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Abstract

A key question in theoretical neuroscience is the relation between connectivity structure and
collective dynamics of a network of neurons. Here we study the connectivity-dynamics relation
as reflected in the distribution of eigenvalues of the covariance matrix of the dynamic fluctuations
of the neuronal activities, which is closely related to the network’s Principal Component Analysis
(PCA) and the associated e↵ective dimensionality. We consider the spontaneous fluctuations
around a steady state in randomly connected recurrent network of spiking neurons. We derive
an exact analytical expression for the covariance eigenvalue distribution in the large network
limit. We show analytically that the distribution has a finitely supported smooth bulk spectrum,
and exhibits an approximate power law tail for coupling matrices near the critical edge. E↵ects
of adding connectivity motifs and extensions to EI networks are also discussed. Our results
suggest that the covariance spectrum is a robust feature of population dynamics in recurrent
neural circuits and provide a theoretical predictions for this spectrum in simple connectivity
models that can be compared with experimental data.

1 Introduction

Collective dynamics in networked systems are of great interest with numerous applications
in many fields including neuroscience, spin glasses, and ecological networks. Many studies
have focused on how certain statistics of dynamics depend on the connectivity structure of
the network, such as the population average [22] and variance [25, 10] of pairwise correlations.
Although powerful and directly comparable with experimental data, these are local features of
dynamics meaning that it can be estimated just from the local measurements of the activity
of involved neurons. In contrast, certain global features of dynamics rely on simultaneously
recorded activity of a population of neurons and cannot be inferred from just local descriptions
of dynamics.

One important example of such global aspects of population dynamics is the eigenvalues
of the covariance matrix which are complicated nonlinear functions of all matrix elements.
These eigenvalues arise naturally when performing the widely used principle component analysis
(PCA) of population activity, where they correspond to the amount of variance contained in
each activity PC. Another example that received substantial recent interest [28, 37, 41, 35] is
the dimensionality which can be defined based on the moments of the covariance eigenvalues.
Many recent experimental studies have observed a low dimensional dynamics of neurons in the
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brain [36, 13], and theoretical investigations have illustrated the importance of having a low
or high dimensionality on brain function and computation [12], such as encoding information
[3, 28].

As the experimental techniques of making joint observations of the activity large population
of neurons in networks become increasingly available, it is crucial to study how the connectivity
structure of the network a↵ects these joint aspects of population dynamics to take full advantage
of such data.

In this work, we study the eigenvalue distribution (i.e. spectrum) of the covariance matrix of
spontaneous activity in a large recurrent network of spiking neurons with random connectivity.
We study several basic and widely used models of random connectivity, including independent
and identical Gaussian distributed connectivity [39] (Section 2.1), networks with connectiv-
ity motifs [40, 31, 47, 22] (Section 2.3), and Excitation-Inhibition (EI) network (Section 2.4).
Random connectivity has been a fundamental model in theoretical studies of neuronal network
dynamics[28, 39, 24]. They can be motivated as minimal models to capture the highly complex,
disordered connections observed in many neuronal circuits such as in cortex. Some aspects of
these covariance spectra might be distinct from those under ordered, deterministic connectivity
(Section 3.1).

The dynamics we consider here is simple where the co-fluctuations between neurons are de-
scribed by linearizing around the steady state [27, 44]. Despite the simple dynamics and minimal
connectivity model, we found the resulting spectrum has a continuous bulk of non-trivial shape
and shows interesting features such as a power law long tail of large eigenvalues (Section 2.2),
and strong e↵ect due to the non-normality of connectivity matrix (Section 2.3.3). These covari-
ance spectra highlight non-trivial population-level structures of neuronal co-fluctuations shaped
by recurrent interactions that was previously unexplored.

The covariance eigenvalue distribution we focused on conveys rich and robust information of
the joint population dynamics. In particular, it allows a derivation of closed form expressions
for the e↵ective dimension (previously known for the simple random iid Gaussian connectivity
[10]) Furthermore, we show that the continuous bulk spectrum has the advantage over low order
statistics such as the dimension measure in that it is robust to outlier eigenvalues (Sections 2.3
and 2.4 and Fig. 7).

Our analytically derived eigenvalue distributions can be readily compared to real data of
population activity of recurrent neural circuits, or to simulations of more sophisticated compu-
tational models. We provide ready-to-use code to facilitates such application (Section 4.8).

1.1 Neuronal networks with random recurrent connectivity

We consider a recurrent network of generalized integrate-and-fire neurons [44] and under the
common dynamic regime and assumptions used in the literature [44, 27]: we assume the network
is at a steady state of asynchronous firing, that is, the neurons fires irregularly without coherent
timings across the population. Under the asynchronous firing regime, linear response theory
can be used to approximate closely the fluctuation of neuron spiking [27, 44].

�yi(t) ⇡ �y
0
i (t) +Ai(t) ⇤

0

@
NX

j=1

WijFij(t) ⇤�yj(t)

1

A , i = 1, 2, . . . , N. (1)

Here a(t) ⇤ b(t) = (a ⇤ b)(t) =
R t
0 a(s)b(t � s)ds denotes convolution. yi(t) =

P
k �(t � ti,k)

and �yi(t) = yi(t) � ri is the mean subtracted spike train. y
0
i (t) is the “unperturbed” spike

train in absence of recurrent connections Wij (as a matrix of connection weights W = {Wij}).
Ai(t) is the linear response kernel for neuron i typically having a rise-and-decay shape. Fij(t)
is the temporal kernel of the synapse. For simplicity, we assume the neurons and synapses
have identical dynamics, that is, Ai(t) = A(t), Fij(t) = F (t) and y

0
i (t) are independent and

identically distributed for all i. Further details of the model can be found in [22] and do not
a↵ect our results in this work as explained below.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.274936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.274936
http://creativecommons.org/licenses/by-nc-nd/4.0/


We will focus on the structure of long time scale co-fluctuations in the network, which are
described by the long time window covariance Cij = lim�T!1

1
�T Cij,�T , where Cij,�T is the

covariance of the spike counts summed over a window of length �T : Cij,�T = h�si(t)�sj(t)i,
�si(t) =

R t+�T
t �yi(t0)dt0. For spiking neurons, Cij,T typically settles to its limiting value when

�T > 50ms [5]. As shown in [44], the covariance matrix C = (Cij) can be derived from Eq. (1)
using Fourier transform and has a particularly simple form,

C = �
2(I � aW )�1(I � aW )�T = �

2(I � J)�1(I � J)�T
. (2)

Here I is the identity matrix, and A
�1, AT are matrix inverse and transpose (A�T = (A�1)T ).

The scalar a =
�R1

0 A(t)dt
� �R1

0 F (t)dt
�
summarizes the cellular and synaptic dynamics. We de-

fine J = aW for notation simplicity and refer to J as connectivity matrix. �2 = lim�T!1
1

�T h(�s
0
i (t))

2i,
�s

0
i (t) =

R t+�T
t �y

0
i (t

0)dt0, is the long time window variance of the spike trains of an isolated
neuron (assumed same for all neurons). The covariance matrix C can also be easily calcu-
lated from simultaneously recorded neuron activity data (Method). We consider generalizations
beyond the long time window covariance in Sec. 2.5.

Our analysis and results starts from the covariance-connectivity relation Eq. (2), which
also appears in other scenarios including alternative spiking neuron networks (Hawkes model
[19, 32]), fixed point activity averaged over whitened inputs, OU process [14, 23], and structural
equation modeling in statistics [1] (see details in Section 4.2).

For many biological neural networks, such as cortical local circuits, the recurrent connectiv-
ity is complex and disordered. Random connectivity is a widely used minimal model to gain
theoretical insights on the dynamics of neuronal networks [39, 45]. We first and mainly consider
a random connectivity where Jij ⇠ N (0, g2/N) are drawn as independent and identically dis-
tributed (iid) Gaussian variables with zero mean and variance g

2
/N (referred subsequently as

the iid Gaussian connectivity). We will later show how to generalize to other types of random
connectivity, including Erdős-Rényi random connectivity, networks with excitation and inhibi-
tion , obeying Dale’s law (Section 2.4), and with connectivity motifs (Section 2.3). The theory
we derived assumes the network is large and is exact as N ! 1, and we verify their applicability
to finite size networks numerically.

1.2 PCA and dimensionality

Principle component analysis (PCA) is a widely used analysis of population dynamics, where
the activity is decomposed along orthogonal patterns or modes. The modes can be calculated
as the eigenvectors of the covariance matrix C (Eq. (33)) and the associated eigenvalues �i

are positive and shows the amount of activity or variance distributed along the modes. In this
work, we focus on the distribution of these covariance eigenvalues, described by the (empirical)

probability density function (pdf) pC(x) which is defined as
R b
a pC(x)(x)dx = 1

N#{�i 2 (a, b]}.
We also refer pC(x) as the spectrum (do not confuse with the frequency spectrum in Fourier
transform). We will derive the limit of pC(x) asN ! 1 and study how it depends on parameters
of the connectivity model such as connection variance g.

The shape of pC(x) can provide important theoretical insights on interpreting PCA. For
example, it can be used to separate outlying eigenvalues corresponding to low dimensional
externally driven signals from small eigenvalues corresponding to fluctuations amplified by re-
current connectivity interactions [15] (Fig. 7). pC(x) is also closely related to the (participation
ratio) dimension [28, 34]:

D =
(
PN

i=1 �i)2PN
i=1 �

2
i

. (3)

To see D is a dimensionality measure, consider when there are d non-zero �i with same value
and the rest eigenvalues are zero. Importantly, D can be calculated from the first two moments
pC(x). We will also derive formulas of D in the random connectivity models.
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2 Results

2.1 Continuous bulk spectrum with finite support

For networks with iid Gaussian connectivity (Section 1.1), there is one parameter g describing
the overall connection strength. For stability of the fixed point and the validity of the linear
response theory around it, g is required to be less than 1 [39]. The parameter � in Eq. (2) just
scales all �i and thus is hereafter set to 1 for simplicity. The main result of this paper is the
derivation of the probability density function of the covariance eigenvalues in the large N limit.
In (Supplementary Materials) we show that the eigenvalue pdf is

pC(x) =
3

1
6

2⇡g2x2

2

4
X

⇠=1,�1

⇠

 
(1 +

g
2

2
)x� 1

9
+ ⇠

r
(1� g2)3x(x+ � x)(x� x�)

3

! 1
3

3

5 , x�  x  x+.

(4)
where

x± =
2 + 5g2 � g4

4 ± 1
4g(8 + g

2)
3
2

2(1� g2)3
, (5)

and pC(x) = 0 for x > x+ and x < x�. The distribution has a smooth, unimodal shape and
is skewed towards the left (Fig. 1C). Near both support edges, the density scales as |x � x±|

1
2

(Supplementary Materials). The derivation of the formula is based on techniques similar to
those used previously in deriving the eigenvalue distribution of J [4, 38] However, we emphasize
that our result on the covariance spectrum does not have a simple relation to the well-known
spectrum of the connectivity J because J is a non-normal matrix (i.e. JT

J 6= JJ
T ). This point

is further elaborated in Section 2.3.3. Although the theory is derived in the large N limit, for
networks of sizes of several hundreds, our results still match well with numerical simulations
(Fig. 1AB). Interestingly, the derived pdf is di↵erent from the well known Marchenko–Pastur law
([29], Eq. (28) in Methods) for the pdf of the covariance matrix of sampled iid Gaussian noise,
highlighting the crucial role of the nontrivial correlations generated by the recurrent dynamics.

2.2 Long tail of large eigenvalues near the critical coupling

As g approaches the critical value of 1, the upper limit of the support x+ diverges as (1� g
2)�3

(Section 4.3 in Methods). This means there is an activity mode with diverging variance and is
consistent with the stability requirement of g < 1. Note that lower edge x� is always bounded
away from 0, and has a limit of 4

27 as g ! 1. Analyzing the shape of pC(x) for large x in
the critical regime g ! 1 indicates a long tail of large eigenvalues, with a power law shape
(Fig. 2AB)

pC(x) ⇡
p
3

2⇡
x
� 5

3 . (6)

Moreover, the power law approximation does not require g be very close to 1 and is valid as
long as x� ⌧ x ⌧ x+ is far away from the support edges (Fig. 2C, see details in Methods and
Supplementary Materials).

Because the probability density is small at the power law long tail, large eigenvalues can
appear to be sparsely located (Fig. 1A) and potentially mistaken for statistical outliers. This
underscores the importance of knowing the exact distribution and support edges for interpreting
PCA results of population activity, which we revisit later at (Fig. 7).

Note that such a long tail is a distinct feature of correlations arising from the recurrent
network dynamics. For example, for the Marchenko–Pastur law that is often used for modeling
empirical covariance spectra , the upper edge of the tail relative to the mean is bounded by 4
(Methods), whereas for pC(x) (Eq. (4)) the edge relative to the mean can be arbitrarily large as
O((1�g

2)�2) (see below for the evaluation of the mean). This highlights the di↵erence between
covariance generated by finite samples of noise and correlations generated by the recurrent
dynamics.
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Figure 1: Covariance spectrum under random Gaussian connectivity. A. Compare theory
(Eq. (4)) with finite size simulation using Eq. (2) at N = 100, g = 0.5. Histogram shows eigenvalues
from one network realization. B. Same as A at N = 400. C. Covariance eigenvalue distribution
at various value of g. As g increases the distribution develops a long tail of large eigenvalues.
D. Dimension (normalized by network size) vs g. The dots and error bars are mean and sd over
repeated trials from finite size simulations (Eq. (2) and use Eq. (3)). Note some error bars are
smaller than the dots

The long tail of the eigenvalue distribution is also reflected by a low dimension (Eq. (3)).
We show that the mean and second moment of the eigenvalues � for large N are

E� = (1� g
2)�1

, E�
2 = (1� g

2)�4
. (7)

From Eq. (7), the dimension is
D = N(1� g

2)2. (8)

In particular, the relative dimension with respect to the network size D̂ = D/N vanishes as g

approaches 1 (Fig. 1D). In comparison, D̂ for the Marchenko–Pastur law (Eq. (28)) is at least
1
2 .

While these low order moments can be derived from previous methods (see e.g., [10] and
Supplementary Materials), our method allows for the first time the derivation of the full pdf,
from which higher order moments can also be derived, for example,

E�
3 = (1� g

2)�7(1 + 2g2), E�
4 = (1� g

2)�10(1 + g
2)(1 + 5g2). (9)

2.3 Impact of connectivity motifs

We next consider generalizations of random connectivity beyond the iid Gaussian model (Sec-
tion 1.1). One important feature of biological neural networks is having motif structures [40, 31],
which means the frequencies of certain subgraphs or motifs are significantly di↵erent from that
in an edge-shu✏ed network (i.e. an iid random graph with matching connection probability).
We can introduce second order motifs (Fig. 3A), i.e. those composed of two edges, to the Gaus-
sian random connectivity using an additive model (Eq. (29) in Methods, [21]) which introduce

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.274936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.274936
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Approximate power law tail. A. The exact pdf (solid line) of covariance spectrum
compared with the power law approximation (dashed line, Eq. (6)) at g = 0.7. Inset shows in the
log-log scale. bf B. Same as A for g = 0.8. The approximation improves as g approaches the critical
value 1. C. The log error between the exact pdf and approximation | log(p(x)) � log( ˆp(x))| as a
function of g and “distance” from the support edges. We quantify this “distance” as the minimum
ratio of x/x� and

p
x+/x (see Supplementary Materialsfor explanation of the square root). The

plot shows the log error is small when this ratio is large which means x being far away from the
edges. The dashed line shows the attainable region of the ratio which increases with g.

the following correlations between the edge variables

̂div = ⇢(Jik, Jjk), ̂con = ⇢(Jki, Jkj), ̂ch = ⇢(Jik, Jkj), ̂re = ⇢(Jij , Jji), 1  i 6= j 6= k  N.

(10)
Here ̂⇤ measures the strength of diverging, converging, chain, and reciprocal motifs respectively
(see Methods). The previous iid model of J (no motifs) corresponds to all ̂⇤ being 0. Under
the new Gaussian random connectivity (Eq. (29) in Methods), the diverging, converging and
chain motifs are generated by adding random correlated low rank components to a full rank
matrix J̃ , where J̃ is a Gaussian matrix with only reciprocal correlations. We have shown that
a low rank perturbation to J̃ will not a↵ect the continuous bulk spectrum of the covariance
in the large network limit, but introduce at most a finite number of outliers (Supplementary
Materials, Fig. 3BC). Therefore, for the continuous bulk covariance spectrum, we can focus
on the study the case of a Gaussian coupling matrix with only reciprocal motifs. Note that
the motif measures defined in Eq. (10) are correlations that are normalized by var(Jij). When
focusing on the J̃ component, we need to account for the change from var(Jij) to var(J̃ij) by
using

̂re(J̃) =
̂re(J)� 2̂ch(J)

1� ̂div(J)� ̂con(J)
. (11)

So all the other types of second order motifs do not directly a↵ect the bulk spectrum, but
channel their impact via the e↵ective ̂re. We will from here on focus on the reciprocal only
case to study the shape of the bulk spectrum and write  = ̂re for notation simplicity.

2.3.1 Symmetric and anti-symmetric random networks

First, we look at two special, extreme cases for the reciprocal motifs (as a correlation �1   
1): J being symmetric (Jij = Jji,  = 1) or anti-symmetric matrix (Jij = �Jji,  = �1). These
cases are much simpler, because J is a normal matrix so pC(x) can be derived from the well
known eigenvalue distribution of J ([38]). For symmetric random connectivity,

pC,g,=1(x) =

p
(4g2 � 1)x� 1 + 2

p
x

4⇡g2x2
, x 2 (x�, x+), x± = (1⌥ 2g)�2

. (12)
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Figure 3: Connectivity motifs and invariance of the bulk spectrum. A Diagrams of all
second order motifs (composed of two edges). B The histogram of covariance eigenvalues of a
network with iid Gaussian connectivity J (N = 400, g = 0.4). C Now add diverging motifs to (the
same) J as in Eq. (29) with bj such that ̂div = 0.25. The bulk histogram of eigenvalues has little
change and remains well described by the theory Eq. (4) except for two outlying eigenvalues (inset,
highlighted by semicircles). As shown in Supplementary Materials converging and chain motifs
similarly do not directly a↵ect (see Eq. (11)) the bulk spectrum in large networks.

Here stability requires that g <
1
2 . For anti-symmetric random connectivity,

pC,g,=�1(x) =

p
(4g2 + 1)x� 1

2⇡g2x2
p
1� x

, x 2 ((1 + 4g2)�1
, 1). (13)

Here the network is stable for all g. The derivations are given in the Supplementary Materials.
From the above equations, we see that pC(x) of the symmetric random network has a power

law tail analogous to Eq. (6) as g ! 1/2 for large x, but with a di↵erent coe�cient,

pC,g,=1(x) ⇡
p
2

⇡
x
� 7

4 . (14)

The pC(x) of the anti-symmetric random network does not have a long tail as the upper limit
of the support is always 1.

2.3.2 General reciprocal motifs

Now, for the Gaussian random connectivity with reciprocal motifs  = ⇢(Jij , Jji), �1 <  < 1,
we derived an equation for pC,g,(x) in the large N limit based on results in [38] similarly as the
iid case (Supplementary Materials). Although a closed form expression is possible using the root
formula for quartic equations, it seems quite involved and is thus not pursued but left implicit
to the code that we use to numerically calculated pC,g,(x). For a fixed g, as  decreases, the
distribution narrows in from both sides (Fig. 4B). Intuitively, these e↵ects are mainly due to
the change of stability constrained critical gc = (1 + )�1 with  (based on the spectrum of
J [38]). So the same g becomes relatively weaker comparing to gc as kappa decreases. This
motivates us to compare the distributions pC,g,(x) with the same relative coupling strength
gr = g/gc = g(1 + ), which is also the maximum real part of J ’s eigenvalues [38]. As shown in
Fig. 4C, the e↵ects of  are now smaller comparing to Fig. 4B since the main e↵ect on relative
coupling is controlled, and the changes to the shape is the opposite: the distribution narrows as
 increases. As strong connections, we also observe a highly skewed long tail of large eigenvalues.
Interestingly, we show that (Supplementary Materials) for �1 < re < 1 reciprocal motifs, the
critical covariance spectrum has an approximate power law tail with the same exponent as the
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iid random case (Eq. (6))

pC(x) ⇡
p
3

2⇡
(1� )

1
3 (1 + )x� 5

3 , as x ! 1, g ! gc = (1 + )�1 (15)

These shape changes of pC,g,(x) with reciprocal motifs are also reflected by the dimension
measure, for which we derived a closed form expression (Supplementary Materials)

D = N
µ1(2g2µ1 + 1)� 2✓µ1(✓µ1 + 1)

(✓µ1 + 1)2(g2µ1 + 1)
, µ1 =

2✓ � 1 +
p
1 + 4(g2 � ✓)

2(g2 � ✓2)
, ✓ = g

2(1 + ). (16)

Here µ1 is the mean of the distribution. Comparing with Eq. (8), this shows the non-trivial
dependence of dimension on the reciprocal motif strength . Consistent with the shape changes,
the dimension increases with reciprocal motifs (Fig. 4D).

Figure 4: Impact of reciprocal motifs. A. Compare theoretical covariance spectrum for random
connectivity with reciprocal motifs and simulation (g = 0.4, ̂re = 0.4, N = 400). B. The spectra
at various ̂re while fixing g = 0.3. C Same as B but fixing relative gr = g/gc to control the main
e↵ect (see text). The changes in shape are now smaller and the support narrows with increasing
̂re. C. The impact of reciprocal motifs on dimension for various gr (Eq. (16)). For small gr, the
dimension increases sharply with ̂re.

2.3.3 Strong non-normal e↵ects at re < 0

Here we revisit the implications of the fact that the random J is a non-normal matrix. In
particular, we consider the shape of pC,g,(x) in networks with negative reciprocal motifs,  < 0.
One may naively expect that as  decreases towards �1, the shape of pC,g,(x) will become
similar to that of the anti-symmetric network pC,g,=�1(x) (Eq. (13)). Note that pC,g,=�1(x)
has a diverging density at the upper edge of 1 (Supplementary Materials), and can also be
bimodal for g in certain range (i.e. has another peak in addition to the divergence at 1, Fig. 5A).
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One may thus expect pC,g,(x) inherit some of these features and is bimodal when  is close to
�1.

However, we find that for all  > �1 and g < gc, there is no divergence in pC,g,(x), and
the pdf is unimodal for all but a minuscule combinations of  and g where  is very close to �1
(Fig. 5B-E, the main figure in panel E is a highly zoomed-in view in order to show the bimodal
region which is hard to see within the whole attainable parameter region (the inset of panel E)).

This intriguing observation is due the non-normal connectivity J . To show this, we compare
pC,g,(x) to the covariance eigenvalue distribution p

n
C,g,(x) from a network with a normal

connectivity matrix J
n that has a matching eigenvalue distribution to J . Similarly we consider

how p
n
C,g,(x) changes as  < 0 approaches �1. Note that at  = �1, J itself is normal and

pC,g,=�1(x) = p
n
C,g,=�1(x). Interestingly, the normal matching pnC,g,(x) shows similar features

as the  = �1 (Fig. 5F): the diverging density of pC,g,=�1(x) at the upper edge corresponds to a
non-di↵erentiable peak and the distribution is bimodal, both phenomena occurs in a large region
of (g,) (Fig. 10 in Supplementary Materials). The absence of such features in the actual pC(x)
thus highlights the strong e↵ect on the covariance eigenvalue distribution due to connectivity
being non-normal.

2.4 Erdos-Renyi connectivity and E-I networks

The Gaussian random connectivity we have considered so far has a non-zero connection weight
for all pairs of neurons with probability 1. A more biologically plausible alternative is a network
with random sparse connections (Erdős-Rényi (ER) random connectivity) where each pair of
neurons is independently chosen to be connected with a weight w0 > 0 at probability 0 < p < 1
(and unconnected with probability 1 � p). Here we compare the dynamics of these two types
of networks (dense and sparse) following the framework of [24] but in terms of the covariance
spectrum.

For the all excitatory ER network, we found that the covariance matrix spectrum from
the iid Gaussian connectivity (Eq. (4)) also describes the bulk spectrum of an ER network
once substituting g = aw0

p
Np(1� p) to match the variance of connections var(Jij) (similar

to a replacement in [24]). The result can be understood by viewing J as (J � w0p1) + w0p1,
where 1 is a matrix of all 1 entries. The first matrix has zero mean iid entries. In light of
universality results in random matrix theory [43], we hypothesize it to have the same spectrum
as the matching iid Gaussian matrix as N ! 1 and the expected degree pN ! 1, which is
verified numerically (Fig. 6A). The second part of J is a rank-1 matrix. As mentioned in the
case with motifs, adding a low rank term to the connectivity does not a↵ect the continuous
bulk spectrum (Supplementary Materials), therefore J has a same bulk covariance spectrum
described by the iid Gaussian theory (see Fig. 11 in Supplementary Materials). However, for all
excitatory ER network the low rank term does a↵ect stability [24] and creates a large outlying
eigenvalue (Fig. 11A in Supplementary Materials). This means either w0 or p has to be small
to ensure stability. Such a limitation can be overcome by adding inhibition [24] in subsequently
discussed networks.

Adding inhibition Having inhibitory connections (negative connection weights) is an im-
portant feature in neural circuits. In the iid Gaussian connectivity, this is implicitly modeled as
the entries having zero mean on average showing the cancellation of inhibition and excitation
(positive connection weights) [33, 24]. In the ER network, we can add a global inhibition, where
the summed output of all neurons is fed back to each neuron with a strength of �wI < 0. This
is equivalent to have a connectivity J � wI1. Since this is again a rank-1 perturbation, this
ER network with inhibition has the same bulk spectrum described by Eq. (4). Moreover, the
added inhibition cancels the overall excitation and allows for larger w0 and e↵ective g while
keeping the network stable [24]. In particular, for wI = w0p this is the same zero mean matrix
consider above (Fig. 6A). Similarly, stability can be attained at stronger connections in other
connectivity models with inhibition (according to the general conditions of [24] simplified at
linear dynamics) such as (i) all-inhibitory ER network (w0 < 0, Supplementary Materials) and
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Figure 5: Strong non-normal e↵ect at ̂re < 0. A. The covariance spectrum for anti-symmetric
random connectivity (̂re = �1, Eq. (13)). The density diverges as the right edge x = 1 (dashed
line). For larger g, the distribution becomes bimodal (counting the divergence as a peak). B. An
example bimodal distribution at ̂re > �1 (-0.99) compared with N = 400 simulation. C. Location
of the peak(s) in the covariance spectrum as a function of g at ̂re = �0.99. As g increases,
a left peak emerges at g = 2

3 , and the right peak disappears after g ⇡ 1.85. For a range of g
between the bifurcations, the distribution is bimodal. D. Same as C but for ̂re = �0.93. There
is no bifurcations of peaks and the distribution is always unimodal. E. The location of the peak
(right most if multiple) as a function of g and ̂re. The red dashed line and magenta solid lines
label the location of the peak bifurcations as in C (same colored dots) and the triangular region
enclosed is when the covariance spectrum is bimodal. Note the ̂re-axis is highly enlarged and
the bimodal region is minuscule within the whole parameter space only for ̂re . �0.95 (inset,
the yellow dashed line shows the stability bound gc). F. A typical unimodal spectrum (blue) for
̂re < 0 compared with the covariance spectrum predicted from the spectrum of connectivity J

assuming it being normal (magenta). The normal prediction is very di↵erent and bears similarity
to the anti-symmetric case (see A) being bimodal with a non-di↵erential point (dot).

(ii) mixed E-I network where the entries are independent and identically distributed as

Jij =

8
<

:

we, with prob. pe
�wi, with prob. pi
0, with prob. 1� pe � pi

(17)

where we, wi > 0 and satisfies the balance wepe � wipi = 0 to ensure zero-mean. By similar
hypothesis of universality describe above, the covariance spectrum of J is again described by
Eq. (4) with an e↵ective g matching var(Jij), which agrees well with the numerics (Fig. 6B).

Dale’s law E-I network Biological neuronal networks largely obey the so called Dale’s
law, where each neuron can send out only excitatory connections, or only inhibitory connections
depending the cell type. This requires a two population network with E and I neurons, where
columns of J is constrained in sign. Here we consider a simple case [33, 24]: N/2 E neurons
sending connections each with strength we > 0 to other neurons at probability p, and N/2 I
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neurons sending �we < 0 connections with probability p. The overall strength is balanced in
this network and var(Jij) is the same for all entries. Again, we found that the bulk spectrum
is well described by the iid Gaussian theory (Fig. 6C) with an e↵ective g = we

p
Np(1� p)

[24]. This can be generalized to unequal fractions of E and I neurons as long as the variance
of connections is kept equal (Fig. 6D). For general EI networks with unconstrained connection
weights and probability for E, I neurons, the covariance spectrum di↵ers from the iid Gaussian
case, analogously as their connectivity spectra di↵er [33], and its characterization is left for
future work.

Figure 6: Erdős-Rényi and EI networks. A. Simulation based on Eq. (2) of an ER network
with global inhibition to balance the mean connection to 0 (see text) compared with the Gaussian
random connectivity theory (Eq. (4)). N = 400, connection probability p = 1, the e↵ective g = 0.4
(see text). B. Similar as A for an Mixed EI network with randomly assigned E or I edges (Eq. (17)).
pe = 0.025, pi = 0.075, N = 400, the e↵ective g = 0.4 (see text). C. An EI network obeying the
Dale’s law with equal number of E and I neurons and balanced connection strength (see text).
N = 400, connection probability p = 0.1, e↵ective g = 0.4. Except for two outliers, the covariance
eigenvalues are well described by a Gaussian random connectivity theory. D. The bulk spectrum
(excluding two outlying eigenvalues similar as in C) for an Dale’s law EI network with 70% E
and 30% I neurons (N = 800). The connection probabilities and weights are chosen to ensure the
variance of E and I connection strengths are equal: pe = 0.028, pi = 0.15, we = 0.0864, wi = 0.0396.
The e↵ective g = 0.4.

2.5 Frequency dependent covariance

We have focused on the long time window covariance matrix. This would be especially suitable
to neural activity recordings that have limited temporal resolution such as calcium imaging [46].
Temporal structures of correlation beyond the slow time scale can be described by the frequency
covariance matrix (or coherence matrix)

Cij(!) = lim
T!1

h�yi(!)�y
⇤
j (!)i, (18)
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where �yi(!) =
1p
T

R T
0 �e

� !�yi(t)dt is the Fourier transform of the spike train and z
⇤ is the

complex conjugate. Importantly, the long time window covariance corresponds to C(! = 0)
(Wiener-Khinchin theorem, Supplementary Materials). Non-zero frequency covariance matrix
can be calculated from neural activity data either using the formula above or by Fourier trans-
form of the time-lagged cross-correlation functions. Importantly, there is a simple C-J relation
analogous to Eq. (2) for C(!) (Supplementary Materials).

It turns out for our main model of iid Gaussian random connectivity, the spectrum of C(!)
is simply obtained replace g with an e↵ective

g(!) = A(!)F (!)
q
Nvar(Wij) (19)

which takes into account frequency dependency of neuronal (A(!), Section 1.1) and synaptic
(F (!)) dynamics. Note, however, such a replacement by the e↵ective g may not apply to other
cases, for example networks with non-zero reciprocal motifs and there can be qualitative changes
with frequency (Supplementary Materials).

2.6 Fitting the theoretical spectrum to data

Our theory on the bulk covariance spectrum can be fitted to neural activity whenever the co-
variance eigenvalues can be calculated. In many settings, the value of the unperturbed neuronal
variance �

2 is not known. But this can be easily addressed by scaling both the observed eigen-
values and theory to have mean equal to 1. After fitting the connectivity parameter g for
the normalized eigenvalues, �2 can then be easily estimated using the original mean. For our
theoretical spectra, the mean µ of covariance eigenvalues is available in closed form (Eqs. (7)
and (16)), and the scaled pdf is easily found as pR(x) = µpC(µx).

Furthermore, the recorded neural activity is sometimes normalized for each neuron (e.g.
by converting to z-scores), in which case the eigenvalues of a correlation matrix instead of a
covariance matrix needs to be analyzed. Interestingly, we found that for our Gaussian random
connectivity models, the correlation eigenvalue distribution in the large N limit is the same
as the rescaled pR(x) above. This is because the diagonal entries of C becomes uniform (thus
converge to µ) for large N (Supplementary Materials).

The best fitting theoretical spectrum can be found by minimizing the L
2 or L

1 error be-
tween the empirical and theoretical cumulative distributions (motivated by methods in hypoth-
esis testing, see Methods) with respect to connectivity parameters such as g. We note that
the availability of closed form or analytic solutions of the theoretical distributions makes this
optimization highly e�cient.

We conclude by demonstrating fit to data with a simple example while the full application
to neural data will be explored elsewhere. Consider a covariance matrix that is a sum of two
components: one from the iid Gaussian random recurrent network (Eq. (2)) and another low
rank part �2

1u1u
T
1 +�

2
2u2u

T
2 representing contributions from e.g., external inputs from two other

brain areas, each with magnitude �2
i and projection weights to neurons in the recurrent network

described by column vector ui. Here u1 and u2 are chosen as random vectors with unit 2-norm
and �1 and �2 are set to be su�ciently large such that the low rank part corresponds two
outlying eigenvalues [7]. We then fit the theoretical spectrum (Eq. (4)) to all eigenvalues of the
total covariance matrix. The inferred g is highly accurate despite the presence of (unknown to
the algorithm) outliers, and can in fact often correctly separate them out (Fig. 7).

3 Discussion

In this work, we studied the eigenvalue distribution (i.e. spectrum) of the covariance matrix of
a randomly connected neuronal network during spontaneous fluctuations around a steady state.
We derived the distribution in the large network limit analytically in terms of the connectivity
parameters such as coupling strength and motif statistics. Our results also include closed form
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Figure 7: Separating outlying eigenvalues by fitting to the theoretical spectrum. A rank
2 component is added to a covariance matrix of a network with random connectivity (Eq. (2),
N = 200, g = 0.6, �2

1 = 17, �2
2 = 15, �2 = 1, see text). We then use all eigenvalues to find the best

fit to theory Eq. (4) (see text). The eigenvalues outside the theoretical support are then considered
outliers (magenta cross). We then re-fit using the non-outlier eigenvalues and the process is repeated
a few times till convergence. The fitting successfully identifies the two outlying eigenvalues in 86%
of 100 trials and accurately infers g with a root mean square error of 0.01.

expressions for the dimension measure generalizing known results [10]. These results are to
the best of our knowledge, novel. The new spectrum exhibits characteristic long tails of large
eigenvalues at strong connections that are approximated by a power law. Knowing the exact
shape and support of the bulk eigenvalue distribution can facilitate separating out outlying
eigenvalues corresponding to low dimensional structure (coming from other un-modeled e↵ect
such as external input).

The shape of the bulk spectrum reflects structured amplification of the neuronal noise by the
random recurrent interactions and is robust to low rank components in the connectivity or from
external inputs (Supplementary Materials). The interpretation bulk spectrum corresponds to
smaller eigenvalues in the PCA analysis of neural activity data, their meaning and relation to
circuit connectivity, Unlike the large eigenvalues [30], the interpretation of the bulk spectrum of
PCA of neural activity data has received little attention. A notable exception is a recent work
[8] which studied the power law of covariance spectrum of data near criticality based on renor-
malization group analysis. Our theory thus provides an important benchmark to compare with
experimental data and advocates the bulk covariance spectrum as a powerful joint description
of collective dynamics in neuronal networks.

One limitation of The main limitation of the work is the assumed dynamic regime where
fluctuations of the neuronal activity are described by linear response theory [27, 44] around a
fixed point. Extensions and comparisons to highly nonlinear activity such as chaotic dynamics
[39] is left for future research. Future work could also consider more general network archi-
tectures such as multiple populations of EI networks [24] and incorporating distant dependent
connectivity patterns based on known cortical microcircuit architectures [6, 9, 26].

3.1 Ordered vs. disorder connectivity

We have studied the covariance spectrum under random connectivity which are used to model for
complex recurrent networks. Here we ask whether certain features of these spectra are distinct
results of the connectivity being random. To address this question we briefly discuss here the
covariance spectra from a few widely known examples of ordered connectivity for comparison.
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The simplest nonrandom connectivity model is the uniform all-to-all connected network
where Jij = g/N for all i, j. The covariance matrix has one eigenvalue being 1/(1 � g

2) and
N � 1 eigenvalues being 1. Thus, for large networks, the spectrum consists a delta function at
1 (‘bulk’) and a single outlier. A similar situation arises when we consider a ring network [6],
with long-range connections, where Jij follows a smooth shape depending on the distance of the
pair of neurons on the ring (Fig. 8, see Methods). In the large network limit, the covariance
spectrum has delta distribution at 1 with a number of discretely located larger eigenvalues.

We next consider the ring network with short-range connections, in particular, nearest-
neighbor connections. The covariance spectrum now has a continuous bulk on an interval, but
the density diverges at both edges as (�x)�

1
2 (Fig. 8B).

To seek further if we can find an ordered connectivity with a qualitatively similar covariance
bulk spectrum as the random connectivity, we consider the multi-dimensional generalizations
of the nearest-neighbor ring network, i.e., a torus (Methods). As the dimension of the torus
increases, the smoothness within and at the edges of the support increases, and the covariance
spectrum becomes qualitatively similar to the random case [16] (Fig. 8F). This indicates that
the overall smooth density and long tail shape of the covariance spectrum is a shared property
in highly connected networks with high rank connectivity matrices, including random networks
and high dimensional short-range spatially invariant networks.

Figure 8: Covariance spectra under some deterministic connectivity models. A. The covariance
eigenvalues of a ring network with a long-range connection profile (inset, N = 100). Most eigen-
values are close to 1 and the rest eigenvalues appear at the locations predicted by top Fourier
coe�cients of the connection profile (cross, see Methods). These eigenvalues will thus remain at
these discrete locations even for large N . B. A ring network with nearest-neighbor connections:
Ji�1 = 0.4, Ji+1,i = 0.2. The solid line are theoretical spectrum in large N limit which has two
diverging singularities at both support endpoints. The e↵ect of such singularities is also evident
in the finite size network at N = 400. C-F. Higher dimensional generalizations of the nearest-
neighbor ring network (ad = 0.6, see Methods). As the dimension increases, the singularity in the
pdf becomes milder and less evident, and the overall shape becomes qualitatively similar to the
random connectivity case (Fig. 1).
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4 Methods

Notation Description
N number of neurons
C covariance matrix Eq. (2)

pC(x) pdf of eigenvalues of C Section 1.2
x± support edges of pC(x)
W matrix of connection weights
J connectivity matrix J = aW Section 1.1
�
2 unperturbed neuronal variance Section 1.1
g variance of connections var(Jij)
gc maximum g constrained by stability
gr g/gc

̂re normalized reciprocal motif cumulant, , Eq. (10)

µ mean of eigenvalues 1
N

PN
i=1 �i

D dimension Eq. (3)

4.1 Models of random connectivity

Here is a summary of results on various random connectivity models.

• iid Gaussian random connectivity Jij ⇠ N (0, g2/N): closed form pdf and endpoints
Eq. (4), including frequency dependent covariance spectrum Section 2.5, and power law
tail approximation Eq. (6).

• Gaussian random connectivity with second order motifs Eq. (10): analytic solution and
endpoints (quartic root, Supplementary Materials) and power law tail approximation
(Eq. (15)). For special case of symmetric and ant-symmetric connectivity, closed form
pdf Eqs. (12) and (13), including frequency dependent covariance spectrum (Supplemen-
tary Materials).

• Erdős-Rényi and certain EI network Section 2.4: same bulk spectrum as the iid Gaussian
case.

For all cases, the mean µ and the dimension D are derived in closed form (Eqs. (7), (8) and (16).
For simplicity, we do not require Jii to be zero (i.e. no self-coupling), but allow it, for

example in iid Gaussian model, to be distributed in the same way as other entries Jij . In large
network limit, since individual connections are weak (e.g. O(1/

p
N)), allowing this self-coupling

or setting Jii = 0 does not a↵ect the covariance spectrum (Supplementary Materials).

4.2 Applications to alternative neuronal models and signal covariance

Although the relation between C and J (Eq. (2)) is derived based on the linear response theory
of integrate-and-fire neurons, it also arises in other networked systems.

Linearly interacting Poisson neurons This is also called a multivariate Hawkes model
[19]. This is a simple model for spiking neuron networks, but is versatile to capture for example
the temporal spiking correlations seen in other more sophisticated nonlinear spiking neuron

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.274936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.274936
http://creativecommons.org/licenses/by-nc-nd/4.0/


networks [32, 18]. A time dependent Poisson firing rate is calculated as a filtered input spike
trains sj(t) (sum of delta functions), and spikes are then drawn as a Poisson process given yi(t),

yi(t) = y0 +

Z 1

0
A(t� ⌧)

0

@
X

j

Wijsj(t� ⌧)

1

A d⌧. (20)

Here we consider a homogeneous network where the baseline firing rate y0 and response filter
A(t) is the same for all neurons.

The exact long time window spike count covariance matrix of this network can be shown to
be [19]

C = (I � aW )�1
C

0(I � aW )�T
, C

0 = diag{Y1, Y2, , . . . , YN}, Y = (I � aW )�1
Y

0
, (21)

which is valid if the time varying yi(t) do not often becomes negative (for example when any
negative connections Wij are small compare to y0). Here a =

R1
0 A(t)dt, Y 0 and Y are vectors

of baseline and perturbed (with recurrent connections) firing rates of the neurons respectively.
If we assume that the e↵ective connection strength aW is weak so that we can approximate Y

with Y
0, then (21) becomes

C = y0(I � aW )�1(I � aW )�T
,

the same as Eq. (2) (note that for Poisson process var(
R t+�t
t si(u)du) =

R t+�t
t yi(u)du).

Another condition that ensures a uniform Y and does not restrict weak connection is a
fine-scale balance condition of W sometimes assumed in EI networks [?],

NX

j=1

Ji1j =
NX

j=1

Ji2j . (22)

This is not unreasonable to assume, for example, considering the homeostatic mechanisms of
neurons.

Ornstein-Uhlenbeck process The multivariate Ornstein-Uhlenbeck process is a classic
minimal model for stochastic dynamical systems [14],

ẋi(t) = �xi(t) +
NX

j=1

Jijxj(t) + ⇠i(t), i = 1, . . . , N. (23)

Here ⇠i(t) is iid Gaussian white noise with variance �
2. It can be shown that the long time

window (or zero-frequency, see Sec.2.5) covariance of the system is given by Eq. (2).

Fixed point over whitened input The covariance we considered so far describes the
structure of fluctuations of spontaneous dynamics without or under fixed external input, often
referred as noise covariance [2]. We can also consider a signal covariance in a network of firing
rate neurons

⌧
dri

dt
= �ri + f

0

@
NX

j=1

Jijrj + ui

1

A , i = 1, 2, . . . , N. (24)

Here ui is the external input to neuron i. Assume the network settles to a steady state where
all neurons have firing rate ri > 0, and approximate the nonlinearity as f(x) ⇡ x, then the fixed
point firing rates are

~r = (I � J)�1
~u. (25)

Now consider the network activity across an ensemble of input patterns, which has a whitened
statistics [11],

var(ui) = �
2
, cov(ui, uj) = 0. (26)
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It is easy to see that the covariance of firing rates ~r is given by �
2(I � J)�1(I � J)�T that is

the same as Eq.(2).
We note that Eq. (25) or equivalently ~r = J~r + ~u appears in broader contexts beyond

neuroscience and is studied in the field of linear structural equation modeling (SEM) [1].

4.3 Power law approximation of the eigenvalue distribution

First note the limits of the support edges. As g ! 1�, (1 � g
2)3x+ ! 27

4 . For the lower edge,
x� ! 27

4 can be found by Taylor expansion in (1�g
2) or note that (1�g

2)3x+x� = 1. Consider
a x that is far away from the support edges as g ! 1, given the above, this means,

x ! 1, x(1� g
2)3 ! 0. (27)

Note that since x+/x� ⇠ (1� g
2)�3, there is plenty range of x to satisfies the above for strong

connections when g is close to 1. Under these limits, Eq. (4) greatly simplifies as various terms
vanish leading to (Supplementary Materials)

lim
g!1�, x�⌧x⌧x+

pC(x)/

 p
3

2⇡
x
� 5

3

!
! 1.

This explains the validity of power law approximation away from support edges. If we are only
interested in the leading order power law tail in the critical distribution (i.e. g ! 1� and then
x ! 1), there is a simpler alternative derivation that we also use for other connectivity models
(see Supplementary Materials).

4.4 Comparison with the Marchenko–Pastur distribution

The Marchenko–Pasturdistribution is widely used for modeling covariance eigenvalues arising
from noise [29, 15]. It is a family with one shape parameter ↵. We focus on the case when the
covariance is positive definite which restrict 0 < ↵ < 1 (otherwise there is a delta distribution
at 0) and the pdf is

pMP (x) =

p
(↵+ � x)(x� ↵�)

2⇡↵x
, ↵± = (1±

p
↵)2, (28)

The first two moments are 1 and 1 + ↵, from which we know the dimension is 1/(1 + ↵) has a
lower limit 1/2. The upper edge ↵+ is bounded by 4.

4.5 Gaussian random connectivity with second order motifs

Following [21], we can construct a connectivity matrix with jointly Gaussian distributed entries
as

Jij = ai + bj + J̃ij , 1  i, j  N, (29)

where ai, bj , J̃ij are zero mean Gaussian variables that have the same variance across i, j

var(ai) = a
2
, var(bj) = b

2
, var(J̃ij) = c

2
, 1  i, j  N, (30)

and are independent except for

cov(ai, bi) = k, cov(J̃ij , J̃ji) = r, i 6= j. (31)

Such a structure and correlation introduces the second order motifs to J ,

div = cov(Jik, Jjk) = b
2
, con = cov(Jki, Jkj) = a

2
, ch = cov(Jik, Jkj) = k,

re = cov(Jij , Jji) = 2k + r, i 6= j 6= k (32)
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The relation between these covariances and the motifs can be seen in network where Jij take

binary values of w0 or 0 [47, 22]. In large networks N3

w2
0
EJikJjk is the number of diverging

motifs. Note that EJij/w0 is the connection probability and N3

w2
0
EJikEJjk = Np

2 is expected

number of diverging motifs in a matching Erdős-Rényi (ER) random graph. Therefore div

(called motif cumulant in [23]) is proportional to the deviations the diverging motif frequency
from the (iid) ER graph. ⇤ can be normalized to correlation ̂⇤ as in Eq. (10) by dividing
var(Jij) = a

2 + b
2 + c

2. So we can achieve various second order motif cumulants by adjusting
{a2, b2, c2, k, r}.

From Eq. (29) it is clear that J can be viewed as J̃ perturbed by a rank-2 matrix ae
T + eb

T ,
a = (ai), b = (bi), e = (1, 1, . . . , 1)T . According to Lemma 7.1 in Supplementary Materials, the
continuous spectrum of the covariance based on J is the same as that for J̃ for large N . Note,
however, the normalized value of ̂re(X) = re(X)

var(Xij)
is di↵erent from J and Ĵ and needs to be

mapped using Eq. (11).

4.6 Deterministic connectivity

4.6.1 Ring network with short and long range connections

In a ring network, neurons are equally spaced on a circle (can be physical or functional space)
and neuron i is associated with a location xi = i/N , i = 0, . . . , N � 1. The connection between
two neurons j and i only depends on the location di↵erence xi�xj thus is translation invariant.

For long-range connections, the connectivity has a shape determined by a fixed smooth
periodic function f(x) on [0, 1),

Jij =
1

N
f(xi � xj) =

1

N
f

✓
i� j

N

◆
.

In the large network limit, the eigenvalues of the covariance has an approximate delta distribu-
tion at 1 except for a finite number of discretely located larger eigenvalues (Fig. 8A). A precise
statement of this result is described in Supplementary Materials. The outlying eigenvalues
corresponds to the top Fourier coe�cients of f(x).

For the nearest-neighbor (NN) connectivity, only Ji�1,i and Ji+1,i are non-zero and remain
fixed as N ! 1.

4.6.2 Multi-dimensional ring network

For d-dimensional ring, the neurons are equally spaced on a d-dimensional lattice

x~i = (i1/N, i2/N, . . . , id/N),

which is periodic along each coordinate. We focus on the NN connectivity where each neuron
is connected to 2d neighboring neurons with strength J

k
ik�1,ik and J

k
ik+1,ik along direction k.

We show that the probability density function at both support edges scales as (�x)
d
2�1 (for

comparison, the random network edges scale as (�x)
1
2 ). This means for dimension d � 2, there

is no singularity at the support edges (Fig. 8).
To characterize the shape of the covariance spectrum (Fig. 8C-F), we further simplify by

setting J
k
ik�1,ik = J

k
ik+1,ik = a (see also Supplementary Materialsfor motivations based on 1D

ring) and analytically derived pC(x) (Supplementary Materials). For small dimensions d  3,
there are distinct “inflection points” within the support. As d increases, this non-smooth feature
becomes less evident and becomes hard to tell in empirical eigenvalue distributions from a finite
size network (not shown).
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4.7 Fitting the theoretical spectrum to data

For neural activity data, C can be calculated from large number of time samples of binned spike
count si(t) (assuming bin size is �T large),

Cij =
1

�T

1

M � 1

M�1X

t=1

(si(t)� s̄i)(sj(t)� s̄j), s̄i =
1

M

MX

t=1

si(t). (33)

For calcium imaging data, the fluorescence is approximately integrating the spikes over the
indicator time constant. So we can still apply Eq. (33) by plugging in the fluorescence signal in
place of si(t) to calculate the covariance C (omit the constant factor �T which does not a↵ect
fitting to theory, Section 2.6).

We fit the theoretical spectrum to empirical eigenvalues by finding the connectivity pa-
rameter g that minimize the error between the cumulative distribution functions (cdf) F (x) =R x
�1 p(x)dx. This avoids issues such as binning when estimating the probability density function
from empirical eigenvalues. We numerically integrate theoretical pdf (Eq. (4)) to get its pdf.
As seen below, the theoretical cdf only needs to be calculated at the empirical eigenvalues.

The cdf error can be measured under the L
2 norm using the Cramer-von Mises statistic

D
2
CvM =

Z
(F (x)� Fn(x))

2
dFn(x) =

1

12n2
+

1

n

nX

i=1

✓
F (x)� 2i� 1

2n

◆2

Here n is the number of samples. Alternatively, the error can also be measure under L1 norm
based on the Kolmogorov-Smirnov statistic

DKS = sup
x

|Fn(x)� F (x)|.

where xi are samples. Our code implements both measures.

4.8 Code

Codes for simulations, fitting, and making all figures are available at
https://github.com/huyu00/netw_cov_spectrum .
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