
Gillis and Roth

SOFTWARE

PyClone-VI: Scalable inference of clonal
population structures using whole genome data
Sierra Gillis1 and Andrew Roth1,2,3*

*Correspondence: aroth@bccrc.ca
1Department of Molecular

Oncology, BC Cancer Research

Institute, 675 W 10th Ave, V5Z

1L3 Vancouver, Canada

Full list of author information is

available at the end of the article

Abstract

We describe PyClone-VI, a computationally efficient Bayesian statistical
method for inferring the clonal population structure of cancers. Our proposed
method is 10-100x times faster than existing methods, while providing results
which are as accurate. We demonstrate the utility of the method by analyzing
data from 1717 patients from PCAWG study and 100 patients from the
TRACERx study. Software implementing our method is freely available
https://github.com/Roth-Lab/pyclone-vi.

Keywords: Cancer; Tumour heterogeneity; Cancer evolution; Bayesian statistics

Background
Cancer is an evolutionary process driven by ongoing somatic mutation within the

malignant cell population [1, 2]. The combination of mutation, drift, and selection

lead to heterogeneity within the population of cancer cells. Identifying population

structure and quantifying the amount of heterogeneity in tumours is an important

problem which has been extensively studied [3, 4, 5, 6, 7, 8]. High throughput se-

quencing (HTS) provides a powerful approach to solve the problem with both bulk

and single cell approaches being employed. While single cell sequencing approaches

can more accurately resolve clonal population structure, they are not widely avail-

able and have limitations both technical and due to cost. Using bulk sequencing

to study heterogeneity thus remains the predominate approach, and methods for

studying heterogeneity using bulk sequencing will become even more important as

HTS is increasingly used in translational and clinical work [9, 10, 11, 12].

Identifying population structure and quantifying heterogeneity from bulk sequenc-

ing data is a computationally challenging problem. The core issue is to deconvolve

sequence data generated from a mixture of cell populations. This task is challenging

because neither the genotypes of the populations nor the number of populations is

known. In addition, factors such as tumour cellularity and copy number variation

co-incident to small nucleotide variants (SNVs) further complicate the analysis.

The past decade has seen a number of methods to deconvolve bulk data and infer

clonal population structure, in particular to identify populations using SNV data.

One of the first approaches developed was PyClone, which remains widely used.

PyClone was originally developed for use with small panels of deeply sequenced

mutations as input [4]. While the PyClone method can in principle be applied to

genome scale analysis, the computational cost becomes prohibitive. This deficiency

has limited the utility of PyClone for the analysis of genome scale datasets with

10,000s - 100,000s of mutations. In this work we present a new tool, which we refer

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

mailto:aroth@bccrc.ca
https://github.com/Roth-Lab/pyclone-vi
https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 2 of 15

to as PyClone-VI, which is orders of magnitudes faster than the original PyClone

method, while providing comparable accuracy.

Related work

A number of other methods have been developed to efficiently infer clonal population

structure from genome scale data. We provide a brief, non-extensive, review of some

of the most popular methods.

SciClone uses Bayesian mixture models and variational inference (VI) like our

proposed approach PyClone-VI [6]. However, because SciClone fails to correct for

coincident copy number variation, it is only applicable to clustering mutations in

regions with no copy number variation or with single copy deletions. It follows that

in practice SciClone cannot be applied to many tumours, especially when multi-

region sequencing is performed, as few mutations will fall in such regions.

EXPANDS is based on the principle of clustering probability distributions of

cancer cell fractions (CCFs) using a multi-stage optimization procedure [5]. It has

been applied to whole genome studies alongside PyClone and shown to perform

similarly [13]. One key difference between EXPANDS and PyClone is that mutations

are clustered independently in each sample and then the clusters are combined in

a post-processing step. As a result of post-hoc analysis, statistical strength cannot

be shared between samples when inferring population structure using EXPANDS.

QuantumClone is a Bayesian mixture model that is fit to the data using expec-

tation maximization (EM) to find the maximum a posteriori (MAP) estimate [8].

MAP estimation for mixture models is prone to overfitting, in the sense that the

model will tend to use all possible clusters (clones). To address the model selection

problem QuantumClone uses the Bayesian Information Criterion (BIC) to select

the number of clusters. QuantumClone can correct for genotype effects and jointly

analyse multi-region data. The use of the BIC for model selection requires that

multiple runs of the method be performed with varying numbers of clusters. Quan-

tumClone is conceptually similar to our proposed method, however our approach

avoids the expensive model complexity search across varying number of clusters.

As we demonstrate in the experiments, avoiding restarts for the model complexity

search can lead to a considerable reduction in runtime.

PhyloWGS is a popular approach which attempts to solve a more challenging

problem of identifying not only clonal populations, but the phylogeny that relates

them [7]. PhyloWGS adopts a very similar model to PyClone, but substitutes the

Dirichlet process prior for clustering with a tree structured stick breaking prior [14].

Like PyClone, PhyloWGS relies on Markov Chain Monte Carlo (MCMC) methods

and can be computationally expensive to run with large datasets.

Results
PyClone-VI is as accurate as PyClone but faster

PyClone-VI introduces two levels of approximation to the original PyClone model.

First, we alter the model to make it more tractable to perform variational infer-

ence. Second, we use variational inference which is an approximate method to infer

a posterior distribution. To assess the impact these approximations have and inves-

tigate whether they lead to tangible performance gains, we compared PyClone-VI

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 3 of 15

to PyClone using synthetic data. We simulated data from the PyClone model with

varying numbers of mutations. We generated datasets with 50, 100 and 1000 muta-

tions. Each simulated dataset had four samples each with a tumour content of 1.0.

Total copy number for each loci ranged from one to four and major copy number was

allowed to vary from one to the total copy number. Genotypes were simulated by

selecting whether mutations were late events which affected only one copy or early

events which occurred on either the major or minor allele before the copy number

change. We simulated the depth of coverage from a Poisson distribution with mean

100. We repeated the simulation for each number of mutations 100 times to generate

300 datasets in total.

The results of this analysis are summarized in Figure 1. Clustering accuracy was

assessed using the V-Measure metric with a value of 1.0 indicating perfect accu-

racy (Figure 1 a) [15]. The mean difference in V-Measure between PyClone and

PyClone-VI was 0.011 in favour of PyClone. To assess the accuracy of the cancer

cell fraction (CCFs) estimates we computed the mean absolute deviation of the

predicted CCF from truth for each mutation (Figure 1 b). The mean difference

in CCF error was 0.00036 in favour of PyClone-VI. These results suggest there is

a negligible performance difference between the two approaches. We note that we

would expect PyClone to have a slight performance advantage in this experiment as

we simulated the data from the PyClone model rather than the PyClone-VI model.

Finally, we sought to quantify the computational performance of both methods.

Figure 1 c) and d) show the runtime and maximum memory used by both meth-

ods. PyClone-VI outperforms PyClone in terms of runtime by nearly two orders of

magnitude regardless of the number of mutations (Figure 1 c). PyClone-VI also uses

significantly less memory than PyClone (Figure 1 d). Theoretical memory usage for

the original PyClone method scales as O(n2) where n is the number of mutations.

In contrast, memory usage for PyClone-VI scales as O(n). The empirical results in

Figure 1 d appear to support this.

PyClone-VI is significantly faster than existing methods

We next sought to compare the performance of PyClone-VI against other state of

the art methods. In addition to comparing against PyClone, we also considered

PhyloWGS and QuantumClone. We downloaded synthetic data used in the ICGC-

TCGA DREAM Somatic Mutation Calling - Tumour Heterogeneity Challenge, an

open competition to benchmark methods for studying clonal heterogeneity [16]. We

limited the analysis to tumours with 10,000 mutations or fewer due to issues relating

to runtime (PyClone, PhyloWGS and QuantumClone) and memory (PyClone and

QuantumClone). As in the previous experiment, we consider two metrics to assess

performance: V-measure (Figure 2 a) and mean absolute deviation error in predicted

CFF per mutation (Figure 2 b).

When comparing methods we applied the Friedman test to see if there were any

significant differences in performance between the methods (p-value < 0.01). If the

Friedman test was significant we then applied the post-hoc Nemenyi test with a

Bonferroni correction to all pairs of methods to determine which methods showed

significantly different performance from each other (p-value < 0.01) [17]. All state-

ments of significance are with respect to this test.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 4 of 15

PyClone-VI significantly outperformed PyClone and QuantumClone with respect

to clustering performance. Though PyClone-VI performed better on average than

PhyloWGS the difference was not significant (p = 0.46). With respect to accuracy

estimating CCF, both PyClone-VI and PhyloWGS outperformed QuantumClone.

There were no other significant differences in accuracy metrics between methods.

In general, the results were quite similar across methods, with the differences in

performance being quite small. However, there was a significant difference in runtime

between methods. PyClone-VI was significantly faster and more memory efficient

than all other approaches, finishing 10x-100x times faster than the other approaches

while requiring less memory (Figures 2 c and d). A caveat to this analysis is that

runtime is a tuneable parameter for all these approaches. Fewer MCMC iterations

can be performed for PyClone and PhyloWGS to shorten runtime at the expense of

accuracy. Similarly, QuantumClone and PyCloneVI can use fewer random restarts

to speed up runtime, again trading accuracy. For this analysis we attempted to

select parameters which gave comparable accuracy (see methods). We did not make

use of parallel computing in this experiment. Both QuantumClone and PyClone-VI

can perform random restarts in parallel to decrease runtime. The MCMC based

methods cannot be parallelised in the same way.

Analysis of PCAWG cohort

To demonstrate the real life utility of PyClone-VI we analysed the data from the

Pan-Cancer Analysis of Whole Genomes (PCAWG) [18]. We downloaded processed

data from the ICGC data portal and pre-processed it for input into PyClone-VI. The

only filtering performed was to remove mutations with no copy number information

or in regions with total copy number zero. We analysed the resulting data from 1717

patients with 28 to 881464 mutations. All data was single sample whole genome

data. Figure 3 a) shows the runtime of PyClone-VI as function of the number of

mutations. Runtime increases linearly with the number of mutations with times

ranging from 11-28575 seconds. Figure 3 b) shows the runtime as a function of the

number of clones detected and Figure 3 c) shows how the number of clones detected

depends on the number of mutations. The trend is that more clones are detected

as more mutations are included, with runtime correspondingly increasing with the

number of clones. Figure 3 d) is an illustrative analysis which shows the number of

clones normalised by the number of mutations broken down by ICGC project.

Analysis of TRACERx cohort

As another real world demonstration, this time with multiple samples, we analysed

whole exome data from the 100 lung cancer patients from the TRACERx study

[12]. Patients had between 1-7 samples sequenced from different regions of their

tumours with between 65 and 3566 mutations detected. Figure 4 a) shows the

runtime of PyClone-VI as function of the number of mutations. Again runtime

increases linearly with the number of mutations with times ranging from 9-1454

seconds. Figure 4 b) and c) show runtime and runtime normalised by the number of

mutations with varying numbers of samples. Runtime does not directly increase with

the number of samples (Figure 4 b), but once the runtime is normalised to account

for the number of mutations we see an increase (Figure 4 c). In Figure 4 d) and e) we

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 5 of 15

show the number of mutations and clones that can be resolved as a function of the

number of samples. Interestingly, the number of mutations identified does not seem

to depend strongly on the number of samples, however the number of clones which

can be detected increases as more samples are added. This result illustrates the

important role that multi-region sequencing plays in determining clonal population

structure. Eight patients in the cohort had only a single sample. We compared

the number of mutations in these patients inferred to be clonal to the number

inferred to be clonal from multi-region sequencing (Figure 4 f). The proportion

of detected clonal mutations decreases in the multi-sample setting suggesting that

many apparently clonal mutations in single sample sequencing may in fact be sub-

clonal, consistent with the findings in [12] which performed a more thorough held

out sampling.

Discussion
PyClone-VI achieves significant computational gains over the original PyClone

method by altering the model and changing the approach used for inference. To

do so we introduce several approximations on top of those already in the PyClone

model.

We assume that CCF values can only take on a finite set of values. The number of

possible values determines the accuracy of this approximation and the runtime. For

the analyses performed in this paper we used a grid of 100 values, which provides

CCFs accurate to within 0.01. Using a larger grid of values will provide more accu-

rate estimates if the mutations are sequenced to a sufficient depth. In general, large

numbers of mutations are not deeply sequenced, so using relatively sparse grids is

appropriate for the data. If a small panel of mutations is deeply sequenced, then

the original PyClone method maybe more appropriate than PyClone-VI.

Another approximation we make is to use a finite mixture model in place of a

Dirichlet process (DP) for clustering. We rely on the variational inference procedure

to automatically perform model selection by only using the number of clusters

supported by the data. The approach of using more clusters than needed is heuristic,

however it is widely employed and generally performs well [19]. We note neither DP

models or using the BIC are guaranteed to consistently estimate the correct number

of clusters.

The use of VI rather than MCMC for inference means that PyClone-VI will deliver

posterior approximations of unknown accuracy. In contrast, MCMC approaches

are guaranteed to approximate the posterior to arbitrary accuracy given enough

samples are drawn. In practice, VI approaches are typically observed to estimate

the mean of the posterior distribution well, but to underestimate the variance. When

inferring clonal population structure the underestimation of variance would lead to

over confident assignment of mutations to clusters and under-estimates of error

bar widths for CCF values. If accurate estimates of these values are required, then

we recommend the use of the original PyClone model. It is our observation that

most users do not make use of these values, and instead rely on the point estimates

generated by PyClone. In this case, PyClone-VI should be the preferred approach

due to reduced runtime.

Like PyClone, PyClone-VI clusters mutations which share the same evolutionary

history. Such mutations originate at the same point in the phylogeny and exhibit

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 6 of 15

the same pattern of mutation loss. PyClone-VI does not attempt to infer the phylo-

genetic tree, in contrast to methods such as PhyloWGS. Ignoring the phylogenetic

structure is a potential weakness, but it does mean we do not have to make addi-

tional assumptions such as mutations cannot be lost once gained. Such assumptions

are restrictive and violated in many cancers [20]. We believe that the ability to

quickly cluster mutations will be useful for downstream software which attempts to

infer phylogenies. By reducing the size of the input data from the number of muta-

tions to the number of clonal populations, more sophisticated and computationally

expensive tree building methods can be used [21, 22, 23].

Conclusions

We have introduced a new method, PyClone-VI, for inferring clonal population

structure in tumours from point mutations measured using high throughput se-

quencing. PyClone-VI is significantly more computationally efficient than existing

approaches and provides comparable accuracy. Tumours with 100,000s of muta-

tions can easily be analysed by PyClone-VI in less than a day on a personal com-

puter, a dramatic reduction in both runtime and memory required for this analysis.

PyClone-VI will be a useful tool for researchers performing large cohort studies of

tumour heterogeneity. PyClone-VI will also be useful in clinical studies which in-

tegrate WGS analysis of tumours and require timely analysis to inform treatment

decisions.

Methods

Inference in the original PyClone package was performed using Markov Chain Monte

Carlo (MCMC) sampling [4]. As the number of mutations grows, each iteration of

the MCMC sampler becomes slower which is problematic as large datasets likely

need many more iterations of MCMC sampling than small datasets which further

adds to the computational complexity. However, many users do not adjust for this

factor, and as result PyClone is often run with too few iterations for the MCMC

chain to converge leading to poor performance. One widely observed symptom of

this problem is the tendency for PyClone to produce many clusters containing a

single mutation [8].

To overcome these limitations we have modified the original PyClone model. This

modification has allowed us to develop and implement an efficient VI procedure

which is orders of magnitudes faster than the previous MCMC method. We refer to

this new model and software implementation as PyClone-VI. In addition to being

significantly faster, this approach also removes the need for the user to assess the

convergence of the MCMC sampler thus reducing potential for misuse.

PyClone

We provide a brief review of the original PyClone method here to motivate the

changes in Pyclone-VI. More details can be found in the original PyClone paper [4]

which includes additional details such as how to elicit genotype priors and the form

of the emission distributions supported.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 7 of 15

The original PyClone model is a Dirichlet process (DP) mixture model [24]. The

basic hierarchical model is as follows

G0 =
M∏
j=1

Uniform(·|[0, 1])

G|α,G0 ∼ DP(·|α,G0)

φi|G ∼ G(·)

bij |φi, β,θi ∼ H(·|φij , β, θij)

Here we use the distribution H to denote the emission distribution used to generate

the observed variant read counts bij , where i indexes the mutation and j the sample.

This distribution depends on local hyper-parameters θij which capture information

about the genotype and read depth. The parameter β represents global hyper-

parameters which are shared across mutations. In the original PyClone paper when

using a Beta-Binomial distribution β would be the precision of the distribution.

The above model induces a clustering of mutations since the measure G sampled

from the DP is almost surely discrete which implies there is a non-zero probability

that mutations share the same CCF. We can define a clustering of the mutations as

follows, let {φ∗
k}Kk=1 be the unique set of CCFs used to generate the data. Then for

mutation i we define zi = k if φi = φ∗
k. The introduction of the cluster indicator

variable zi is commonly used when developing MCMC sampling strategies for DP

mixture models [25]. This formulation is also useful for allowing us discuss how to

modify the PyClone model to derive a more computationally efficient approach.

The original PyClone model makes use of the DP to solve the model selection

problem. The model selection problem refers to the fact we do not know the true

number of clusters (clones) in the model. The DP formulation solves this by posit-

ing there exists an infinite number of clusters, but the observed data will only be

generated from a finite subset of these. While DP mixtures provide an elegant so-

lution to the model selection problem, they tend to be computationally expensive.

The computational expense primarily due to the need to use MCMC methods to

approximate the posterior distribution and thus infer model parameters [25].

Variational inference

VI is a popular alternative to MCMC methods in the Bayesian statistics and ma-

chine learning literature [26]. VI reformulates the problem of approximating the

posterior as an optimization problem. In the general case, a variational distribution

q(θ|λ) is assumed, where θ are the model parameters and λ are the variational pa-

rameters. The goal is to find the variational distribution q(θ|λ) that minimizes some

notion of distance from the posterior distribution p(θ|X). A widely used measure

of distance is the exclusive Kullback-Leibler divergence denoted KL(q|p).
VI using KL(q|p) as the objective can lead to efficient inference procedures that

provide adequate approximations to the true posterior for many problems. Mean

field VI (MFVI) often called variational Bayes in the machine learning and statis-

tics literature posits the variational distribution decomposes as a product of terms

for each model parameter q(θ|λ) =
∏
s q(θs|λs). For models which obey certain

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 8 of 15

conjugacy constraints, simple closed form MFVI updates can be derived leading to

efficient inference algorithms. The updates take the form

q(θs|λs) ∝ exp(Eq(θ−s)[log p(θ,X)])

where Eq(θ−s) denotes the expectation taken over all parameters except θs [27].

The need to compute an expectation is what leads to the constraints on conjugacy

for MFVI. We note there has been significant work recently on using Monte Carlo

methods to compute these expectations in models that don’t satisfy conjugacy con-

straints [28, 29]. These approaches could potentially be used as an alternative to

our proposed method for performing VI for the PyClone model.

The original PyClone model does not fall in the class of models for which MFVI

is easily applicable. There are two issues. The most important issue is the emission

density H does not have a conjugate prior distribution. The second related issue is

that while there are ways to perform VI with DP mixtures, they require that we

have a conjugate emission density [30]. Moreover these approaches impose a finite

truncation on the number of clusters. This latter point means there is not a major

advantage to using the DP when employing VI [31]. Rather, using over complete

finite mixture models is often equally effective. Here we use over complete to mean

we fit a finite mixture model with more components than we expect to need [32],

and allow the inference procedure to perform model selection [19].

PyClone-VI model

In order to apply VI to fit the PyClone model, we make some modifications to the

model. First, we change the model from a DP mixture model to a finite mixture

model. In principle the use of a finite mixture model means we must address the

model selection problem and fit the model with a varying number of clusters K. In

practice we avoid this issue by setting K to be large and allowing the inference pro-

cedure to only use the number of clusters required. This heuristic strategy has been

shown to work well in practice [19, 33]. The second modification is to assume that

the CCFs of mutations φij can only take values in a finite set Φ =
{

0, 1
F , . . . ,

F−1
F , 1

}
where |Φ| = F + 1. This change is primarily motivated by computational consid-

erations, but can be justified by noting that we typically sequence genomes to 50x

- 1000x when performing whole genome or exome sequencing. Thus, it would seem

unreasonable to expect to resolve the CCF of a mutation to arbitrary precision. Pro-

vided we choose the grid of CCF values to be sufficiently large, this approximation

should thus yield reasonable results.

The modified version of the PyClone model which we call PyClone-VI is defined

as follows

π|α ∼ Dirichlet(·|α)

zi|π ∼ Categorical(·|π)

φkj |wkj ∼ Discrete(·|wkj ,Φ)

bij |zi = k, {φ`}K`=1, β,θi ∼ H(·|φkj , β, θij)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 9 of 15

where Discrete(·|w,Φ) indicates the discrete distribution with mass vector w and

support Φ. We use the uninformative priors α = α1K , where 1K is the vector of

ones of length K, and wkjf = 1
F+1 .

The joint distribution is thus given by

p(X,π, z, {φ`}K`=1) = p(π)
N∏
i=1

p(zi|π)
K∏
k=1

M∏
j=1

p(φkj)
N∏
i=1

K∏
k=1

M∏
j=1

p(bij |φkj)

I(zi=k)

= p(π)
N∏
i=1

p(zi|π)
K∏
k=1

M∏
j=1

p(φkj)
N∏
i=1

K∏
k=1

M∏
j=1

h(·|φkj , β, θij)

I(zi=k)

where we have suppressed the dependence on hyper-parameters for notational clar-

ity. We let h(·|φkj , β, θij) denote the emission density and I(zi = k) the indicator

function which is one when zi = k and zero otherwise. As we will show in the next

section this formulation leads to an efficient MFVI procedure.

Inference

We use MFVI to fit the PyClone-VI model. To do so we make the usual mean field

assumption for our variational distribution q.

q(π, z, {φk}Kk=1) = q(π|κ)

N∏
i=1

q(zi|ρi)
K∏
k=1

M∏
j=1

q(φkj |γkj)

The distributional assumptions are as follows

π|κ ∼ Dirichlet(·|κ)

zi|ρi ∼ Categorical(·|ρi)

φkj |γkj ∼ Discrete(·|γkj ,Φ)

The densities are then given by

q(π|κ) =
Γ
(∑K

k=1 κk

)
∏K
k=1 κk

K∏
k=1

πκk−1
k

q(zi|ρi) =
K∏
k=1

ρ
I(zi=k)
ik

q(φkj |γkj) =
F∏
f=0

γ
I(φkj=

f
F)

kjf

Thus we need to optimize the variational parameters κ, {ρi}Ni=1 and {γkj}
K,M
k=1,j=1.

The parameter updates can be derived by applying the standard MFVI update.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 10 of 15

Thus we have

κk = αk +
N∑
n=1

ρik

ρik ∝ exp

ψ(κk)− ψ

(∑
`

κ`

)
+

M∑
j=1

F∑
f=0

γkjf log h

(
·
∣∣∣∣ fF , β, θij

)
γkjf ∝ exp

(
logwkjf +

N∑
i=1

ρik log h(·|f, β, θij)

)

and we have the following normalization constraints

K∑
k=1

ρik = 1

F∑
f=0

γkjf = 1

These updates are iterated until convergence. Convergence can monitored by com-

puting the difference in the evidence lower bound (ELBO) after each update [26].

Monitoring the ELBO is also useful to assess that the software implementation is

correct, as it should increase monitonically.

Since we assume the CCFs, φij , can only take a finite set of values we can evaluate

h(·|φkj , β, θij) for all mutations and samples across this grid as a pre-processing step

during inference. Caching this value leads to a dramatic reduction in runtime for the

method. This strategy is only applicable if the global parameters β of the emission

distribution h are fixed. In practice, this means we fix the precision term of the

Beta-Binomial emission distribution, rather than estimating it as PyClone does.

We also treat the hyper-parameter α as a fixed parameter. This hyper-parameter

weakly controls the number of clusters used, with values greater than one promoting

the use of more clusters, and values less than one fewer. For all experiments in this

work we used a value of one.

Experiments

Synthetic data

We simulated data from the PyClone model with 50, 100 and 1000 mutations us-

ing a DP concentration parameter of 1.0. Additional simulation parameters are

described in the results. We used PyClone version 0.13.1 run with 10,000 iterations

and discarding the first 1,000 as burn-in. We ran PyClone-VI using 40 clusters and

100 random restarts.

DREAM data

We downloaded the ICGC-TCGA DREAM Somatic Mutation Calling - Tumour

Heterogeneity Challenge from www.synapse.org. A custom script was used to pro-

cess the battenberg TSV and mutect VCF files for input into PyClone, PyClone-VI

and QuantumClone. We used the included PhyloWGS parser for these input formats

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

www.synapse.org
https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 11 of 15

to generate input files for PhyloWGS. Tumour content values were set to the ground

truth values provided for all methods which accept this argument. PhyloWGS was

run for 10 iterations of burn-in and subsequently 100 samples were collected from

the MCMC trace. We selected the maximum a posteriori sample, that is the sample

with the highest joint probability, to compute estimates from PhyloWGS. PyClone

was run for 1,000 iterations, discarding the first 100 iterations as burn-in. We used

the PyClone Beta-Binomial emission distribution with the connected initialization

strategy and major copy number prior elicitation method. Default parameters were

used for post-processing the PyClone MCMC trace. QuantumClone was run with 2-

10 clones and 10 random restarts. PyClone-VI was run with 10 clusters, 100 random

restarts and used the Beta-Binomial emission distribution.

PCAWG data

We downloaded SNV and CNV data from PCAWG project hosted in the ICGC por-

tal [18]. We used a custom script to pre-process the data into a format compatible

with PyClone-VI, extracting read counts from the input VCF files and allele spe-

cific copy number from the CNV data. We ignored sub-clonal CNVs and removed

mutations with major copy number zero. We fit PyClone-VI using the Binomial

emission distribution with 20 clusters and 100 random restarts.

TRACERx data

We downloaded SNV and CNV data included in the supplementary material of

[12]. We used a custom script to pre-process the data into a format compatible with

PyClone-VI. We fit PyClone-VI using the Binomial emission distribution with 40

clusters and 100 random restarts.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
AR conceived and implemented the method, performed the experiments and wrote the text. SG helped with

performing experiments and writing the text.

Acknowledgements
We would like to thank Hoa Tran for her feedback during manuscript preparation. We would like to thank Alexandre

Bouchard-Côté for helpful discussion about how to develop the approximate inference procedure.

Author details
1Department of Molecular Oncology, BC Cancer Research Institute, 675 W 10th Ave, V5Z 1L3 Vancouver, Canada.
2Department of Computer Science, University of British Columbia, 2366 Main Mall, V6T 1Z4 Vancouver, Canada.
3Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, V6T 1Z7

Vancouver, Canada.

References
1. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–28.

2. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–313.

3. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of

primary triple-negative breast cancers. Nature. 2012;486(7403):395–399.

4. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population

structure in cancer. Nature methods. 2014;11(4):396–398.

5. Andor N, Harness JV, Mueller S, Mewes HW, Petritsch C. EXPANDS: expanding ploidy and allele frequency on

nested subpopulations. Bioinformatics. 2014;30(1):50–60.

6. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture

and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10(8):e1003665.

7. Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: reconstructing subclonal

composition and evolution from whole-genome sequencing of tumors. Genome biology. 2015;16(1):1–20.

8. Deveau P, Colmet Daage L, Oldridge D, Bernard V, Bellini A, Chicard M, et al. QuantumClone: clonal

assessment of functional mutations in cancer based on a genotype-aware method for clonal reconstruction.

Bioinformatics. 2018;34(11):1808–1816.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 12 of 15

9. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial Sloan Kettering-Integrated

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based

next-generation sequencing clinical assay for solid tumor molecular oncology. The Journal of molecular

diagnostics. 2015;17(3):251–264.

10. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T

cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–1469.

11. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell.

2017;168(4):613–628.

12. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S, et al. Tracking the

evolution of non–small-cell lung cancer. New England Journal of Medicine. 2017;376(22):2109–2121.

13. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-cancer analysis of the extent and

consequences of intratumor heterogeneity. Nature medicine. 2016;22(1):105–113.

14. Ghahramani Z, Jordan MI, Adams RP. Tree-structured stick breaking for hierarchical data. In: Advances in

neural information processing systems; 2010. p. 19–27.

15. Rosenberg A, Hirschberg J. V-measure: A conditional entropy-based external cluster evaluation measure. In:

Proceedings of the 2007 joint conference on empirical methods in natural language processing and

computational natural language learning (EMNLP-CoNLL); 2007. p. 410–420.

16. Salcedo A, Tarabichi M, Espiritu SMG, Deshwar AG, David M, Wilson NM, et al. A community effort to create

standards for evaluating tumor subclonal reconstruction. Nature biotechnology. 2020;38(1):97–107.

17. Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research.

2006;7(Jan):1–30.

18. The I, of Whole TPCA, Consortium G, et al. Pan-cancer analysis of whole genomes. Nature.

2020;578(7793):82.

19. Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Artificial

intelligence and Statistics. vol. 2001. Morgan Kaufmann Waltham, MA; 2001. p. 27–34.

20. McPherson A, Roth A, Laks E, Masud T, Bashashati A, Zhang AW, et al. Divergent modes of clonal spread

and intraperitoneal mixing in high-grade serous ovarian cancer. Nature genetics. 2016;48(7):758.

21. Malikic S, McPherson AW, Donmez N, Sahinalp CS. Clonality inference in multiple tumor samples using

phylogeny. Bioinformatics. 2015;31(9):1349–1356.

22. Popic V, Salari R, Hajirasouliha I, Kashef-Haghighi D, West RB, Batzoglou S. Fast and scalable inference of

multi-sample cancer lineages. Genome biology. 2015;16(1):91.

23. El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of clonal trees and tumor composition

from multi-sample sequencing data. Bioinformatics. 2015;31(12):i62–i70.

24. Antoniak CE. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The

annals of statistics. 1974;p. 1152–1174.

25. Neal RM. Markov chain sampling methods for Dirichlet process mixture models. Journal of computational and

graphical statistics. 2000;9(2):249–265.

26. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: A review for statisticians. Journal of the American

statistical Association. 2017;112(518):859–877.

27. Bishop CM. Pattern recognition and machine learning. springer; 2006.

28. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:13126114. 2013;.

29. Ranganath R, Gerrish S, Blei D. Black box variational inference. In: Artificial Intelligence and Statistics; 2014.

p. 814–822.

30. Blei DM, Jordan MI, et al. Variational inference for Dirichlet process mixtures. Bayesian analysis.

2006;1(1):121–143.

31. Kurihara K, Welling M, Teh YW. Collapsed Variational Dirichlet Process Mixture Models. In: IJCAI. vol. 7;

2007. p. 2796–2801.

32. Van Havre Z, White N, Rousseau J, Mengersen K. Overfitting Bayesian mixture models with an unknown

number of components. PloS one. 2015;10(7):e0131739.

33. Roth A, McPherson A, Laks E, Biele J, Yap D, Wan A, et al. Clonal genotype and population structure

inference from single-cell tumor sequencing. Nature methods. 2016;13(7):573–576.

Figures

Additional Files
Additional file 1 — Supplementary tables

Excel file containing supplementary tables supporting figures and statistical results in the paper.

• S1 - Performance results for the comparison of PyClone and PyClone-VI using synthetic data used in

Figure 1

• S2 - Performance results for the analysis of DREAM SMC-HET data used in Figure 2

• S3 - Friedman test results for comparing methods using the DREAM SMC-HET data.

• S4 - Post-hoc Nemenyi test for comparing methods using the DREAM SMC-HET data.

• S5 - Results from the PCAWG data analysis used in Figure 3.

• S6 - Results from the TRACERx data analysis used in Figure 4.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 13 of 15

Figure 1 Comparison of PyClone and PyClone-VI a) V-measure as a function of the number of
mutations. b) Mean absolute deviation of inferred CCF from truth as a function of the number of
mutations. c) Runtime of the methods. d) Memory usage.

50 100 1000
Number of mutations

0.0

0.2

0.4

0.6

0.8

1.0

V-
m

ea
su

re

a

50 100 1000
Number of mutations

0.00

0.02

0.04

0.06

CC
F

er
ro

r

b

50 100 1000
Number of mutations

101

102

103

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

c

50 100 1000
Number of mutations

1700

1800

1900

2000

2100

2200

M
em

or
y (

M
B)

d

PyClone PyClone-VI

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 14 of 15

Figure 2 Analysis of the DREAM SMC-Het data Analysis of the CGC-TCGA DREAM Somatic
Mutation Calling - Tumour Heterogeneity Challenge data using PhyloWGS (PWGS), PyClone
(PC), PyClone-VI (PCVI) and QuantumClone (QC). a) Comparison of V-measure across the
methods (higher is better). b) Comparison of the mean absolute deviation of estimated cancer cell
fraction across methods (lower is better). c) Comparison of runtime across methods (lower is
better). c) Comparison of memory usage across methods (lower is better).

PWGS PC PCVI QC
Program

0.0

0.2

0.4

0.6

0.8

V-
m

ea
su

re

a

PWGS PC PCVI QC
Program

0.05

0.10

0.15

0.20

0.25
CC

F
er

ro
r

b

PWGS PC PCVI QC
Program

102

103

104

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

c

PWGS PC PCVI QC
Program

2 × 103

3 × 103

4 × 103

6 × 103

M
em

or
y (

M
B)

d

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

Gillis and Roth Page 15 of 15

Figure 3 Analysis of the PCAWG cohort a) Runtime of PyClone-VI as a function of the number
of mutations. b) Runtime of PyClone-VI as a function of the number of clones inferred. c)
Comparison between the number of clones found and number of mutations. d) Number of clones
normalized by total number of mutations for each ICGC project.

103 105

Number of mutations (log10)

101

102

103

104

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

a

1 2 3 4 5 6 7 8 9
Number of clones

101

102

103

104

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

b

1 2 3 4 5 6 7 8 9
Number of clones

102

103

104

105

106

Nu
m

be
r o

f m
ut

at
ion

s (
log

10
) c

M
EL

A-
AU

ES
AD

-U
K

LI
CA

-F
R

GA
CA

-C
N

OR
CA

-IN

BT
CA

-S
G

LI
RI

-J
P

LI
NC

-J
P

BR
CA

-U
K

M
AL

Y-
DE

OV
-A

U

RE
CA

-E
U

PA
CA

-A
U

PA
CA

-C
A

PR
AD

-C
A

BR
CA

-E
U

PR
AD

-U
K

BO
CA

-U
K

EO
PC

-D
E

PA
EN

-IT

CL
LE

-E
S

PA
EN

-A
U

LA
M

L-
KR

PB
CA

-D
E

ICGC project

10 5

10 4

10 3

10 2

Cl
on

es
 p

er
 m

ut
at

ion

d

Figure 4 Analysis of the TRACERx cohort a) Runtime of PyClone-VI a function of the number
of mutations. b) Runtime of PyClone-VI a function of the number of samples. c) Runtime
normalised by number of mutations for varying numbers of samples. d) Number of mutations
detected with varying numbers of samples. e) Number of clones detected with varying numbers of
samples. f) Comparison of proportion of mutations deemed clonal when using single versus
multiple samples.

102 103

Number of mutations (log10)

101

102

103

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

a

1 2 3 4 5 6 7
Number of samples

101

102

103

Ti
m

e
(s

ec
on

ds
 lo

g1
0)

b

1 2 3 4 5 6 7
Number of samples

0.2

0.4

0.6

Ti
m

e
pe

r m
ut

at
ion

 (s
ec

on
ds

)

c

1 2 3 4 5 6 7
Number of samples

102

103

Nu
m

be
r o

f m
ut

at
ion

s (
log

10
)

d

1 2 3 4 5 6 7
Number of samples

5

10

15

Nu
m

be
r o

f c
lon

es

e

No Yes
Single sample

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 cl
on

al
m

ut
at

ion
s

f

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.08.31.276212doi: bioRxiv preprint

https://doi.org/10.1101/2020.08.31.276212

	Abstract

