data.484

We would like to point out that for those cases where the changes in CTCF or histone mod-485

ifications are not in significant agreement with the detection results of differentially interacting486

genomic regions, it does not necessarily suggest that these epigenomic features are inconsistent487

with 3D genome organization nor DiffGR detection results are inaccurate. Due to the resolution488

limit of Hi-C contact maps, the boundaries of differential regions are usually identified with a res-489

olution of tens to hundreds of kilobases. Aggregating ChIP-seq data with such a large bin size490

dilutes the signal, thereby yielding less statistical power to detect significant changes. Moreover,491

CTCF and histone modifications play fundamental roles in regulating chromatin structures and492

gene expression; their functions are not limited to TAD formations. Therefore, changes in CTCF493

bindings or histone modifications exist in many genomic loci other than TAD boundaries, thus may494

not be represented in our analyses.495

3.6 Differential RNA-seq analysis results were consistent with DiffGR detection496

In addition to investigating the changes in 1D epigenomic features, we further studied the relation-497

ship between quantitative changes in gene expression levels and 3D genomic interaction regions.498

Previous studies have showed that topological changes of 3D genome organization have a large ef-499

fect on the cross-talk between enhancers and promoters therefore can alter gene expression [9, 20].500

Thus, we expected to observe an enrichment of differential expressed genes in DiffGR-detected501

differential genomic regions.502

To evaluate this assumption, we first detected significant changes in gene expression levels be-503

tween human GM12878 and K562 cells using DESeq2 [23] and those between mouse ES and cortex504

cells using ballgown [42]. Then we calculated the percentage of differentially expressed genes that505

were located inside the DiffGR-identified differential genomic regions. To calculate the enrichment506

of differentially expressed genes, we randomly chose a set of genes, whose number is equivalent507
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Table 2: Functional enrichment of differentially expressed genes located in differential genomic

regions between GM12878 and K562.

GO Term P -value

GO:0002376 immune system process 1.7E-9
GO:0050776 regulation of immune response 5.9E-8
GO:0002757 immune response-activating signal transduction 7.8E-8
GO:0002682 regulation of response to stress 2.2E-7
GO:0080134 regulation of immune system process 2.7E-7
GO:0045321 leukocyte activation 2.8E-7

Note: Top 2000 differentially expressed genes located within differential genomic regions at 25-kb resolution were utilized in
GO enrichment analysis.

to the number of the DESeq2-detected differentially expressed genes, with 200 times, computed508

their corresponding proportions located in differential genomic regions, and then performed t-test509

for comparison. In summary, a total number of 8781 differentially expressed genes were detected510

between human GM12878 and K562 cells and 79.54% of them were located in DiffGR-detected511

differential genomic regions (p-value = 3.72 × 10−5, permutation test); whereas 2124 differen-512

tially expressed genes were identified between mouse ES and cortex cells and 61.66% were within513

DiffGR-detected differential genomic regions (p-value < 2.2× 10−16). Taken together, these results514

demonstrated that the changes of gene expression in RNA-seq data were highly consistent with the515

DiffGR detection results.516

To further explore the potential functional roles of the differentially expressed genes located in517

differential genomic regions, we performed Gene Ontology (GO) enrichment analysis on the top518

2000 genes using DAVID [43]. As show in Table 2, we observed a high enrichment of GO terms519

related to the immune responses, which is consistent with the immunological nature of GM12878520

lymphoblastoid B-cells.521

3.7 DiffGR detection was supported by differential chromatin interactions522

Several Hi-C comparative studies have demonstrated that the majority of the chromatin struc-523

tural changes tend to couple with the formation/disappearance of topologically associated domains524

(TADs) [9, 20], implying that changes in Hi-C interaction counts are likely to be observed within525

genomic regions at TAD level. Hence, we checked differential chromatin interactions (DCIs) be-526

tween GM12878 and K562 cells at 50-kb resolution by FIND [26] and compared FIND results with527

our DiffGR results. As shown in Figure 5, the percentages of DCIs detected by FIND located528

within candidate genomic regions were dominant in the majority of chromosomes and with 55.43%529

across the whole genome. In addition, 82.80% of the DCIs located in candidate genomic regions530

are classified into differential regions, demonstrating that DiffGR effectively detected the regions531

with significant changes in chromatin contacts.532

3.8 Performance and comparison with state-of-the-art differential TAD detec-533

tion tools534

Next, we compared the DiffGR results with three differential TAD boundaries detection methods535

(HiCDB [13], TADCompare [29], and TADreg [30]) and one differential TAD regions detection536

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 8, 2022. ; https://doi.org/10.1101/2020.08.29.273698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.29.273698


Detecting Differential Regions by DiffGR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Chromosome

Pr
op

or
tio

n 
w

ith
in

 G
R

s
0.

0
0.

2
0.

4
0.

6
0.

8
0.

0
0.

2
0.

4
0.

6
0.

8

Figure 5: Comparison between FIND and DiffGR. Barchart of the proportions of FIND-
detected DCIs located in candidate genomic regions (GRs) and differential GRs for all autosomes
between GM12878 and K562. The light gray bars denote the proportions of DCIs located in
candidate GRs; the dark gray bars represent the proportions of DCIs located in differential GRs.

Table 3: Differential TAD boundaries detected by TADcompare in DiffGR-detected differ-

ential genomic regions showed higher agreement with ChIP-seq signals than those in non-

differential regions in human Hi-C datasets.

consistent significant consistent

CTCF 155 (70.45%) 98 (44.55%)
H3K4me1 145 (65.91%) 89 (40.45%)
H3K4me2 133 (60.45%) 79 (45.91%)
H3K27me3 146 (66.36%) 76 (34.55%)
H3K36me3 127 (57.73%) 51 (23.18%)

Note: A total of 220 tests (10 pairwise comparisons between five human cell types, 22 chromosome-wide tests for each com-
parison) were conducted. If the mean absolute differences of a ChIP-seq signal at the TADCompare-identified differential TAD
boundaries in the differential genomic regions were higher (or significantly higher based on t-test) than those in non-differential
regions, the results were labeled consistent (or significantly consistent). The counts and percentages of consistent and significant
consistent results were reported for each ChIP-seq dataset.

tool (provided by HiCExplorer [31–33]) on the five human Hi-C datasets by Rao et al. [9] and the537

two mouse datasets by Dixon et al. [11] at 50-kb resolution. Overall, the differential TAD bound-538

aries/regions identified by HiCDB, TADCompare, TADreg, or HiCExplorer were highly concordant539

with DiffGR-detected differentially interacting genomic regions. Notably, 73.86% of the HiCDB-540

detected, 76.25% of the TADCompare-detected, and 71.90% of the TADreg-detected differential541

TAD boundaries displayed consistent results with our DiffGR detection in the human datasets. In542

addition, highly concordant rates were also witnessed in the mouse dataset with 59.56%, 62.01%,543
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and 60.32% consistency rate with HiCDB, TADCompare, and TADreg, respectively. Furthermore,544

60.62% of the 2877 HiCExplorer-identified differential regions from the five human cell lines over-545

lapped with DiffGR-detected differential regions.546

To investigate the advantages of DiffGR over TADCompare, we further performed tests on547

changes in CTCF and histone modification patterns for the TADCompare-detected differential548

TAD boundaries within DiffGR-detected differential and non-differential genomic regions in hu-549

man datasets. From Table 3, we observed that 155 out of 220 (70.45%) contrasts showed higher550

absolute mean differences of CTCF values at TADCompare-detected differential TAD boundaries551

in DiffGR-detected differential genomic regions than those in non-differential regions. In addition552

98 (44.55%) CTCF tests exhibited significantly larger changes of CTCF bindings with a significant553

level of 0.1 at differential TAD boundaries in differential regions than those in non-differential re-554

gions. Furthermore, the histone modification datasets (including H3K4me1, H3K4me2, H3K27me3,555

and H3K36me3) showed similar results that were in agreement with the advantageous results of dif-556

ferential TAD boundaries in differentially interacting regions. Collectively, these results indicated557

that DiffGR-detected differential genomic regions had a better agreement with 1D epigenomic fea-558

tures than TADCompare-detected differential TAD bounds.559

4 Discussion and Conclusions560

With the fast accumulation of Hi-C datasets, there has been a dramatically increasing interest in561

comparative analysis of Hi-C contact maps. However, most existing methods for comparative Hi-C562

analysis focused on the identification of differential chromatin interactions, while few studies ad-563

dressed the detection of differential chromatin organization at TAD scale. To tackle this problem,564

we developed a novel method, DiffGR, for calling differentially interacting genomic regions between565

two Hi-C contact maps. Taking genomic distance features of Hi-C data into consideration, our algo-566

rithm utilized the SCC metric instead of the standard Pearson CC to measure the similarity of local567

genomic regions between Hi-C contact maps. Furthermore, we proposed a nonparametric permuta-568

tion test to assess the statistical significance of the local SCC values. In contrast to the parametric569

approaches that were used by most Hi-C data analysis methods, our nonparametric approach does570

not have a set of predefined assumptions about the nature of the null distribution and, therefore,571

is more robust and can be applied to more diverse data from real cases. Additionally, we utilized a572

non-parametric smoothing spline regression to speed up the permutation test and showed that the573

speed-up algorithm can steadily produce consistent outputs. Through empirical evaluations, we574

have demonstrated that DiffGR can effectively discover differential regions in both simulated data575

and real Hi-C data from different cell types. That is, DiffGR produced robust and stable detection576

results under various noise and coverage levels in simulated data; DiffGR detection results in real577

data were effectively validated by the ChIP-seq and RNA-seq data; DiffGR produced consistent578

and advantageous results compared with state-of-the-art differential TAD boundaries/regions de-579

tection tools. To summarize, DiffGR provides a statistically rigorous method for the detection of580

differentially interacting genomic regions in Hi-C contact maps from different cells and conditions,581

therefore would facilitate the investigation of their biological functions.582

We envision a few possible extensions and future directions based on this work. First, our583

method performs pairwise comparison between Hi-C contact maps. One potential future direction is584

to design a more general statistical framework for differential analyses among three or more samples.585

Then we could further assign the differentially interacting genomic regions to cell type-specific or586

condition-specific changing areas. Second, we currently pool biological replicates together in our587
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analyses. Extending DiffGR to incorporate multiple biological replicates to detect reproducible588

differences would enhance the reliability of the detection results. Third, in our algorithm, we use589

the shared TAD boundaries between two samples to segment the genome into candidate genomic590

regions and then detect differential regions. Recently, the notion of TADs being highly conserved591

across cell types has been questioned [44, 45]. Therefore, a more general approach to define and592

classify the candidate genomic regions would be beneficial to better characterize the variability of593

chromatin interactions between different conditions. Lastly, our method is specifically designed594

for bulk Hi-C data. Given the high sparsity and variability of single-cell Hi-C contact matrices,595

identifying differential genomic regions at single-cell level remains a significant challenge.596

5 Code Availability597

The DiffGR R Code (both algorithm and simulation) is publicly available at https://github.com/598

wmalab/DiffGR under the GNU GPL ≥ 2 license. The source code is also available at BioCode599

https://ngdc.cncb.ac.cn/biocode/tools/BT007313.600
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