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Abstract

Outcomes of interest to demographers—fertility; health; education—are the product of both
an individual’s genetic makeup and his or her social environment. Yet Gene ⇥ Environment
research (GxE) currently deploys a limited toolkit on the genetic side to study gene-environment
interplay: polygenic scores (PGS, or what we call mPGS) that reflect the influence of genetics on
levels of an outcome. The purpose of the present paper is to develop a genetic summary measure
better suited for GxE research. We develop what we call variance polygenic scores (vPGS), or
polygenic scores that reflect genetic contributions to plasticity in outcomes. The first part of the
analysis uses the UK Biobank (N ⇠ 326,000 in the training set) and the Health and Retirement
Study (HRS) (N = 10,524) to compare four approaches for constructing polygenic scores for
plasticity. The results show that two widely-used methods for discovering which genetic variants
a↵ect outcome variability fail to serve as distinctive new tools for GxE. Then, using the polygenic
scores that do capture distinctive genetic contributions to plasticity, we analyze heterogeneous
e↵ects of a UK education reform on health and educational attainment. The results show
the properties of a new tool useful for population scientists studying the interplay of nature
and nurture and for population-based studies that are releasing polygenic scores to applied
researchers.
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1 Introduction

1.1 The growth of using genome-wide measures to study genetic moderation of
environments

A wide range of research has shown how outcomes of interest to demographers—e..g, fertility; ed-
ucational attainment; diseases with marked disparities such as obesity—are influenced by both an
individual’s genetic makeup and his or her social environment. In turn, this research program,
also called gene ⇥ environment (G⇥E) research, has undergone a large shift in how researchers
summarize genetic variation.

Earlier research focused on how single or small sets of genetic variants moderated social en-
vironments to a↵ect outcomes. These include studies of how polymorphisms in specific genes like
MAOA, or the promoter region of 5-HTTP, moderate social conditions like stressful childhood ex-
periences or parental abuse (e.g., Guo et al., 2008) (for a review, see Seabrook and Avison (2010)).

Two developments led researchers to abandon studying how small sets of genetic variants mod-
erate environments. First was the failure of many single gene G⇥E studies to replicate (Duncan and
Keller, 2011; Keller, 2014; Border et al., 2019). Second was growing evidence that most outcomes
of interest to social and behavioral scientists—educational attainment; body mass index (BMI);
depression—are “polygenic,” that is, the result of small contributions of many variants across the
genome, rather than “monogenic”(Boyle et al., 2017). As a result, researchers have moved away
from studying how single genes or small sets of genes moderate environments to using polygenic
scores (PGS) that summarize genome-wide contributions. As Section 1.3 shows, PGS have become
the workhorse tool that social scientists use when studying genetic moderation of environments.
As a result, large social science cohort studies—the Health and Retirement Study (Ware et al.,
2018); the National Longitudinal Study of Adolescent to Adult Health (Braudt and Harris, 2020);
the Wisconsin Longitudinal Study; the Fragile Families and Child Wellbeing Study—have either
already released or are considering releasing polygenic scores alongside their standard survey mea-
sures.

The proliferation of polygenic scores as the workhorse tool for studying genetic moderation
of social environments raises the question: what genome-wide summary should researchers use?
Until now, researchers have developed scores that are meant to predict the conditional mean of an
outcome. The goal of the present paper is to expand social scientists’ methodological toolkit by
presenting a new summary measure: scores summarizing genetic contributions to plasticity.

The remainder of the introduction proceeds as follows. First, we outline two distinct forms of
genetic moderation of social environments (Section 1.2). The first is when the environment’s impact
on some outcome depends on that individual’s genetic propensity to attain that same outcome–for
instance, pre-K having a larger e↵ect on academic outcomes among children with an already-high
genetic propensity towards high educational achievement. We call this form of genetic moderation
outcome moderation.

Second is when the environment’s impact on some outcome depends on that individual’s propen-
sity towards variability in an outcome. We can call this form of moderation plasticity. We argue
that the majority of GxE research implicitly uses the first model of genetic moderation (outcome
moderation). By making these implicit choices explicit, we highlight that little existing research
uses tools suited for measuring the second form of genetic moderation.

Next, we outline how variance polygenic scores (vPGS) may capture this second form of ge-
netic moderation (Section 1.4). We show that researchers’ focus on using methods for detecting
genetic contributions to plasticity have thus far used the methods to find “top hits,” or a limited set
of single nucleotide polymorphisms (SNPs) significantly associated with variability. We show our
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paper fills a gap by using these methods to construct genome-wide summary measures useful for
GxE research, complementing other recent calls for better methods to detect genetic moderation
of social environments (Domingue et al., 2020).

1.2 Implicit models of genetic moderation: outcome moderation versus vari-
ability

Past typologies of di↵erent types of gene-environment interactions have focused on di↵erences in
the shape of the interaction (e.g., Boardman et al., 2014; Derringer et al., 2019). For instance,
Boardman et al. (2014) and Derringer et al. (2019) each summarize three shapes of interactions:
(1) diathesis-stress, where those with both a risky genotype and a highly-stressful environment
have adverse outcomes; (2) vantage-sensitivity, where those with a less risky genotype and a low-
stress environment have particularly good outcomes; and (3) cross-over or di↵erential suspectibility,
where those with a risky genotype have adverse outcomes in high-stress environments but also have
some of the best outcomes in supportive environments (Boyce and Ellis, 2005; Ellis et al., 2011).
Researchers investigating genetic moderation of environments distinguish between these shapes
through both theory and the form the interaction e↵ect takes—for instance, diathesis-stress having
a crossover shape.

Yet shape is only one dimension of how genotypes can moderate environments. The second
dimension, which occurs regardless of shape, is what changes we predict when the environment
changes. Here, we review two types.

1.2.1 Outcome moderation

The first type of interaction is called outcome moderation. Outcome moderation occurs when a
social environment either impedes or removes an impediment to the expression of a genetically-
influenced outcome. For instance, people may vary in their genetic propensity to complete formal
schooling (Lee et al., 2018). However, in certain societies, there may be limited access to schooling
for the population or some subgroup within the population (e.g., access to higher education was
limited for women for much of the twentieth century in the U.S. and elsewhere). If that constraint
is removed, individuals’ genetic propensities towards higher education that had enjoyed no avenue
for expression can then become manifest. In this case, we would expect a significant interaction in a
model where a person’s years of schooling is regressed on (1) an indicator for the cohorts impacted
by education reform and (2) a summary measure of a person’s genetic propensity to complete
formal schooling. The coe�cient between the genetic summary measure and reform would be null
or smaller in the pre-reform years; it would become significant and positive during the post-reform
years.1

As another example, economic changes in the U.S. have removed caloric constraints for much
of the population. Genetic predispositions towards higher BMI now interact with an altered food
environment (Guo et al., 2015; Conley et al., 2016). Those with a genetic predisposition towards
higher BMI, which stems from a genetic architecture in part related to regulation of appetite and
impulse control and in part related to metabolism (Locke et al., 2015), are more highly impacted
by the new food environment.

1Put di↵erently, a polygenic score trained in societies where those constraints were attenuated or absent would
poorly predict education before an expansion of schooling and then predict in an improved way — i.e. show increased
genetic penetrance — once access to formal education was opened up.
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1.2.2 Variability

The case of BMI, however, also highlights a di↵erent form of genetic variation that can interact with
changes to the environment. Individuals may vary not only in their propensity towards higher or
lower BMI, but also vary in their propensity towards changes in BMI in the face of environmental
changes. Some individuals have genotypes that are less bu↵ering of environmental changes. When
the environment changes (in either direction), their BMI is likely to exhibit large changes. Other
individuals have genotypes that are more bu↵ering of environmental changes. When they enter a
more calorie-rich or more calorie-restricted environment, their BMI is less likely to change because
they adapt to that environment in ways that minimize changes, regardless of where they were on
the BMI distribution at baseline. A genetic predisposition towards higher or lower levels of BMI
might be very di↵erent than a genetic predisposition towards changes in BMI in the face of shifting
environmental conditions.

This form of genetic moderation is sometimes called plasticity. Plasticity can take two forms.
First is variation in within-individual plasticity, which is relevant for dynamic outcomes like BMI
and depression that change as individuals progress through the life course. As we discuss in the
Conclusion, estimating genetic contributions to within-person variability is complicated by the
lack of large sample size datasets with both large-scale genotyping and repeated measures across
individuals. Second, and more immediately tractable, is population-level variation in plasticity.
Consider two subgroups within a population. In one subgroup, individuals have high polygenic
scores for plasticity in BMI; in the other subgroup, members have low polygenic scores for plasticity.
For the high plasticity subgroup, a counterfactual intervention—for instance, moving that individual
from neighborhood A with safer spaces for physical activity to neighborhood B—would result in
more variability in BMI within the subgroup (more dispersion in outcomes). For the low plasticity
subgroup, counterfactual changes would produce little dispersion around the pre-counterfactual
mean. Population-level variation in plasticity thus produces population-level variation in how
shocks to the environment translate into changes in outcomes. Moreover, a single intervention—
say a change in the education system or in norms surrounding the timing of fertility——may cause
little change in the low plasticity group’s levels of or dispersion in education. In contrast, among
highly plastic individuals, the levels of education or children ever born might remain unchanged
but the dispersion around the mean would increase. That is, the same environmental intervention
may generate changes in both directions that would go undetected in traditional GxE analysis.

1.3 Gene ⇥ environment research using genome-wide polygenic scores has largely
focused on outcome moderation

The previous section showed that one form of genetic moderation of environments is outcome
moderation: those with di↵erent propensities towards an outcome are di↵erentially impacted by
some environmental change. Yet in a particular context—changes to neighborhoods interacting
with genotype to impact BMI; changes to education policy interacting with genotype to a↵ect
schooling—genetic predispositions towards greater variability may also play a role.

Yet researchers’ workhorse tool for studying genetic moderation of environments—polygenic
scores for levels of an outcome—has inadvertently narrowed their focus to outcome moderation.
Researchers use a three-step process when they develop and use these scores:

Step one: estimate separate linear regressions of some outcome (Y ) in a large training
sample, to develop weights that reflect each variant’s contribution to levels of that outcome

Step two: use the weights from step one to construct a polygenic score (PGS) in a separate
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sample

Step three: interact that polygenic score with some measure of “E” to study genetic mod-
eration of environments

Researchers in step one have focused on genetic contributions to levels of an outcome, rather
than genetic contributions to variability. Table 1, focusing on recent gene by environment studies
that use polygenic scores, shows that the majority focus on how the impact of environments on some
outcome vary among people with di↵erent propensities for that same outcome—e.g., the impact
of neighborhood features on Type II diabetes having a larger impact on those with higher genetic
propensities.

Table 1: What type of moderation do recent gene by environment studies examine?
The table presents a (non-exhaustive) list of recent gene by environment studies that use polygenic
scores as the measure of genotype. With the exception of the study in gray, all study outcome
moderation, or how the impact of an environmental trigger or bu↵er on an outcome varies by an
individual’s genetic propensity towards that same outcome.

Study Outcome Environment PGS used to examine
moderation

Barcellos et al.
(2018)

BMI Education reform BMI

Liu and Guo (2015) BMI Childhood and adult SES BMI
Amin et al. (2017) Educational attainment Educational attainment BMI
Trejo et al. (2018) Educational attainment;

job status
School SES; school strat-
ification; environment-
agnostic heterogeneity
in school-level random
slopes on PGS

Educational attainment

Schmitz and Con-
ley (2017)

Educational attainment Veteran status (instru-
mented with Vietnam
draft lottery)

Educational attainment

Herd et al. (2019) Educational attainment Gender/cohort Educational attainment
Robinette et al.
(2019)

Type II diabetes Neighborhood disorder Type II diabetes

Domingue et al.
(2017)

Depressive symptoms Spousal loss Subjective wellbeing; de-
pression

Halldorsdottir et al.
(2019)

Depression Childhood abuse Depression

Mullins et al.
(2016)

Depression Childhood stressful life
events and trauma

Depression

With the exception of Domingue et al. (2017), who examine how a genetic risk score for well-
being bu↵ers the impact of the loss of a spouse on depression, nearly all studies examine outcome
moderation. Furthermore, this focus on one form of genetic moderation is often implicit, with
the researchers stating that they are studying gene by environment interactions, rather than made
explicit, with the researchers stating that they are studying a particular type of gene by environ-
ment interaction. The failure to make the specific type of moderation explicit has led to missed
opportunities to examine other forms of moderation.
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1.4 Variance polygenic scores as a tool for examining new forms of genetic
moderation

The implicit focus on one form of genetic moderation of social environments stems from the re-
liance on one tool for G⇥E research: polygenic scores trained to predict levels of an outcome. We
follow others’ recent calls to expand social scientists’ toolbox for studying genetic moderation of
environments. Recently, Domingue et al. (2020) discuss “dimmer-type” gene-environment interac-
tions, which corresponds with outcome moderation, and “lens-type” gene-environment interactions,
which take a di↵erent form.2 They argue that while social scientists often frame GxE research as
wanting to study lens-type interactions, social scientists’ reliance on polygenic scores for levels of an
outcome might impede their progress. As they put it: “The selection of PGS e↵ects for examining
lens-type GxE may be particularly challenging in that we construct PGSs from GWASs that only
include main e↵ects of SNPs. If the environmental context of the participants in the GWAS sample
used to construct the PGS is similar to that in the test sample used to estimate GxE then it is
unlikely to include SNPs that demonstrate lens-type patterns as the main e↵ects of these SNPs will
be close to zero”(p. 10). This call suggests that better tools for either variability moderation or
“lens-type” moderation are genome-wide summary measures (PGS) constructed from weights that
more closely mirror theory behind GxE.

Here, we present one approach: constructing genome-wide summary measures from models that
measure genetic contributions to variability in outcomes.3 In the language of statistical genetics,
these models are called “vQTL analyses,” or models for detecting variance-a↵ecting loci. In turn,
researchers have developed a variety of approaches for detecting genetic contributions to variability.
But thus far, the researchers have only used these approaches to find the “top SNPs”—a few SNPs
that have the lowest p-values in regressions performed separately for each SNP. They have not yet
used the weights from these models to construct genome-wide scores for plasticity.

One of the earliest attempts at vQTL analysis was Yang (2012), who operationalize variability
as a person’s Squared Z-score of a trait—the person deviates from the mean of an outcome in either
direction. Wang et al. (2019) and others use the classic Levene’s test, which examines whether the
error variance significantly di↵ers across subgroups—in the genetics case, across the three subgroups
(AA, AB, and BB) at a given variant. Yet these attempts can lead to false positives when trying
to distinguish between variants that a↵ect the mean of an outcome and variants that a↵ect the
variance.

Two methods aim to control for this mean-variance conflation. Conley et al. (2018) use sibling
pairs to examine how variation in the sibling pair’s combined count of minor alleles at a locus con-
tributes to that sibling pair’s standard deviation in the trait, controlling for the sibling pair’s mean
levels of a trait. Young et al. (2018) decompose trait variance into two components–an “additive
e↵ect” and a “dispersion e↵ect”—and argue that the latter provides a measure of “when a SNP has
a variance e↵ect beyond that which can be explained by a general mean-variance relationship”(p.
1613).4

2As they describe: “When considering lenses, the relative e↵ect of a given genotype may be positive for a ’low’
level of the relevant environmental exposure and negative for ’high’ levels of the exposure, or vice versa”(p. 9).

3This approach complements the approach in Boardman et al. (2014) of studying genetic moderation of specific
environmental shocks. In particular, in their study, they use what they call a genome-wide gene-by-environment
interaction (GWGEI) approach that regresses level of an outcome (BMI) on each SNP’s interaction with an environ-
mental moderator (education). They note the promise of the approach for capturing G⇥E, but also challenges with
statistical power.

4Other methods that we do not include in the present review because of their similarity to the four we focus on
include the new deviation regression model (Marderstein et al., 2020), which models the absolute di↵erence between
an individual’s phenotype value and the phenotype medians within each genotype, and the double generalized linear
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There is a significant gap in the use of these methods to study gene-environment interplay.
Researchers have used each method to find “top hit” loci that contribute to variability in traits
like BMI (Yang, 2012; Conley et al., 2018; Young et al., 2018).5 Some such as Wang et al. (2019),
Young et al. (2018), and Marderstein et al. (2020) have also interacted these highly significant
single SNPs one by one with measures of social environments. No studies of which we are aware
have explored whether the “variance weights” that these methods generate can be aggregated to
produce what we call variance polygenic scores, or genome-wide summary measures of a person’s
plasticity. vPGS can expand demographers’ toolbox for studying gene-environment interplay. Our
study is the first to build and characterize the properties of this new tool.

1.5 Research goals/questions

1. What are best practices for building variance polygenic scores?

2. When we build these scores, do they reflect distinctive genetic contributions to
variability in a trait, or are they too correlated with scores for levels of an outcome
to serve as a new tool for gene-environment research?

3. Applying the scores to a real-world example (education reform in the UK), what
forms of moderation do we see?

2 Methods

2.1 Estimating vPGS weights in the UK Biobank

To build the two types of scores for comparison—a typical PGS (hereafter: mPGS) for levels of an
outcome; a vPGS for variability in an outcome—we use the UK Biobank, a dataset containing about
500,000 individuals from across the United Kingdom. The sample was limited to respondents who
passed quality control and were of British ancestry, using information provided by the UK Biobank,
leaving us with 408,219 in our final analytic sample.

This size of the UK Biobank allows us to divide the sample into training and test sets while
still maintaining su�cient statistical power for fitting GWAS and vQTL. Training and test sets
were produced by randomly sampling respondents. 80% of the British subsample of the UKB was
included in the training set; the remaining 20% made up the test set.

We analyze four outcomes: height, body mass index (BMI), educational attainment, and number
of children ever born, a measure of fertility. The inverse normal transformations of the outcomes
were calculated. Traits were also z-scored to create a second set of dependent variables, used in
the Squared Z-score analyses. Unless specified as z-scored, a trait/outcome should be assumed to
be inverse normal transformed.

For each outcome, first a regression was run predicting the inverse normal of that outcome, such
that the weights reflect the contribution of each genetic locus to the mean level of the outcome.
These regressions were performed using the software PLINK (version 1.9), controlling for age, sex,
their interaction, and the first 40 PCs.6 We refer to these regression weights as weights for Levels
PGS, and they correspond to the traditional tools used in G⇥E research.

model (DLGM) (Rönneg̊ard et al., 2010).
5These are SNPs with e↵ects on the outcome that fall below some p-value threshold.
6Terms with higher order age variables (age2, age2 * sex), which have been employed in other studies, such as

(Young et al., 2018), were excluded due to issues with multicollinearity.
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A set of second identical regressions predict the Squared Z-score, rather than inverse normal, of
the outcome, corresponding with the method for vQTL analysis discussed in (Yang, 2012). Since
the z-score is squared, values which are the same number of standard deviations above or below
the mean will receive the same value. Thus, the regression predicts distance from the mean, rather
than the mean-level itself, though, as we argue above, this will still be correlated with the mean.
We refer to the weights and polygenic scores produced by these regressions as Squared Z.

Third, regressions were run for each outcome on the sibling subsample of the UK Biobank,
which includes 22,657 white British sibling pairs. For each sibling pair, the intra-sibling mean and
SD were calculated. We then residualized the SD with the mean and used this new residualized
standard deviation as our outcome variable. Since each sibling pair was represented twice in the
data, we used only one member of each sibling pair in the final regressions. We refer to the weights
and polygenic scores produced by this method as Sibling SD.

Fourth, a Mean-Variance vQTL analysis using Levene’s test for variance heterogeneity was run
using OSCA (www.cnsgenomics.com/software/osca) (Wang et al., 2019).The Levene’s test does not
estimate the e↵ect size and standard error, but rather assesses the equality of variances between
sample groups (in this case, those that do and do not have a given allele). Thus, following (Zhang
et al., 2019), OSCA re-scales the test statistics (p value) to e↵ect size and standard error using
Z-statistics. We refer to the weights and polygenic scores produced by this method as as Levene’s.

Fifth, a Mean-Variance vQTL analysis using heteroskedastic linear mixed models was similarly
used (Young et al., 2018). Their method produces additive (mean) and variance e↵ects. It also
allows us to derive what they term dispersion e↵ects, which are variance e↵ects that are independent
of the mean e↵ect. We use the weights produced by these dispersion e↵ects in subsequent analyses,
referring to them as HLMM.

Finally, to ensure that results comparing the di↵erent vPGS were due to true di↵erences between
the scores, and not due to di↵erences that arise from the smaller sample size and lower precision in
the sibling-based method, for every vQTL or GWAS analysis run on the full sample an analogous
analysis was run on a randomly-chosen subsample, where the number of respondents was set to be
equal to the number of sibling pairs in the UK Biobank.

2.2 Constructing vPGS in the Health and Retirement Study (HRS)

Using the weights from the previous step, we constructed vPGS in the Health and Retirement
study. The HRS sample is restricted to (1) self-identified European Americans, who (2) pass the
HRS preprocessing procedure and are within 2 standard deviations of the mean of the first two
principal components of their racial/ethnic group. This leaves N = 10, 554 respondents. The
replication code contains details on the outcome variable construction; most notably, since the
HRS is time-varying with several waves, we took the most recently observed value of the outcome
for each respondent.

2.3 Analytic approach

2.3.1 Relationship between mPGS/vPGS and levels of an outcome

We use three tools to explore whether vPGS can capture genetic contributions to variability in an
outcome, distinct from genetic contributions to levels of an outcome.

First, we estimate the following linear regression, where i indexes a respondent, PGS indicates
the levels PGS (mPGS) or a variance PGS (vPGS), and Y is levels of the outcome trait (converted
to the standard normal scale). Xi includes the first 5 principal components (PCs). Our coe�cient
of interest is �1—we expect the levels PGS to significantly predict levels of a trait.
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In turn, SNPs are a mix of four types: (1) SNPs that a↵ect neither levels of an outcome
nor variance in an outcome, (2) SNPs that a↵ect levels of an outcome but not its variance, (3)
SNPs that a↵ect variance in an outcome but not levels of an outcome, and (4) SNPs that a↵ect
both variance in and levels of an outcome. To serve as a useful new tool for G⇥E research, an
ideal plasticity score will mostly contain SNPs of type three—those that a↵ect variance without
necessarily a↵ecting mean. Therefore, �1 when we regress levels of an outcome on a vPGS should
ideally be close to zero and not statistically significant. For these regressions, our samples are the
HRS and the held-out test set of the UKB.

Yi = ↵+ �1PGSi + �Xi + ✏i (1)

Second, we examine whether these patterns of correlation after constructing the vPGS in each
sample are also present in the underlying weights that summarize each SNP’s contribution. We use
linkage disequilibrium score (LD) score regression (Bulik-Sullivan et al., 2015b) for two purposes.
First, we use the technique to compare the heritability of levels of an outcome to the heritability of
plasticity in that outcome measured using the four techniques discussed above (Squared Z; Levene’s
test; HLMM; sibling SD). Then, we compare the underlying genetic correlations between (1) levels
and variability for each outcome, (2) across outcomes in levels and variability (Bulik-Sullivan et al.,
2015b) (for a social science application of genetic correlations, see: (Wedow et al., 2018))

The first analyses show that two of the polygenic scores for polasticity—one constructed us-
ing the Squared Z-score of an outcome; the other constructed using Levene’s test for variance
heterogeneity—fail to summarize genetic contributors unique to variability in an outcome. How-
ever, two of the polygenic scores for plasticity—one summarizing “dispersion” e↵ects; the other
constructed from sibling variation—capture more distinctive genetic contributions. We focus on
these two tools for the application we discuss in the next section.

2.3.2 Comparing mPGS versus vPGS as moderators of a UK education reform

We use these preferred plasticity scores to study heterogeneous e↵ects of a large-scale education
reform initiated in 1972 in England, Scotland, and Wales that extended how long students were
legally required to stay in school from 15 to 16 years old (Barcellos et al., 2018). Using Barcellos
et al. (2018)’s regression discontinuity design, we evaluate the extent to which the two e↵ective vPGS
are able to detect di↵erent forms of genetic moderation of this educational shock than the standard
levels polygenic scores. We examine two di↵erent cases using the same reform as the exogenous
environmental context: one where, following Barcellos et al. (2018), we examine the moderating
role that the genetic risk of obesity plays in the relationship between education on body size and
another where we evaluate the influence of genetic plasticity on downstream educational outcomes.
Both outcomes are a↵ected by gene and environment interactions but di↵er in the kinds of GxE
e↵ects they exhibit: while the e↵ect for body size is the result of outcome moderation, the latter
results from plasticity.

More specifically, following Barcellos et al. (2018), we use 2SLS to first instrument whether
someone stayed in school until 16 years of age (Educ16) with whether they were younger than 16
when the reform went into place (post reform), and were therefore legally required to stay the extra
year. This residualized version of Educ16 is then interacted in the second step with BMI PGS to
evaluate whether there is an the interaction between educational attainment and genes as they
a↵ect health outcomes. We also report a reduced form regression, where PGS is directly interacted
with the post reform variable.

The main health outcome is Body Size - a weighted combination of BMI, waist-to-hip ratio,
and body fat percentage. In a separate NBER preprint, Barcellos et al. (2019) identified the point
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in the Body Size distribution at which they should have the most power to detect an e↵ect. We use
this same distributional threshold to create an Above Threshold version of Body Size, the results
for which can be compared to the continuous version of the outcome.

In a second set of analyses, we examine the role of genes in the impact of an additional year
of education on downstream educational outcomes. Here, rather than instrumenting educational
attainment, we look specifically at whether the e↵ect of one’s genotype on education outcomes
di↵ers depending on whether one was born before or after the reform. This is akin to the reduced
form regressions reported for BMI. We follow the previous literature (Barcellos et al., 2018), which
found no e↵ect of the reform on the likelihood of attending college, and focus on the outcomes of
those who left school at the age of 18 or younger. We examine the e↵ect of the reform on four
educational outcomes, previously used in the literature. First, we consider whether the respondent
left school at age 16 or later, since despite the reform some students still opted out of attending
college through age 16 (Left School 16 or later). Second, we consider whether respondents achieved
any certifications as a result of their education (Certification). For the last two outcomes, we
explore whether they achieved specific certifications: O-levels or CSE (which were equivalent and
later replaced by the GCSE in 1988) and A-levels.

Controls, for both sets of models, include a quadratic term for the number of days that passed
from when the respondent was born until the time of reform (to factor out any time trends), dummy
variables for the month born, sex, age at time of assessment in days, age squared, dummy variables
for country of birth, the first 15 PCs, mPGS, the interaction between those PCs and Educ 16 (or,
in the reduced form, Post Reform), and the interaction between mPGS with Educ16. Triangular
kernel weights were used to assign more weight to observations closer to the reform and time trends
were allowed to vary before and after the reform (Barcellos et al., 2018). Because we will show that
the Squared Z-score and Levene’s test plasticity scores fail to capture variability distinct from mean
e↵ects, we do not present them in the main text but instead present them in the Supplementary
Materials (Section S).

3 Results

3.1 How do the plasticity scores relate to levels of a trait?

The first question that arises when using plasticity scores for GxE research is: is the plasticity
score simply capturing genome-wide contributions to levels of an outcome, rather than capturing
genome-wide contributions to variability in an outcome? If the plasticity score looks very similar
to social scientists’ standard tool for GxE research, it is less useful as a new tool for capturing
distinctive forms of genetic moderation. Figure 1 summarizes the results of Model 1, or whether
the plasticity score significantly predicts levels of an outcome. The left hand side shows the results
in the smaller sample size HRS; the right panel the results in the larger sample size UK Biobank
test set. Each bar represents one of the four outcomes of interest to demographers: height; BMI;
education; number of children ever born (NEB).

We see that, as expected, the levels PGS predict levels of an outcome. But in three out of the
four traits, the Squared Z vPGS significantly predicts levels of a trait. In two of the four traits, the
Levene’s test vPGS significantly predicts levels of a trait. In contrast, the sibling SD and HLMM
vPGS were only significant for one out of the four traits in the HRS sample, though were significant
for more traits in the UKB test set.

Overall, the results show that researchers hoping to use plasticity scores for gene-environment
research should be careful to choose one of the tools that captures distinctive genetic contributions
to plasticity apart from genetic contributions to an outcome’s mean. Online Supplement Section
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Fig. 1: Significance of mPGS and plasticity scores in predicting levels of a trait The
figure shows results from the regression specified in Equation 1 in the HRS (left panel) and UKB
test set (right panel). The top panel shows that, as expected, the levels PGS predict levels of
an outcome (though the relationship with fertility in HRS is weaker than for height, BMI, and
education). Moving downwards, across both samples, the Squared Z plasticity score performs the
least well in that the plasticity score significantly predicts levels of an outcome for all outcomes
except for number of children ever born. The Sibling SD score and HLMM perform best in the
HRS test set.
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S.2 presents additional results, which include comparing the scores’ significance when we match the
sample size of the non-sibling scores to the sample size in the sibling-based analyses.7

3.2 What is the genetic correlation between mPGS and vPGS?

The previous results show that when we aggregate weights from the di↵erent vQTL methods to
produce a polygenic score for plasticity, some of the scores—most notably, the Squared Z vPGS
and one based on results from Levene’s test—perform similarly to an mPGS in predicting levels of
a trait. As a result, they are less useful as tools for examining certain forms of gene-environment
interplay since they fail to capture distinctive genetic contributions to variability.

Here, we use LD score regression to examine two features of the genetic architecture of plasticity.
First, we examine the univariate heritability of each of the four outcomes—first, levels of an outcome

7This robustness check helps guard against us finding that the sibling SD score does not significantly predict levels
of an outcome, while the non-sibling scores do, due to inadequate power for the sibling score compared to the scores
estimated in a larger sample size. The fact that the patterns hold in the matched sample size supports our claim
that the Squared Z and Levene’s test scores are less useful as distinctive tools.
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(replicating previous work) and second, plasticity in that outcome (extending that work). Table 2
shows the results. The first column, in line with past findings, shows the highest heritability for
height followed by BMI, education, and finally number of children ever born. We see that plasticity
as defined using the Squared Z score and Levene’s test have higher heritability, which the previous
section shows could be related to capturing levels-relevant genetic contributions; both the sibling
standard deviation method and dispersion e↵ects from HLMM capture plasticity in a way that
leads to estimates of zero heritability. Interestingly, focusing on the Squared Z estimates, we see
that the rank order of heritability changes. That is, levels of height are the most heritable, followed
by BMI, then education, and fertility is the least heritable. With the Squared Z method, we find
plasticity in BMI to be more heritable than plasticity in height.

Table 2: Heritability of each outcome: levels versus plasticity The cells with zero are
heritabilities where, due to sampling variability, the heritability was low enough to be close to zero
or negative.

Heritability
Outcome Levels Squared Z Levene’s Sibling HLMM
Height 0.40 0.0028 0.28 0.00 0.00
BMI 0.20 0.0406 0.01 0.00 0.00
Education 0.12 0.0095 0.00 0.00 0.00
Number ever born 0.03 0.0033 0.00 0.00 0.00

Second, focusing on the Squared Z score that had non-zero heritability across outcomes, we
examine the genetic correlation between (1) levels of each outcome (replicating past work by Bulik-
Sullivan et al. (2015a)), (2) plasticity in each outcome (extending that work), and (3) levels and
plasticity. Notably, these genetic correlations are prior to estimating the scores in a sample, so
reflect a shared genetic architecture between contributors to levels of an outcome and contributors
to variability in an outcome.

Figure 2 shows the genetic correlation between the levels PGS and the Squared Z vPGS for
each of the outcomes. It shows that the weights for the levels PGS for that trait are significantly
correlated with the weights for the Squared Z vPGS.

Figure 3 shows between-trait patterns of genetic correlation for (1) the levels PGS8 and (2) the
Squared Z vPGS. The analysis investigates whether there are similar patterns of cross-trait genetic
correlation in variability in addition to levels. The results show that the patterns are similar except
for the relationship between BMI and height.

The one exception is that levels of height and BMI are negative genetically correlated (in other
words, those with genetic propensities to be taller also have genetic propensities towards lower
BMI, replicating the relationship in Bulik-Sullivan et al. (2015a)) but plasticity in height and BMI
is positively correlated. As we discuss in the Conclusion, this relationship deserves more attention
in future research and could reflect di↵erential sensitivity to environmental inputs to growth.

8These replicate results from Bulik-Sullivan et al. (2015a) for overlapping outcomes and also extend their analysis
to look at additional outcomes like number ever born.
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Fig. 2: Bivariate genetic correlation: levels PGS and Squared Z vPGS The x axis shows
the weights for levels of an outcome (mPGS weights). The y axis shows the weights from the
Squared Z score method. The correlation close to 1 on the diagonal shows that there is a high
degree of overlap in the weights estimated using each method.
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Fig. 3: Bivariate genetic correlation: levels PGS and vPGS: between outcomes. The
left panel shows the bivariate genetic correlation between levels of each outcome variable. The right
panel shows the bivariate genetic correlation between variability in that outcome, measured using
the Squared Z-score vPGS. The two show nearly identical patterns, except for the relationship
between BMI and height. While there is a negative genetic correlation between levels of BMI and
height, there is a positive genetic correlation between variability in BMI and height.

3.3 Summing up thus far: which vPGS can serve as new tools for GxE?

Taken together, the results show that the Squared Z vPGS and Levene’s test-based vPGS are
less useful for social scientists looking for a new tool to examine gene-environment interplay. Both
significantly predict levels of an outcome across four diverse traits (height; BMI; education; number
of children ever born). The Squared Z-score also exhibits patterns of underlying genetic correlation
similar to those between levels of a trait. In contrast, the sibling standard deviation method
(Conley et al., 2018) and dispersion weights (Young et al., 2018) show better properties in capturing
distinctive genetic contributions to plasticity.

Why might past research studying methods for vQTL have missed the ways in which certain
methods fail to capture distinctive genetic e↵ects? Section S.3 in the Online Supplement begins
with the common way that researchers assess whether a method for detecting vQTLs overlaps with
a method for detecting mean e↵ects/normal QTLs: examining whether the two methods select
similar SNPs as “top hits.”9 The results show that while the top hits comparison reveals some
degree of overlap—for instance, the Squared Z score and Levene’s top hits display more overlap
with the levels top hits than the other methods—this comparison might be too conservative. In
particular, an mPGS and vPGS might not happen to have overlap in the SNPs with p values below
a threshold but the two might have overlap in SNPs with non-zero weights that contribute to the
final scores. Overall, the combined results show that social scientists interested in using vPGS as a
new tool should look carefully at whether the vPGS is distinctive from, or nearly identical to, the
mPGS for that outcome.

9Researchers use this in conjunction with simulations comparing the methods, but those simulations likewise
largely focus on one or two top causal SNPs.
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4 Using the vPGS to examine heterogeneous impacts of education
reform

Having examined the properties of the di↵erent polygenic scores for plasticity, their distinctiveness
from the standard tool for GxE research (mPGS), and their relationships to one another, we can
use them to adjudicate between di↵erent mechanisms of genetic moderation. Specifically, we have
argued that interactions between mPGS and the environment in predicting an outcome capture
outcome moderation, while variance polygenic scores can capture a di↵erent form of heterogeneous
e↵ects.

With this in mind, we turn to using mPGS and di↵erent vPGSs in a practical example to explore
which kind of genetic moderation is at play. We build upon the research of Barcellos et al. (2018).
They investigate the impact of an educational reform that raised the required age of schooling
from 15 to 16 years in England, Scotland, and Wales. Unlike measures like an individual’s own
educational attainment or their parent’s educational attainment, which can lead to false-positive
gene-environment interactions through confounding between the environmental shock and parent
genotype (discussed in (Conley, 2016)), the reform’s timing is exogenous to genotype. It allows us
to study the di↵erent forms of genetic moderation, as well as a chance to examine the performance
of di↵erent vPGS measures in an applied example.

We evaluate two sets of outcomes. First, following Barcellos et al. (2018), we evaluate whether
there was genetic moderation of the reform’s impact on health outcomes in the form of body
size. If the form this moderation takes is outcome moderation, then the mPGS for BMI would
significantly interact with the reform—the reform might have a larger impact on those with an
already-low genetic propensity towards obesity (amplifying their advantage) or it might have a
larger impact on those with a high genetic propensity (bu↵ering their risk). Alternately, if the form
this moderation takes is variability moderation (significant interaction between the vPGS and the
post-reform indicator), the reform has larger impacts on those who, across many shocks, experience
more swings in BMI.

Second, extending Barcellos et al. (2018), we evaluate whether there was genetic moderation
of the reform’s impact on educational outcomes. Here, outcome moderation occurs if the reform
has a larger impact on those with especially high or low genetic propensities towards educational
attainment. Under the “education as the great equalizer hypothesis” (Barcellos et al., 2020), we
might expect that those with the lowest educational polygenic score are the most impacted by the
extra year of mandatory education. Variability moderation occurs if the reform has heterogeneous
e↵fects on individuals with di↵erent underlying genetic plasticity.

4.1 Genetic moderation of the education reform’s impact on body size

For the body size models, presented in Table 3, the interaction between mPGS and being exposed
to the reform is the only statistically significant result. None of the polygenic scores for plasticity
show a significant interaction, with the exception of Squared Z-Score vPGS (Appendix Section S.4,
which uncovers a marginally significant result (on the Above Threshold outcome)). This result is
likely due to the high correlation between the Squared Z-Score vPGS and mPGS.

These results suggest that outcome moderation (rather than plasticity) is the main form that
genetic moderation of the education reform takes when impacting these measures of health. Put
di↵erently, and as visualized in Figure 4, the reform has larger impacts on reducing obesity-related
measures among those with already-lower genetic propensities towards obesity. The results largely
replicate those found in Barcellos et al. (2018), and show that the mPGS the original authors used
ended up corresponding to the type of genetic moderation that unfolded.
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Table 3: Impact of education reform on health outcomes

HLMM vPGS Sibling vPGS

Body Size Body Size (Threshold) Body Size Body Size (Threshold)

(1) (2) (3) (4)

vPGS 0.025 0.011 �0.058 0.016
(0.045) (0.017) (0.046) (0.017)

Educ16 (Instr.) �0.233† �0.112⇤ �0.234† �0.112⇤

(0.136) (0.051) (0.136) (0.051)

mPGS �0.094⇤ �0.050⇤⇤ �0.099⇤ �0.048⇤⇤

(0.045) (0.017) (0.045) (0.017)

vPGS x Educ16 (Instr.) �0.039 �0.013 0.073 �0.009
(0.051) (0.019) (0.052) (0.020)

mPGS x Educ16 (Instr.) 0.009 0.035† 0.016 0.034†

(0.051) (0.019) (0.052) (0.019)

Constant �1.682⇤⇤⇤ �0.331⇤⇤⇤ �1.674⇤⇤⇤ �0.325⇤⇤

(0.268) (0.100) (0.268) (0.100)

Observations 45,961 45,961 45,961 45,961
R2 0.027 0.009 0.027 0.009
Adjusted R2 0.026 0.008 0.026 0.008

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
†p < 0.1; ⇤p < 0.05; ⇤ ⇤ p < 0.01; ⇤ ⇤ ⇤p < 0.001
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Fig. 4: Interaction between mPGS and Instrumented Educ16 on Body Size outcomes

4.2 Genetic moderation of the education reform’s impact on educational at-
tainment

While the reform’s impact on health outcomes follows the pattern of outcome moderation, the
reform’s impact on educational attainment might take a di↵erent form. When examining this
impact, we find a significant interaction between the HLMM polygenic score for plasticity and Post
Reform when predicting three of the four education outcomes: Left School 16 or later, Certification,
and O-levels or CSE. The interactions between the HLMM plasticity score and Post Reform remain
significant when controls are included. By contrast, we find significant interactions between mPGS
and Post Reform for only one of the four outcomes: Left School 16 or later. The results are
presented in Table 4 and visualized in Figure 5, which compares the predicted educational outcomes
for children in the lowest, middle, and upper terciles of the HLMM vPGS distribution before and
after the reform. For the significant interactions, the results show that those with higher HLMM
polygenic score attain lower levels of education outcomes prior to the reform but equal levels
of education outcomes after the reform, potentially because they had enhanced sensitivity to the
positive e↵ects of the reform. And because the results in Section 3.1 show that the HLMM plasticity
scores capture genetic contributions to plasticity in outcomes distinct from genetic contributions
to the conditional mean, we are more confident that the e↵ect is a true positive.
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Table 4: Genetic moderation of reform’s impact on educational attainment

HLMM vPGS, Education Outcomes

Left School 16 or later Certification O-levels or CSE A-levels
Controls? N Y N Y N Y N Y

(1) (2) (3) (4) (5) (6) (7) (8)

vPGS �0.059⇤⇤⇤ �0.040⇤⇤⇤ �0.063⇤⇤⇤ �0.044⇤⇤⇤ �0.008† �0.007 �0.055⇤⇤⇤ �0.037⇤⇤⇤

(0.003) (0.005) (0.003) (0.005) (0.004) (0.007) (0.004) (0.006)

Post Reform 0.153⇤⇤⇤ 0.143⇤⇤⇤ 0.053⇤⇤⇤ 0.053⇤⇤⇤ 0.058⇤⇤⇤ 0.059⇤⇤⇤ �0.005 �0.005
(0.008) (0.008) (0.008) (0.008) (0.011) (0.011) (0.009) (0.009)

mPGS 0.022⇤⇤⇤ 0.021⇤⇤⇤ �0.0002 0.021⇤⇤⇤

(0.005) (0.005) (0.007) (0.006)

vPGS x Post Reform 0.048⇤⇤⇤ 0.033⇤⇤⇤ 0.036⇤⇤⇤ 0.031⇤⇤⇤ 0.035⇤⇤⇤ 0.034⇤⇤⇤ 0.001 �0.003
(0.004) (0.007) (0.005) (0.007) (0.006) (0.010) (0.005) (0.009)

mPGS x Post Reform �0.017⇤ �0.005 �0.001 �0.003
(0.007) (0.007) (0.010) (0.008)

Constant 0.779⇤⇤⇤ 0.478⇤⇤ 0.809⇤⇤⇤ 0.004 0.557⇤⇤⇤ 0.247 0.253⇤⇤⇤ �0.242
(0.004) (0.147) (0.005) (0.156) (0.006) (0.206) (0.005) (0.178)

Observations 25,690 25,690 26,012 26,012 26,012 26,012 26,012 26,012
R2 0.098 0.117 0.055 0.072 0.019 0.027 0.016 0.025
Adjusted R2 0.098 0.115 0.055 0.070 0.018 0.025 0.016 0.023

Note: †p < 0.1; ⇤p < 0.05; ⇤ ⇤ p < 0.01; ⇤ ⇤ ⇤p < 0.001
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Fig. 5: Interaction between HLMM polygenic score for plasticity and Post Reform on
Educational Outcomes
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5 Discussion

Recognizing the biosocial nature of most outcomes of interest to demographers, social scientists
are increasingly interested in how genetic variation moderates the impact of life-course events that
range from society-wide education reforms to targeted policy interventions aimed at specific sub-
groups. That is, in addition to estimating direct main e↵ects of genotypes and environments, social
and behavioral scientists often seek to model the mutual dependence of nature and nurture. Nu-
merous metaphors have been o↵ered for this causal model of human traits—e.g., genetics as a lens
(Domingue et al., 2020) or genetics as a prism refracting environmental influences into heteroge-
neous treatment e↵ects (Conley and Fletcher, 2018).

In this paper, we argue that social scientists’ workhorse measure of G in GxE research—a ge-
netic summary measure that reflects genetic contributions to levels of an outcome—commits those
researchers to an implicit model of genetic moderation of environments. The model corresponds to
what we call outcome moderation, and to what others have recently called “dimmer-type” moder-
ation (Domingue et al., 2020). While this model may characterize some forms of gene-environment
interplay, there are likely other forms of gene-environment interplay that summary measures con-
structed from aggregating e↵ects on an outcome’s mean fail to capture.

We propose the use of polygenic scores for plasticity as an addition to social scientists’ toolbox.
We first investigate the properties of this tool before applying it. First, focused on best practices,
we show how conflation between genetic e↵ects on an outcome’s mean and e↵ects on that outcome’s
variance begin with SNP-level analyses but then appear in the constructed scores. The conflation
also makes it di�cult to investigate whether plasticity in outcomes like BMI displays di↵erent pat-
terns of heritability than levels of those outcomes, though an initial analysis of genetic correlations
shows an interest flip where levels of BMI and height are negatively genetically correlated but
plasticity in the two has a positive correlation. As a whole, we argue that researchers interested in
a polygenic score for plasticity as a distinctive summary measure of genotype should be careful to
construct scores based on weights from methods that try to adjust for false positive e↵ects on the
mean.

Second, applying the scores to a real-world application, we show how adding an E ⇥ vPGS

analysis to an E ⇥mPGS analysis can detect a particular type of GxE interaction that deploying
only an mPGS would obscure. Building on Barcellos et al. (2018), we show that, in line with their
results but contrary to our priors, outcome moderation best characterizes the education reform’s
impact on health outcomes. But genetic plasticity might better explain the reform closing gaps
in educational attainment between low and high-plasticity youth. These results show that one
cannot know in advance with great certainty which form of moderation will be operative and thus
researchers should test for both forms.

5.1 Limitations and directions for future research

The first limitation is that our application of the polygenic scores for plasticity was limited to one E:
an education reform in the UK. In turn, and relevant to the theoretical discussion in Section 1.2, we
might imagine that di↵erent environmental treatments are more or less likely to exhibit moderation
by a person’s plasticity. Due to the issues others have raised about false positives where researchers
think they are detecting GxE e↵ects but instead are detecting unobserved confounding between
genotype and environment (Conley, 2016; Domingue et al., 2020), we prioritized studying the e↵ect
of an “E” that was clearly causally identified over examining how multiple, potentially-confounded
“E” interact with each of the focal vPGS. Future research leveraging other natural experiments
that alter environments should incorporate plasticity scores to investigate their relevance for other
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contexts.
Second, as we outline in Section 1.2, there are at least two ways we can think about genetic con-

tributions to plasticity. The first, within-individual plasticity, would require an estimation strategy
where we train the inputs weights to the PGS on repeated measures of the same outcome within
an individual (e.g., variation in BMI across many years). This form of plasticity is a promising
avenue for future research. Predicting within-person (or within-family) variation over time without
having to know explicitly what the fluctuating environmental factors are may prove to be a useful
exploratory exercise before researchers try to hypothesize about specific factors in the environment
that may be causing the fluctuation in genotypically plastic individuals. Moreover, one could imag-
ine using a within-person variability score to identify individuals who might be responsive to an
intervention in advance—be that a drug trial or an educational intervention. The advantages of
identifying such individuals include increased statistical power for the identification of e↵ects in a
pilot study before investing in a larger, more costly study. In terms of the feasibility of this second
type of plasticity score, unfortunately, data sources like UKB that contain a large enough sample
size to estimate new weights for polygenic scores lack large-scale repeated measures of the same
individual. Once these data sources become available, future research can construct scores better
designed for this form of plasticity.

In sum, the present article aims to equip demographers and social scientists with an additional
tool for studying the interplay of genes and environment, one that captures a broader range of how
these interactions play out in applied settings. As cohort studies make polygenic scores for the
mean of outcomes available to applied researchers, our paper suggests complementing these scores
with scores aimed at capturing genetic contributions to plasticity.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 31, 2020. ; https://doi.org/10.1101/2020.08.30.274530doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274530
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
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