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Abstract1

The most fundamental form of epistasis occurs between residues within a protein. Epistatic inter-2

actions can have significant consequences for evolutionary dynamics. For example, a substitution to3

a deleterious amino acid may be compensated for by replacements at other sites which increase its4

propensity (a function of its average fitness) over time - this is the evolutionary Stokes shift. We5

discovered that an opposite trend -the decrease in amino acid propensity with time- can also occur6

via the same epistatic dynamics. We define this novel and pervasive phenomenon as the evolutionary7

anti-Stokes shift. Our extensive simulations of three natural proteins show that evolutionary Stokes8

and anti-Stokes shifts occur with similar frequencies and magnitudes across the protein. This high-9

lights that decreasing amino acid propensities, on their own, are not conclusive evidence of adaptive10

responses to a changing environment. We find that stabilizing substitutions are often permissive11

(i.e., expand potential evolutionary paths) whereas destabilizing substitutions are restrictive. We12

show how these dynamics explain the variations in amino acid propensities associated with both13

evolutionary shifts in propensities.14

Introduction15

Amino acid interactions within a single protein are the most fundamental form of epistasis. Epistatic16

interactions between sites can occur because of functional, structural, or stability constraints (Ortlund17

et al., 2007; Pollock et al., 2012; Gong et al., 2013). Here we focus on the latter constraints on stability18

by using a model for protein evolution based on thermodynamic principles. This modeling framework19

has been shown to reproduce realistic evolutionary dynamics with regards to protein stability values20

(Goldstein, 2011), evolutionary rates (Youssef et al., 2020), and convergence rates (Goldstein et al.,21

2015). In this article, we explore the evolutionary dynamics that arise due to nonadaptive stability-22
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constraints on proteins.23

Under nonadaptive evolution, a protein evolves on a fixed fitness landscape with no changes in24

environment or function (Wright, 1932). Natural selection plays an important role in maintaining25

the protein near a peak on its fitness landscape. Evolutionary dynamics associated with a fitness26

peak reflect the equilibrium between mutation, drift and selection. At equilibrium, most mutations27

are deleterious while a small proportion may be beneficial. The higher probability of fixations of the28

fewer but more advantageous mutations is balanced by the lower probability of fixations of the more29

frequent yet disadvantageous mutations, resulting in an equal proportion of deleterious and beneficial30

substitutions (i.e., fixed mutations) at equilibrium (Goldstein, 2013; Cherry, 1998). This stands in31

sharp contrast to the expected dynamics under adaptive evolution, where a change in protein function32

or environment (and hence a change in the fitness landscape) renders the current state of the protein33

suboptimal for the new conditions. The shift in landscape is followed by successive fixations of34

beneficial substitutions as the protein adapts towards the new fitness peak (dos Reis, 2015; Jones35

et al., 2017).36

Since its origin (Kimura, 1968), the strictly neutral model of protein evolution remains the most37

frequently used null scenario that must first be rejected in order to postulate a history of adaptive38

evolution (Kimura, 1968, 1991; Duret, 2008). Over the past decade, researchers have shown that39

equilibrium dynamics under more complex models, informed by the selective constraints for protein-40

stability, produce equilibrium dynamics that are largely consistent with neutral theory (e.g. with41

regards to the distribution of mutational fitness effects (Goldstein, 2011)). Using these nonadaptive42

stability-informed models, researchers have observed that various evolutionary phenomena charac-43

teristic of natural proteins can arise without the need for invoking adaptive evolution. For example,44

Goldstein (2011) used a thermodynamic model to argue that the marginal stability observed in many45

natural proteins can emerge from a simple balance between mutation, drift, and selection, challenging46
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the widely held notion that evolution actively selects for marginal stability (DePristo et al., 2005).47

Additionally, within the same modeling framework, Pollock et al. (2012) observed that the propen-48

sity for a resident amino acid at a site tends to increase over time due to compensatory substitutions49

at other sites in the protein. (In this context, propensity is the frequency of an amino acid arising50

at a site for a fixed background sequence.) They referred to this phenomenon as the evolutionary51

Stokes shift. Risso et al. (2014) found empirical evidence of evolutionary Stokes shifts in the evolu-52

tion of thioredoxins and β-lactamases; however, those shifts in propensities were minor. Interestingly,53

Popova et al. (2019) recently observed the opposite trend where the fitness of the resident amino acids54

decreased with time - they termed this phenomenon “senescence”. Popova et al. (2019) contend that55

the decrease in preferences must be the result of adaptive protein evolution, and that, unlike the evo-56

lutionary Stokes shifts, mere epistatic constraints “cannot lead to a systematic reduction in fitness57

of the incumbent alleles”.58

Do resident amino acid preferences tend to increase, decrease, or remain relatively conserved59

throughout a protein’s evolution? And to what extent are they shaped by adaptive or nonadap-60

tive processes? Using extensive simulations under a thermodynamic model for protein stability, we61

show that all three trajectories emerge from the nonadaptive dynamics at mutation-drift-selection62

equilibrium. Importantly, we describe a novel phenomenon whereby resident amino acid preferences63

can decrease merely due to epistatic constraints – which we call the evolutionary anti-Stokes shift.64

We then show that evolutionary anti-Stokes shifts are as common as Stokes shifts, and character-65

ize the underlying mechanisms that give rise to them. In line with experimental evidence (Gong66

et al., 2013) we found that stabilizing substitutions are permissive (i.e., expand potential evolution-67

ary paths) whereas destabilizing substitutions are restrictive. We show how these dynamics explain68

the variations in amino acid propensities associated with evolutionary Stokes and anti-Stoke shifts.69
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Results70

We use a thermodynamic model of protein evolution where fitness is equal to the probability of71

observing an amino acid sequence in a native protein structure at equilibrium (which is a function72

of its stability, ∆G). We assume no changes in protein structure or function so that the global73

fitness landscape (i.e the mapping between amino acid sequences and fitness values) remains con-74

stant. Nonetheless, this modeling framework accounts for stability-mediated epistasis by permitting75

differences in the marginal site-specific fitness landscapes depending on the residues occupying other76

sites in the protein (i.e. the background protein sequence). Throughout the simulations, we calcu-77

late the site-specific fitness landscape (fh(s) = {fh1 (s), ..., fh20(s)} for a given site h and background78

sequence s), at all sites and given all observed sequences. Amino acids that confer higher fitness val-79

ues (improve stability) will tend to more frequently occupy the site and will, therefore, have higher80

expected frequencies at equilibrium for a given background sequence. In this way, the frequency of81

an amino acid is related to its fitness. As a result, frequency landscapes are similarly site-specific82

and context-dependent (πh(s) = {πh1 (s), ..., πh20(s)}). Note, however, that the fittest amino acid may83

not necessarily be the most frequently observed residue. This can occur when a suboptimal amino84

acid has many codon aliases - the high number of synonymous codons and/or mutational bias can85

increase the propensity for the residue despite having slightly lower fitness.86

An evolutionary Stokes shift is a phenomenon whereby the propensity (πha) for the resident amino87

acid at that site increases over time due to compensatory substitutions at other positions in the88

protein (Pollock et al., 2012). The propensity for an amino acid is its equilibrium frequency given a89

fixed background protein sequence,90

πha(s) = π(0)
a e2Nefha (s)/

∑
x

π(0)
x e2Nefhx (s) (1)
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where Ne is the effective population size and π
(0)
a is the stationary frequency of amino acid a in the91

absence of selection pressure (dos Reis, 2015). In their formulation, Pollock et al. (2012) assume that92

π
(0)
a are uniform (π

(0)
a = 1/20). This would be true if all amino acids were specified by the same number93

of codons and there were no underlying mutational biases. However, our simulations are based on94

three proteins with DNA mutation parameters estimated from multiple sequence alignments of their95

natural codon sequences. Importantly, analyses of the three protein genes suggest the presence of96

mutational biases (with unequal nucleotide frequencies, and transition/transversion rate biases). We97

account for these mutational biases by estimating protein-specific π
(0)
a given the estimated mutation98

parameters for each protein (figure S1). The following results are based on 500 protein-specific99

simulations for three proteins with PDB structures 1qhw, 2ppn, and 1pek (see Methods). We ran100

each simulation for 500 substitutions.101

Both evolutionary Stokes and anti-Stokes shifts emerge from nonadaptive102

stability-constraints on protein fitness103

Throughout our simulations, and in real protein evolution (Risso et al., 2014; Gong et al., 2013;104

Ashenberg et al., 2013), the propensity for certain amino acids relative to other amino acids changes105

over time. In natural proteins, these variations may be due to global constraints on protein stability,106

or are related to functional restrictions. By contrast, the fitness model we employ assumes selection107

acting only on protein stability. Therefore, any variations in sites’ fitness and propensity landscapes108

are solely due to stability-induced epistatic interactions between sites (and not due to external changes109

in environment or function). Examples of these propensity dynamics from a simulation of the 1pek110

protein are shown in figure 1. The propensity for aspartic acid (D), the resident amino acid at site111

232, changes considerably as substitutions occur at other positions in the protein (figure 1A). In this112

case, the site experiences an evolutionary Stokes shift where its propensity increases over time due to113
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compensatory substitutions at other positions (figure 1A). In contrast, within the same simulation,114

the propensity for proline (P), the resident amino acid at site 72, decreases as substitutions occur at115

other positions (figure 1B). We refer to this phenomenon as the evolutionary anti-Stokes shift.116

Changes in amino acid propensities are not directly observable in natural proteins. However,117

Popova et al. (2019) recently put forward that sustained increases (or decreases) in propensities may118

produce a detectable signal in natural protein alignments by causing a change in the rate of amino119

acid replacement. They suggest that the propensity of an amino acid is inversely related to its rate120

of replacement: if the propensity for the resident amino acid is high, then the rate of replacement121

should be low, and vice versa. Therefore, in addition to the amino acid propensities, we calculated122

the expected rate of replacement (the sum of the substitution rates to all single step neighbouring123

sequences that differ from the current sequence at the site of interest). Figure 1C and 1D confirms124

the predicted effect on the change in the rate of leaving the resident amino acids at sites 232 and125

72. For site 232, the increase in propensity with time (i.e., evolutionary Stokes shift) is accompanied126

by a decrease in the replacement rate (figure 1A&C). Similarly, the decrease in resident amino acid127

propensity at site 72 (i.e., evolutionary anti-Stokes shift), is accompanied by an increase in the rate128

of leaving (figure 1B&D). Importantly, these dynamics arose in a model where no adaptive changes129

are occurring. In other words, the proteins are evolving at mutation-drift-selection equilibrium with130

no change in protein structure or function. This shows that neither the evolutionary Stokes nor the131

anti-Stokes shift depends on any external change in selection on protein function or environment.132

Evolutionary anti-Stokes shifts are common under non-adaptive evolution133

The previous result shows that the evolutionary anti-Stokes shift can occur without a change in134

protein function. But, as the anti-Stokes shift is a newly described phenomenon, it is unclear whether135

it is widespread or rare in natural proteins; Do evolutionary Stokes and anti-Stokes shifts occur with136
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similar frequencies? To address this, we developed four metrics for quantifying these two phenomena.137

The metrics are described in detail in the Methods section and illustrated in figure 2. Briefly, the138

first metric (M1) is the slope of the linear model where x is time (measured in substitutions) and y139

is the propensity of the resident amino acid a at site h (πha). The slope is calculated over the amino140

acid residence time (i.e., from i ≤ x ≤ j, where i is the substitution when amino acid a first occupies141

the site and j is the last substitution). Metric two (M2) is the average change in the propensity142

of the resident amino acid over its residency time. As such, metrics M1 and M2 measure the rate143

at which propensities change over the time period where an amino acid is resident. In addition, we144

calculate a third metric (M3) - the difference in the average propensity of an amino acid while it is145

resident and the propensity of the same amino acid when it was first accepted- which estimates the146

magnitude of the change in propensity. Values of M1-3 greater than zero indicate an evolutionary147

Stokes shift, while values less than zero indicate an evolutionary anti-Stokes shift. Lastly, we define148

a more conservative metric, M4, which classifies an evolutionary Stokes shift only when M1-3 are all149

> 0, and an anti-Stokes shift when M1-3 are all < 0.150

We found that an evolutionary anti-Stokes shift occurs following approximately half of all sub-151

stitutions. The estimated proportion of substituted amino acids which experienced an evolutionary152

anti-Stokes shift (Panti−Stokes) were consistent across simulations under different protein structures153

and mutation models (Table S1). The consistency in Panti−Stokes suggests that protein structures and154

mutation biases are not major determinants of evolutionary shifts in propensities. The proportions of155

Panti−Stokes ranged from 0.46 to 0.57 across metrics M1-3 (Figure 3A). However, Panti−Stokes estimated156

based on metric M4 were significantly less than 0.5 which is expected because of the more conserva-157

tive requirements under M4. Furthermore, we found that, across all metrics M1-4, the proportion of158

substitutions that were followed by evolutionary anti-Stokes shifts (Panti−Stokes) were approximately159

equal to the proportion of substitutions that were followed by evolutionary Stokes shifts (PStokes),160
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suggesting that both phenomena occur with comparable frequencies (Figure 3B).161

Importantly, given the current formulations of the metrics, the estimates of both Stokes and anti-162

Stokes shifts could be comparable while the underlying dynamics may be considerably different. For163

example, the metrics would estimate similar values for the following scenarios: (1) a rapid increase164

(or decrease) in amino acid propensity followed by a longer period where the propensity of the amino165

acid remains high (or low), and (2) a more gradual increase (or decrease) in propensity over time.166

It may be the case that evolutionary Stokes shifts tend to occur soon after the acceptance of the167

substitution, while evolutionary anti-Stokes shifts may occur more gradually. To quantify whether168

propensity changes accelerated or decelerated over time, we compared the value of each metric M1-3169

calculated over the first half of the amino acid residency (we label this as MX1) and the estimate over170

the second half (MX2), where X is either 1, 2, or 3 representing one of the three metrics. Specifically,171

we calculated (MX2 - MX1) / Tres where Tres is the amino acid residency time (measured in number172

of substitutions). We classified amino acids as undergoing an evolutionary Stokes or anti-Stokes shift173

based on the conservative metric M4. Using Welch’s t-test, we found significant differences in the174

average rates of change between Stokes and anti-Stokes shifts; however, the effect sizes were negligible175

(differences in means were ≤ 0.001, table S2).176

Goldstein and Pollock (2017) observed that when a site experiences an evolutionary Stokes shift,177

not only does the propensity for the resident amino acid increase, but so does the propensity for178

physicochemically similar residues. For example, if V becomes newly resident at a site, then, over179

time, the propensity for similar amino acids (e.g. L) will likewise increase. This leads us to the180

question: does the decrease in propensity for the resident amino acid (an evolutionary anti-Stokes181

shift) imply a decrease in the propensities for similar amino acids? To address this, we grouped amino182

acids into bins of residues that tend to interchange rapidly and that tend to have similar chemical183

properties: [AST], [C], [DE], [FY], [GN], [HQ], [IV], [KR], [LM], [P], [W] (Susko and Roger, 2007).184
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Rather than evaluating how the propensity for an individual resident amino acid changed over time,185

we tracked how the propensity of a group of amino acids changed (by summing the propensities of186

all amino acids within the group). We then applied metrics M1-4 to the summed group propensity.187

If evolutionary anti-Stokes shifts tend to affect individual amino acids, while Stokes shifts tend188

to occur for similar amino acids, then we would expect Panti−Stokes 6= PStokes based on the group189

analysis. However, we found that even when considering how the propensities for groups of similar190

amino acids changed Panti−Stokes remained approximately equal to PStokes (figure S2). Overall, these191

results suggest that evolutionary anti-Stokes shifts are as common as Stokes shifts, and have similar192

dynamics.193

Evolutionary Stokes and anti-Stokes shifts occur at exposed and buried194

sites195

It has long been observed that a site’s location in the protein influences its evolutionary dynamics. For196

globular proteins, surface residues are usually involved with protein function (e.g., binding affinity,197

enzymatic activity) with a preference for hydrophilic residues, while buried sites are usually occupied198

by hydrophobic residues and tend to evolve much slower (Yeh et al., 2013; Shahmoradi et al., 2014;199

Marcos and Echave, 2015; Echave et al., 2016). Popova et al. (2019) recently suggested that buried200

sites are more likely to undergo evolutionary Stokes shifts because of stability-constraints, while201

exposed sites are prone to senescence (decreases in amino acid favorability with time) due to changes202

in the environment external to the protein. We have shown that evolutionary anti-Stokes shifts can203

occur due to epistatic stability constraints without any external environmental or functional changes.204

Motivated by the results of Popova et al. (2019), we assessed whether some positions in the protein are205

more susceptible to evolutionary Stokes shifts, whereas others are more likely to undergo evolutionary206

anti-Stokes shifts. To do this, we examined the relationship between the metrics and two measures of207

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.271775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.271775
http://creativecommons.org/licenses/by/4.0/


the site’s location in the protein: relative solvent accessibility (RSA) and weighted contact number208

(WCN), both of which correlate significantly with substitutions rates in natural (Yeh et al., 2013;209

Shahmoradi et al., 2014; Marcos and Echave, 2015) and simulated proteins (Youssef et al., 2020).210

Specifically, exposed sites have higher substitution rates, higher RSA, and lower WCN as compared211

to buried sites. In line with these observations, we found a negative correlation between RSA and212

average residency time, and a positive correlation between WCN and average residency time (figure213

S3). However, we found no correlation between any of our metrics and RSA or WCN (figure S4 and214

S5). In this context (c.f. Popova et al. (2019)), the lack of correlations suggests there is no innate215

tendency for evolutionary Stokes or anti-Stokes shifts to be specifically associated with the location216

of sites in a protein.217

While all sites are equally susceptible to undergoing evolutionary Stokes or anti-Stokes shifts,218

it remained unclear if the entailed dynamics were comparable. We were interested in assessing219

whether the site’s location in the protein might influence the rate of propensity changes. For example,220

if a deleterious substitution at a surface residue is easily compensated for (by adjustments at a221

small number of interacting sites), then we might expect a rapid increase in the resident amino222

acid propensity, and therefore a rapid evolutionary Stokes shift. Alternatively, if the site is highly223

connected, then the fixation of a deleterious amino acid at that site might require more adjustments224

at other positions, and, therefore, the Stokes shift might occur over a longer period of time. Across225

all metrics, we found no correlation between RSA and rate of propensity changes (figure S6) and,226

similarly, no correlation between WCN and rate of propensity changes (figure S7). This suggests that227

both exposed and buried sites undergo evolutionary Stokes and anti-Stokes shifts with comparable228

dynamics.229
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Propensity shifts are consistent with random fluctuations230

In the absence of selection, all mutations are neutral and are fixed (or lost) by the action of genetic231

drift, resulting in propensities that vary randomly over time (Wright, 1929). In contrast, our simula-232

tions take into account the action of selection with mutations conferring different fitness effects and,233

therefore, different fixation probabilities. Nonetheless, consistent with Goldstein (2011), we observed234

that approximately 90% of fixed nonsynonymous substitutions in our simulations were effectively235

neutral (i.e. where the selection coefficient from a current state i to a mutation j is |sij| < 1/2Ne;236

table S3). The high proportion of neutral fixations suggests that substitutions, and hence propensity237

fluctuations, are mainly driven by random genetic drift. Furthermore, the smooth symmetric M1-3238

distributions centered at zero (figure 3C) are suggestive of random fluctuations in propensities. We239

were therefore interested in assessing if resident amino acid propensities tend to change randomly240

or whether they undergo phases of systematic increase and decrease over time. To address this, we241

conducted a mixed model analysis with a null model assuming random changes in propensities (see242

Methods). We did not find any evidence to reject the null random walk model. Interestingly, however,243

all p-values were > 0.95. This result is surprising since if propensities were varying randomly over244

time, then some sites should have rejected the null model just by chance. A potential explanation245

for the lack of fit (excess of high p-values), is if propensities changes were autocorrelated. Indeed, we246

observed a substantial negative autocorrelation in the differences in πha(sx) and πha(sx+1) (table S4),247

implying that an increase in propensity tends to be followed by a decrease (and vice versa). This is248

perhaps not surprising since if the resident amino acid propensity decreases, then the site will either249

substitute away from the current amino acid or replacements will occur in other parts of the proteins250

increasing the propensity for that amino acid. Alternatively, as the propensity for a resident amino251

acid increases, there will be fewer ways for it to increase further than for it to decrease (for example,252

consider the dynamics when propensity is equal to one).253
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Lastly, we were interested in assessing whether random fluctuations in propensities could result254

in PStokes and Panti−Stokes comparable to those observed in our simulations. To do this, we simulated255

500 bounded random walks (between 0 and 1) of amino acid propensities with step sizes drawn from a256

normal distribution with mean (µ=0) and standard deviation (σ= 0.1) estimated from the step sizes257

observed in the stability-constrained simulations (figure S8). Then, we applied metrics M1-4 to the258

random walk simulations in order to estimate the proportion of evolutionary Stokes and anti-Stokes259

expected when propensities vary randomly. We found that the proportion of evolutionary Stokes260

and anti-Stokes shifts from stability-constrained simulations were consistent with the proportions261

estimated under a bounded random walk model (figure S9). Overall, these results suggest that the262

dynamics of propensities are likely not too different from a random walk at equilibrium, and that263

random fluctuations in resident amino acid propensities will occasionally lead to increases in propen-264

sities over time (evolutionary Stokes shifts) and decreases in propensities over time (evolutionary265

anti-Stokes shifts).266

Most stabilizing substitutions are permissive and most destabilizing sub-267

stitutions are restrictive268

We have shown that the evolutionary Stokes and anti-Stokes shifts are both common within a system269

evolving under selection for stability with no adaptive changes. We next turn to the underlying270

mechanisms that give rise to these dynamics. Important questions about how substitutions impact271

resident amino acids propensities remain unanswered: Do substitutions tend to favourably impact272

some sites (by increasing their resident amino acid propensities) while simultaneously disadvantaging273

other sites (by decreasing their resident amino acid propensities)? Or does a substitution tend to274

impact the propensity of resident amino acids similarly across the protein? If so, what explains the275

observed balance between PStokes and Panti−Stokes?276
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A consequence of stability-mediated epistasis is that any change in the protein sequence will cause277

shifts in resident amino acid propensities at other sites. For example, when a substitution occurs,278

so that the sequence changes from sx → sx+1, the fitness and propensity landscapes at most other279

sites in the protein will subsequently change. In figure 4A, the grey dots represent the change in the280

propensity of the resident amino acid at each site following a substitution (∆πha = πha(sx+1)−πha(sx)).281

The red dots represent the change in the propensity of the resident amino acid at the substitution282

site, and therefore a change in the resident amino acid from a → b (∆πh = πhb (sx+1) − πha(sx)). We283

found that the effect of a substitution on resident amino acid propensities is usually unbalanced. In284

other words, substitutions either favourably impact most sites (so that the proportion of sites with285

negative ∆πha is less than 0.5), or decrease the propensity of the resident amino acid at most sites286

(so that the proportion of sites for with negative ∆πha is greater than 0.5). Surprisingly, stabilizing287

substitutions (∆∆G < 0) were associated with decreases in propensities of resident amino acids at288

most sites, while destabilizing substitutions (∆∆G > 0) rendered the resident amino acids at most289

sites more favorable (figure 4B).290

This result initially appears counter-intuitive. To clarify, let us consider examples of the dynamics291

following the fixation of a stabilizing and a destabilizing substitution observed within our simulations292

(figure 5). First, consider the dynamics following a stabilizing substitution. Let s1 be the initial293

protein sequence with fitness = 0.999 and stability (-∆G = 4.041; figure 5A). A substitution occurred294

so that the sequence changed from s1 → s2, that increased the overall stability of the protein with295

a minor improvement in fitness. As a result of this substitution, the fitness landscapes at most sites296

changed. We focus on the fitness landscape at site 145 before (s1) and after (s2) the change in the297

background sequence. Given that sequence s2 is more stable, a destabilizing mutation at site 145 has298

relatively lower impact on the fraction of correctly folded proteins at equilibrium (i.e., fitness). Thus,299

the effect of the background sequence having higher stability is that the fitness landscape at site 145300
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becomes more uniform (figure 5B). How does the change in the fitness landscape induce a change in301

the propensity of the resident amino acid? Since a larger number of amino acids can now occupy302

the site with little or no detriment to protein fitness, the propensity landscape will similarly become303

more uniform (figure 5C). Amino acids like R, N, and P that had low propensity in the context304

of background sequence s1, are more likely to be observed given the “stability-buffered” sequence305

s2 (figure 5C). Propensities are the expected equilibrium frequencies of each amino acid given the306

current background sequence; they must, therefore, sum to one. The increase in the propensity of307

some amino acids (e.g., R, N, and P) will cause a decrease in the propensity of the resident amino308

acid (K in this example; figure 5). The opposite relationship was observed following the fixation309

of a destabilizing mutation (figure 5D): The fitness and propensity landscapes became less uniform310

(figure 5E&F), with fewer amino acids having non-zero propensities. This resulted in an increase in311

the propensity for the resident amino acid following the destabilizing substitution (figure 5F).312

To quantify the uniformity of a landscape, we calculated its Shannon entropy Hh(s) (see Methods313

section for detail). Entropy is maximized when the landscape is uniform (i.e., all amino acids have314

equal frequencies), and is at a minimum (= 0) when only one amino acid is observed at the site.315

Note that entropy of fitness and propensity landscapes are highly correlated (figure S10). The fitness316

landscape describes fitnesses of nearby sequences, whereas the propensity landscape considers how317

frequently nearby sequences are explored via mutation and substitution. We, therefore, report the318

entropy of the propensity landscapes, although similar results are expected based on the fitness319

landscapes. We found that at higher stability values (lower ∆G) the propensity landscapes at most320

sites tend to be more uniform compared to at lower stability values (figure 6A). This suggests that as321

the protein becomes more stable, most amino acids tend to have similar impacts on fitness and are,322

therefore, equally likely to be observed at a site. Next, we were interested in assessing the impact of a323

substitution on the uniformity of the landscapes at other sites in the protein. To do this, we calculated324
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the change in landscape entropy following the acceptance of a substitution, ∆Hh = Hh(sx+1) - Hh(sx).325

A change from a more uniform to a more rugged landscape (where a smaller number of amino acids326

have non-zero propensities) will result in a negative ∆Hh. In contrast, a positive ∆Hh indicates a327

change towards a more uniform landscape. We considered a substitution as permissive if it causes328

a flattening in the propensity landscape at most sites (i.e., a positive average ∆H). A restrictive329

substitution is one where following its acceptance, the landscapes at most sites permit fewer amino330

acids (i.e., a negative average ∆H). We found a strong positive correlation between the stability effect331

of a substitution (∆∆G) and its influence on the fitness landscapes at other sites (figure 6B). Figure332

6C reports the average proportions of the different types of substitutions estimated based on three333

protein-specific simulations. Consistent with the results reported in figure 5, stabilizing substitutions334

- by increasing the overall stability of the protein - provide a “stability-buffered” background so335

that slightly destabilizing substitutions are more likely to be fixed, expanding the space of potential336

evolutionary paths. In contrast, destabilizing substitutions restrict potential evolutionary paths.337

These results are in line with experimental work by Gong et al. (2013), which found that stabilizing338

substitutions permit otherwise inaccessible mutations.339

These results are also consistent with previous theoretical predictions by Cherry (1998), and340

Goldstein (2011). Cherry (1998) observed that, given a saturating fitness function, the distribution341

of potential mutational fitness effects (sij = fj−fi where i and j are the wildtype and mutant alleles342

respectively) will be related to the current fitness of the organism (or protein): the distribution of343

fitness effects broadens as fitness decreases. In the model used here, fitness (the probability of folding)344

is a saturating function of protein stability (∆G, equation 4). We find that at higher stability values345

(lower ∆G) the propensity landscapes tend to be more uniform (figure 6A). This suggests that the346

magnitude of the fitness effects for potential mutations are smaller at higher stability values compared347

to the distribution when the background sequence is less stable. Second is the prediction that at equi-348
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librium the proportions of deleterious substitutions will be balanced by the proportion of beneficial349

substitutions. We found that the proportion of stabilizing (beneficial) substitutions balanced those350

that were destabilizing (deleterious) in our simulations (figure 6B). Taken together, these predictions351

shed light onto the observed balance between PStokes and Panti−Stokes. At mutation-drift-selection352

equilibrium we expect that Pstabilizing = Pdestabilizing (figure 6B; Cherry (1998); Goldstein (2011)).353

We have shown that stabilizing substitutions result in a decrease in the propensity of the resident354

amino acids at most sites (∆πha < 0, because of a flattening in the site-specific fitness landscapes),355

while destabilizing substitutions increase resident amino acids propensities at most sites (∆πha > 0,356

figure 5 & 6A). This suggests that the proportion of ∆πha < 0 should be equal to the proportion of357

∆πha > 0 (figure S8). Since evolutionary Stokes and anti-Stokes shifts are the result of such changes358

in propensities, we would expect that at equilibrium PStokes ≈ Panti−Stokes.359

Discussion360

We have examined evolutionary dynamics under a nonadaptive stability-constrained model of protein361

evolution. Consistent with previous observations, we found that as proteins become more stable362

(lower ∆G values), the fitness effects of most mutations diminished compared to the fitness effects363

of the same mutation at lower stability (higher ∆G values). This suggests that substitutions which364

increase stability will make more mutations accessible to the protein, thereby expanding the space365

of potential evolutionary paths. In contrast, destabilizing substitutions will tend to limit potential366

evolutionary trajectories.367

Previous studies observed that functionally important residues are often destabilizing (Schreiber368

et al., 1994; Nagatani et al., 2007; Wang et al., 2002; DePristo et al., 2005), suggesting a trade-off369

between function and stability. This leads to the hypothesis that highly stable proteins are more370
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readily adaptable to new functions compared to less stable proteins since they are more likely to371

accept destabilizing yet functionally beneficial substitutions. We suggest that more stable proteins,372

all other things being equal, may be more adaptable, not only because they can tolerate destabilizing373

yet functionally beneficial substitutions, but also because they are more apt to explore neighboring374

regions of sequence space. At low protein stability fewer mutational paths are permissible (since375

most changes are deleterious), resulting in longer waiting times between substitutions and hence376

fewer opportunities to explore sequence space and adapt to other functions. However, it is important377

to note that selection on other properties of proteins, such as their expression level and the cost of378

translation error (Drummond et al., 2005), can also influence their rate of evolution. Therefore, the379

relationship between evolvability and stability of proteins in nature is likely to reflect the complex380

interplay of multiple factors.381

As more (or fewer) mutations become accessible, the propensity (i.e., the equilibrium frequen-382

cies given a particular background sequence) for the currently resident amino acid at a site will383

consequently change. By expanding accessible paths, stabilizing substitutions tended to result in a384

decrease in the propensity for the resident amino acids at most sites, while destabilizing substitutions385

frequently increased propensities (figure 4B & 6A). Shifts in resident amino acid propensities were386

occasionally consistent with an evolutionary Stokes shifts (Pollock et al., 2012), where the propensity387

for an amino acid increases over time due to compensatory adjustments at other sites in the protein.388

In other instances, we observed the opposite trend where the propensity of a resident amino decreased389

with time, an evolutionary anti-Stokes shift. In our simulations, both evolutionary Stokes and anti-390

Stokes shifts were caused entirely by stability-mediated epistasis and not by any external changes391

in protein function or environment. Alternatively, Popova et al. (2019) recently observed that the392

fitness of the resident amino acid at a site may decrease with time since substitution. They attributed393

the decrease in amino acid fitnesses to external changes in the protein’s environment (e.g., host im-394
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mune response) and termed this trend senescence. This highlights the main difference between the395

notion of an evolutionary anti-Stokes shift and the concept of senescence: evolutionary anti-Stokes396

shifts are a result of non-adaptive processes mediated by the emergent property of marginal stability,397

whereas senescence is a consequence of an adaptive response to some change in the protein’s external398

environment.399

Alternatively, propensity shifts may be viewed as dynamics that arise due to the protein adapting400

to internal, rather than external, changes. In this sense, neighbouring sites may “compensate for”401

or “adapt to” a deleterious substitution that occurred at an interacting site. However, our results402

challenge even this more localized interpretation of adaptation. Evolutionary dynamics at equilibrium403

are predominantly driven by random drift where the vast majority of substitutions (approximately404

90%, table S3) are nearly neutral with |sij| < 1/2Ne. If drift were the only evolutionary force acting on405

a gene (e.g. pseudogene), then allele propensities are expected to vary randomly over time. We found406

that propensity changes are largely consistent with random fluctuations in propensities that may407

occasionally favour or disfavour a resident amino acid at a site. Furthermore, if evolutionary Stokes408

shifts are the result of local co-adaptation, then we would expect a higher fraction of substitutions at409

neighbouring sites compared to the proportion when an anti-Stokes shift occurs. However, we found410

no evidence in support of this; the fraction of substitutions at neighbouring sites were comparable411

for both evolutionary Stokes and anti-Stokes shifts (figure S11).412

We see that a major advantage of the thermodynamic stability model used here, and previously413

(Goldstein, 2011; Pollock et al., 2012; Goldstein and Pollock, 2017), is that it provides a plausible414

nonadaptive null model for protein evolution. Such stability-informed models of protein evolution415

have previously been used to discredit adaptationist claims about the necessary trade-offs between416

protein function and stability (Taverna and Goldstein, 2002; Goldstein, 2011), and protein function417

and foldability (Govindarajan and Goldstein, 1996). “Despite the seduction of adaptive rationaliza-418
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tions”, to quote one of the original authors of this model, “neutral evolutionary dynamics remains the419

null model that must first be rejected” (Goldstein, 2011). Our observation that amino acid propen-420

sities may decrease over time in the absence of external environmental changes does not preclude421

that environmental shifts could render resident amino acid less favourable. Rather our simulations422

demonstrate that decreases in propensities can occur in the absence of environmental changes, and423

therefore that their mere occurrence should not, on their own, be taken as conclusive evidence of424

adaptations to external environmental changes.425

Methods426

Protein description427

We simulated the evolution of three proteins with PDB codes 1qhw, 2ppn, and 1pek. These protein428

structures are described in detail in Youssef et al. (2020). The proteins differ in structure, function,429

length, and contact density. The 1qhw protein is a phosphatase, the 1pek protein is a proteinase,430

and the 2ppn protein is an isomerase. The 1qhw protein is 300 amino acid residues long, 1pek is431

made of 297 amino acids, and the 2ppn protein comprises 107 residues. The 1pek protein was the432

most densely packed with an average number of contacts per site of 8.4 compared to 7.5 for the 1qhw433

protein and 6.9 for the 2ppn protein. During the simulations, we used the nucleotide frequencies (πn)434

and transition/transversion rate (κ) parameters estimated from multiple sequence alignments for the435

corresponding protein used in Youssef et al. (2020). The mutation parameters (κ, πA, πC , πG, πT )436

were set equal to (4.37, 0.21, 0.32, 0.28, 0.20) for the 1qhw protein; (0.90, 0.19, 0.35, 0.56, 0.21) for437

the 1pek protein; and (2.50, 0.27, 0.24, 0.29, 0.19) for the 2ppn protein.438
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Evolutionary model439

The evolutionary process is based on the mutation-selection (MutSel) framework (Halpern and Bruno,440

1998). We assume a Wright-Fisher population with fixed effective population size (Ne) evolving under441

a weak mutation, strong selection regime so that only a single variant exists in the population at442

any time point. The probability of a particular mutation b going to fixation in a diploid population443

currently fixed at variant a is calculated as444

Pfix =
1− exp(−2sab)

1− exp(−4Nesab)
(2)

where sab = fb−fa is the relative fitness effect of mutant b (Kimura, 1962). We model the substitution445

process as a continuous-time Markov chain which is specified by the instantaneous rate matrix Q446

with elements447

qab ∝ 2NeµabPfix (3)

where qab is the substitution rate from a to b which depends on the mutation rate (µab) and the448

fixation probability (Pfix). Mutations arise at the DNA-level following the HKY model (Hasegawa449

et al., 1985) allowing only single nucleotide changes. Selection is assumed to act on the final protein450

product, and therefore all synonymous codons have the same fitness. We assumed a fixed Ne = 100.451

We initiated each simulation at a randomly generated amino acid sequence. Then, we used452

the algorithm outlined in table S5 to obtain protein sequences with fitness values ≥ 0.99 given the453

corresponding structure. Following this equilibration phase, we evolve the equilibrated sequence for454

500 substitutions while keeping track of the site-specific fitness landscapes at all sites. The reported455

results are based on the post-equilibration phase. We generated 500 protein-specific replicates.456
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Stability model457

We use the same stability model outlined in Goldstein (2011), Pollock et al. (2012), Goldstein and458

Pollock (2017), and Youssef et al. (2020). For a detailed description of the model derivation see459

section “The protein model” in Goldstein (2011). Briefly, we assume that the fitness is equal to460

the probability of an amino acid sequence being in the native (folded) structure at thermodynamic461

equilibrium, which is a function of the stability (∆G) of the sequence.462

fitness =
e−β∆G(s)

e−β∆G(s) + 1
(4)

where β = 1
kT

, k is the Boltzmann constant, T is the absolute temperature, and ∆G(s) is stability463

of sequence s measured as the difference in free energy between the folded and the unfolded states.464

The free energy of a sequence in a given structure is approximated as the sum of pairwise potentials465

(from Miyazawa and Jernigan (1985)) for amino acids in contact. Residues are considered to be in466

contact if the Cβ atoms are within 7Å of each other. If the amino acid present is glycine, distance is467

considered with reference to the Cα atom.468

Amino acid propensities469

Suppose that for a simulation trial we observed s1 → s2 → ... → s500 where the sx’s are the codon470

sequences realized during the simulations, and sx and sx+1 differ by a single nucleotide substitution471

(synonymous or nonsynonymous). Given each sx, we can calculate the fitness landscape at site h,472

given the rest of the sequence is held constant, as fha (sx) = {fh1 (sx), ..., f
h
20(sx)}. We use the fitness473

values to calculate the amino acid stationary frequencies using equation (1). We calculate π
(0)
a as the474

sum over the neutral stationary frequencies for synonymous codons for each amino acid. The neutral475

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.271775doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.271775
http://creativecommons.org/licenses/by/4.0/


frequency for a codon made up of nucleotide triplet ijk will be proportional to πiπjπk.476

Description of metrics used to quantify evolutionary Stokes and anti-477

Stokes shifts478

We define four metrics to quantify shifts in propensities. First, let the residence time of an amino479

acid (Tres) be the time period between i and j, where i is the substitution when amino acid a first480

occupies the site and j is the last substitution. The first metric (M1) is the slope of the linear model481

over Tres where x is time (measured in substitutions) and y is the propensity of the resident amino482

acid a at site h (πha).483

Metric two (M2) is the average change in the propensity of the resident amino acid over its484

residency time. Following each substitution we calculate the change in propensity as485

∆xπ
h
a = πha|res(sx+1)− πha|res(sx) (5)

where πha|res(sx) is the propensity of the resident amino acid given the background sequence present486

at substitution x. M2 is then the average calculated as487

avg[∆πha|res] = 1/N

j−1∑
x=i

∆xπ
h
a (6)

where N = j − i.488

Pollock et al. (2012) observed that following an evolutionary Stokes shift “the inherent propensity489

for [an] amino acid at that position will be, on average, higher than it was when the substitution490

occurred”. We, therefore, define a third metric, which is perhaps the most consistent with the491

definition provided by Pollock et al. (2012). Metric three (M3) is the difference in the average492
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propensity of an amino acid while it is resident (avg[πha|res]) and the propensity of the same amino493

acid when it was first accepted (πha|new).494

For M1, M2, and M3, values greater than 0 are suggestive of an evolutionary Stokes shift and values495

less than 0 are indicative of evolutionary anti-Stokes shifts. Lastly, we define a more conservative496

metric, M4, which classifies an evolutionary Stokes shift only when all three metrics indicate a Stokes497

shift (all M1-3 values are >0), and an anti-Stokes shift when M1-3 are all < 0. Figure 2 provides a498

visual representation of the metrics.499

Quantifying the uniformity of a landscape500

We use the entropy of a propensity landscape as a measure of its uniformity. We calculate entropy501

as502

Hh(s) = −
∑
a

πha(s) lnπha(s) (7)

where πha(s) is the propensity of amino acid a at site h given background sequence s. The entropy is503

maximized when all amino acids are equally likely, and is minimized (= 0) when only a single amino504

acid is observed. To determine how the landscapes change in response to changes in the background505

protein sequence, we compared the entropy before and after the substitution506

∆Hh = Hh(sx+1)− Hh(sx) (8)

We classified a substitution as permissive if the average ∆H across all sites was positive, and restrictive507

if the average ∆H was negative.508

For all results described in this study, we only considered the dynamics when a residue was509

accepted and subsequently replaced within the time-frame of the simulation. However, we repeated510

the analyses with the inclusion of partial windows (where for example an amino acid is accepted511
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during the simulation but the simulation ends prior to its replacement) which revealed similar results512

with respect to the proportion of evolutionary Stokes and anti-Stokes shifts (figure S12).513

The rate of amino acid replacement514

Popova et al. (2019) recently observed that changes in amino acid propensities are accompanied by515

changes in the relative rates of leaving the resident amino acid. Amino acids that have high fitness516

values, are more likely to occupy the site (have high πha), and will have a low rate of being replaced.517

Conversely, sites with low fitness benefit are less likely to be present at the site (low πha), and will518

have a high rate of being replaced. Therefore, in addition to amino acid propensities, we looked at519

the replacement rates over time. We calculate the rate of leaving the resident amino acid at a site h520

as the sum of the transition rates (using equation (3)) over all sequences that differ from the current521

sequence by a single nucleotide and have a different amino acid at site h.522

Mixed linear model analysis523

In order to assess if amino acid propensities shifts were consistent with random fluctuations we fitted524

the data to a mixed linear model of the form525

πha(sx) = πha|new + βx+ εx (9)

where εx ∼ N(0,σ2) and β ∼ N(0,σ2
β). We tested a null model assuming random shifts in propensities526

where σ2
β = 0 against an alternative model where σ2

β > 0.527
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Code availability528

All code used to simulate, analyze, and plot data has been uploaded and is freely available from529

https://github.com/noory3/antiStokes shifts.530
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Figures531

Figure 1: Neutral non-adaptive evolution can result in evolutionary Stokes and anti-Stokes shifts.

Results are based on evolutionary simulation of the 1pek protein for 500 substitutions. Site 232

(A,C) undergoes an evolutionary Stokes shift whereas site 72 (B,D) undergoes an anti-Stokes shift.

No substitutions occurred at either site, and the resident amino acids were aspartic acid (one letter

code D) and proline (one letter code P) for sites 232 and 72, respectively. (A) and (B) plot the

propensity of the resident amino acids as replacements occur at other positions in the protein. (C)

and (D) show the expected rate of leaving the resident amino acid.
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Metrics:
M1: Slope[𝑖, 𝑗]

M2: avg[Δ𝜋!|#$%& ]

M3: avg 𝜋!|#$%& −	𝜋!|'$(&

M4: Congruence metric

avg[Δ𝜋!|#$%& ]

avg[𝜋!|#$%& ]
𝜋!|'$(&

𝑖																																																𝑗	

substitution 
at site ℎ

average over

residency time

Figure 2: Description of metrics used to quantify evolutionary Stokes and anti-Stokes shifts. The

example trajectory is based on site 82 of the 1pek protein. The site accepts two substitutions

(vertical dotted lines) and the resident amino acid changes from D→E→D. For clarity, we focus on

the dynamics following the acceptance of amino acid E. In general, metric 1 (M1) is the slope of the

linear regression where x is the number of substitutions and y is the propensity of the resident amino

acid a at site h (πha) calculated over i ≤ x ≤ j; i is the substitution where amino acid a first occupies

the site and j is the last substitution. Metric 2 (M2) is the average change in the propensity of the

resident amino acid over its residency time (from i to j). Metric 3 (M3) is the difference between the

average propensity of an amino acid while it is resident (avg[πha|res]) and the propensity of the same

amino acid when it was first accepted (πha|new). For M1-3, values > 0 indicate evolutionary Stokes

shifts and values < 0 indicate evolutionary anti-Stokes shifts. Metric 4 (M4) is a congruence metric

which classifies an evolutionary Stokes (or anti-Stokes) shift when all other metric values are > 0 (or

< 0).
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Figure 3: Evolutionary anti-Stokes shifts are common under non-adaptive evolution. (A) Approx-

imately half of substitutions are followed by evolutionary anti-Stokes shifts based on metrics M1-

3. The more conservative metric M4 estimates a slightly lower proportion (approx. 0.3). (B)

Across all metrics M1-4, evolutionary Stokes and anti-Stokes shifts occur at similar frequencies

(Panti−Stokes/PStokes ≈ 1). (C) The values of M1-3 are normally distributed and centered at zero

which suggests that both the magnitude and frequencies of Stokes and anti-Stokes shifts are bal-

anced.
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Figure 4: Stability-mediated epistasis between sites results in changes in resident amino acid propen-

sities as substitutions occur in the protein. (A) Following an amino acid replacement at one position

in the protein, so that the sequence changes from sx → s+1, the propensity of the resident amino

acids at all sites will subsequently change. The grey dots are the changes in the propensities of the

resident amino acids at each site following a substitution, ∆πha = πha(sx+1) − πha(sx). The red dots

are the change in the propensity of the resident amino acid at the substitution site, and therefore

a change in the amino acid from a → b (∆πha→b = πhb (sx+1) − πha(sx)). (B) Stabilizing substitutions

(∆∆G < 0) result in higher proportions of ∆πha < 0. In other words, they result in a decrease in the

propensity of amino acids at most other sites. In contrast, destabilizing substitutions (∆∆G > 0)

result in lower proportions of ∆πha < 0. Dotted line is the average proportion of ∆πha < 0 over all

substitutions (average = 0.51).
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s1 = s2 = 
Site ℎ Site ℎ

→

A.

B.

C.

s1 = s2 = 
Site ℎ Site ℎ

→

D.

F.

E.

Stabilizing substitution Destabilizing substitution

Figure 5: Epistatic dynamics following the fixations of stabilizing (A,B,C) and destabilizing (D,E,F)

substitutions. (A) Let s1 be the initial protein sequence, and s2 be the sequence following the ac-

ceptance of a stabilizing substitution (blue dot). Given the “stability-buffered” background sequence

s2, deleterious mutations which would not have been fixed in the context of background sequence

s1 are now more likely to be fixed (e.g. R, N,P). (B) The fitness landscape at a non-substituted

site h becomes more uniform because of the increase in overall protein stability. (C) Similarly, the

propensity landscape becomes more uniform. The fitness and propensity of the resident amino acid

is shown in dark green. (D, E, F) are the respective plots following the fixation of a destabilizing

substitution (red dot). The fitness and propensity landscapes at the non-substituted site become less

uniform.
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C.

Figure 6: Most stabilizing substitutions are permissive and most destabilizing substitutions are

restrictive. (A) The relationship between protein stability (∆G) and landscape uniformity, measured

as the entropy of the propensity landscape averaged over all sites in the protein (avg H). (B) The

relationship between the stability effect of a substitutions (∆∆G) and the resulting average change in

landscape uniformity (avg ∆H). Color bar represents the proportion of sites for which the propensity

for the resident amino acid decreased (∆πha < 0). Positive avg ∆H values imply that, on average,

the landscapes became more uniform. Therefore, the substitution is deemed permissive. Negative

avg ∆H are indicative of restrictive substitutions. Plotted results are based on a single simulation of

the 1pek protein. (C) The percentages of different types of substitutions for each of three proteins

(1qhw, 2ppn, and 1pek). Percentages are calculated from 500 protein-specific trials
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