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Abstract. PASTA is a method for estimating alignments and trees that has
been able to provide excellent accuracy on large sequence datasets. By design,
PASTA operates using iteration, in which the tree from the previous iteration
is used to inform a divide-and-conquer strategy during which a new alignment
is computed on the sequence dataset, and then a new maximum likelihood tree
is estimated on the new alignment. In its default setting, PASTA runs for three
iterations and returns that alignment/tree pair from the last iteration. Here we
use both biological and simulated nucleotide datasets to show that returning
the alignment/tree pair that has the best maximum likelihood score improves
on the default usage.

1 Introduction
Multiple sequence alignment (MSA) is a fundamental step in many biological
studies, and large-scale MSA is particularly difficult. Several methods have been
designed for large-scale MSA, including Clustal-Omega (Sievers et al., 2011),
KAlign3 (Lassmann, 2019), PASTA (Mirarab et al., 2015), and UPP (Nguyen
et al., 2015). Furthermore, sequence length heterogeneity also presents chal-
lenges for alignment (Smirnov and Warnow, 2020), a problem that is addressed
by UPP. Specifically, when given a dataset with sequence length heterogeneity,
UPP extracts a set of sequences that are “full length” and uses PASTA to align
them, thus forming the “backbone alignment”. The remaining sequences are
then added into the backbone alignment using an ensemble of Hidden Markov
Models (Durbin et al., 1998). Thus, UPP is an extension of PASTA to enable the
accurate estimation of alignments given sequence length heterogeneity. Hence,
here we focus on PASTA, due to its high accuracy on large datasets with high
rates of evolution and applicability to both nucleotide alignment and protein
alignment.

PASTA uses a combination of divide-and-conquer and iteration, so that each
iteration operates by taking the alignment and tree from the previous iteration,
dividing the sequence input into subsets using the tree, aligning the subsets
using the selected base method, and then merging the alignments together. A
maximum likelihood tree is then estimated on the alignment using FastTree2
(Price et al., 2010). This process repeats for several iterations (default 3), and
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then the last alignment/tree pair is returned. While this default usage has
performed well in many studies, here we explore the potential for additional
improvement in accuracy by returning the alignment/tree pair that had the
best maximum likelihood score, as computed using FastTree2.

2 Methods and materials

2.1 Methods
We compare two variants of PASTA, the default version and a variant where
we return the alignment/tree pair with the best maximum likelihood score, on
a collection of biological and simulated datasets with up to 1000 sequences,
each run for four iterations, and we report the impact on alignment error. All
datasets are available in public repositories from prior studies.

PASTA-BestML differs from the default settings for PASTA in two ways: it
does not mask sites that are highly gappy (as is performed in PASTA-Default,
in order to speed up the analysis on large datasets) and it returns the align-
ment/tree pair that has the best maximum likelihood score across all the re-
ported iterations (instead of the last alignment/tree pair). Since PASTA has
some randomness in its execution, we ran several independent experiments on
each dataset. Therefore, we ran 100 independent experiments for each biologi-
cal dataset and 50 independent experiments for each replicate of each simulated
dataset.

2.2 Datasets
We include both biological nucleotide datasets and simulated nucleotide datasets
from prior studies. We use a standard protocol to preprocess these datasets to
reduce to a set of sequences that are full-length: we discard all sequences whose
length is different from the median sequence length by over 20%. We use two
sources for simulated datasets: the 1000- and 500-sequence datasets used in
Liu et al. (2009, 2011) to evaluate SATé and SATé-II in comparison to other
methods, which were simulated using ROSE (Stoye et al., 1998), and some
subsets of the RNASim dataset (studied in Mirarab et al. (2015)) with 1000
sequences; the ROSE datasets are available at Mirarab (2020) and the RNASim
datasets are available at Smirnov (2020).

All the simulated datasets evolve with substitutions and indels, but differ
from each other in various ways. The ROSE datasets from Mirarab (2020)
evolve under a modification of the GTRGAMMA model to allow for indels, and
the RNASim datasets evolve with substitutions and indels under a biophysical
model that reflects the selective pressure of RNA structure conservation (see
Mirarab et al. (2015)). The ROSE datasets include a wider range of sequence
evolution and thus include some conditions that are challenging to align, while
the RNASim datasets are also challenging due to highly variable rates of evo-
lution across the length of the sequences. Each of the simulated datasets has
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20 replicates. We include six biological nucleotide datasets from the Compar-
ative Ribosomal Website (CRW) (Cannone et al., 2002), available from Mi-
rarab (2020). They are 16S.M, 16S.M.aa_ag, 23S.M, 23S.M.aa_ag, 23S.E and
23S.E.aa_ag; these range in size from 96 to 740 sequences, and from 930 nu-
cleotides to 3599 nucleotides in average sequence length. See Tables 1 and 2 for
empirical statistics about these datasets.

2.3 Criteria
We report alignment error using SPFP and SPFN, calculated by FASTSP (Mi-
rarab and Warnow, 2011), where SPFN is the percentage of the pairwise ho-
mologies in the reference alignment that do not appear in the estimated align-
ment and SPFP represents the percentage of the homologies in the estimated
alignment that are missing from the reference alignment.

2.4 Dataset Information

Average Average # sequences # sequences
Datasets p-distance seq. length (after screening) (before screening)

16S.M 0.298 947 740 901
16S.M.aa_ag 0.300 930 633 1028

23S.E 0.283 3599 99 117
23S.E.aa_ag 0.284 3531 96 144

23S.M 0.326 1580 211 278
23S.M.aa_ag 0.339 1578 197 263

Table 1: Information on biological nucleotide datasets from Mirarab (2020), and
originally from Cannone et al. (2002). The p-distance of a pair of aligned se-
quences was calculated by dividing the number of sites where the two sequences
had different nucleotides by the number of sites in which both sequences had
nucleotides.

3 Results and Discussion
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Average Average Average Average
Datasets p-distance seq. length # sequences # sequences

(after screening) (before screening)
ROSE-1000L1 0.695 1015 1000 1000
ROSE-1000L2 0.696 1007 1000 1000
ROSE-1000L3 0.687 1031 1000 1000
ROSE-1000L4 0.500 1007 1000 1000
ROSE-1000L5 0.496 1006 1000 1000
ROSE-1000M1 0.695 1011 1000 1000
ROSE-1000M2 0.684 1014 1000 1000
ROSE-1000M3 0.660 1007 1000 1000
ROSE-1000M4 0.495 1006 1000 1000
ROSE-1000M5 0.499 1003 1000 1000
ROSE-1000S1 0.694 1002 1000 1000
ROSE-1000S2 0.693 1001 1000 1000
ROSE-1000S3 0.686 1002 1000 1000
ROSE-1000S4 0.501 1000 1000 1000
ROSE-1000S5 0.498 1000 1000 1000
ROSE-500L1 0.670 1042 500 500
ROSE-500L2 0.657 1037 500 500
ROSE-500L3 0.658 1023 500 500
ROSE-500L4 0.499 1023 500 500
ROSE-500L5 0.497 1010 500 500
ROSE-500M1 0.674 1017 500 500
ROSE-500M2 0.658 1018 500 500
ROSE-500M3 0.657 1009 500 500
ROSE-500M4 0.491 1011 500 500
ROSE-500M5 0.495 1004 500 500
ROSE-500S1 0.673 1004 500 500
ROSE-500S2 0.655 1004 500 500
ROSE-500S3 0.656 1002 500 500
ROSE-500S4 0.492 1002 500 500
ROSE-500S5 0.498 1000 500 500
RNASim-1000 0.411 1555 1000 1000

RNASim-1000_C_100 0.317 1551 1000 1000
RNASim-1000_C_500 0.378 1555 1000 1000

Table 2: Information on simulated nucleotide ROSE datasets from Mirarab
(2020) and RNASim datasets from Smirnov (2020).
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SPFP SPFN
Default BestML Default BestML

16S.M 14.22% 14.01% 12.54% 12.31%
16S.M.aa_ag 13.20% 13.17% 11.46% 11.43%

23S.E 21.04% 20.61% 17.03% 16.58%
23S.E.aa_ag 20.39% 20.14% 16.41% 16.12%

23S.M 22.72% 22.67% 17.80% 17.71%
23S.M.aa_ag 24.12% 24.06% 18.70% 18.64%

Table 3: Comparison between PASTA’s default mode and PASTA’s BestML
mode for alignment error (SPFP/SPFN) on biological nucleotide datasets. For
each dataset and criterion, the best result is boldfaced.
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SPFP SPFN
Default BestML Default BestML

ROSE-1000L1 8.48% 7.54% 8.68% 7.75%
ROSE-1000L2 3.22% 3.08% 3.29% 3.14%
ROSE-1000L3 16.36% 15.66% 16.84% 16.15%
ROSE-1000L4 0.60% 0.59% 0.60% 0.59%
ROSE-1000L5 0.39% 0.40% 0.39% 0.40%
ROSE-1000M1 18.18% 17.28% 18.85% 17.95%
ROSE-1000M2 13.98% 13.40% 14.34% 13.76%
ROSE-1000M3 4.81% 4.67% 4.82% 4.69%
ROSE-1000M4 1.01% 1.02% 1.00% 1.01%
ROSE-1000M5 0.60% 0.59% 0.60% 0.59%
ROSE-1000S1 14.99% 13.91% 15.32% 14.25%
ROSE-1000S2 7.52% 6.83% 7.58% 6.90%
ROSE-1000S3 5.82% 5.45% 5.85% 5.48%
ROSE-1000S4 0.54% 0.53% 0.54% 0.53%
ROSE-1000S5 0.21% 0.20% 0.21% 0.20%
ROSE-500L1 18.07% 17.64% 18.71% 18.29%
ROSE-500L2 14.70% 14.40% 15.04% 14.73%
ROSE-500L3 6.77% 6.59% 6.79% 6.60%
ROSE-500L4 1.67% 1.65% 1.64% 1.62%
ROSE-500L5 0.74% 0.73% 0.72% 0.71%
ROSE-500M1 17.02% 16.52% 17.73% 17.18%
ROSE-500M2 12.27% 12.05% 12.63% 12.41%
ROSE-500M3 6.20% 6.14% 6.27% 6.22%
ROSE-500M4 1.38% 1.36% 1.37% 1.35%
ROSE-500M5 0.76% 0.73% 0.75% 0.73%
ROSE-500S1 15.89% 15.28% 16.26% 15.62%
ROSE-500S2 11.05% 10.74% 11.21% 10.88%
ROSE-500S3 5.28% 5.07% 5.30% 5.09%
ROSE-500S4 1.70% 1.69% 1.68% 1.67%
ROSE-500S5 0.74% 0.73% 0.73% 0.73%
RNASim-1000 10.08% 9.90% 9.97% 9.78%

RNASim-1000_C_100 5.73% 5.34% 5.66% 5.28%
RNASim-1000_C_500 7.59% 7.73% 7.44% 7.59%

Table 4: Comparison between PASTA’s default mode and PASTA’s BestML
mode for alignment error (using SPFP/SPFN) on simulated nucleotide datasets,
taken from Mirarab (2020) (simulated using ROSE) and Smirnov (2020) (sim-
ulated using RNASim). For each model condition and criterion, the lower error
rate is boldfaced at each row.
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As seen in Table 3 and Table 4, PASTA-BestML has lower alignment er-
ror than PASTA-Default for all biological datasets and nearly all simulated
datasets. Thus, running PASTA with BestML typically improves alignment
accuracy compared to default PASTA. The difference is generally small, but
because it is nearly universal, it suggests that PASTA-BestML may be a more
reliable technique for using PASTA than its default mode. This improvement
also suggests that the maximum likelihood score may be a valuable criterion to
use when selecting an alignment from a set of candidate alignments.

4 Conclusions
Multiple sequence alignment is a basic step in many bioinformatics pipelines,
with phylogeny estimation one of the applications of interest. Here we have
shown that a small change to the PASTA pipeline yields a consistent improve-
ment in alignment accuracy on a collection of biological and simulated datasets.
Although the improvement was small, it is suggestive of a trend that could lead
to bigger improvements on larger datasets. More generally, it suggests also the
possibility of using criteria, such as maximum likelihood scores, to select be-
tween competing multiple sequence alignments computed for the same dataset.
In general, future work is needed in order to better understand how to estimate
multiple sequence alignments.
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