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Abstract
The desire to understand how the brain generates and

patterns behavior has driven rapid methodological innova-
tion to quantify and model natural animal behavior. This
has led to important advances in deep learning-based mark-
erless pose estimation that have been enabled in part by
the success of deep learning for computer vision applica-
tions. Here we present SLEAP (Social LEAP Estimates
Animal Poses), a framework for multi-animal pose track-
ing via deep learning. This system is capable of simulta-
neously tracking any number of animals during social in-
teractions and across a variety of experimental conditions.
SLEAP implements several complementary approaches for
dealing with the problems inherent in moving from single-
to multi-animal pose tracking, including configurable neu-
ral network architectures, inference techniques, and track-
ing algorithms, enabling easy specialization and tuning for
particular experimental conditions or performance require-
ments. We report results on multiple datasets of socially in-
teracting animals (flies, bees, and mice) and describe how
dataset-specific properties can be leveraged to determine
the best configuration of SLEAP models. Using a high accu-
racy model (<2.8 px error on 95% of points), we were able
to track two animals from full size 1024 x 1024 pixel frames
at up to 320 FPS. The SLEAP framework comes with a
sophisticated graphical user interface, multi-platform sup-
port, Colab-based GPU-free training and inference, and
complete tutorials available, in addition to the datasets, at
sleap.ai.

1. Introduction

Quantitative measurements of animal motion are foun-
dational to the study of animal behavior [1, 6, 11]. Meth-
ods for pose estimation, the task of predicting the lo-
cation of anatomical landmarks in images, have rapidly
grown in popularity as a state-of-the-art technique for be-
havioral quantification across disciplines including neuro-
science [24] and ecology [10]. Although adaptations of
deep learning-based approaches originally developed for

human pose estimation have made animal pose estimation
possible [22, 26, 17], reliably tracking multiple, interacting
animals and their pose remains a challenging problem, pre-
senting an impediment to studies of social behaviors.

The generalization of the pose estimation task to the do-
main of multiple individuals (i.e., instances) can be broken
down into three distinct sub-tasks:

(i) Landmark localization: The retrieval of coordinates
of each landmark from the image. In the multi-instance set-
ting, there may be more than one detection of each land-
mark type (e.g., multiple necks). Localization is more chal-
lenging in the context of socially behaving animals due to
increased occlusions from close interactions, along with
imaging constraints such as low resolution and contrast
(Figure 1a-b).

(ii) Part grouping: The grouping of detected landmarks
into distinct sets associated to each individual. This requires
more information than simply the location of the landmarks,
resulting in the part grouping problem (Figure 1c). In the
context of socially behaving animals, intersecting or over-
lapping parts increase the difficulty of the grouping problem
(Figure 1a-b).

(iii) Temporal association: The association of grouped
landmark sets across video frames such that landmarks be-
longing to each individual are consistently assigned the
same identity. The temporal association problem requires
defining a metric of affinity between instances across frames
and matching them over time (Figure 1d). This is also
known as pose tracking and is similar to multi-object track-
ing with the additional constraint of having multiple point
types (landmarks) that form distinct sets.

In this work we present a method to address the prob-
lems of multi-animal pose tracking and describe an imple-
mentation of our approach within a general-purpose soft-
ware framework we term SLEAP (Social LEAP Estimates
Animal Poses).

The main contributions of our work are as follows:

1. We develop a software framework with a sophisticated
GUI-driven workflow for labeling, training, tracking
and proofreading social behavioral datasets.
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Figure 1: Unique challenges in pose tracking of socially behaving animals.
(a) Fruit flies (D. melanogaster) engaged in a courtship interaction. Part detection during social behaviors such as tapping is difficult due to frequent
occlusion, including through partially translucent body parts such as wings (inset, top). Even at high spatial resolution (~30px/mm), anatomical features
such as the leg tips occupy ~3px, requiring the use of image features at the finest resolution, while their fast movements introduce motion blur even at high
temporal resolution (150 FPS), making it difficult to precisely localize body parts (inset, bottom).
(b) Mice (M. musculus) engaged in anogenital sniffing, a common social recognition behavior. The flexible morphology of these animals leads to frequent
intersections of body segments, particularly the tail, making part association considerably more challenging. Naturalistic behavior is typically recorded in
infrared and in a home cage environment which results in a low contrast, heterogeneous and dynamic background due to the bedding material. During
social behavior, mice interact at close ranges which results in frequent occlusions; additionally, they spend most of their time near the walls which results in
reflections that must be distinguished from real part detections (inset, right).
(c) The part grouping problem emerges out of the generalization of pose estimation to multiple instances. When there are multiple detections of the same
body part, such as the thorax (purple) or leg (orange), grouping these such that each distinct subset of body parts belongs to the same animal requires
resolving competing hypotheses of how body parts may be connected (right).
(d) The temporal association problem is the time-dimension analogue of the part grouping problem. Given frame-wise instance groupings of pose detections,
consistent identities must be assigned to detections of the same animals across frames. Matching instances across frames requires solving an assignment
problem that is robust to frequent crossings of both individual landmarks as well as the bounding box (top, candidate assignments in gray, correct assignments
in colors). Animals may adopt very similar poses only a few frames apart (bottom), making it difficult to find globally optimal associations.

2. We describe the two major classes of multi-instance
pose estimation approaches (top-down and bottom-up)
and their generalization to the unconstrained animal
domain.

3. We describe an algorithm for pose tracking that can be
configured to solve the temporal association problem
with both image- and motion-based cues.

4. We provide a principled adaptation of the most com-

monly employed human pose estimation and tracking
accuracy metrics to the animal domain.

5. We describe a set of high level hyperparameters that
can induce specialized neural network architectures to
meet the requirements of a given dataset.

6. We demonstrate the performance of neural network
architectural hyperparameters and multi-instance ap-
proaches through extensive experiments across mul-
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tiple datasets representing diverse social animals, to
guide practitioners in training models on their own
data.

7. We explore the impact of transfer learning on multi-
animal pose estimation performance.

8. We explore the speed-accuracy trade-off of different
models and approaches, attaining maximum end-to-
end multi-animal inference speeds of 430 FPS on a
single GPU.

The open-source software framework implementing
these methodological advances, as well as labeled datasets
and trained models, are freely available at sleap.ai.

2. Related work
2.1. Human pose estimation and tracking

Previous work in multi-human pose estimation has in-
spired some of the approaches we employ here. The
bottom-up multi-instance pose estimation technique we em-
ploy is based off of the part affinity fields representation and
matching algorithm employed in the widely used human
pose estimation framework OpenPose[7]. Our top-down ap-
proach and part of our tracking algorithm are inspired by the
idea of flow shifting described in Xiao et al. [33]. Many of
the metrics we use to evaluate both our multi-instance pose
estimation accuracy as well as tracking come from the stan-
dards put forth in the PoseTrack benchmark [2].

2.2. Animal pose estimation

Early work on animal pose estimation extended deep
learning algorithms designed for human subjects for use
on animals with different body plans and morpholo-
gies. These include DeepLabCut[22], LEAP[26], and
DeepPoseKit[17], but none were explicitly designed for use
with multiple animals.

Methods for multi-animal pose estimation can be split
into two categories: top-down, where animal instances
are first detected and isolated before finding their individ-
ual body parts; and bottom-up, where body parts are first
detected and then grouped into instances. DeepLabCut,
LEAP, and DeepPoseKit, have all been adapted to perform
multi-animal pose estimation in a top-down framework, but
the process of identifying animal instances must be per-
formed separately. More recent work using 3D data also
employed top-down approaches for multi-animal pose but
only in single species or specialized experimental condi-
tions [5, 15, 12]. Other work has focused on bottom-up
approaches using rodents, but these methods have not been
shown to generalize to other types of animals [3, 19].

SLEAP is a framework that is designed for general-
purpose 2D multi-animal pose estimation and tracking.

We employ both top-down and bottom-up frameworks
and conduct systematic experiments to compare these ap-
proaches and their effectiveness with a diversity of behav-
ioral datasets from multiple species. Importantly, we find
that depending on the dataset, either top-down or bottom-
up methods give superior performance.

3. Method
3.1. Framework

The SLEAP multi-animal pose tracking framework is
composed of a series of steps that form a standard work-
flow starting from data input and resulting in trained pose
estimation models and pose tracked videos. The typical use
workflow will sequentially step through each of the mod-
ules in the framework (Figure 2a, from left to right):

(i) Data input. Unlabeled and unprocessed videos, e.g.,
multiple sessions from a experimental setup. Videos
can be loaded from most video formats including MP4,
AVI, image folders, HDF5, or imported from com-
mon project formats such as DeepLabCut [22], Deep-
PoseKit [17] or standardized pose estimation dataset
formats like MS-COCO [21].

(ii) Interactive labeling. The user creates a new project
in the cross-platform desktop labeling GUI, contain-
ing the videos, labels, and the specification of which
landmarks to track. Labeling is performed by drag-
ging landmark markers onto their corresponding posi-
tions for each animal in the image and does not require
a GPU or a high performance machine. Each animal
in an image is labeled with a distinct set of landmarks
— the user does not need to keep track of animal iden-
tities at this stage. SLEAP can intelligently “suggest””
frames to label by analyzing their image content to
maximize sample diversity [26].

(iii) Neural network model training. Once as few as ~10
frames have been labeled, predefined or user-specified
neural network configurations can be used to train the
initial neural network for multi-animal pose estima-
tion. Users can either select from a list of pre-made
default configurations that are designed for the most
common use case, or can be guided through the config-
uration process, with documented descriptions of the
hyperparameters accessible within the GUI, along with
visualizations and previews of the outputs that will be
produced by a given configuration.

If the user is not labeling on a machine equipped with
a GPU, SLEAP can export the project file packaged
with the image data corresponding to the labels into a
single file that can be uploaded to an institutional com-
pute cluster, remote cloud instance, or even Google
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Figure 2: Overview of the SLEAP framework.
(a) The standard workflow receives raw videos as inputs and produces multi-animal pose tracks as outputs.
(b) The top-down approach to multi-instance pose estimation first finds instances and crops them from the full frame, then detects the individual’s body
parts within each crop. In the first stage, a network (NNanchor) finds the instances by predicting multi-peak confidence maps of anchor points. The second
stage network (NNinst) predicts single-peak confidence maps for the center instance of each crop.
(c) The bottom-up approach finds all parts within the full image, then uses a connectivity metric to group them into instances. Both multi-peak confidence
maps and part affinity fields (PAFs) are predicted by a single network (NN ).

Colab which provides free GPU access. The user can
install SLEAP remotely with a simple pip install
sleap command, train the neural network by upload-
ing the desired configuration, monitor the training via
TensorBoard, and then download the resulting trained
model. These steps can be done via an interactive
Python notebook or via commandline interface (CLI)
for batch scheduling. On machines with local GPU
access, training can be done interactively and training
progress monitored directly within the SLEAP GUI,
including visualizations of predictions during model
training. Training speed depends on the dataset and
network configuration, but predefined templates will

typically converge between 10 and 30 minutes for ini-
tial training.

After training, the resulting model folder will contain
the neural network weights, training logs, visualiza-
tions, and accuracy metrics, as well as a cached copy
of the labels used to train the network and the training
configuration, so that the training procedure that gen-
erated a saved SLEAP model is fully reproducible.

(iv) Pose estimation. Once the network is trained, new
poses can be predicted for all animals on a per-frame
basis. Predictions can optionally be automatically gen-
erated on suggested frames or on user-selected frames.
Prediction results after the initial round of training
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will likely be misplaced, swapped, or missed entirely,
however correcting these inaccurate predictions will
take considerably less time than labeling images from
scratch. New predictions can be generated on sin-
gle frames or entire videos or datasets, depending on
user specification. Pose predictions are saved in the
project file for future labeling sessions. Continued la-
beling can further take advantage of the outputs pro-
duced by trained models by sorting predictions by their
confidence scores, where low confidence predictions
may indicate deficiencies in the labels, for example,
frames where the animals adopt poses not included
in the training data. After adding more prediction-
assisted labels to the dataset, the user can repeat the
training procedure to train a more refined model with
the added labels. The new model will then be able to
generate predictions that are more accurate and require
less time to correct, rapidly speeding up the process of
labeling a new dataset. This is called human-in-the-
loop training and forms the basis of expedient SLEAP
workflows.

(v) Tracking. Once the user is satisfied with the accu-
racy of the pose estimation model, SLEAP can run
a separate tracking algorithm designed to operate on
frame-wise predictions to associate predictions across
frames. This tracker does not require training and can
take advantage of both image data and motion cues to
minimize tracking errors. Further post-processing util-
ities can improve the rate of tracking errors if the user
is able to provide additional constraints such as the
maximum number of animals or frame regions to ig-
nore. This tracker can be run interactively on-demand
as a subsequent step to the pose estimation pipeline, or
as part of a batch processing workflow via the CLI or
the Python API.

(vi) Proofreading. After tracking is performed, predic-
tions for new videos not in the labeling project are
saved to their own SLEAP labels file. This file can
be opened by the SLEAP GUI to inspect the predicted
tracks and correct tracking or pose estimation mis-
takes if there are any. Tracking errors that may re-
quire proofreading typically track swaps due to pro-
longed close interactions between animals with occlu-
sion or splits in tracks due to the animal being out of
the frame or occluded for an extended period of time.
SLEAP can compute a variety of different metrics that
can help to spot tracking problems in longer videos,
such as body part velocities (peaks may indicate track
swaps) or low prediction confidence (indicating persis-
tent animal occlusions).

3.2. Landmark localization

The position of each landmark from the labeled data is
encoded for network training by a 2D array that we refer to
as a part confidence map (CM). For each body part coor-
dinate xi ∈ R2, the value of the confidence map at pixel
xp ∈ R2 is given by an unnormalized 2D Gaussian distri-
bution,

Ci(xp) = exp

(
−
‖xi − xp‖22

2σ2

)
δi, (1)

where σ is a fixed scalar controlling the symmetric spread
of the distribution, and δi is equal to 0 when the body part
is labeled as “not visible” and 1 otherwise.

The confidence maps are evaluated at each image grid
pixel coordinate xp ∈ {((x, y) : x ∈ {0, ...,W}, y ∈
{0, ...,H}} where W and H are the image width and
height, respectively. The grid can be subsampled to gen-
erate lower resolution confidence maps as targets for neu-
ral networks, trading off spatial resolution for decreased
memory usage and compute cost. For an animal with J
body part types (e.g., head, thorax, etc.), we generate N
confidence maps which are stacked along the channels axis
such that the full confidence map’s tensor C is of shape
(H/so,W/so, N), where so is the output stride of the net-
work. Body parts that are marked as “not visible” during
labeling are represented by a confidence map filled with
zeros. We set σ = 1.0 and scale by the output stride to
maintain a fixed scale with respect to the image resolution.
For images with multiple instances of each body part type,
the part confidence maps for each instance are combined by
taking their maximum value at each pixel which helps to
separate closely-spaced peaks [7].

The set of confidence maps from the labeled data is used
to train the neural network which then predicts confidence
maps for novel data. The confidence map representation has
the benefit of enabling fully convolutional neural network
architectures which are both efficient and easier to train
than networks that directly regress the coordinates of each
body part [32]. The trade-off is that the coordinates must be
computed from the confidence maps at inference time (i.e.,
when the model is predicting new confidence maps).

For single-instance confidence maps, we decode the co-
ordinates by finding the global peak, i.e., the coordinates of
the confidence map pixel with the highest value. For multi-
instance confidence maps, we employ local peak finding,
where we define a pixel as being a local peak if it is greater
than its 8 neighbors. In practice, we employ non-maximum
suppression computed using a 2D grayscale dilation (maxi-
mum) filter with kernel

K =

0 0 0
0 −1 0
0 0 0

 .
5
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K is convolved with the confidence map, producing a tensor
whose elements contain the maximum of each 3 × 3 patch
excluding the central pixel. The pixels in the confidence
map with higher values than those in the dilated maps are
considered local peaks. In both global and local peak find-
ing, we exclude peaks whose confidence map values fall be-
low a fixed threshold which we set to 0.2 in order to retain
somewhat low confidence predictions, but exclude points
that are reliably predicted as “not visible”.

Since both of these peak finding methods can only yield
peak coordinates at the resolution of the confidence map
grid, localization accuracy is limited by the grid sampling
interval. This quantization error is particularly problematic
for models with larger output strides (i.e., lower resolution
confidence maps), so we employ subpixel refinement to im-
prove the peak coordinate localization. We leverage integral
regression [25] to compute real-valued offsets by taking the
weighted average of the local patch of the confidence maps
around each grid-aligned peak.

3.3. Multi-instance approaches

To deal with the part grouping problem inherent in
multi-animal pose estimation, we explore two types of ap-
proaches: top-down and bottom-up (Figure 2b-c). Both of
these methods are widely employed in the human pose es-
timation literature and provide distinct trade-offs in terms
of accuracy and performance. It has not been previously
reported which may be better suited to the domain of multi-
animal pose estimation, so we explored both.

3.3.1 Top-down

In the top-down approach, the instances are first detected
within the full resolution image and each instance is
cropped. Each of the resulting crops will be centered on
an instance, but may contain pixels that belong to other in-
stances. This centering is crucial as it provides spatial con-
text to the second stage of the top-down approach, serv-
ing as an indicator of which instance’s body parts to predict
within the cropped image. In our framework, we select a la-
beled body part type to use as an anchor, ideally one close
to the center of the animal’s bounding box and infrequently
occluded (if occluded, the centroid of the bounding box of
the remaining parts is used as the anchor). The anchored
part serves as the target for the first stage neural network
(NNanchor) which is trained to predict multi-peak confi-
dence maps corresponding to the anchor part of all animals
in the frame (Figure 2b, left). Typically, this network is
trained on downsampled (0.25× or 0.5×) full frame im-
ages since coarsely locating the animals does not require
high spatial resolution and saves on compute cost. Anchor
part confidence maps are converted to coordinates using lo-
cal peak finding and cropped from the full resolution im-

ages with a fixed bounding box size computed automati-
cally from the labels.

Once the instance-anchored crops are produced by the
first stage, the second stage essentially treats them as single-
instance images. In this stage, we train a separate neural
network (NNinst) that takes an instance-anchored image
and predicts single-peak confidence maps only for the an-
chored instance. The confidence maps are converted into
coordinates using global peak finding as only a single set
of body parts are expected (Figure 2b, right). This network
implicitly addresses the part grouping problem by leverag-
ing the location of the body parts relative to the anchor part
(i.e., the image center) as a cue for which body part to pre-
dict confidence maps for when multiple of the same body
part type may be present within the crop.

This form of implicit modeling of the geometry between
body parts is simple and has been employed in the animal
pose literature previously [26, 17]. The disadvantages of
the top-down approach are that it fails to capture global
contextual information present in the relationship between
instances, is limited by the accuracy of the first stage de-
tector, and requires a full forward pass through the second
stage network (NNinst) for each animal detected (though
this may actually require less computation for images with
few animals that occupy a small fraction of the image).

3.3.2 Bottom-up

For the bottom-up approach, we employ an image-based
representation of the connectivity between body parts that
has been previously described for human pose estimation
called part affinity fields (PAFs) [7]. This representation
captures the relationship between body parts explicitly by
encoding a vector field which locally points from each
source body part to each destination body part. This vector
field is stored as two 2D images, one for each component in
the x, y-plane. In order to generate the PAFs from labeled
data, the user must define a directed graph that connects all
body parts to be tracked which we refer to as the skeleton.
This skeleton graph must form a spanning arborescence,
i.e., each node (body part) must have exactly one parent
(except for a single root node), but may have multiple chil-
dren. This is required for tractably solving the partitioning
problem, which simplifies to a series of bipartite matching
problems for arborescences. This is an important consid-
eration when defining skeletons for new morphologies or
datasets as body parts that are descendants of a missed body
part will fail to be grouped correctly with the remaining in-
stance parts. In practice, we attempt to create skeletons with
the smallest depth to reduce dependency across sets of body
parts.

A skeleton is defined as S = (N,E), where N is the
set of n nodes (body parts) and E is the set of (s, d) tuples
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denoting the directed edge (connection) from a source node
s ∈ {1, ..., n} to a destination node d ∈ {1, ..., n} \ {s}.
The direction at each point in the PAF derived from labeled
data is generated from the coordinates of the body parts in
labeled images by computing the distance-weighted edge
unit vector for each edge e at each image grid coordinate
xp,

Pe = exp

(
−M(xp)

2σ2

)
ueδsδd, (2)

where xs and xd are the coordinates of the source and des-
tination nodes, respectively. Similarly to confidence maps,
xp may come from a subsampled image grid, σ controls the
spatial spread of the PAF, and δs and δd are the visibility
flags for the source and destination nodes, respectively. The
edge unit vector ue is defined as the source-centered direc-
tion vector

ue = (xd − xs)/‖xd − xs‖. (3)

The magnitude, M , at each point in the PAF is defined
as the Euclidean distance between the grid point xp and its
projection x̂p onto the line segment formed between xs and
xd, M(xp) = ‖xp − x̂p‖2, where x̂p = r(xd − xs) + xs

and

r = min

(
max

(
(xp − xs) · (xd − xs)

‖xd − xs‖22
, 0

)
, 1

)
.

We note that the original description of PAFs [7] uses a hard
threshold to compute the distance weighting, but we adopt
a Gaussian instead as a means of scaling the relative con-
tribution of pixels as a function of distance from the edge,
resulting in smoother PAFs when animals are closely inter-
acting.

PAFs computed for a given edge are combined for mul-
tiple instances by summation. After PAFs are generated for
all edges in the skeleton, the full set of PAFs for the image
P are of shape (H/so,W/so, 2|E|), formed by concatenat-
ing all of the individual edge PAFs, which contain the x-
and y- components of the vectors along the third axis.

In the bottom-up approach, a single neural network takes
the full image as input and outputs both the PAFs and the
multi-peak part confidence maps encoding the location of
all body parts across all instances (Figure 2c, left). By pre-
dicting both of these representations, the network explicitly
separates the task of localization and grouping, where for
one representation it must only learn to predict “what” a
body part is (CMs), whereas for the other it must learn the
relationship between them (PAFs). This is in contrast to the
top-down approach, where the relationship between body
parts is implicitly encoded in the cropping.

After CMs are converted to peaks via local peak de-
tection, sets of candidate source and destination peaks are
grouped via greedy bipartite matching using the PAFs to

compute the score of each putative connection (Figure 2c,
right). For each pair of source and destination nodes, a line
integral is computed by sampling 10 evenly spaced points
between source and destination coordinates in the predicted
PAFs. The score for the connection is calculated as the av-
erage dot product between the sampled vectors (p̂s) and the
unit normalized vector formed between the predicted source
(x̂s) and destination points (x̂d) in the candidate connection,

10∑
s=1

x̂d − x̂s

‖x̂d − x̂s‖2
· p̂s. (4)

Once all pairs of connections are scored, instances are
assembled by growing its skeleton edge by edge, assign-
ing source candidates to destination candidates via Hungar-
ian matching. The globally optimal matching is guaran-
teed through this local greedy procedure for arborescences,
which is the reason why skeletons must obey this restric-
tion.

There are many possible skeletons that can be defined
for a set of body parts, but in practice we find that op-
timal results are obtained when the depth of the skeleton
graph is kept low (to reduce inter-node dependencies during
matching) and the lines formed between the nodes actually
overlap with the animal’s morphology in the image (making
curved body parts like rodent tails particularly challenging
without intermediate keypoints).

3.4. Tracking

To address the temporal association problem, we de-
vised a tracking algorithm that operates on grouped in-
stances generated from the multi-animal pose estimation.
The general algorithm is described in algorithm 1 which
describes a standard multi-object tracking procedure. In
brief, for each frame, we first generate a set of candidate
instances from a window of recent frames that have been
tracked, compute the matching cost between each candidate
and each untracked instance in the current frame, perform
the optimal matching and assign them to tracks.

To adapt this to the task of pose tracking specifically, we
first employ one of two candidate generation functions: flow
shift or Kalman filter. Inspired by Xiao et al. [33], the flow
shift generator takes instances from previous frames and ap-
plies Farneback optical flow [14] to predict the displace-
ment of the image between their respective frames and the
current frame at the coordinates of the instance parts, thus
generating a set of “shifted” instances with locations pre-
dicted by the image motion. This considerably improves the
similarity between instances in the past and present ones,
especially during bouts of fast social behaviors (e.g., chas-
ing) during which the past location of one instance may
more closely overlap with the current location of another.
The Kalman filter generator uses instances tracked using
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Algorithm 1: Tracking Algorithm
Result: Tracked instances
D ← {} // Tracked instance deque
for t ∈ {1, ..., T} do

Ic ← Generate candidate instances from D
It ← Grouped instances in frame t
C ← Cost(Ic, It) // Pairwise costs
M ← Find optimal matching
for (i, j) ∈M do

AppendToTrack(Track(Ic[i]), It[j])
end
for k /∈M do

SpawnNewTrack(It[k])
end
AppendToDeque(It)

end

the flow shift generator to initialize a filter model at the
beginning of a track for each body part of each instance.
At each subsequent frame, the Kalman filters are updated
and candidate instances are generated by predicting the lo-
cation of each past instance in the current frame. This mo-
tion model does not use image data, but can more accu-
rately generate candidate instances when the appearance of
animals change drastically. To compute the matching cost
between instances, we use the instance similarity defined as

exp
(
−‖Ic − Ij‖22

)
/vc, (5)

where vc is the number of visible landmarks in the candidate
instance.

3.5. Neural network architectures

The neural network architectures we have implemented
in our framework are agnostic to the approach employed.
These backbones serve as generic feature extractors that can
output feature maps, both CMs and PAFs, at any given res-
olution.

We employ the encoder-decoder meta-architecture (Fig-
ure 3a), a class of fully-convolutional network architectures
that can describe most of the commonly used neural net-
works, such as those used in DeepLabCut [22] (Figure 3b)
or UNet [29] (Figure 3c). We use this class of models as a
means of defining a set of high-level hyperparameters that
describe the behavior of the network rather than its explicit
structure:

1. Maximum receptive field size: This is the largest spa-
tial extent over which the network is theoretically ca-
pable of integrating features. This can be used to ad-
just the length scale over which the network should
have the capacity to reason. The theoretical receptive
field (RF) is increased by adding downsampling blocks

in the encoder branch and can be calculated in closed
form [4].

2. Output resolution: This determines the resolution of
the output targets (such as confidence maps) which can
determine the accuracy at inference time, particularly
due to the quantization error inherent in subsampled
outputs. This trades off with increased memory re-
quirement, sometimes resulting in intractable training,
particularly for bottom-up models. The output reso-
lution is determined by the ratio of downsampling to
upsampling blocks, where an equal number results in
outputs at the same resolution as the input image.

3. Representational capacity: This determines the
amount of parameters and compute that the network is
able to use to capture image features across scales. It
can be controlled by the base number of filters and by
the filter rate, where a lower filter rate biases the dis-
tribution of representational capacity towards smaller
features.

These hyperparameters make it simpler to select an appro-
priate architecture based on the properties of the data, rather
than through careful engineering or black-box network ar-
chitecture search methods.

We primarily use the generalized UNet as a base net-
work [29] as it provides the flexibility to control these high
level hyperparameters while implementing them with sim-
ple architecture design specifics, namely: simple convolu-
tional blocks consisting of a stack of Conv-ReLU-Conv-
ReLU-MaxPool layers, and skip connections to fuse fea-
tures across scales in the decoder. We use bilinear upsam-
pling, rather than transposed convolutions, as it has been
previously shown to be effective and compute efficient [17].

For the ResNet implementation, we precisely replicate
the architecture specifics employed in DeepLabCut [22]
to ensure fair comparisons. Unlike previous attempts to
replicate their architecture [17], we implement ResNet50,
101 and 152 with the exact layers necessary to make use
of the standard ImageNet pre-trained weights, but retain
DeepLabCut’s ability to control the encoder feature reso-
lution through the use of dilated convolutions. This has
been previously shown to be important for fully convolu-
tional tasks that re-use the standard ResNet backbone[8]
which in its standard configuration reduces feature spatial
resolution by 32×. This makes it difficult to upsample
the features in the decoder, especially without the use of
skip connections. We also implement the decoder used by
DeepLabCut, which is composed of 1 or 2 transposed con-
volutions with large kernel size that directly upsamples the
encoder’s feature maps to the output target resolution, rather
than through repeated upsampling blocks. In practice, we
find that smaller upsampling blocks using bilinear interpo-
lation yield better performance and training stability.
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Figure 3: Neural network architectures generated by the encoder-
decoder motif.
(a) Encoder-decoder models are formed by a set of blocks that control
specific properties of the architecture. These can be combined to achieve
desired feature extraction properties, such as receptive field size or output
resolution.
(b) The standard DeepLabCut architecture.
(c) The standard UNet architecture.

4. Results

4.1. Datasets

In order to evaluate our framework across a diversity of
experimental conditions and animal morphologies, we gen-
erated three different datasets of multi-animal social behav-
ior: flies, mice, and bees. These datasets were labeled using
the SLEAP GUI and aided by the human-in-the-loop work-
flow (Figure 2).

The flies dataset consisted of 30 videos of pairs of
male and female fruit flies (D. melanogaster) freely moving
within a domed chamber and engaged in natural courtship
behavior for up to 30 minutes, or until copulation. The
videos were recorded from above at 150 FPS with a frame
size of 1024×1024×1 in grayscale using infrared illumina-
tion, at a resolution of 30.3 pixels per mm. This resolution
is close to the minimum required to be able to reliably cap-
ture individual leg tarsi as they span roughly ~25 microns
in diameter [30], equivalent to about 0.75 pixels at this res-
olution. We emphasize these limits to highlight that the
findings described here regarding feature scales should be
interpreted not just at the imaging parameters we selected,
but are tied to the underlying scale of the biological features
that these pose models are trained to detect.

We labeled 2000 frames with 2 flies visible in every
image. The dataset was randomly split into 1600/200/200
frames for training/validation/testing respectively. The
skeleton we selected consisted of 13 nodes spanning
the anatomy of the fly: [head, thorax, abdomen,
wingL,wingR, forelegL4, forelegR4,midlegL4,
midlegR4, hindlegL4, hindlegR4, eyeL, eyeR]; and 12
edges: [(thorax → head), (thorax → abdomen),
(thorax → wingL), (thorax → wingR),
(thorax → forelegL4), (thorax → forelegR4),
(thorax → midlegL4), (thorax → midlegR4),
(thorax → hindlegL4), (thorax → hindlegR4),
(head→ eyeL), (head→ eyeR)].

The mice dataset consisted of 30 videos of pairs of male
and female white mice (M. musculus) freely interacting in
a homecage environment with bedding to encourage nat-
uralistic courtship behavior for ˜5 minutes. The videos
were recorded from above at 40 FPS with a frame size of
1280 × 1024 × 1 in grayscale using infrared illumination,
at a resolution of ˜1.9 pixels per mm. Although this reso-
lution could be reduced, as the finest feature captured (the
tail) occupies several pixels in these images, this resolution
addresses other challenges inherent in this dataset, namely
the low contrast due to low power IR illumination and white
fur color of the animals against the bedding material.

For this dataset, we labeled 1474 frames with either
1 to 2 mice visible. The dataset was randomly split
into 1178/148/148 frames for training/validation/testing
respectively. The skeleton we selected consisted of 5 nodes
spanning clearly visible anatomical landmarks: [snout,
earL, earR, tb(tailBase), tt(tailT ip)]; and 4 edges:
[(snout → earL), (snout → earR), (snout → tb),
(tb → tt)]. We chose not to label the legs or paws since
they were very intermittently visible from a single camera
above.

The bees dataset consisted of 18 videos of pairs of fe-
male worker bumblebees (Bombus impatiens) freely inter-
acting in a petri dish with hexagonal beeswax flooring for
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up to 30 minutes. The videos were recorded from above at
100 FPS with a frame size of 2048×1536×1 in grayscale, at
a resolution of ˜14 pixels per mm. Similar to the fly dataset,
this resolution is close to the minimum required in order to
reliably capture the finer features of the bees such as their
tarsi tips and antennae, both of which are frequently em-
ployed in social interactions [16]. This presented a distinct
challenge as the large body size of the bees (˜200 − 400
pixels) together with the finest feature sizes (˜2− 4 pixels)
requires models to simultaneously capture features across a
wide range of length scales.

For this dataset, we labeled 804 frames with 2 bees al-
ways visible (though often overlapping during interactions).
The dataset was randomly split into 642/81/81 frames
for training/validation/testing respectively. The skeleton
we selected consisted of 21 nodes spanning the anatomy
of the bees: [thor, head, abdo, Lant1, Lant2, Rant1,
Rant2, fLleg1, fLleg2, fRleg1, fRleg2,mLleg1,
mLleg2,mRleg1,mRleg2, hLleg1, hLleg2, hRleg1,
hRleg2, Lwing,Rwing]; and 20 edges: [(thor → head),
(thor → abdo), (head → Lant1), (head → Rant1),
(Lant1 → Lant2), (Rant1 → Rant2), (thor →
fLleg1), (fLleg1 → fLleg2), (thor → fRleg1),
(fRleg1 → fRleg2), (thor → mLleg1), (mLleg1 →
mLleg2), (thor → mRleg1), (mRleg1 → mRleg2),
(thor → hLleg1), (thor → hRleg1), (hLleg1 →
hLleg2), (hRleg1 → hRleg2), (thor → Lwing),
(thor → Rwing)].

Together, these datasets comprise a range of imaging
conditions and species morphologies which span a variety
of image recognition dimensions. The flies dataset consists
of small features (the inputs cannot be downsampled with-
out considerable information loss), which occupy a small
fraction of the field of view (160× 160 bounding boxes out
of 1024×1024 frames) resulting in a large number of irrele-
vant background pixels. The mice dataset, given our imag-
ing conditions, consists of mostly coarse features that are
difficult to precisely localize and occupy a relatively large
proportion of the field of view with long-range dependen-
cies between features (e.g., tail tip and rest of the body).
The bees dataset is particularly challenging due to both fine
and large scale image features, while occupying a relatively
small portion of a very large field of view. Together, these
conditions represent many of the common image recogni-
tion challenges inherent to social behavioral data collected
in the lab.

These datasets and selected models optimal for each are
available at sleap.ai.

4.2. Training procedure

All models were trained within the SLEAP framework at
version 1.0.x (https://github.com/murthylab/
sleap/releases/tag/v1.0.8) which uses Tensor-

Flow 2 and Python 3.6. At the time of training we used
TensorFlow 2.1, but all models are forward compatible with
the current TensorFlow 2.3. We use the same base set of hy-
perparameters for all training runs. For optimization, we set
the batch size to 4, define an epoch as a full iteration over
the training dataset (with epoch boundary-respecting shuf-
fling), and train for a maximum of 200 epochs with early
stopping if the validation loss does not improve by at least
1 × 10−6 for 10 epochs. We use the Adam optimizer with
AMSgrad enabled and an initial learning rate of 1 × 10−3

which we reduce by a factor of 0.5 after 5 epochs without a
minimum validation loss decrease of 1×10−6 followed by a
3 epoch cooldown period during which the loss is not mon-
itored. For consistency across all experiments, we apply
only rotational augmentation (−180◦ − 180◦) to the data,
though in practice we did observe that applying contrast-
based augmentation improved the models’ ability to gen-
eralize to new data with slight lighting variations. Model
checkpointing was triggered at the end of every epoch in
which the validation loss improved by any amount and the
final checkpoint was used for all experiments.

All training was performed on a single GPU, either lo-
cally with NVIDIA Titan RTX or on the cloud and our on-
campus cluster with NVIDIA Tesla P100s. In both cases,
GPU memory was typically not a limitation with our batch
size, but we chose to keep it relatively small to ensure
that training results could be reproduced on lower mem-
ory GPUs. The best performing models for each dataset
were all able to be trained on Google Colab (which provides
P100s) as well as locally on NVIDIA GeForce 1080 GTX
Ti and 2080 RTX Ti cards with 8 GB of memory. System
memory was not found to be a constraint and most of our
training environments had 16 GB or less of available RAM.

4.3. Evaluation

In order to evaluate accuracy, we adapted several metrics
that are standard in the human pose estimation literature. In
particular, we adapt the Object Keypoint Similarity (OKS)
metric [28] which is used nearly ubiquitously in human pose
estimation benchmarks[21], but has not to our knowledge
been previously adapted to animals. We compute the OKS
in its standard form as described in Ronchi et al. [28]:

OKS(X, X̂) =
N∑
i=1

exp

(
−‖Xi − X̂i‖22

2ασ2
i

)
δi

/ N∑
i=1

δi

(6)
where X and X̂ are the ground truth and predicted instance
coordinates, respectively, for an instance withN nodes. The
δi denotes the visibility, which is 0 if the node is missing
from the ground truth instance. The inner term essentially
expresses the distance from the ground truth coordinate as
the posterior of a Gaussian with two scaling terms: α, the
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bounding box area occupied by the GT instance, and σi, an
empirically derived estimate of the labeling uncertainty for
a landmark type i.

This last parameter, σi, is intended to normalize the dis-
tance between prediction and ground truth with respect to
the variance in localization consistency across human an-
notators, thus affording hard-to-label body parts such as the
”left hip” in humans (which is subcutaneous and typically
covered by clothing) greater leniency in the error calcula-
tion. The values of σi were originally derived from thou-
sands of crowdsourced annotations for the standard 17 hu-
man keypoints in the MS-COCO dataset [28], however ob-
taining estimates for the human labeling variability for each
new animal body part would be prohibitively laborious. In-
stead, we opt to set σ = 0.025 for all keypoint types, the
standard deviation of human annotator uncertainty for the
easiest keypoint: the left eye. We reasoned that this is a
conservative value to use, where we essentially assume that
all labeled animal body parts are as easy and consistently lo-
calizable to human annotators as the human left eye. This is
certainly not the case for multiple body parts in our datasets
(particularly in the mice dataset which has blobby features),
so we consider this OKS as the lower bound of the true ac-
curacy we obtain. The advantage is that this formulation
of OKS can be interpreted to have comparable units (rang-
ing from 0 to 1, where 1 is perfect accuracy) and variance
scaling to those reported in the human literature, bridging
the gap in evaluation metrics for the domain of animal pose
estimation.

For evaluation of multi-instance pose estimation and
tracking accuracy, we adopt the same procedures as
employed in the widely used PoseTrack benchmark for
human pose tracking [2]. Specifically, we compute the
overall mean Average Precision (mAP) using the same
procedure employed for the PoseTrack benchmark and
widely reported in the human pose literature, a met-
ric originally described in the Pascal VOC challenge
[13]. Briefly, mAP computation involves classifying
each pairing of (greedily matched) GT and predicted
instance as a True Positive or False Positive by using
the OKS as a cutoff at each of the following thresholds:
{0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.
Precision at a single threshold is calculated as
TP/(TP + FP ), and recall as TP/(TP + FN).
All predictions are sorted by their OKS and the cumulative
TPs and FPs are computed for each predictions and recall
and precision values from these partial TPs and FPs, i.e.,
for each pair of GT and predicted instance. Then, a set of
101 recall thresholds are defined with even spacing from 0
to 1, and the best precision value for samples that fall below
each recall threshold is retrieved from the data, yielding 101
precision values. The Average Precision (AP) is computed
by taking the mean over all 101 precision values, whereas

the Average Recall (AR) is simply defined as the best recall
at the current OKS threshold. This procedure is repeated
for all 10 OKS thresholds and the final mean Average
Precision (mAP) and mean Average Recall (mAR) are
simply the average of the AP and AR over all thresholds.
Although their calculation is non-trivial, the mAP and
mAR provide balanced estimates of consistently reliable
precision and recall performance across many certainty
thresholds.

An alternative metric of localization accuracy that is of-
ten reported is the Percent Correct Keypoints (PCK) met-
ric, which is simply the fraction of predicted keypoints
that are closer than some threshold of Euclidean pixel dis-
tance. This is typically reported as “PCKh”” in which dis-
tances are normalized by the size of the person’s head to
account for instance scale. As a more general metric, we
instead report the mean PCK (mPCK) which is calculated
by taking the average of the PCKs at a range of thresholds:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. This provides a more generaliz-
able metric that can be calculated in the same way for all
datasets.

Finally, we report the 95th percentile of the Euclidean
distance errors as a convenient metric of the expected pixel
distance from GT for extreme outliers, i.e., the ”worst case”.

All accuracy metrics reported here are computed on the
held out test set of each dataset.

For the tracking accuracy evaluation, we employ the
same MOT metrics as in PoseTrack [2] and compute them
using the py-motmetrics framework [18]. In particular, the
MOTA metric is computed as:

MOTA = 100

(
1− misses+ switches+ FP

NGT

)
(7)

4.4. Multi-instance pose estimation approach

Dataset Approach mAP mAR mPCK Error
(95%)

Flies TD 0.832 0.881 0.878 2.78
Flies BU 0.792 0.823 0.844 4.83
Mice TD 0.401 0.527 0.571 27.0
Mice BU 0.535 0.617 0.597 17.7
Bees TD 0.658 0.759 0.589 14.6
Bees BU 0.736 0.765 0.559 18.5

Table 1: Best accuracy for each dataset and multi-instance approach. TD:
Top-down, BU: Bottom-up.

We conducted a series of experiments to explore the op-
timal approach for multi-instance pose estimation in each
dataset and trained a total of 669 neural networks with vary-
ing approaches, network architecture hyperparameters, and
training replicates. These results are summarized in Table 1
which lists the accuracy metrics for the best performing
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model for each dataset and approach. For the flies dataset,
we find that the top-down approach works best, which we
hypothesize is due to the requirement of fine feature de-
scriptions in order to reliably capture the legs, benefiting
little from the global context afforded by the bottom-up
approach. For the mice dataset, the bottom-up approach
considerably outperforms even the best top-down model.
We hypothesize that this is due to the coarseness of the
mouse features and long-range dependencies between body
parts, in particular the tail, which strongly benefits from the
global context encoded in the bottom-up approach. For the
bees dataset, we see mixed results as expected due to the
presence of both small and large scale features present in
the dataset. While the overall accuracy as captured by the
mAP and mAR metrics are much better for the bottom-up
model which can provide increased context between body
parts and across animals, the localization accuracy metrics
mPCK and the 95th percentile of error distances reflect the
benefit of the top-down model in emphasizing finer scale
features over global structure.

Overall, these results reinforce the premise that model
accuracy is determined by dataset-specific characteristics
and these should be considered when choosing a multi-
instance approach.

4.5. Localization accuracy

Next, we sought to examine the performance of the best
model for each dataset, to better understand how these
dataset-wide summary metrics translate to the individual in-
stance case. First, we visualized on example images from
each dataset the distribution of errors in terms of Euclidean
distance, by plotting circles with radii determined by the
percentile of the error distribution in pixels (Figure 4a-c).
We see that for the fly dataset, the vast majority of predic-
tions fall within tight clusters around the ground truth lo-
cation, suggesting that our error rates are likely to produce
highly reliable estimates of the fly’s anatomy (Figure 4a).
For the mouse dataset, we find highly accurate predictions
for all body parts except the tail tip, whose extreme values
fall within a much larger uncertainty radius, reflecting the
difficulty in correctly predicting this body part (Figure 4b).
For the bee, we see that some body parts are reasonably
well-predicted, whereas others are not, particularly those
centered on very fine scale features such as the mid-leg tips
(Figure 4c) (note that the largest error circle reflects the
92.5th percentile rather than 95th for visualization clarity.
We expect that these larger extremes may in part be due to
the small size of the test set for this dataset).

Plotting the distribution of the part-wise errors, we ob-
serve a more complete description of the first set of panels
(Figure 4d-f). Note that the vast majority of points have
error distances well below the anatomical scale of each an-
imal, with nearly all of the points falling below 100 um for

the flies (Figure 4d), 5 mm for the mice (Figure 4e) and 1
mm for the bees (Figure 4f).

Finally, the OKS score distributions for each dataset cap-
ture the variability in localization accuracy while account-
ing for the scale of the animals (Figure 4g-i). In partic-
ular, while more predictions fall into accuracy bins very
close to 1.0 (the best possible score) than any other bin,
the main determinant of the discrepancy in the mAP and
mAR metrics appear to derive from the amount and spread
of outliers—the long tail of the mice dataset (Figure 4h)
accounts for the especially low mAP score. These distri-
butions provide key insights into the source of errors for
a given model, for example, by suggesting which kinds of
instances or poses may benefit the most from additional la-
beled examples. For example, the bimodality of the fly OKS
distribution (Figure 4g) points to two classes of errors —
inspection of examples reveals that the lower distribution
reflects cases in which the posterior landmarks are missing,
a systematic source of error that arises from times when the
male is closely interacting with the female such as during
attempted copulation.

4.6. Receptive field size

Guided by the observation that the distribution of in-
stance sizes varied by dataset (Figure 5a), we sought to
explore how one of our encoder-decoder model hyperpa-
rameters, the maximum receptive field size (RF), would im-
pact the performance of neural network architectures on dif-
ferent datasets. The RF determines the length scale over
which the network is able to learn features; small RFs can-
not incorporate global context, whereas large RFs may de-
emphasize smaller features (Figure 3). As described pre-
viously, we designed neural network architectures with a
target RF by varying the number of downsampling blocks
in the network and offset the loss in spatial resolution in
the outputs with additional upsampling blocks (Figure 5b).
Overlaying the RFs that we tested on examplars from each
dataset illustrates the spatial extent of each animal or inter-
acting animals that may be captured by features at different
RFs (Figure 5c).

To test the effect of an architecture’s RF on each dataset,
we trained models with varying maximum RF sizes and
approaches for each dataset and report their accuracy as
a function RF size (Figure 5d). We find that the optimal
dataset-specific approach outperforms the alternative across
all RF sizes, consistent with our hypothesis that the intrinsic
properties of the representations induced by each approach
are specifically suited to the characteristics of each dataset.
As expected, all curves trend upwards as a function of in-
crease maximum RF size. However, the diminishing gains
in accuracy as RF increases suggests that there is an opti-
mal RF size for integrating features in each dataset. Mod-
els with max RF size of 156 pixels appear to perform well
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Figure 4: Multi-instance pose estimation accuracy.
(a-c) Localization accuracy of best performing model on each dataset. Circle radii denote the percentiles of the Euclidean distance error distribution.
(d-f) Distribution of part-wise localization error of best performing model on each dataset in both pixel and physical units.
(g-i) Distribution of instance-wise accuracy as measured by the Object Keypoint Similarity (OKS) metric.

across all datasets, suggesting that this may be a suitable
common baseline architecture for general use. While the
trend for top-down models for the flies dataset suggests that
there is likely little to be gained by increasing the RF size
– likely due to the small scale of the animals in that dataset
(Figure 5a) – the trends for the other datasets indicate that
increasing the RF may close the gap to the bottom-up model
performances. This seems to be particularly salient for the
bees dataset, which is expected due to its mixture of fine-
scale and coarse features, the latter of which is perhaps not
as easily captured in top-down models as it is in bottom-up
models which explicitly encode global context.

4.7. Transfer learning

Previous work in single-animal pose estimation has pro-
posed that transfer learning is critical for training large
backbone networks, such as ResNet50, on few labeled ex-
amples, owing to the reuse of general purpose low level fea-
tures (e.g., edges or image textures) [22, 23]. On the other
hand, transfer learning may be dispensable for smaller,
custom-designed networks [26]. To test how this applies
to multi-animal pose detection, we also trained models with
a ResNet50 backbone as the encoder, as well as employ-
ing strided convolutions to maintain feature map resolution,
using randomly initialized weights or pretrained weights
(i.e., transfer learning), and different approaches (in partic-
ular the bottom-up approach which has recently been im-
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Figure 5: Optimal receptive field size and multi-instance approaches are dataset-specific.
(a) Distributions of animal image area occupancy varies widely by dataset.
(b) The maximum receptive field (RF) of a network sets a bound on the length scale of features that it can extract from images. Stacking simple blocks (left)
enables the construction of network architectures with a desired receptive field size (right).
(c) RFs visualized on an example from each dataset. While some animals have a small spatial extent (flies, left), others may require larger RFs to capture
structure across animals (mice, middle) or even within the same animal (bees, right).
(d) Accuracy of neural network architectures with different RF sizes vary by dataset and approach. Whereas flies benefit from top-down at small RFs,
bottom-up networks with larger RFs perform better in mice and bees.

plemented in DeepLabCut [22]).
We summarize our results by reporting the metrics for

the best ResNet model in the pretrained or not-pretrained

condition for each approach, as well as the best UNet-based
model for reference (Table 2). These data indicate that pre-
training can indeed improve final model performance, but
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Dataset Approach Backbone Pretrained mAP mAR mPCK Error (95%)
Flies TD ResNet50 7 0.834 0.901 0.893 3.39
Flies TD ResNet50 3 0.843 0.912 0.900 3.07
Flies TD UNet 7 0.832 0.881 0.878 2.78
Mice TD ResNet50 7 0.406 0.501 0.567 27.2
Mice TD ResNet50 3 0.528 0.621 0.611 22.7
Mice BU ResNet50 7 0.253 0.324 0.388 59.0
Mice BU ResNet50 3 0.491 0.578 0.558 18.9
Mice BU UNet 7 0.535 0.617 0.597 17.7
Bees TD ResNet50 7 0.650 0.744 0.518 17.3
Bees TD ResNet50 3 0.714 0.804 0.576 15.0
Bees BU ResNet50 3 0.651 0.682 0.417 18.6
Bees BU UNet 7 0.736 0.765 0.559 18.5

Table 2: Performance of transfer learning for training multi-instance pose estimation models.

these gains may be relatively small. For the flies dataset,
the pretrained ResNet50 outperformed the randomly initial-
ized version by 0.009 mAP and the optimal UNet by 0.011,
but exhibited a higher 95th error distance percentile, sug-
gesting that it fails to improve performance on the most dif-
ficult instances. For the mice dataset, sizable gains (+0.122
mAP) were observed in the top-down model when trans-
fer learning was employed, but neither this model, nor the
pretrained bottom-up ResNet model were able to match the
optimal UNet (not-pretrained) model. For the bees dataset,
gains were again observed with the use of transfer learning
versus random initialization for ResNet50, particularly for
the top-down model which seems to have greatly improved
the localization accuracy — perhaps due to the ability of
ResNets to efficiently preserve multi-scale features through
their residual skip connections — but they still failed to out-
perform the optimal UNet model in terms of mAP, despite
the overall improvement in localization accuracy.

Altogether, these results indicate that while transfer
learning may indeed provide improvements over random
initialization for large network architectures (ResNet50),
these networks still do not outperform smaller neural net-
work architectures tuned to the properties of the dataset
(Figure 5). Future improvements may involve the use of
transfer learning together with optimal neural network ar-
chitecture design.

4.8. Inference speed

Social behavioral monitoring data tend to suffer from
two common performance bottlenecks: a large field of view
(FOV) and high frame rates. Large FOVs are often required
in order to permit animals to behave naturally, but this re-
sults in large image sizes (1024× 1024 or larger) which are
irreducible if the resolution is necessary in order to capture
fine features of the animals, such as in the flies and bees
datasets. High camera frame rates, in turn, are necessary

since social behaviors can often occur on the order of mil-
liseconds, resulting in huge videos, often on the order of
> 100, 000 frames. This is different from human pose esti-
mation, which uses small (< 512× 512) images, often fur-
ther sized down since most human body keypoints are still
detectable at fairly low resolutions. On the temporal axis,
”real-time” is often used to describe models that operate at
> 30 FPS, the standard webcam frame rate, but models that
operate at these rates would result in prohibitively slow in-
ference times for animal behavior data. Both of these issues
(large FOV and high frame rates) may lead to multiple-fold
longer inference times than the experimental session itself,
typically resulting in the need for additional compute in-
frastructure to deal with batch processing of experimental
data.

Given these constraints, we sought to explore the range
of possible inference speeds we could achieve with SLEAP.
For these experiments, we benchmark inference times on
top-down models trained on the flies dataset on a single
desktop computer equipped with a NVIDIA Titan RTX (24
GB), 64 GB DDR4 RAM, Intel i7-6700K (4 cores), and
Samsung SSD 950 PRO 512GB NVMe. To benchmark in-
ference times, for each batch size and condition, we restart
the benchmarking script which loads the models and per-
forms an initial inference pass through a sample clip of 3200
frames to discount initialization time from TensorFlow’s au-
tograph (this startup time is quickly amortized when per-
forming inference on longer or multiple videos). Then, we
perform 3 full inference passes through the data and store
the mean runtime. We repeat this benchmarking procedure
3 times per batch size and condition to estimate the vari-
ability of multiple independent inference runs with separate
initializations. The inference time includes the entire top-
down inference pipeline, taking as input full resolution, raw
video frames of size 1024× 1024× 1 and produces as out-
put the coordinates of each body part for each instance in
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Figure 6: Multi-instance pose estimation speed.
(a) Inference speed increases as a function of batch size and model con-
figuration. The “fast”” models achieve 430 FPS at large batch sizes, at
the cost of lower accuracy, whereas the “accurate”” models sacrifice speed
(~300 FPS) for greater accuracy.
(b) Inference speed is bottlenecked by the source of the input data. When
reading a high resolution MP4 video rather than performing inference on
frames in memory, performance is limited by the video decoding speed to
~150 FPS (green). At higher batch sizes, disk I/O becomes the bottleneck,
resulting in the plateau of read speeds for uncompressed HDF5 frames. In-
ference speeds are measured with the “fast”” models from (a) at batch size
32.
(c) Top-down performance scales with the number of animals in the frame.
At batch size of 32 using the fast model, inference scales from 420 FPS
with a single instance to 215 FPS with 8 instances.

every frame of the video. We emphasize that the reported
speeds constitute the complete end-to-end pipeline, which
includes all preprocessing, forward pass of the anchor part
detection model, instance anchored cropping, forward pass
of the anchored-instance part confidence model, global peak
finding, and refinement.

For the first experiment, we trained two sets of models:
“accurate”” and “fast””. The former were trained with the
highest accuracy (mAP = 0.832) UNet hyperparameters that
we found during our previous experiments, whereas the lat-
ter had reduced filter sizes and output resolution resulting
in reduced accuracy (mAP = 0.808), but require consider-
ably fewer compute operations. We additionally benchmark
the best ResNet50 top-down model which had compara-
ble accuracy to the accurate UNet model (mAP = 0.835)
(Figure 6a). We observe end-to-end inference speeds of
39/86/89 FPS for the ResNet/Accurate/Fast models, re-
spectively, at batch size of 1. Inference greatly benefits from
increased batch sizes as tensor operations can be optimally
parallelized on the GPU at the cost of increased memory
requirements. By increasing the batch size up to 128 im-
ages per batch, we observed speeds of 150/328/430 for the
ResNet/Accurate/Fast models respectively.

Since these experiments were performed with the full
video preloaded in memory, we next benchmarked the more
realistic setting where I/O time is included. We bench-
marked the fast model with three different data sources:
memory, an uncompressed HDF5 dataset chunked by
frame, and an MP4 file encoded with the "superfast"
libx264 preset (Figure 6b). The top speeds achieved
when reading from the HDF5 dataset, which is read-pattern
optimized due to the chunking, occurs at a batch size of
32 which resulted in 314 FPS as compared to the in mem-
ory speed of 385 FPS, reflecting the minimal overhead in
reading from disk. Interestingly, decreased and more vari-
able performance was observed at higher batch sizes, per-
haps due to suboptimal disk access pattern for high band-
width/frequency reads. Loading the image frames from the
MP4 file reduced disk read overhead but was capped by the
CPU decoding of the x264 compressed frames to a peak
speed of 170 FPS at batch size 128. Perhaps further im-
provements could be obtained by moving the decoding to
the GPU to minimize the CPU bottleneck.

Finally, since all our experiments used videos with two
animals, we sought to characterize how the performance
scaled with the number of instances in the frame (Fig-
ure 6c). We collected a new dataset of different numbers
of flies interacting in the behavioral chamber. Previous top-
down multi-instance pose estimation performance results
did not include the instance cropping time and instead re-
ported the performance in terms of crops per second [17].
Although it is theoretically expected that top-down infer-
ence speed will scale linearly with the number of animals,
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this has not been previously reported for a full end-to-end
pipeline. We benchmarked the fast model at a batch size of
32 with videos of 1, 2, 3, 4 and 8 instances per frame and
found that inference speed does indeed scale linearly with
number of animals with a slope of −27.8 FPS per animal.

We note that although the machine used for these anal-
yses is a high-end workstation, we have achieved compara-
ble results with consumer-grade GPUs such as the NVIDIA
GeForce 2080 RTX Ti. In addition, the upcoming gener-
ation of NVIDIA graphics cards that now come equipped
with tensor cores provide huge boosts to neural network in-
ference performance.

4.9. Tracking

Dataset Tracker Videos Switches
per min
(mean ±
sd)

MOTA

Flies Flow
shift

95 0.07 ±
0.69

99.83

Mice Kalman
filter

30 1.26 ±
1.66

99.98

Table 3: Tracking accuracy metrics.

The SLEAP tracking module employs two separate can-
didate instance generation approaches: flow shifting, which
uses image information to predict the displacement of past
instances, and Kalman filtering, which models the motions
of the individual body parts in each instance to predict their
location in the next timestep.

Here we report the tracking accuracy with the best ap-
proach (flow shifting or Kalman filtering) when applied to
the flies and mice dataset (Table 3). For the flies, flow shift-
ing is able to reliably predict the displacement of past in-
stances, likely benefiting from the larger number of tracked
body parts that are well defined (e.g., legs) as well as a much
higher frame rate (150 vs 40). Since fly instances are eas-
ily trackable in the beginning of the session when they are
less likely to interact (courtship interactions slowly ramp up
over time), we evaluated the tracking accuracy only for the
last 5000 frames (33 seconds) of the session, which ends
at copulation and is typically the time when instances are
most likely to be close. During this period, we find that the
tracker commits 0.07± 0.69 identity switches per minute, a
high variance likely resulting from a few particularly diffi-
cult to track examples. For the mice, we employ the Kalman
filter and report the tracking accuracy on the full videos. We
observe more switches per minute (1.26 ± 1.66), which is
not intractable to proofread but leaves plenty of room for
improvement.

5. Discussion

Here we have described SLEAP, a full-featured general-
purpose multi-animal pose tracking framework designed for
flexibility and tested on a diverse array of datasets represen-
tative of common social behavioral monitoring setups and
on a wide range of organisms, from insects to vertebrates.

In future work, we intend to explore a broader class
of backbone architectures, such as encoder-decoders with
more sophisticated block types (e.g., residual or dense), as
well as existing architectures shown to be effective at the
task of human pose estimation such as HRNet [9] which
may be well suited to address the challenges in multi-scale
feature integration.

Although we demonstrated the capability of SLEAP to
achieve end-to-end inference speeds compatible with real-
time/closed-loop applications, we have not yet tested our
models in such applications.

Extending SLEAP to tracking in 3D from multiple views
may be another the direction of future work, though existing
3D pose tracking methods that build off of 2D predictions
can already be configured take advantage of SLEAP [20].

Finally, a particularly important component to develop
in future work with SLEAP will be to incorporate learnable
tracking to enable the pose estimation models to better take
advantage of temporal context. For example, the PAF rep-
resentation could be extended to the time domain [27]. The
top-down approach can also combine detection and tracking
[31], although this requires sets of contiguous ground-truth
frames which greatly increases the time and effort required
for labeling.
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