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 10 

Environmental stimuli experienced by the parental generation influence the 11 

phenotype of subsequent generations. The effects of these stimuli on the 12 

parental generation may be passed through the germline, but the mechanisms 13 

of this non-Mendelian type of inheritance are poorly known. Here we show that 14 

modulation of nutrient-sensing pathways in the parental generation of a 15 

nematode (Auanema freiburgensis) regulates phenotypic plasticity of its 16 

offspring. In response to pheromones, AMP-activated protein kinase (AMPK), 17 

mechanistic target of rapamycin complex 1 (mTORC1) and insulin signaling 18 

regulate stress resistance and sex determination across a generation. The 19 

effectors of these pathways are closely associated with the chromatin and 20 

their regulation affects the acetylation chromatin status in the germline. These 21 

results suggest that highly conserved metabolic sensors regulate phenotypic 22 

plasticity by changing the epigenetic status of the germline.  23 

 24 

 25 

INTRODUCTION 26 

The phenotype of an individual is the result of the interactions between its genome 27 

and the environment. However, the phenotype may also be influenced by 28 

experiences of the parents: parental environment, such as diet, may result in 29 

epigenetic changes in the germline that cause non-adaptive phenotypes in the 30 

offspring (Chen et al., 2016, Sharma et al., 2016). An example case in humans 31 
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suggests that famine increases the risk of metabolic defects in one or more 32 

generations (Kaati et al., 2007).  33 

 34 

However, there are also mechanisms for passing information about the maternal 35 

environment to the offspring that increase fitness (Burton et al., 2017, Dantzer et al., 36 

2013, Jablonka, 2013). This is referred to as adaptive phenotypic plasticity, which 37 

allows parents to match the phenotype of their offspring to changes in the local 38 

environment (West-Eberhard, 2003). For example, by sensing environmental cues, 39 

some animals can generate predator-resistant offspring (Agrawal et al., 1999, 40 

Gilbert, 2017), or stress-resistant offspring adapted to seasonal conditions 41 

(Mousseau and Dingle, 1991). Relatively little is known about mechanisms in which 42 

the parental generation senses the environment to induce adaptive phenotypic 43 

plasticity across one (intergenerational) or more generations (transgenerational) 44 

(Perez and Lehner, 2019).  45 

 46 

Invertebrate model systems, such as the nematode Caenorhabditis elegans, have 47 

been instrumental in revealing some of the mechanisms of inter- and 48 

transgenerational inheritance (Miska and Ferguson-Smith, 2016, Perez and Lehner, 49 

2019). The free-living nematode Auanema freiburgensis is an attractive new animal 50 

model system for studying the mechanisms of inheritance of parental effects 51 

(Kanzaki et al., 2017, Zuco et al., 2018, Anderson et al., 2020). This is because the 52 

assays for studying the mechanisms of inheritance of parental effects in A. 53 

freiburgensis are fast and easy to perform due its short generation time (~4 days at 54 

20 °C) and easy-to-distinguish morphologies in the offspring. 55 

 56 

A. freiburgensis produces three sexes, consisting of males, females and 57 

hermaphrodites (Kanzaki et al., 2017). The male of A. freiburgensis is determined 58 

genetically (XO), by mechanisms that will be addressed in a separate report. The 59 

hermaphrodite versus female sex (both XX) is determined by the environment 60 

experienced by the mother. Hermaphrodite individuals kept in isolation produce 61 

mostly female offspring, whereas hermaphrodites exposed to high population density 62 

conditions produce mostly hermaphrodite offspring (Fig. 1A).  63 

 64 
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Here we show that high-density population conditions experienced by the A. 65 

freiburgensis mother, a signal for imminent starvation, triggers the formation of F1 66 

dauer larvae. These dauers develop into hermaphrodite adults, while non-dauer 67 

larvae develop into female adults (or males). Pharmacological assays indicate that 68 

energy-sensing signaling mediated by AMP-activated protein kinase (AMPK), 69 

mechanistic target of rapamycin complex 1 (mTORC1), and insulin signaling are 70 

involved in intergenerational inheritance in A. freiburgensis. Effectors of these 71 

pathways are associated with chromatin, which changes the histone acetylation 72 

status in the germline chromatin to produce F1 dauers, which then develop into 73 

hermaphrodite adults.  74 

 75 

RESULTS 76 

A crucial factor in the development of Auanema hermaphrodites is the passage 77 

through the stress-resistant dauer stage (Félix, 2004, Chaudhuri et al., 2011, 78 

Kanzaki et al., 2017, Chaudhuri et al., 2015), which has morphological and 79 

behavioral adaptations for dispersal. In A. freiburgensis, all XX larvae that pass 80 

through the dauer stage become hermaphrodites (N= 96), whereas XX non-dauer 81 

larvae develop into females (N= 93). Similar to A. rhodensis (Chaudhuri et al., 2011) 82 

and other trioecious nematodes (Johnigk and Ehlers, 1999), we never observed A. 83 

freiburgensis males to undergo dauer formation. Thus, environmental stressors 84 

experienced by the maternal generation of A. freiburgensis are used as a signal to 85 

generate non-feeding offspring that can survive starvation conditions and reproduce 86 

by self-fertilization once food becomes available. In summary, these results suggest 87 

that dauer formation in A. freiburgensis is induced across a generation, instead of 88 

within the same generation as in Caenorhabditis elegans (Cassada and Russell, 89 

1975) (Figure 1B).  90 

 91 
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 92 

Figure 1. Dauer and hermaphrodite development are induced across generations in A. 93 

freiburgensis. A. When hermaphrodite mothers are cultured in non-crowding conditions ((-) 94 

CM), most of the XX F1s are female. (10 broods, from which a total of 149 F1s were scored). 95 

When mothers are in crowding conditions ((+) CM), most of the XX F1s are hermaphrodites 96 

(10 broods, with a total of 199 F1s scored). The data in colored dots represent the 97 

percentage of F1 hermaphrodites in each brood and is plotted on the upper axes. The 98 

colored vertical lines indicate ± SD and the mean is represented as a gap in the lines. N= 99 

sample size. B. In C. elegans, the L1 larvae respond to environmental signals to facultatively 100 

form stress-resistant dauers. In A. freiburgensis, it is the mother and not the L1s that 101 

respond to environmental signals. A. freiburgensis dauers obligatorily develop into 102 

hermaphrodite adults. C. In the experimental setup (top), the same individual mother 103 

hermaphrodite was transferred every 24 hours to a new environmental condition. Initially, it 104 

was placed in a plate without conditioned medium (-) CM, followed by the transfer to a (+) 105 

CM plate and then to a new (-) CM plate. The plot representation is the same as for Fig. 1A. 106 

On the last day, 5 mothers died and thus only 9 broods were scored. 107 

 108 

High population density conditions were induced by incubating A. freiburgensis 109 

hermaphrodites with conditioned medium (CM) derived from liquid cultures 110 

containing high nematode population densities (see Methods). Importantly, only the 111 
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parental generation was exposed to the CM. The induction of dauers through the 112 

hermaphrodite mother is limited to one generation: F1 hermaphrodites derived from 113 

mothers in (+) CM plates produce mostly female offspring (99.6% out of 470 F2 114 

offspring, scored from 10 broods). To test if A. freiburgensis L1 larvae can also 115 

respond to crowding conditions, eggs derived from mothers cultured in isolation were 116 

left to hatch and undergo larval development in (+) CM plates until adulthood. 95.7% 117 

(N= 161) of these L1s developed into females, indicating that larvae do not respond 118 

to crowding conditions. To investigate if other maternal environmental conditions 119 

affect the sexual fate of the F1s, mothers were incubated for 24-hours to high 120 

temperature (25 °C) or starvation. Most XX offspring (97%) developed into female 121 

adults for both conditions (166 F1s scored from mothers at 25 °C and 146 F1s 122 

scored from starving mothers). These results indicate that the conditioned medium is 123 

the only environmental stressor that induces intergenerational polyphenism in A. 124 

freiburgensis on its own.  125 

 126 

To test the minimal population density sufficient for the induction of dauers and 127 

hermaphrodites across a generation, we incubated the maternal generation at 128 

different densities. When cultured for 6 hours, a minimum density of 16 adult 129 

hermaphrodites per cm2 is sufficient for the induction of 100% (N= 295 F1s) of 130 

hermaphrodite offspring. In densities below 10 individuals/cm2, the hermaphrodite 131 

mothers produce only female offspring (10 individuals/cm2: 100% females, N= 78 132 

F1s; 6 individuals/cm2: 98.5% F1 female, N= 66 F1s). At an intermediate density (13 133 

individuals/cm2), hermaphrodites produce 19% (N= 126 F1s) of hermaphrodite 134 

offspring.  135 

 136 

Modulation of AMPK signaling changes hermaphrodite/female sex ratios in A. 137 

freiburgensis 138 

In eukaryotes, caloric restriction triggers the activation of AMP-activated protein 139 

kinase (AMPK) (Apfeld et al., 2004), a highly conserved energy sensor (Hardie et al., 140 

2012). AMPK activity protects cells against the depletion of ATP by stimulating 141 

energy-producing pathways and inhibiting energy-consuming processes (Carling, 142 

2004). In C. elegans, AMPK is required for lifespan extension and germline viability 143 

when the nematode is in nutrient stress (Apfeld et al., 2004, Narbonne and Roy, 144 

2006, Fukuyama et al., 2012, Demoinet et al., 2017). The full kinase activity of 145 
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AMPK requires phosphorylation of threonine residue 172 (Thr172) by upstream 146 

kinases (Stein et al., 2000, Lee et al., 2008, Apfeld et al., 2004).  147 

 148 

Since high population density is likely to result in imminent food scarcity, we 149 

reasoned that the AMPK pathway may be involved in intergenerational inheritance in 150 

A. freiburgensis. High population density conditions were induced by incubating A. 151 

freiburgensis hermaphrodites with conditioned medium (CM) of high population 152 

density liquid cultures (see Methods). We hypothesized that AMPK regulates target 153 

proteins in the maternal germline to influence the phenotype of the following 154 

generation. To test this hypothesis, we first tested the levels of an enzyme that 155 

activates AMPK, Liver Kinase B1 (LKB1). LKB1, known in C. elegans as PAR-4 156 

(Watts et al., 2000, Lee et al., 2008), phosphorylates and activates AMPK in the 157 

context of energy stress (Woods et al., 2003, Hawley et al., 2003). LKB1 is part of a 158 

complex with two proteins Ste20-related adaptor protein-alpha (STRAD) (Baas et al., 159 

2003) and mouse protein 25-alpha (MO25alpha) (Boudeau et al., 2003). Antibody 160 

staining against LKB1 and STRAD showed a higher level of staining in the meiotic 161 

portion of the germline isolated from animals cultured in crowding conditions (Fig. 162 

2A, C, Supplemental Figure 1). Their localization was predominant in the cytoplasm 163 

of germline cells (Supplemental Figure 1). 164 

 165 

To test the levels of AMPK, we used an antibody that detects the active, 166 

phosphorylated form of AMPK (AMPK pThr172). Consistent with the higher levels of 167 

LKB1 and STRAD, we also found that the anti-AMPK pThr172 staining was stronger 168 

in crowding conditions compared to control animals (Fig. 2 B-D). The difference in 169 

the level of staining was restricted to the meiotic region of the germline (Fig. 2, D) 170 

and the AMPK staining is closely associated with the chromatin of pachytene cells 171 

(Fig. 2D).  172 

 173 
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 174 

Figure 2. AMPK pathway modulation in the A. freiburgensis germline. (A, B) Mean 175 

antibody fluorescence (𝑥 ) in the pre-meiotic (blue) and meiotic portion (red) of the 176 

germline, in the absence (-) or presence (+) of conditioned medium. N= sample sizes. The 177 

mean difference for the two comparisons is shown as a Gardman-Altman estimation plot. 178 

The raw data is plotted on the upper axes, with colored vertical lines indicating ± 95% CI, 179 

and the mean is represented as a gap in the lines. Each difference of the means is plotted 180 

on the lower axes as a bootstrap sampling distribution. The difference of the means is 181 

depicted as a black dot and 95% confidence intervals are indicated by the black vertical error 182 
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bars. n.s., p>0.05; ***= p ≤ 0.001. (C) Western blots with proteins derived from 183 

hermaphrodites incubated in the absence (-) CM or presence (+) CM of conditioned medium. 184 

(D) AMPK pThr172 antibody staining of gonads dissected from hermaphrodites incubated in 185 

either (-) CM or (+) CM. Bar, 15 µm. Insert in the right picture is a magnification from the 186 

region marked with a stippled square. Bar, 7.5 µm. (E) Mean percentage and SD of 187 

hermaphrodite and female F1 offspring from hermaphrodites treated with chemicals. The 188 

control was either using water (left) or DMSO (right), depending on how the chemical 189 

compounds were dissolved. Dors.= Dorsomorphin. In all cases, diluted (1:10) CM was 190 

added to the medium, with exception to plates with dorsomorphin, which had undiluted CM. 191 

N= number of replicates. 192 

 193 

To functionally test the role of AMPK in mediating intergenerational inheritance in A. 194 

freiburgensis, we used pharmacological compounds that modulate AMPK activity. 195 

We measured the effects of these compounds on intergenerational inheritance by 196 

scoring hermaphrodite and female sexes in the offspring. As mentioned previously, 197 

high population densities induce the production of dauer larvae in the F1, which 198 

mature to become hermaphrodite adults. Consistent with a role of AMPK in 199 

mediating this effect, we found that AMPK activators induce the production of 200 

hermaphrodites (Fig. 2E) (for a recent review on pharmacological activation of 201 

AMPK, see (Steinberg and Carling, 2019)). In most cases, these compounds cause 202 

changes in the F1 sex ratios when on their own (Supplemental Figure 2), but 203 

potentiation of their effects was significantly stronger when diluted CM (1:10 CM) 204 

was added to the culture medium. This may indicate that synergistic effects of 205 

different mechanisms are necessary to fully elicit a robust response, or that those 206 

energy-sensing pathways can be efficiently activated only when upstream events 207 

occur first.  208 

 209 

Although the mechanisms of action are not clear for all pharmacological compounds, 210 

they can be broadly divided into indirect and direct AMPK activators. Any treatments 211 

that raise the AMP/ADP:ATP ratios are expected to indirectly activate AMPK. For 212 

instance, inhibition of mitochondrial respiration by metformin, phenformin and 213 

rotenone have been implicated in the activation of AMPK (El-Mir et al., 2000, Owen 214 

et al., 2000, Zhou et al., 2001, Sakamoto et al., 2004, Shaw et al., 2004, Huang et 215 

al., 2008, Toyama et al., 2016, Hou et al., 2018). Forskolin, an adenylate cyclase 216 
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activator, activates AMPK by increasing the cytosolic cAMP concentration (Seamon 217 

et al., 1983). Statins, such as fluvastatin (Xenos et al., 2005), have been proposed to 218 

activate AMPK. The incubation of mothers with all these compounds resulted in a 219 

higher proportion of hermaphrodite progeny (Fig. 2E).  220 

 221 

Compounds that are similar to AMP can activate AMPK directly. 5-Aminoimidazole-222 

4-carboxamide ribonucleotide (AICAR), for example, increases the activity of AMPK 223 

after being converted to an AMP analog inside the cell (Corton et al., 1995), whereas 224 

8-Br-cAMP is a non-hydrolyzable analog of cAMP (Hussey et al., 2017). Other 225 

compounds, such as the plant product salicylate (Hawley et al., 2012), and the 226 

synthetic compounds ZLN024 (Zhang et al., 2013) and O-304 (Steneberg et al., 227 

2018) bind to AMPK, causing allosteric activation and inhibition of dephosphorylation 228 

of the pThr172. All these compounds induced a higher percentage of hermaphrodite 229 

offspring than controls (Fig. 2E). To inhibit AMPK, we used dorsomorphin (Zhou et 230 

al., 2001). As expected, hermaphrodites in CM with dorsomorphin resulted in a lower 231 

proportion of hermaphrodite progeny compared to controls (Fig. 2E).  232 

 233 

Maternal inhibition of mTORC1 signaling results in mostly hermaphrodite 234 

offspring 235 

Since energy-sensing by AMPK induced intergenerational effects in A. freiburgensis, 236 

we hypothesized that other energy sensors may be involved in the same process. 237 

The intracellular nutrient sensor mTORC1 complex is a multisubunit kinase that 238 

senses growth signals and stimulates anabolism when nutrients are abundant 239 

(Kapahi et al., 2010, Ma and Blenis, 2009, Wullschleger et al., 2006, Zoncu et al., 240 

2011, Laplante and Sabatini, 2012). Therefore, we would predict that in low 241 

population densities and readily available nutrients, the mTOR pathway would be 242 

active in A. freiburgensis. Under these conditions, A. freiburgensis produces mostly 243 

non-dauer larvae that later become female offspring. To investigate the kinase 244 

activity of mTORC1, we examined the expression of a well-characterized target 245 

protein, p70 S6K protein kinase (S6K) (Kapahi et al., 2010). Antibody staining 246 

against the phosphorylated form of S6K (S6K pThr389) was detected primarily in 247 

germline cells isolated from animals grown in low-density conditions (Fig. 3A-C). 248 

Most staining was associated with the chromatin, both in mitotic cells (Fig. 3A) and 249 

meiotic cells in late pachytene stages (Fig. 3B). Since AMPK and mTORC1 have 250 
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opposing actions (Hindupur et al., 2015), we hypothesized that treatment of animals 251 

with metformin, an activator of AMPK, would inhibit mTORC1 signaling. Consistent 252 

with this hypothesis, we found that treatment of animals with metformin resulted in a 253 

smaller number of cells stained with SK6 pThr389 (Fig. 3D). 254 

 255 

 256 

Figure 3. mTOR signaling modulates intergenerational inheritance in A. freiburgensis. 257 

(A-C) Staining with S6K pThr389 antibody (red) and DAPI (blue) of dissected gonads from 258 

hermaphrodites incubated either in the absence ((-) CM) or in the presence ((+) CM) of 259 

conditioned medium. The arrows indicate cells marked with the antibody in the premeiotic 260 

region (A) and in the meiotic region (B), respectively. In (C), only the rachis has staining. 261 

Bar, 15 µm. (D) Percentages of gonads with signal for S6K pThr389 antibody staining. The 262 

different colors represent the percentage of gonads with at 0, 1, 2, 3 or more than 3 cells 263 

stained in the premeiotic (PM) tip. Quantification was performed from gonads isolated from 264 

animals in the absence (-) or in the presence (+) of conditioned medium, and in the presence 265 

of metformin (M). The number of gonads analyzed is indicated on the top of the bars. (E) 266 

Mean percentage and SD of hermaphrodite and female F1 offspring from hermaphrodites 267 
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incubated with either DMSO or pharmacological compounds, together with some CM (1:10) 268 

CM. N= number of replicates.  269 

 270 

To test the effect of modulating mTORC1 activity on sex ratios, we treated mothers 271 

with pharmacological compounds. Mothers treated with rapamycin (Heitman et al., 272 

1991, Robida-Stubbs et al., 2012) produced a greater proportion of F1 273 

hermaphrodites than control mothers (Fig. 3E). mTORC1 signaling promotes nucleic 274 

acid synthesis, as long as nucleotide precursors are available (Hoxhaj et al., 2017). 275 

Treatment with methotrexate, a chemical that suppresses the de novo purine 276 

synthesis enzymes (Rajagopalan et al., 2002), inhibits mTORC1 activity. We found 277 

that A. freiburgensis hermaphrodites treated with methotrexate generated mostly 278 

hermaphrodite offspring (Fig. 3E). Altogether, these results indicate that mTOR 279 

signaling is involved in intergenerational inheritance in A. freiburgensis.  280 

 281 

Insulin signaling is downregulated in animals in crowding conditions 282 

The insulin signaling pathway regulates metabolism, development, and lifespan in a 283 

wide variety of animals. One of the regulators of the insulin pathway is a conserved 284 

phosphatase named PTEN (or DAF-18 in C. elegans)(Solari et al., 2005). To 285 

examine the regulation of the insulin pathway in A. freiburgensis, we used an 286 

antibody against PTEN/DAF-18 to stain isolated gonads from hermaphrodites 287 

cultured in low- and high- density conditions. We found that the antibody against 288 

PTEN/DAF-18 stained more strongly the germline when hermaphrodites were 289 

incubated in high-density conditions than in low-density populations (Fig. 4A, 290 

Supplemental Figure 3).  291 

 292 

To test if PTEN/DAF-18 mediates the generation of hermaphrodites, we used the 293 

PTEN/DAF-18 inhibitors VO-OHpic (Rosivatz et al., 2006) and SF1670 (Li et al., 294 

2011). When in the presence of conditioned medium from high-density populations, 295 

hermaphrodites treated with those inhibitors generated mostly female offspring (Fig. 296 

4B). Activation of PTEN/DAF-18 in hermaphrodites with the compound Indole-3-297 

Carbinol under low population densities resulted in mostly hermaphrodites (Fig. 4B).  298 
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 299 

Figure 4. Regulation of PTEN/DAF-18 and AKT. (A) Quantification of antibody staining 300 

with PTEN/DAF-18 in the maternal gonads. The representation and labeling of graphs are as 301 

in Fig. 2A. (B) Mean percentage and SD of hermaphrodite and female F1 offspring from 302 

hermaphrodites treated with chemicals that activate or inhibit PTEN/DAF-18. (+) CM 303 

represents undiluted conditioned medium. The DMSO control and Indole-3-Carbinol (I3C) 304 

incubations were performed with diluted (1:10) CM. N= number of replicates. (C) 305 

Quantification of antibody staining for AKT pThr308 in the meiotic portion of the germline, 306 

with representation as in (B). (D) Quantification of meiotic germline cells with staining with an 307 

antibody against AKT pThr308, with graphical representation as in Fig. 3D. (E) Effect of 308 

pharmacological inhibition or activation of AKT on sex ratios in the F1s. 309 

 310 

One of the target proteins and effectors for insulin signaling is AKT kinase (also 311 

known as PKB) (Paradis and Ruvkun, 1998), which among several anabolic 312 

functions, also prevents chromatin condensation (Martelli et al., 2012, Manning and 313 

Cantley, 2007, Manning and Toker, 2017). Maximal activation of AKT requires 314 
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phosphorylation at residues Thr308 and Ser473 (Alessi et al., 1996). Immunostaining 315 

with antibodies against AKT pThr308 (Fig. 4C, D, Supplemental Figure 4) revealed 316 

that staining is prominently associated with the chromatin in germline cells of animals 317 

grown under non-crowding conditions. No such association is seen when animals 318 

are in crowding conditions (Fig. 4C). The same pattern is seen for AKT pSer473 319 

(Supplemental Figure 4). Maternal inhibition of AKT with the chemicals perifosine 320 

(prevents activation of AKT by affecting its subcellular localization) (Kondapaka et 321 

al., 2003), Akti-1/2 (stabilizes the inactive conformation of AKT) (Barnett et al., 2005), 322 

and SC-66 (allosteric inhibitor of AKT) (Jo et al., 2011) results in a higher proportion 323 

of hermaphrodite progeny (Fig. 4E). On the other hand, activation of AKT with SC-79 324 

(Jo et al., 2012) prevents the generation of hermaphrodite progeny when the mother 325 

is in crowding conditions (Fig. 4E). Altogether, these results are consistent with the 326 

hypothesis that crowding conditions induce a lower insulin signaling, causing the 327 

production of hermaphrodite offspring.  328 

 329 

Changes in the maternal histone acetylation status modulate sex ratios in the 330 

F1 331 

Energy-sensing pathways have been implicated in the regulation of acetylation of 332 

histones, histone modifiers, and cellular proteins (Salminen et al., 2016). To examine 333 

if acetylation patterns change in the germline when A. freiburgensis is in high 334 

population densities, we compared the level of antibody staining in gonads isolated 335 

from hermaphrodites cultured in the absence or presence of CM. Antibody staining 336 

against acetylated residues on histones 3 and 4 was at higher levels in the germline 337 

derived from animals cultured in the presence of CM compared to controls, both for 338 

premeiotic and meiotic portions (Fig. 5A-B, Supplemental Figure 5). The same trend 339 

was observed when using an antibody that binds to all acetylated proteins (pan-340 

LysAc), although differences were detected only for the premeiotic portion of the 341 

germline (Fig. 5C). 342 

To test if modulation of acetylation levels causes changes in sex ratios, we induced 343 

hyperacetylation by treating A. freiburgensis hermaphrodites with the histone 344 

deacetylase inhibitors SRT1720 (Zarse et al., 2010, Milne et al., 2007), Trichostatin 345 

A (Yoshida et al., 1990), Valproic Acid (Evason et al., 2008, Forthun et al., 2012), D-346 
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β-hydroxybutyrate (Edwards et al., 2014), Butyrate (Zhang et al., 2009) and EX-527 347 

(Solomon et al., 2006). In all cases, more hermaphrodites than females were 348 

produced relative to control (Fig. 5D). By contrast, incubating the mothers in high-349 

density conditions together with the inhibitor of acetylation 4-tert-butylbenzoic acid 350 

(Chen et al., 2014) resulted in less hermaphrodite offspring (Fig. 5D).  351 

 352 

Figure 5. Regulation of acetylation levels.  Mean antibody fluorescence (𝑥 ) for panH3Ac 353 

(A), panH4Ac (B) and panLysAc (C) in the pre-meiotic (blue) and meiotic portion (red) of the 354 

germline, in the absence (-) or presence (+) of conditioned medium. N= sample sizes. The P 355 

values are calculated from a Mann-Whitney test (U): n.s., p>0.05; * = p ≤ 0.05; ** = p ≤ 0.01; 356 

***= p ≤ 0.001. (D) Mean percentage and SD of hermaphrodite and female F1 offspring from 357 

hermaphrodites treated with chemicals. DLBH: DL-β hydroxybutyrate; TBBA: 4-tert-358 

butylbenzoic acid. (1:10) CM was added to the medium, except plates with 4-TBBA, which 359 

had undiluted CM. N= number of replicates.  360 

 361 
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DISCUSSION   362 

 363 

Auanema nematodes have been isolated from similar environments as C. elegans 364 

(Félix and Duveau, 2012), which consists of ephemeral habitats with microbe-rich 365 

organic decomposing matter (Schulenburg and Felix, 2017, Kanzaki et al., 2017). 366 

Due to rapid population growth and quick depletion of resources, the ecology of 367 

these nematodes is characterized by a boom and bust population dynamics. In 368 

contrast to C. elegans, the developmental and phenotypic response to stress in A. 369 

freiburgensis occurs across a generation instead of within the same generation: 370 

maternal sensing of pheromones secreted by conspecifics induces the production of 371 

stress- and starvation-resistant dauer larvae. This indicates that the A. freiburgensis 372 

mother can predict the environmental conditions to which the offspring is likely to be 373 

exposed, and adjusts the F1 phenotype (dauer larvae) to temporarily survive in the 374 

absence of food. The Auanema dauers have migratory behaviors and always 375 

develop into selfing hermaphrodites (Kanzaki et al., 2017). By producing dauers that 376 

develop into hermaphrodites, a new population can be established even when the 377 

colonizing event is mediated by a single individual (Baker, 1955). This type of 378 

intergenerational inheritance, in which parental effects increase the fitness of both 379 

offspring and parents, has hallmarks for being adaptive (Uller, 2008).  380 

 381 

Here we show that activators of AMPK and insulin signaling activators or mTORC1 382 

inhibitors can mimic the exposure of A. freiburgensis to pheromones. These results 383 

indicate that highly conserved energy-sensing pathways are involved in mediating 384 

intergenerational inheritance in A. freiburgensis to generate stress-resistant 385 

offspring. How exactly do these energy-sensing pathways regulate phenotypic 386 

plasticity in the F1s? One possible mechanism is the direct regulation of the 387 

chromatin status in the maternal germline by the energy-sensing enzymes. Thus, 388 

activation of transcription of specific genes in the germline may determine the 389 

phenotype of the following generation. AMPK, for instance, has been shown to 390 

phosphorylate histones, which results in the activation of transcription (Bungard et 391 

al., 2010). Consistent with this, we found that protein levels increase for the activated 392 

form of AMPK when A. freiburgensis is under crowding conditions and is detected in 393 

close association with the chromatin of germline cells. By phosphorylating histones, 394 
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AMPK has been shown to facilitate histone acetylation (Lo et al., 2001), thus 395 

promoting the transcription of a new set of genes (Lee et al., 1993).  396 

 397 

Alternatively, AMPK may indirectly influence the chromatin status via activation of 398 

histone acetyltransferases (HATs) or inactivation of histone deacetyltransferases 399 

(HDAC), as demonstrated for other model systems (Shimazu et al., 2013, Yang et 400 

al., 2001). In A. freiburgensis, higher acetylation levels in the chromatin of the 401 

germline induced by crowding conditions results in stress-resistant offspring (Fig. 5). 402 

It remains to be established whether these acetylation levels are the result of direct 403 

phosphorylation of HATs and HDACs by AMPK, or indirectly by natural metabolites. 404 

As we show in Fig. 5D, natural metabolites indicative of metabolic stress that inhibit 405 

deacetyltransferases, such as D-β-hydroxybutyrate and butyrate (Shimazu et al., 406 

2013), induce the production of stress-resistant offspring.  407 

 408 

The strongest responses to the pharmacological compounds for the production of 409 

hermaphrodite progeny occurred when the animals were concomitantly exposed to 410 

diluted CM. In the complete absence of CM, only a few compounds elicited a strong 411 

response. This may indicate that pheromones in the CM activate more than one 412 

pathway and that they have to act in combination to elicit the full effect. Our findings 413 

that several energy-sensing pathways are involved in this process in A. 414 

freiburgensis, and that AMPK, insulin and TOR pathways are cross-regulated, are 415 

indicative of this hypothesis (González et al., 2020, Ruderman et al., 2010, Banerjee 416 

et al., 2016).  417 

 418 

The concentration of the compounds used in our studies are relatively high 419 

compared to the ones used in mammalian cells (Burns et al., 2006). This is because 420 

nematodes have several physical and physiological adaptations that counteract 421 

xenobiotic agents (Burns et al., 2010). Like all pharmacological approaches, 422 

interpretation of the results must take into consideration possible lack of specificity 423 

(Corton et al., 1995, Longnus et al., 2003, Bain et al., 2007, Pacholec et al., 2010). 424 

To ameliorate the possibility of lack of specificity for AMPK activation, for instance, 425 

we used compounds that act through several mechanisms (high production of AMP, 426 

allosteric binding, protection against dephosphorylation, activation of 427 
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phosphorylation). Genetic approaches using loss-  and gain-of-function mutants will 428 

help to address some of the above-mentioned concerns (Adams et al., 2019).  429 

 430 

As far as we know, the association of activated AMPK and S6K with the chromatin of 431 

germline cells has not been established in other organisms. The presence of AKT in 432 

the nucleus of germline cells may be associated with chromatin condensation, which 433 

would be reflected in transcription rates (Martelli et al., 2012). Our results indicate 434 

that these energy-sensing effectors acquired a new role in intergenerational 435 

inheritance in A. freiburgensis to regulate gene expression that influences the 436 

phenotype of subsequent generations. Given that AMPK, TOR, and insulin pathways 437 

are highly conserved in evolution, it is possible that they also mediate non-genetic 438 

inheritance via the germline in other organisms in which diet plays a role in 439 

determining phenotypic plasticity. Although the epidemiological studies in humans 440 

are indicative of diet playing such a role, the mechanisms for this are unknown 441 

(Horsthemke, 2018). The findings in this study provide the basis to test such a 442 

hypothesis.  443 

 444 

 445 

 446 
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MATERIAL AND METHODS  467 

Strain and culture 468 

We used the Caenorhabditis elegans N2 strain, and the Auanema freiburgensis 469 

strains SB372 (Kanzaki et al., 2017) and JU1782. The A. freiburgensis JU1782 strain 470 

was isolated from rotting Petasites stems sampled in Ivry, Val-de-Marne, France, in 471 

September 2009 by Marie-Anne Félix. Nematodes were cultured at 20 °C on 472 

standard Nematode Growth Medium (NGM) (Stiernagle, 2006) plates seeded with 473 

Escherichia coli OP50-1 strain. NGM medium was supplemented with 25 µg/mL 474 

nystatin and 50 µg/mL streptomycin to prevent microbial contamination.  475 

 476 

Sexing of progeny 477 

To synchronize the age of the mothers, we collected dauers. A. freiburgensis dauers 478 

develop into hermaphrodite adults within 24 hours at 20 °C (Kanzaki et al., 2017). 479 

Dauer larvae are easily identified by their darker intestine and thinner body 480 

compared to similar-sized L3 larvae (which develop into females). Each dauer larva 481 

was placed on a 6 cm seeded NGM plate and incubated at 20 °C to develop into 482 

adulthood. Each egg laid by the parental (P0) generation was placed into single 483 

wells of a 96-well microtiter plate. After 3-5 days, the F1 was scored for their sex: 484 

hermaphrodites were identified by their ability to produce offspring in the absence of 485 

a mating partner, females by the lack of progeny, and males by their blunt tails 486 

(Kanzaki et al., 2017). We calculated sex percentages based only on non-male 487 

progeny (hermaphrodites or females). This is because males are not determined by 488 
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environmental cues, but by sex chromosome number. Raw data used to calculate 489 

sex percentages are at https://figshare.com/s/48b14ef15a76acc5405d. 490 

 491 

Assay with conditioned medium and treatment with pharmacological chemical 492 

compounds 493 

To induce A. freiburgensis hermaphrodite offspring, the parent hermaphrodites (P0 494 

generation) were incubated in the presence of conditioned medium (CM) at 20 °C 495 

(Zuco et al., 2018). The CM was derived from 2-3 week old A. freiburgensis liquid 496 

cultures (M9 medium with E. coli OP50-1). Each P0 was placed at the L4 stage onto 497 

a 6 cm plate containing NGM and CM. To simulate high-density conditions, 50 mg of 498 

lyophilized CM were dissolved in 200 μl of an overnight culture of OP50-1 and 499 

spotted onto the plate. F1 eggs were collected for 3-4 days. Each egg was 500 

transferred into a single well of a 48-well microtiter plate containing NGM and OP50-501 

1, but no conditioned medium. 502 

 503 

For the pharmacological manipulation of signaling pathways, we added compounds 504 

to the NGM and OP50-1. The concentration of the compounds was calculated for the 505 

volume of the NGM and OP50-1 used. P0 hermaphrodites were incubated with the 506 

compounds for 48-36 h at 20 °C. Information about the providers and catalog 507 

number for the compounds used in this study are listed in 508 

https://figshare.com/s/48b14ef15a76acc5405d.  509 

Chemical compounds were used at the following concentrations: 100 mM Metformin, 510 

6 mM Phenformin, 1 µM Rotenone, 5 µM Forskolin, 30 µM Fluvastatin, 0.5 mM 511 

AICAR, 0.5 mM 8-Br-cAMP, 5 mM Salicylate, 10 µM ZLN204, 30 µM O-304, 1 µM 512 

Dorsomorphin, 100 µM Rapamycin, 100 µM Methotrexate, 100 nM VO-OHpic, 20 µM 513 

Indole-3-Carbinol, 10 µM SRT1720, 100 µM Trichostatin A, 4 mM Valproic Acid, 5 514 

mM DL-beta hydroxybutyrate, 5 mM sodium butyrate, 100 µM EX-527, 3 mM 4-tert-515 

butylbenzoic acid, 75 nM SC-66, 300 nM Akti-1/2, 20 µM perifosine, and 10 nM SC-516 

79. For nematodes incubated with diluted CM, we used 5 mg of freeze-dried CM 517 

dissolved in 200 μl E. coli OP50-1.  518 

 519 

Inmunohistochemistry 520 
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Hermaphrodites were dissected on a slide (Superfrost microscope slide, VWR) in 521 

PBS 1X buffer. Dissected gonads were covered by a coverslip and placed on a 522 

frozen metal block at -20 °C for at least 10 minutes, and fixed for 2 minutes in a 95% 523 

methanol solution at -20 °C. This was followed by 30 minutes in a fixative solution 524 

[PBS 1X, 80 mM HEPES (pH= 7.0-7.4), 1.6 mM MgSO4, 0.8 mM EDTA (pH=8.0), 525 

4% paraformaldehyde] in a humid chamber at room temperature. Slides were 526 

washed twice with PBST (PBS + 0.1% Triton X-100) for 5 minutes and blocked in 527 

PBST + 0.5% BSA for 45-60 minutes. The source of primary and secondary 528 

antibodies, as well as dilutions used, are listed in 529 

https://figshare.com/s/48b14ef15a76acc5405d. All antibodies were diluted in PBST.  530 

Incubation with the primary antibodies was performed at 4 °C overnight. Slides were 531 

then washed twice in PBST for 10 minutes each and the corresponding secondary 532 

antibody was added and incubated for 2 hours at room temperature. Slides were 533 

washed in PBST as above to remove the excess of the secondary antibody and then 534 

one drop of Fluoroshield Mounting Medium with 4′,6-diamidino-2-phenylindole 535 

(DAPI) (Abcam, #ab104139) was added on the immunostained samples.  536 

 537 

Images were taken with a 60X objective in 2.40 µm z-stack intervals (12 sections) 538 

with a DeltaVision microscope (Olympus). Acquisition and constrained iterative 539 

deconvolution of the images from DeltaVision were processed using the softWoRx 540 

software (Applied Precision). The intensity of fluorescence for the secondary 541 

antibodies was measured using the ImageJ software (NIH Image, Bethesda, MD).  542 

 543 

Western blot 544 

Protein extraction and buffer preparation were performed following the protocol of 545 

(Jeong et al., 2018). Six hundred adult hermaphrodites were collected for each 546 

sample: control (OP50-1 only) and experimental (50 mg conditioned medium powder 547 

per 200 µl of OP50-1) samples. Protein concentration was measured using Bradford 548 

assay (Bradford Reagent, Bio-Rad). We loaded approximately 100 µg of protein. The 549 

primary antibodies, against Phospho-AMPKα (Thr172) and PAR-4/LKB1, were used 550 

at 1:1000 dilution. The source of primary and secondary antibodies, as well as 551 

dilutions used for them, are listed in https://figshare.com/s/48b14ef15a76acc5405d. 552 

To detect the signal for the antibodies, we used the Amersham™ ECL™ Western 553 

Blotting Detection Reagents (RPN2209). 554 
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 555 

Statistical analyses 556 

Results were presented using the most recent developments in data analysis and 557 

presentation (Ho et al., 2019), showing the raw data as ‘bee swarm’ plots. They 558 

summarize the data showing the mean and the 95% confidence interval (CI), as well 559 

as the sampling error distribution diagrammed as a filled curve. These plots provide 560 

transparency of the comparison being made, visual clarity and statistical evaluation 561 

of the data. 562 

  563 

 564 
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Supplemental Figures 915 

 916 

Supplemental Figure 1. STRAD and LKB1 antibody staining is higher in 917 

animals in crowding conditions. A. Mean antibody fluorescence (𝑥 ) in the pre-918 

meiotic (blue) and meiotic portion (red) of the germline, in the absence (-) or 919 

presence (+) of conditioned medium. N= sample sizes. Graphical representation as 920 

Fig. 2, with  ***= p ≤ 0.001.  B. LKB1 and STRAD in the germline. Staining for 921 

antibodies (in red) against LKB1 and STRAD of gonads dissected from 922 

hermaphrodites incubated in the presence of either (-) CM or (+) CM. The DNA was 923 

stained with DAPI (blue). Bar, 15 µm.  924 
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 927 

 928 

 929 

Supplemental Figure 2. Most chemical compounds affect the sex ratios of 930 

hermaphrodites in the absence of diluted CM. Mean percentage and SD of 931 

hermaphrodite and female F1 offspring from hermaphrodites treated with chemicals. 932 

Chemicals were dissolved either in water or in DMSO. N= number of replicates.  933 
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 939 

Supplemental Figure 3. PTEN/DAF-18 in the germline is cytoplasmic and 940 

higher in non-crowding conditions. Staining for antibodies (in red) against 941 

PTEN/DAF-18 of gonads dissected from hermaphrodites incubated in the presence 942 

of either (-) CM or (+) CM. The DNA was stained with DAPI (blue). Bar, 15 µm.  943 
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 945 

Supplemental Figure 4. AKT pThr308 in the germline is nuclear and higher in 946 

crowding conditions. Staining for antibodies (in red) against AKT pThr308 of 947 

gonads dissected from hermaphrodites incubated in the presence of either (-) CM or 948 

(+) CM. The DNA was stained with DAPI (blue). Bar, 15 µm.  949 
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 951 

Supplemental Figure 5. Acetylation in the germline is nuclear and higher in 952 

crowding conditions. Staining for antibodies (in red) against panH3Ac, panH4Ac 953 

and panLysAc of gonads dissected from hermaphrodites incubated in the presence 954 

of either (-) CM or (+) CM. The DNA was stained with DAPI (blue). Bar, 15 µm.  955 
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