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ABSTRACT. GTPases are molecular switches that regulate a wide range of cellular pro-
cesses, such as organelle biogenesis, position, shape, and function, vesicular transport
between organelles, and signal transduction. These hydrolase enzymes operate by tog-
gling between an active “ON”) guanosine triphosphate (GTP)-bound state and an inac-
tive (“OFF”) guanosine diphosphate (GDP)-bound state; such a toggle is regulated by
GEFs (guanine nucleotide exchange factors) and GAPs (GTPase activating proteins).
Here we propose a model for a network motif between monomeric (m) and trimeric
(t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms. We
develop a system of ordinary differential equations in which these two classes of GT-
Pases are interlinked conditional to their ON/OFF states within a motif through coupling
and feedback loops. We provide explicit formulae for the steady states of the system
and perform classical local stability analysis to systematically investigate the role of
the different connections between the GTPase switches. Interestingly, a coupling of the
active mGTPase to the GEF of the tGTPase was sufficient to provide two locally sta-
ble states: one where both active/inactive forms of the mGTPase can be interpreted as
having low concentrations and the other where both m- and tGTPase have high concen-
trations. Moreover, when a feedback loop from the GEF of the tGTPase to the GAP of
the mGTPase was added to the coupled system, two other locally stable states emerged,
both having the tGTPase inactivated and being interpreted as having low active tGTPase
concentrations. Finally, the addition of a second feedback loop, from the active tGT-
Pase to the GAP of the mGTPase, gives rise to a family of steady states that can be
parametrized by a range of inactive tGTPase concentrations. Our findings reveal that
the coupling of these two different GTPase motifs can dramatically change their steady
state behaviors and shed light on how such coupling may impact signaling mechanisms
in eukaryotic cells.
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1. INTRODUCTION

Each eukaryotic cell has many a large number of GTP-binding proteins (also called GT-
Pases or G-proteins). They are thought to be intermediates in an extended cellular sig-
naling and transport network that touches on nearly every aspect of cell function [1, 2, 3].
One unique feature of GTPases is that they serve as biochemical switches that exist in
an ‘OFF’ state when bound to a guanosine diphosphate (GDP), and can be turned ‘ON’
when that GDP is exchanged for a guanosine triphosphate (GTP) nucleotide [1, 4]. Turn-
ing the GTPase ‘ON’ is the key rate limiting step in the activation-inactivation process,
requires an external stimulus, and is catalyzed by a class of enzymes called guanine nu-
cleotide exchange factors (GEFs) [5]. G proteins return to their ‘OFF’ state when the
bound GTP is hydrolyzed to guanosine diphosphate (GDP) via an intrinsic hydrolase
activity of the GTPase; this step is catalyzed by GTPase-activating proteins (GAPs) [6].
Thus, GEFs and GAPs play a crucial role in controlling the dynamics of the GTPase
switch and the finiteness of signaling that it transduces [7, 8, 9, 10]. Dysregulation of
GTPase switches has been implicated in cellular malfunctioning and is commonly en-
countered in diverse diseases [11, 12, 13, 14]. For example, hyperactivation of GTPases
[15, 16] is known to support a myriad of cellular phenotypes that contribute to aggres-
sive tumor traits [17, 18]. Such traits have also been associated with aberrant activity of
GAPs [15] or GEFs [19, 20, 21, 22, 23, 24]. These works underscore the importance of
GTPases as vital regulators of high fidelity cellular communication.

There are two distinct types of GTPases that gate signals: small or monomeric (m) and
trimeric (t) GTPases. mGTPases are mostly believed to function within the cell’s in-
terior and are primarily concerned with organelle function and cytoskeletal remodeling
[25, 26, 27]. tGTPases, on the other hand, were believed to primarily function at the
cell’s surface from where they gate the duration, type and extent of signals that are ini-
tiated by receptors on the cell’s surface [28, 29]. These two classes of switches were
believed to function largely independently, until early 1990’s when tGTPases were de-
tected on intracellular membranes, e.g., the Golgi [29, 30], and studies alluded to the
possibility that they, alongside mGTPases, may co-regulate organelle function and struc-
ture [31]. But it was not until 2016 that the first evidence of an example of functional
coupling between the two switches – m- and tGTPases– emerged. Using a combination
of biochemical, biophysical, structural modeling, live cell imaging, and numerous read-
outs of Golgi functions, it was shown that m- and tGTPase co-regulate each other on
the Golgi [32]. The specific discovery of GIV/Girdin, a non-receptor GEF for Gαi, as
a platform for crosstalk between trimeric G proteins and monomeric Arf1 GTPases at
the Golgi is the main biological motivation of the present study. In Fig 1A, we depict
where these proteins interact in the cell and what experimentally-determined sequence
of events, segregated in space and time, enable the execution of key steps in secretion
through the Golgi. The experiments in [32] showed that when mGTPase (Arf family)
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is turned ‘ON’, it engages with a GEF for tGPTase (GIV/Girdin; tGEF); the latter binds
and activates tGTPase, of the Gi subfamily, Gαi. The engaged tGEF triggers the ac-
tivation of a tGTPase (Gi). Upon activation, the tGTPases activate the GAP for Arf1,
ArfGAP2/3 (mGAP), via the release of ‘free’ Gβγ. The mGAP turns ‘OFF’ the mGT-
Pase Arf1, thereby terminating the mGTPase signaling. Termination of the mGTPase
(Arf1) activity results in a finite lifetime of the Arf1 signal. This “finiteness” of signal
from Arf1 is critical for membrane trafficking and organelle structure [33, 34, 35]. Thus,
this phenomenon of co-regulation between the two classes of GTPases was shown to be
critical in limiting the duration of mGTPase and tGTPase signaling on the Golgi mem-
brane, which in turn significantly regulates Golgi shape and function. In doing so, this
dual GTPase circuit converted simple chemical signals into complex mechanical outputs
such as membrane trafficking. Emerging evidence from protein-protein interaction net-
works and decades of work on both species of GTPases suggest that such co-regulation
through coupling between the GTPases is possible and likely occurs on multiple organel-
lar membranes. What advantages do two coupled species of GTPase switches provide
over independent, uncoupled switches? The answer to this question has not yet been
experimentally dissected or intuitively theorized.

Mathematical models of signaling networks have contributed significantly to our under-
standing of how network motifs might function [36, 37, 38, 39, 40, 41]. Continuous-time
dynamical systems, commonly represented by systems of ordinary differential equations
(ODEs), are powerful tools for building rich and insightful mathematical models [42].
For example, a comprehensive steady state analysis of ODE system helped frame the
concept of “zero-order ultrasensitivity” where large responses in the active fraction of a
protein of interest are driven by small changes in the saturated ratio of the enzymes [43].
Similarly, modeling biochemical networks with dynamical systems also has revealed the
existence of bistable switches and biological oscillators within a feedback network archi-
tecture [44, 45, 46]. The simple system proposed by Ferrell and Xiong [46] served as a
basis for modeling cellular all-or-none responses, and hence, crucial for decision-making
within several signaling processes. Dynamical systems have also be used for mapping
chemical reactions into differential equations; when numerically integrated (clustered)
these systems can be used to predict the evolution of large reaction networks [47, 48, 49].
For example, clustering methods have revealed the existence of recurrent structures, the
so-called “network motifs’, the dynamics of which have been inferred with a Boolean
kinetic system of differential equations [49]. These models produced various dynamic
features corresponding to the motif structure, which allowed the understanding of under-
lying biology (i.e., gene expression patterns). Furthermore, studies using network ODE
models have revealed that information is processed in cells through intricate connections
between signaling pathways rather than individual motifs [50, 51]. From a systems bi-
ology modeling perspective, large systems of differential equations are usually hard to
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analyze, but when combined with experiments, they can give rise to quantitative predic-
tions [52, 53, 54, 55, 56, 57, 58, 59, 60].

Here we built a mathematical model to investigate the stability properties of the coupled
m- and tGTPase switches, the first example of its kind, that has been observed experimen-
tally [32]. Beginning with the uncoupled GTPase switches (Fig.1B) as our starting point,
we specifically sought to understand the stability features of the coupled motif (Fig.1C).
We proposed a system of ODEs and obtained the steady states of this new network motif
to understand the input-output relationships. Given the model formulation and the fact
that we do not know the various kinetic parameters, obtaining these states is critical to
our understanding of this network behavior. Then we studied the dynamic behavior un-
der small perturbation around these steady states using local stability analysis [61, 62].
We investigated the different coupling and feedback loops between these two motifs all
representing the observed biochemical and biophysical events during signal transduc-
tion (Fig.1D). In Fig.1E, we summarize the steady-states of the system. Our analyses
revealed the existence of steady-states and their stability depends on the network con-
nectivity. In particular, the coupling between the two switches through the connection
between mG* and tGEF (represented by “1”) allowed for the emergence of two steady
states with low/high mG and mG* concentrations, while tG* steady state concentration
remained high in both cases. On the other hand, low tG* steady state concentrations were
obtained when the feedback loop tGEF → mGAP was added to the system (repre-
sented by “1+2”). Finally, the feedback loop tG∗ → mGAP allowed for the emergence
of four parametrized families of steady state within the same low/high configurations. In
what follows, we present the model assumptions and derivation in §Section 2, the local
stability analysis and numerical simulations in §Section 3, and discuss our findings in the
context of GTPase signalling networks in §Section 4.

2. MODEL DEVELOPMENT

In this section, we introduce our mathematical model for the GTPase coupled circuit
(Fig.1C). We begin with outlining the model assumptions in §Section 2.1 and describe
the reactions and governing equations in detail in §Section 2.2.

2.1. Assumptions. Our model describes the time evolution of the concentrations for
the different system components. Table 1 contains the set of reactions in our system. We
explicitly allow for three connections between the m- and the t-GTPase switches based
on experimental findings [32] as described below.

• Arrow 1: Represents the coupling of the two switches and represents the recruit-
ment/engagement of tGEF by mG* (Figure 1A,B).

• Arrow 2: Represents the feedback from tGEF to mGAP (Figure 1A,B).
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(B)

(A) (D)

(E)

(C)

FIGURE 1. A network motif in which two species of GTPases are inter-
linked. (A) Recent experimental findings revealed that monomeric Arf GTPases
and trimeric G proteins co-regulate each other on the Golgi membrane (B) Un-
coupled monomeric and trimeric GTPase switches are represented by mGTPase
and tGTPase, respectively. The black star denotes the active forms. Activation
and inactivation are regulated by GEFs and GAPs, where the first letter (m or
t) indicates the associated GTPase. (C) Our proposed mathematical model de-
scribes the interaction between the two GTPase switches. Arrows 1, 2, and 3
show the coupling and feedback loops that were found experimentally. (D) De-
scription and biological meaning of each arrow connecting the GTPase switches.
References: [32] for arrow 1 (*), [32] for arrow 2 (**), [32, 63] for arrow 3 (***),
and [63, 30, 64, 65, 31] for evidence of cooperativity between m and tGTPases
(****). (E) For the three combinations of arrows (1, 1+2, and 1+2+3) chosen in
our study, we calculate the steady state solutions for the coupled GTPase circuit
model.

• Arrow 3: Represents the feedback from tG* to mGAP (Figure 1A,B).

Additionally, we only consider the toggling of GTPases that are mediated by GEFs and
GAPs that activate and inactivate them, respectively.

To develop the model equations, we considered a well-mixed regime and that the con-
centrations of the species are in large enough amounts that deterministic kinetics hold
[66, 67]. Finally, for mathematical tractability, all reactions in the system are modeled
using mass-action kinetics and nonlinear kinetics such as Hill functions or Michaelis-
Menten are not considered [68]. The reactions in the coupled circuit and the correspond-
ing reaction rates used in the model are shown in Table 1.

2.2. Governing Equations. We developed a system of ODEs that describe coupled tog-
gling of two switches, i.e., cyclical activation and inactivation of monomeric and trimeric
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TABLE 1. GTPase circuit reactions and rates used in the model

List of Reactions Reaction Rate

mG∗ activation mG + mGEF∗
kmGon−−→ mG∗ kmGon [mGEF ∗][mG]

mG∗ inactivation mG∗ + mGAP∗
kmGoff−−→ mG kmGoff [mGAP

∗][mG∗]

Coupling from mG* to tGEF (arrow 1) mG∗ + tGEF
kIon−−→ tGEF∗ kIon[tGEF ][mG

∗]

tG∗ activation tG + tGEF∗
ktGon−−→ tG∗ ktGon [tGEF

∗][tG]

tG∗ inactivation tG∗ + tGAP∗
ktGoff−−→ tG ktGoff [tGAP

∗][tG∗]

Feedback loop from tGEF to mGAP (arrow 2) tGEF∗ + mGAP
kIIon−−→ mGAP∗ kIIon[tGEF

∗][mGAP ]

Feedback loop tG* to mGAP (arrow 3) tG∗ + mGAP
kIIIon−−→ mGAP∗ kIIIon [mGAP ][tG∗]

GTPases within the network motif shown in Fig.1C and described in Fig.1D. In what
follows, the brackets represent concentrations, which are nonnegative real numbers. The
system of equations are given by

d[mG]

dt
= −kmGon [mGEF ∗][mG] + kmGoff [mGAP

∗][mG∗] (2.1)

d[mG∗]

dt
= kmGon [mGEF ∗][mG]− kmGoff [mGAP ∗][mG∗]− kIon[tGEF ][mG∗] (2.2)

d[tG]

dt
= −ktGon [tGEF ∗][tG] + ktGoff [tGAP

∗][tG∗] (2.3)

d[tG∗]

dt
= ktGon [tGEF

∗][tG]− ktGoff [tGAP ∗][tG∗]− kIIIon [mGAP ][tG∗] (2.4)

d[tGEF ]

dt
= −kIon[tGEF ][mG∗] (2.5)

d[tGEF ∗]

dt
= kIon[tGEF ][mG

∗]− kIIon[tGEF ∗][mGAP ] (2.6)

d[mGAP ]

dt
= −kIIIon [mGAP ][tG∗]− kIIon[tGEF ∗][mGAP ] (2.7)

d[mGAP ∗]

dt
= kIIIon [mGAP ][tG∗] + kIIon[mGAP ][tGEF

∗] (2.8)

where the k’s represent the reaction rate parameter for each reaction rate. Since all of
reactions rates are second order, the k’s have units of 1/[µM · s]

To complete the system definition, all model components must have nonnegative ini-
tial conditions. We also assume that the concentrations of [mGEF ∗] and [tGAP ∗] are
constant and nonzero in our model. In particular, if kIon = kIIon = kIIIon = 0, then our
system describes two uncoupled GTPase switches (Fig.1B) such that each has the same
dynamics of the single GTPase model proposed in [4].
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2.3. Nondimensionalization. We introduce a nondimensional version of Eqs. 2.1 – 2.8
to reduce the number of free parameters and to obtain a new system of equations that is
independent of the units of measurement. We denote T =

(
kmGon [mGEF ∗]

)−1 as be the
characteristic time scale, ([T ] = s). While there are many choices of time scales, this is
the natural choice because it reflects the time scale of the coupling of the m- and t-GTPase
switches. We define the characteristic concentration, Uζ = [mGEF ∗] for ζ ∈
{mG,mG∗, tG, tG∗, tGEF, tGEF ∗,mGAP,mGAP ∗}, with units ([Uζ ] = µM ).

These characteristic quantities allow us to express the dimensionless kinetic rates as ra-
tios between their dimensional forms and the rate of mGTPase activation kmGon . In fact,
defining

ρ̃mGoff =
kmGoff
kmGon

, ρ̃tGon =
ktGon
kmGon

, ρ̃tGoff =
ktGoff [tGAP

∗]

kmGon [mGEF ∗]
,

ρ̃Ion =
kIon
kmGon

, ρ̃IIon =
kIIon
kmGon

, ρ̃IIIon =
kIIIon

kmGon
, t̃ =

t

kmGon [mGEF ∗]
,

and [̃ζ] = [ζ]
[mGEF ∗]

for ζ ∈ {mG,mG∗, tG, tG∗, tGEF, tGEF ∗,mGAP,mGAP ∗}, we
drop the tildes and write the system of dimensionless equations in the following form:

d[mG]

dt
= −[mG] + ρmGoff [mGAP

∗][mG∗] (2.9)

d[mG∗]

dt
= [mG]− ρmGoff [mGAP ∗][mG∗]− ρIon[tGEF ][mG∗] (2.10)

d[tG]

dt
= −ρtGon [tGEF ∗][tG] + ρtGoff [tG

∗] (2.11)

d[tG∗]

dt
= ρtGon [tGEF

∗][tG]− ρtGoff [tG∗]− ρIIIon [mGAP ][tG∗] (2.12)

d[tGEF ]

dt
= −ρIon[tGEF ][mG∗] (2.13)

d[tGEF ∗]

dt
= ρIon[tGEF ][mG

∗]− ρIIon[tGEF ∗][mGAP ] (2.14)

d[mGAP ]

dt
= −ρIIIon [mGAP ][tG∗]− ρIIon[tGEF ∗][mGAP ] (2.15)

d[mGAP ∗]

dt
= ρIIIon [mGAP ][tG∗] + ρIIon[mGAP ][tGEF

∗] (2.16)

In section 3, we perform a local stability analysis of the system given by Eqs.2.9 – 2.16.

3. MATHEMATICAL ANALYSIS AND RESULTS

In this section, we explore the role of the coupling of the two switches and feedback
loops on the system dynamics. We refer to the nondimensional concentrations and rates
of the system given by Eqs.2.9 – 2.16 as solely by concentrations and rates. First, it is
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convenient to rewrite our nondimensional ODE system in the form

dx
dt

= S.v(x),

where x represents the vector of concentrations for the different components, S is the sto-
ichiometric matrix and v(x) is a vector with the different reaction rates [69, 70]. Thus we
define the components x(1) = [mG], x(2) = [mG∗], x(3) = [tG], x(4) = [tG∗], x(5) =
[tGEF ], x(6) = [tGEF ∗], x(7) = [mGAP ], and x(8) = [mGAP ∗]. We also write the
reaction velocities as

v1 = x(1), v2 = ρmGoffx(2)x(8), v3 = ρIonx(2)x(5), v4 = ρtGonx(3)x(6)

v5 = ρmGoffx(4), v6 = ρIIonx(6)x(7), v7 = ρIIIon x(4)x(7).

The 8× 7 stoichiometric matrix for the system given by Eqs. 2.1 – 2.8 is then given by

S =



arrow 1 arrow 2 arrow 3

mG −1 1 0 0 0 0 0

mG* 1 −1 −1 0 0 0 0

tG 0 0 0 −1 1 0 0

tG* 0 0 0 1 −1 0 −1
tGEF 0 0 −1 0 0 0 0

tGEF* 0 0 1 0 0 −1 0

mGAP 0 0 0 0 0 −1 −1
mGAP* 0 0 0 0 0 1 1


(3.1)

where the rows and columns of S (Eq. 3.1) represent the 8 components and 7 reactions,
respectively. The right null space of S comprises the steady state flux solutions, and the
left null space contains the conservation laws of the system [69]. On the other hand,
the column space contains the dynamics of the time-derivatives, and the rank of S is
the actual dimension of the system in which the dynamics take place. In the following
subsections, we assume that ρmGoff , ρtGon , and ρtGoff are strictly positive and we analyze Eqs.
2.9 – 2.16 when the mGTPase and tGTPase switches are coupled through: (i) A forward
coupling mG∗ → tGEF only (arrow 1), (ii) forward coupling mG∗ → tGEF and
feedback loop tGEF → mGAP (arrows 1 and 2) and (iii) forward coupling connection
mG∗ → tGEF and feedback loops tGEF → mGAP and tG∗ → mGAP (arrows 1, 2,
and 3). While mathematically, other combinations of arrows are possible, biologically,
these are the only relevant combinations either for cellular function or for experimental
manipulation.

3.1. Forward coupling connection: Recruitment of tGEF by active mGTPases (mG∗ →
tGEF ). To analyze Eqs. 2.9 – 2.16 with the forward coupling connection only (arrow
1 in Fig.1C), we assume ρIon > 0 and ρIIon = ρIIIon = 0, which means that the feedback
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loops (arrows 2 and 3) are not considered this first analysis. This represents the sim-
ple connection of the two GTPase switches, which, in cells appears to be mediated via
activation–dependent coupling of mG* to tGEF [32]. In this case, the stoichiometric
matrix (Eq. 3.1) is 8× 5.

Conservation laws. For this particular system, the total concentrations [tGtot] := [tG] +

[tG∗] and [tGEFtot] := [tGEF ] + [tGEF ∗] are constant over time and are strictly
positive. For this reason, it is convenient to introduce the fractions T := [tG]

[tGtot]
and

G := [tGEF ]
[tGEFtot]

of inactive tGTPase and tGEF in the system, respectively, and let T ∗ and
G∗ denote the fraction of their active forms. We then use T + T ∗ = 1 and G + G∗ = 1 to
rewrite the system in the form

d[mG]

dt
= −[mG] + ρmGoff [mGAP

∗][mG∗] (3.2)

d[mG∗]

dt
= [mG]− ρmGoff [mGAP ∗][mG∗]− ρIon[tGEFtot](1− G∗)[mG∗] (3.3)

dT ∗

dt
= ρtGon [tGEFtot]G∗(1− T ∗)− ρtGoffT ∗ (3.4)

dG∗

dt
= ρIon(1− G∗)[mG∗] (3.5)

From the stoichiometric matrix (Eq. 3.1), we observe that [mG]+[mG∗]+[tGEF ∗] = C,
where C > 0 is constant over time, and thus

[mG] + [mG∗] + [tGEFtot]G∗ = C (3.6)

follows by the definition of G∗. We compute the left null space of the stoichiometric
matrix and confirm the total of three conservation laws in this case. The conservation
law given by Eq. 3.6 reduces the system to three unknowns, which eases the steady state
and stability analysis.

Steady states. To find biologically plausible (nonnegative) steady states of the system
given by Eqs. 3.2 – 3.6, we must find [̂mG], [̂mG∗], Ĝ∗, and T̂ ∗ such that the time-
derivatives in Eqs. 3.2–3.5 are zero and the conservation law given by Eq. 3.6 is satisfied.
Therefore, we must solve the following system:

[̂mG]− ρmGoff [mGAP ∗][̂mG∗]− ρIon[tGEFtot](1− Ĝ∗)[̂mG∗] = 0

ρtGon [tGEFtot]Ĝ∗(1− T̂ ∗)− ρtGoff T̂ ∗ = 0

(1− Ĝ∗)[̂mG∗] = 0

[̂mG] + [̂mG∗] + [tGEFtot]Ĝ∗ = C

From the third equation above, we must have [̂mG∗] = 0 or Ĝ∗ = 1. Thus we divide
the steady state analysis in these two cases and summarize our results in the following
proposition, whose proof can be found in the appendix A.
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Proposition 3.1. The steady states x̂ =
(
[̂mG], [̂mG∗], T̂ ∗, Ĝ∗

)
of the system given by

Eqs. 3.2 – 3.6 are given by

• Steady state 1:

x̂ =

0, 0,
1

1 +
ρtGoff
ρtGonC

,
C

[tGEFtot]

 (3.7)

if and only if C ≤ [tGEFtot] and

• Steady state 2:

x̂ =

(
ρmGoff [mGAP

∗]

1 + ρmGoff [mGAP
∗]
(C − [tGEFtot]) ,

C − [tGEFtot]

1 + ρmGoff [mGAP
∗]
,

ρtGon [tGEFtot]

ρtGon [tGEFtot] + ρtGoff
, 1

)
. (3.8)

if and only if C ≥ [tGEFtot].

Given the explicit expressions for the steady states and the parameter range in which
they exist, we perform a local stability analysis to determine if these states are stable or
unstable under small perturbations. We adopt the classical linearization procedure based
on the powerful Hartman-Grobman theorem [61, 62]. We show that the steady states
are locally asymptotically stable, which means that any trajectory will be attracted to the
steady state provided the initial condition is sufficiently close.

Local Stability Analysis. Using that [mG] = C − [mG∗] − [tGEFtot]G∗ (from Eq. 3.6)
in Eqs. 3.2 – 3.5, we obtain the following three-dimensional system:

d[mG∗]

dt
= f1([mG

∗],G∗, T ∗)

dT ∗

dt
= f2([mG

∗],G∗, T ∗)

dG∗

dt
= f3([mG

∗],G∗, T ∗)

where

f1([mG
∗],G∗, T ∗) = (C − [mG∗]− [tGEFtot]G∗)

− ρmGoff [mGAP ∗][mG∗]− ρIon[tGEFtot](1− G∗)[mG∗],

f2([mG
∗],G∗, T ∗) = ρtGon[tGEFtot]G∗(1− T ∗)− ρtGoff [tGAP ∗]T ∗,
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12 L.M. STOLERMAN, P. GHOSH, AND P. RANGAMANI

and

f3([mG
∗],G∗, T ∗) = ρIon(1− G∗)[mG∗].

To perform the local stability analysis, we calculate the Jacobian matrix evaluated at the
steady state

J
[
[̂mG∗], T̂ ∗, Ĝ∗

]
=


∂f1

∂[mG∗]
∂f1
∂T ∗

∂f1
∂G∗

∂f2
∂[mG∗]

∂f2
∂T ∗

∂f2
∂G∗

∂f3
∂[mG∗]

∂f3
∂T ∗

∂f3
∂G∗


∣∣∣∣∣∣∣(

̂[mG∗],T̂ ∗,Ĝ∗
)

(3.9)

and by showing that all its eigenvalues have a negative real part, we can prove that the
steady state is LAS [61], provided we further assume that the strict inequalities from
Proposition 3.1 hold. This is the content of the following theorem.

Theorem 3.1. Let C be the conservation quantity from Eq. 3.6. Then,

(1) If C < [tGEFtot], the steady state 1 (Eq. 3.7) is LAS.

(2) If C > [tGEFtot], the steady state 2 (Eq. 3.8) is LAS.

Proof. All calculations were done with MATLAB’s R2019b symbolic toolbox using the
functions jacobian and eig to compute the Jacobian matrices and their eigenvalues, re-
spectively. We proceed with the analysis of each case separately.

(1) Suppose C < [tGEFtot]. As we have seen in the previous subsection, in this case
the steady state is given by Eq. 3.7. The Jacobian matrix (Eq. 3.9) is given by


ρIon (C − [tGEFtot])− 1− [mGAP ∗]ρmGoff 0 −[tGEFtot]

0 −CρtGon − ρtGoff
ρtGoffρ

tG
on [tGEFtot]

CρtGon+ρ
tG
off

−ρIon
(

C
[tGEFtot]

− 1
)

0 0

 .

The first eigenvalue in this case is given by λ1 = −CρtGon − ρtGoff and the other
two (λ2 and λ3) are such that

λ2 + λ3 = ρIon(C − [tGEFtot])− ρmGoff [mGAP ∗]− 1 < 0

and

λ2λ3 = −ρIon(C − [tGEFtot]) > 0

from which we conclude that λ2 and λ3 are both negative and therefore the steady
state is LAS.
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(2) Suppose now that C > [tGEFtot]. Following our previous analysis, the steady
state is given by Eq. 3.8. The Jacobian matrix in this case is given by



−ρmGoff [mGAP ∗]− 1 0 [tGEFtot]

(
ρIon(C−tGEFtot)
ρmGoff [mGAP

∗]+1
− 1

)
0 −ρtGoff − ρtGon [tGEFtot]

ρtGoffρ
tG
on [tGEFtot]

ρtGoff+ρ
tG
on [tGEFtot]

0 0 −ρIon(C−[tGEFtot])
ρmGoff [mGAP

∗]+1



and the eigenvalues are given by λ1 = −ρtGoff − ktGon [tGEFtot], λ2 = −1 −
ρmGoff [mGAP

∗] and λ3 = −ρIon(C−[tGEFtot])
ρmGoff [mGAP

∗]+1
, which are all negative and this com-

pletes the proof.

�

The inequality C < [tGEFtot] must hold for existence and local asymptotic stabil-
ity to steady state 1. Recalling the definition of G∗ and that Eq. 3.6 holds for all
times, including t = 0, this relationship between C and [tGEFtot] can be rewritten
as [mG](0) + [mG∗](0) < [tGEF ](0) where [tGEF ](0) = [tGEFtot]− [tGEF ∗](0) is
initial concentration of cytosolic tGEF that is yet to be recruited by mG* to the mem-
branes. Similarly, the steady state 2 will exist when [mG](0) + [mG∗](0) > [tGEF ](0).
In this case, the reduced system will converge to a state where some distribution of mG,
mG*, tG, tG* are present (Eq. 3.8), given sufficiently close initial and steady state con-
centration values. Thus, the existence of the steady states depends only on the initial
concentrations and not on any kinetic parameters.

Fig 1(E) illustrates the two possible steady states (gray-colored “1” in the 2 × 2 table)
promoted by the coupling connection. steady state 1 can be interpreted as a configuration
where the copy numbers of both active and inactive mGTPase are low, while the tGTPase
copy numbers remain high. On the other hand, in steady state 2 both m- and tGTPases
have high copy numbers in both their active and inactive forms. Our results suggest that
the coupling from mG to tGEF, which initiates the coupling between the two G protein
switches, can drive the system to two possible configurations depending on the cellular
concentrations of total mG and tGEF. If the initial tGEF is larger than the total mG, the
coupling connection will result in a significant decrease of the total mG and result in
the activation of a fraction of the tGEF (Ĝ∗ = C

[tGEFtot]
in Eq. 3.7). On the contrary, if

the initial tGEF is less than the total mG, then the available tGEF will be fully engaged
(Ĝ∗ = 1 in Eq. 3.8) and there will be a residual mG concentration in the system. We
conclude that the initial difference between the copy numbers of total mG and tGEF (a
cytosolic protein that is recruited to the membrane by mG*) is the main factor that will
determine the steady state of the coupled GTPase switches.
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14 L.M. STOLERMAN, P. GHOSH, AND P. RANGAMANI

3.2. Coupled switches with feedback loop tGEF → mGAP : Recruitment of tGEF
by active mGTPases and tGEF colocalization with mGAP. We analyze the case
where the feedback loop tGEF → mGAP (arrow 2 in Fig.1C) is added to the cou-
pled system with the forward connection. In cells, this feedback loop represents a tGEF*
colocalization with mGAP on Golgi membranes that facilitates the recruitment of GAP
proteins Fig.1A, [32]. To analyze the effects of Arrows 1 and 2 solely, we thus assume
ρIon > 0, ρIIon > 0 and ρIIIon = 0. The model equations are thus given by the following
system:

d[mG]

dt
= −[mG] + ρmGoff [mGAP

∗][mG∗] (3.10)

d[mG∗]

dt
= [mG]− ρmGoff [mGAP ∗][mG∗]− ρIon[tGEF ][mG∗] (3.11)

d[tG]

dt
= −ρtGon [tGEF ∗][tG] + ρtGoff [tG

∗] (3.12)

d[tG∗]

dt
= ρtGon [tGEF

∗][tG]− ρtGoff [tG∗] (3.13)

d[tGEF ]

dt
= −ρIon[tGEF ][mG∗] (3.14)

d[tGEF ∗]

dt
= ρIon[tGEF ][mG

∗]− ρIIon[tGEF ∗][mGAP ] (3.15)

d[mGAP ]

dt
= −ρIIon[mGAP ][tGEF ∗] (3.16)

d[mGAP ∗]

dt
= ρIIon[mGAP ][tGEF

∗] (3.17)

As in Section 3.1, we first analyze the conservation laws of this particular system. In this
case, the stoichiometric matrix (Eq. 3.1) is 8× 6.

Conservation Laws. We begin by observing that the total amount of tGTPase is con-
served in this system. Thus we may use the fraction T ∗ as in Section 3.1 and that is the
first conservarion law. The total amount of mGAP is also conserved, as we sum Eqs.
3.16 and 3.17. We can then write

[mGAP ] = [mGAPtot]− [mGAP ∗] (3.18)

and substitute the above expression for [mGAP ] in Eqs. 3.15 and 3.17. We choose to
keep the concentrations of mGAP as a variable for notational simplicity and do not define
its fraction. Summing Eqs. 3.10, 3.11, 3.15, and 3.17, and integrating over time, we get

[mG] + [mG∗] + [tGEF ∗] + [mGAP ∗] = C1 (3.19)

where C1 ≥ 0 is constant over time. Moreover, Eqs. 3.14, 3.15, and 3.17 when summed
and integrated give

[tGEF ] + [tGEF ∗] + [mGAP ∗] = C2 (3.20)
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for C2 ≥ 0 also constant. We compute the left null space of the stoichiometric matrix
(Eq. 3.1) and confirm a total of four conservation laws in this case. The reduced system
is given by the following equations:

d[mG]

dt
= −[mG] + ρmGoff [mGAP

∗][mG∗] (3.21)

d[mG∗]

dt
= [mG]− ρmGoff [mGAP ∗][mG∗]− ρIon[tGEF ][mG∗] (3.22)

dT ∗

dt
= ρtGon[tGEF

∗](1− T ∗)− ρtGoffT ∗ (3.23)

d[tGEF ]

dt
= −ρIon[tGEF ][mG∗] (3.24)

d[tGEF ∗]

dt
= ρIon[tGEF ][mG

∗]− ρIIon[tGEF ∗] ([mGAPtot]− [mGAP ∗])(3.25)

d[mGAP ∗]

dt
= ρIIon[tGEF

∗] ([mGAPtot]− [mGAP ∗]) (3.26)

with the conservation laws given by Eqs. 3.19 and 3.20. Next, we obtain the steady states
of the system.

Steady states and local stability analysis. To find the steady states, we must find non-
negative solutions of the following system:

−[̂mG] + ρmGoff
̂[mGAP ∗][̂mG∗] = 0 (3.27)

ρtGon
̂[tGEF ∗](1− T̂ ∗)− ρtGoff T̂ ∗ = 0 (3.28)

̂[tGEF ][̂mG∗] = 0 (3.29)(
[mGAPtot]− ̂[mGAP ∗]

)
̂[tGEF ∗] = 0 (3.30)

[̂mG] + [̂mG∗] + ̂[tGEF ∗] + ̂[mGAP ∗] = C1 (3.31)

̂[tGEF ] + ̂[tGEF ∗] + ̂[mGAP ∗] = C2 (3.32)

From Eq. 3.29, we must have ̂[tGEF ] = 0 or [̂mG∗] = 0. Moreover, from Eq. 3.30,
̂[tGEF ∗] = 0 or ̂[mGAP ∗] = [mGAPtot] and thus we have four possible combinations

to analyze.

We study each case separately and obtain the necessary and sufficient inequalities in-
volving the parameters C1, C2, and [mGAPtot] that ensure the existence of each steady
state. As in Section 3.1, we also show that the steady states are LAS provided the strict
inequalities are satisfied. We summarize our analysis in the following theorem, whose
proof can be found in Appendix B.
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Theorem 3.2. The steady states

x̂ =
(
[̂mG], [̂mG∗], T̂ ∗, ̂[tGEF ], ̂[tGEF ∗], ̂[mGAP ∗]

)
of the system given by Eqs. 3.19 - 3.26 are given by

• Steady state 1:

x̂ =

(
0, 0,

ρtGon (C1 − [mGAPtot])

ρtGon(C1 − [mGAPtot]) + ρtGoff
, C2 − C1, C1 − [mGAPtot], [mGAPtot]

)
(3.33)

if and only if C2 ≥ C1 and C1 ≥ [mGAPtot]. The steady state is LAS if C2 > C1

and C1 > [mGAPtot].

• Steady state 2:

x̂ =

(
ρmGoff [mGAPtot]

1 + ρmGoff [mGAPtot]
(C1 − C2),

(C1 − C2)

1 + ρmGoff [mGAPtot]
,

ρtGon(C2 − [mGAPtot])

(C2 − [mGAPtot]) + ρtGoff
, 0, C2 − [mGAPtot], [mGAPtot]

)
(3.34)

if and only if C1 ≥ C2 and C2 ≥ [mGAPtot]. The steady state is LAS if C1 > C2

and C2 > [mGAPtot].

• Steady state 3:
x̂ = (0, 0, 0, C2 − C1, 0, C1) (3.35)

if and only if C2 ≥ C1 and C1 ≤ [mGAPtot]. The steady state is LAS if C2 > C1

and C1 < [mGAPtot].

• Steady state 4:

x̂ =

(
1

1 + ρmGoffC2
(C1 − C2), 0, 0, 0, C2

)
(3.36)

if and only if C1 ≥ C2 and C2 ≤ [mGAPtot]. The steady state is LAS if C1 > C2

and C2 < [mGAPtot].

Recalling the definitions of C1 and C2 and the fact that Eqs. 3.19 and 3.20 hold at all
times, including at t = 0, we can write C1 = [mG](0) + [mG∗](0) + [tGEF ∗](0) +

[mGAP ∗](0) and C2 = [tGEF ](0)+ [tGEF ∗](0)+ [mGAP ∗](0). In this way, from the
inequalities obtained in Theorem 3.2 for C1 and C2, we obtain relationships among the
initial conditions of the original system (Eqs. 3.10 – 3.17) that are associated with each
one of the four steady states.

For the existence and local asymptotic stability of steady state 1 (Eq. 3.33), where mG
and mG* have zero concentration values, the inequalities C2 > C1 and C1 > [mGAPtot]

must hold. The first inequality can be written as [mG](0) + [mG∗](0) < [tGEF ](0),
which was obtained in Section 3.1 as the existence condition for the steady state with
no mG and mG* (Eq. 3.7). On the other hand, the inequality C1 > [mGAPtot] can be
written as [mG](0) + [mG∗](0) + [tGEF ∗](0) > [mGAP ](0), where [mGAP ](0) is
the initial concentration of cytosolic mGAP that is yet to be recruited by tGEF* to the
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membranes. Therefore, two conditions guarantee the existence of steady state 1: (1) The
total amount of mG protein must be initially less than the concentration of tGEF and (2)
The sum of the concentrations of total mG protein and tGEF* must be initially higher
than the concentration of mGAP. If both conditions hold, then Theorem 3.2 ensures that
steady state 1 will emerge and the reduced system (Eqs. 3.21 – 3.26 along with Eqs.
3.19 and 3.20) will converge to the steady state 1, provided the initial and steady state
concentration values are sufficiently close.

A similar analysis holds for steady states 2, 3 and 4. For simplicity, we present the re-
quired initial conditions for each steady state without repeating the conclusions that fol-
lows from Theorem 3.2. For steady state 2 (Eq. 3.34), where mG, mG*, tG, and tG* are
present, the inequalities C1 > C2 and C2 > [mGAPtot] become [mG](0) + [mG∗](0) >

[tGEF ](0) and [tGEF ](0) + [tGEF ∗](0) > [mGAP ](0), respectively. Hence, the to-
tal amount of mG protein must be initially higher than the concentration of tGEF and
the total amount of tGEF must be initially higher than concentration of mGAP. For
steady state 3 (Eq. 3.35), where mG and mG* have zero concentration values and
the tGTPase is fully inactivated, the inequalities C2 > C1 and C1 < [mGAPtot] be-
come [mG](0) + [mG∗](0) < [tGEF ](0) and [mG](0) + [mG∗](0) + [tGEF ∗](0) <

[mGAP ](0), respectively. Hence, the total amount of mG protein must be initially less
than the concentration of tGEF and the sum of the concentrations of total mG protein
and tGEF* must be initially less than the concentration of mGAP. For steady state 4
(Eq. 3.36), where mG and mG* are present and tG* concentration is zero, the inequal-
ities C1 > C2 and C2 < [mGAPtot] become [mG](0) + [mG∗](0) > [tGEF ](0) and
[tGEF ](0) + [tGEF ∗](0) < [mGAP ](0), respectively. Hence, the total amount of mG
protein must be initially higher than the concentration of tGEF and the total amount of
tGEF must be initially less than the concentration of mGAP. In this case, the existence
of the steady states also depends only on the initial concentrations and not on any kinetic
parameters.

Fig 1(E) illustrates the four possible steady states (gray-colored “1+2” in the 2 × 2 ta-
ble) promoted by the coupled switches in the presence of the feedback loop tGEF →
mGAP . Steady states 1 and 2 have the same interpretation of the two steady states ob-
tained in Section 3.1. On the other hand, steady states 3 and 4 were obtained through
the sole contribution of the feedback loop tGEF → mGAP . These states share the
common feature of having tGTPase fully inactivated. However, steady state 3 can be
interpreted as a configuration where the copy numbers of mG and mG* are low, while in
steady state 4, these copy numbers are high.

3.3. Coupled switches with feedback loops tGEF → mGAP and tG∗ → mGAP :
Recruitment of tGEF by active mGTPases, tGEF colocalization with mGAP, and
activation of mGAP by active tGTPases. We analyze the case where the feedback
loop tG∗ → mGAP (arrow 3 in Fig.1C) is added to the coupled system in addition
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to the feedback loop tGEF → mGAP . This connection represents the release of free
Gβγ promoting mGAP activation. We analyze the full system given by Eqs. 2.9 –
2.16 in the case where ρIon, ρIIon, and ρIIIon are strictly positive. In particular, we obtain
the conservation laws and four 1-parameter steady state families. We also obtain the
necessary conditions for the conserved quantities that guarantee the existence of each
steady state family.

Conservation Laws. As in Section 3.2, we observe that the total amount of mGAP is
constant over time, so Eq. 3.18 still holds. On the other hand, the total tGTPase follows
a new conservation law that we derive here. Summing Eqs. 2.9 – 2.12, 2.14, and 2.16
and integrating over time, we have

[mG] + [mG∗] + [tG] + [tG∗] + [tGEF ∗] + [mGAP ∗] = C̃1. (3.37)

Summing Eqs. 2.11 – 2.14 and Eq. 2.16 and integrating over time, we obtain

[tG] + [tG∗] + [tGEF ] + [tGEF ∗] + [mGAP ∗] = C̃2 (3.38)

where C̃1 and C̃2 must be nonnegative constants. We compute the left null space of the
stoichiometric matrix (Eq. 3.1) and confirm the total of three conservation laws, which
are given by Eqs. 3.18, 3.37, and 3.38. These equations reduce Eqs. 2.9 – 2.16 to a
five-dimensional system, whose steady states can be obtained.

Steady states. We compute the steady states of the system when the time derivatives
in Eqs. 2.9 – 2.16 are equal to zero. Removing the linearly dependent equations, the
problem reduces to finding the nonnegative solutions of the following system:

−[̂mG] + ρmGoff
̂[mGAP ∗][̂mG∗] = 0 (3.39)

−ρtGon ̂[tGEF ∗][̂tG] + ρtGoff [̂tG
∗] = 0 (3.40)(

[mGAPtot]− ̂[mGAP ∗]
)
[̂tG∗] = 0 (3.41)

̂[tGEF ][̂mG∗] = 0 (3.42)

̂[tGEF ∗]
(
[mGAPtot]− ̂[mGAP ∗]

)
= 0 (3.43)

along with the conservation laws given by Eqs. 3.18, 3.37, and 3.38.

Eq. 3.40 gives [̂tG∗] = ρtGon
̂[tGEF ∗][̂tG]

ρtGoff
and Eq. 3.41 then becomes(

[mGAPtot]− ̂[mGAP ∗]
)

̂[tGEF ∗][̂tG] = 0.

From Eq. 3.43, we conclude that [̂tG] can be any nonnegative real number satisfying Eqs.
3.37 and 3.38. We define ξ = [̂tG] and characterize four ξ-dependent families of steady
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states similarly as we did in Section 3.2. We summarize our results in the following
theorem, whose proof can be found in the appendix C.

Theorem 3.3. The ξ-dependent families of steady states

x̂ξ =
(
[̂mG], [̂mG∗], [̂tG], [̂tG∗], ̂[tGEF ], ̂[tGEF ∗], ̂[mGAP ∗]

)
of the system given by Eqs. 3.39 – 3.43 with the conservation laws given by Eqs. 3.18,
3.37, and 3.38 are given by

• Family 1:

x̂ξ =

0, 0, ξ,

(
C̃1 − [mGAPtot]− ξ

)
ρtGonξ

ρtGoff + ρtGonξ
, C̃2 − C̃1,

(
C̃1 − [mGAPtot]− ξ

) ρtGoff
ρtGoff + ρtGonξ

, [mGAPtot]

)
(3.44)

only if 0 ≤ ξ + [mGAPtot] ≤ C̃1 ≤ C̃2 .

• Family 2:

x̂ξ =

(
(C̃1 − C̃2)ρ

mG
off [mGAPtot]

1 + ρmGoff [mGAPtot]
,

(C̃1 − C̃2)

1 + ρmGoff [mGAPtot]
,

ξ,

(
C̃2 − [mGAPtot]− ξ]

)
ρtGonξ

ρtGoff + ρtGonξ
, 0,

(
C̃2 − [mGAPtot]− ξ]

)
ρtGoff

ρtGoff + ρtGonξ
, [mGAPtot]

)
(3.45)

only if 0 ≤ ξ + [mGAPtot] ≤ C̃2 ≤ C̃1.

• Family 3:
x̂ξ =

(
0, 0, ξ, 0, C̃2 − C̃1, 0, C̃1 − ξ

)
(3.46)

only if max(0, C̃1 − [mGAPtot]) ≤ ξ ≤ C̃1 ≤ C̃2.

• Family 4:

x̂ξ =

(
ρmGoff (C̃1 − C̃2)(C̃2 − ξ)

1 + ρmGoff (C̃2 − ξ)
,

(C̃1 − C̃2)

1 + ρmGoff (C̃2 − ξ)
, ξ, 0, 0, 0, C̃2 − ξ

)
. (3.47)

only if max(0, C̃2 − [mGAPtot]) ≤ ξ ≤ C̃2 ≤ C̃1.

Recalling the definitions of C̃1 and C̃2 and the fact that Eqs. 3.37 and 3.38 hold at all
times, including t = 0, we can infer necessary relationships among the initial condi-
tions for each steady state family.The inequality C̃1 ≤ C̃2 can be rewritten as [mG](0) +
[mG∗](0) ≤ [tGEF ](0) is necessary for the emergence of Family 1 (Eq. 3.44) whith zero
mG and mG* values, which can be interpreted as a scenario in which nearly all the avail-
able mG proteins are activated to mG*, and that nearly all the mG* species have success-
fully engaged with the available tGEFs, thereby maximally recruiting tGEF on the mem-
branes. For Family 1, [mGAPtot] ≤ C̃1 also holds and can be written as [mGAP ](0) ≤
[mG](0) + [mG∗](0) + [tG](0) + [tG∗](0) + [tGEF ∗](0), where [mGAP ](0) is the ini-
tial concentrations of cytosolic mGAP that is yet to be recruited by tGEF* and tG* to the
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membranes. Therefore, two initial conditions are necessary for the existence of Family 1:
The total amount of mG protein must be initially less than the concentration of tGEF and
(2) The summed concentrations of total mG, total tG and tGEF* must be initially higher
than the concentration of mGAP. Finally, the inequality 0 ≤ ξ+[mGAPtot] ≤ C̃1 can be
written as 0 ≤ ξ ≤ [mG](0)+[mG∗](0)+[tG](0)+[tG∗](0)+[tGEF ∗](0)−[mGAP ](0).
Remarkably, we conclude that the initial balance between the summed concentrations of
total mG, total tG, tGEF* and the available mGAP is the upper bound for the tG con-
centration, which completely characterizes the necessary conditions for the emergence
of Family 1.

A similar analysis can be done for Families 2, 3, and 4. For the existence of Family 2
(Eq. 3.45), where mG, mG* tG, tG* are present (when ξ > 0), the inequalities C̃2 ≤
C̃1 and [mGAPtot] ≤ C̃2 must hold and can be rewritten as [mG](0) + [mG∗](0) ≥
[tGEF ](0) and [mGAP ](0) ≤ [tG](0)+ [tG∗](0)+ [tGEF ](0)[tGEF ∗](0). Hence, the
total amount of mG protein must be initially higher than the concentration of tGEF and
the summed concentrations of total tG and total tGEF proteins must be initially higher
than the concentration of mGAP. Finally, the inequality 0 ≤ ξ + [mGAPtot] ≤ C̃2

indicates that initial balance between the summed concentrations of total tG, total tGEF
and the available mGAP is the upper bound for the tG concentrations. For Family 3
(Eq. 3.46, where mG and mG* have zero concentration values and the tGTPase is fully
inactivated, the inequality C̃1 ≤ C̃2 becomes [mG](0) + [mG∗](0) ≤ [tGEF ](0). As
for Family 1, the total amount of mG protein must be initially less than the concentration
of tGEF. Moreover, from C̃1 − [mGAPtot] ≤ ξ, the initial balance between the summed
concentrations of total mG, total tG, tGEF* and the available mGAP is the lower bound
for the tG concentration. For Family 4 (Eq. 3.47), where mG and mG* are present and
tG* concentration is zero, C̃2 ≤ C̃1 becomes [mG](0)+ [mG∗](0) ≥ [tGEF ](0). As for
Family, 2 the total amount of mG protein must be initially higher than the concentration
of tGEF. Moreover, from C̃2 − [mGAPtot] ≤ ξ, the initial balance between the summed
concentrations of total tG, total tGEF and the available mGAP is the lower bound for
the tG concentrations. As noted in the previous subsections, the existence of the steady
states depends only on the initial concentrations and not on any kinetic parameters.

Fig 1(E) illustrates the four Families (gray-colored “1+2+3” in the 2× 2 table) promoted
by the coupling connection mG∗ → tGEF and the feedback loops tGEF → mGAP

and tG∗ → mGAP . Families 1 and 2 have a similar interpretation of the steady states 1
and 2 obtained in Section 3.1 and Section 3.2. On the other hand, Families 3 and 4 were
obtained through contributions of the feedback loop tG∗ → mGAP . These states share
the common feature of having tGTPase fully inactivated. As for steady states 3 and 4,
Family 3 can be interpreted as a configuration where the copy numbers of mG and mG*
are low, while in Family 4, those copy numbers are high.
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3.4. Numerical Simulations. To complete our mathematical analysis, we numerically
investigate the range of initial conditions in which the trajectories of the original system
(Eqs. 2.1 – 2.8) converge to the different steady states. In particular, we illustrate the
so-called basins of attraction [71] of the steady states, considering the same combination
of connections between the two GTPase switches from §3.1 – §3.3.

In Table 2, we describe each parameter of the system with the corresponding values that
we used in our simulations. All ODEs were numerically solved in MATLAB R2018a
with the function ode15s. The MATLAB codes can be downloaded in the link: https:
//github.com/Rangamani-Lab/BMB_Matlab_codes.git

TABLE 2. Table of parameters and initial conditions

Parameter Meaning Value/range Unit
kmGon activation rate of the mGTPase 3 (Figs 2,3,4, 5 A,B,C); N (30,1) (Fig 5 D,E,F) (s.µM)−1

kmGoff deactivation rate of the mGTPase 1 (Figs 2,3,4, 5 A,B,C); N (10,1) (Fig 5 D,E,F) (s.µM)−1

ktGon activation rate of the tGTPase 3 (Figs 2,3,4, 5 A,B,C); N (30,1) (Fig 5 D,E,F) (s.µM)−1

ktGoff deactivation rate of the tGTPase 1 (Figs 2,3,4, 5 A,B,C); N (10,1) (Fig 5 D,E,F) (s.µM)−1

kIon activation rate of tGEF through forward coupling 0 or 3 (Figs 2,3,4, 5 A,B,C); 0 or N (30,1) (Fig 5 D,E,F) (s.µM)−1

kIIon activation rate of mGAP through feedback loop (arrow 2) 0 or 3 (Figs 2,3,4, 5 A,B,C); 0 or N (30,1) (Fig 5 D,E,F) (s.µM)−1

kIIIon activation rate of mGAP through feedback loop (arrow 3) 0 or 3 (Figs 2,3,4, 5 A,B,C); 0 or N (30,1) (Fig 5 D,E,F) (s.µM)−1

[mGEF ∗] concentration of active mGEF 1 (Figs 2,3,4,5) µM

[tGAP ∗] concentration of active tGAP 1 (Figs 2,3,4,5) µM

[tGtot] Total concentration of tGTPase 10 (Figs 2,3,4); 5 (Fig 5) µM

[tGEFtot] Total concentration of tGEF 10 (Figs 2,3,4); 5 (Fig 5) µM

[mG](0) initial concentration of inactive mGTPase [0,10] (Figs 2,3,4); 0 (Fig 5) µM

[mG∗](0) initial concentration of active mGTPase 0 (Figs 2,3,4); [0,10] (Fig 5) µM

[tG](0) initial concentration of inactive tGTPase 5 (Figs 2,3,4,5) µM

[tG∗](0) initial concentration of active tGTPase 5 (Figs 2,3,4); 0 (Fig 5) µM

[tGEF ](0) initial concentration of inactive mGTPase 5 (Figs 2,3,4,5) µM

[tGEF ∗](0) initial concentration of active tGEF 5 (Figs 2,3,4) or 0 (Fig 5) µM

[mGAP ](0) initial concentration of inactive mGAP [0,20] (Figs 3,4); [0,12] (Fig 5) µM

[mGAP ∗](0) initial concentration of inactive mGAP 1 (Figs 2,3,4); [0,12] (Fig 5) µM

In Fig.2, we explore the case where the two GTPase switches are coupled through the
coupling connection mG∗ → tGEF (Fig.2A). We color the trajectories of the sys-
tem according to the comparison between the initial conditions [mG](0) + [mG∗](0)

and [tGEF ∗](0) from the steady state analysis in Section 3.1. For fixed [mG∗](0)

and [tGEF ](0) values, we consider [mG](0) ranging from 0 to 10 µM and therefore
[mG](0) + [mG∗](0) can be less of higher than [tGEF ](0) (blue or red-colored lines
and dots). For all simulations, we plot the trajectories of the system until equilibrium is
reached. If [mG](0)+ [mG∗](0) < [tGEF ](0), the system converges to a state where no
active mGTPase exists (blue colored trajectories in Figs.2B and 2C). On the other hand, if
[mG](0)+[mG∗](0) > [tGEF ](0), the system converges a state where the concentration
of the active and inactive mGTPase are positive at the final time (red-colored trajecto-
ries). To visualize these results in terms of dose-response curves, in Fig.2D we plot the
final-state values of [mGtot] and G∗ (denoted by s.s) as a function of [mG](0). The tra-
jectories in the T ∗ × [mGtot] plane are shown in Fig.2E. We observe a detail showing
that T ∗ reaches a fixed final value around 0.97 when [mG](0)+ [mG∗](0) > [tGEF ](0)
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(A) (B) (C)

(D) (E)

FIGURE 2. Trajectories of the system and steady states (arrow 1) (A)
Schematics with the coupled GTPase switches and a coupling connection
mG∗ → tGEF , represented by arrow 1. (B) [mG](0) was changed from 0
to 10 µM and the trajectories of the system were calculated until equilibrium
was reached. In the G∗ × [mGtot] plane, a linear relationship emerges. The
black arrows indicate the direction of time. If [mG](0) > 5µM , the system
converges to a final-state where the concentrations of the active and inactive
mGTPase are nonzero. On the other hand, when [mG](0) < 5µM , the tra-
jectories converge a final-state with no mGTPase exists (blue colored lines). (C)
Trajectories of the active ([mG]) vs inactive mGTPase ([mG]) for [mG](0). (D)
Dose response curves show the steady states (denoted by s.s) for the total mGT-
Pase concentration and fraction of active tGEF (G ) depending on [mG](0) in
the two different scenarios. (E) The dynamics in the T × [mGtot] plane. Pa-
rameter values: [mG∗](0) = 0µM, T ∗(0) = 0.5,G∗(0) = 0.5, [mGAP ∗] =

1µM, [mGEF ∗] = 1µM, kon = 3(s.µM)−1, koff = 1(s.µM)−1, [tGAP ∗] =

1µM, [tGEFtot] = 10µM, [tGtot] = 10µM . Simulation time: 5s for panels B
and E, 50s for panels C, D, F, and G. Numerical simulations were performed us-
ing the solver ode15s in Matlab R2018a. All parameters were arbitrarily chosen
only to illustrate the dynamic features of the model.

(see magnified view). We observe that the trajectories converge to steady states that
agree with the local stability results from §Section 3.1. This suggests that the condi-
tions [mG](0)+ [mG∗](0) < [tGEF ](0) and [mG](0)+ [mG∗](0) > [tGEF ](0) are not
only valid in a neighborhood of the steady states, but also hold for other initial values
satisfying those inequalities.

Fig.3 illustrates the dynamics of the system when the feedback loop tGEF → mGAP

(Arrow 2) is added to the coupling connection (Fig.3A). In Fig.3B, we plot several
[tGEF ∗] trajectories starting at [tGEF ∗] = 5µM for different [mG](0) and [mGAP ](0)

values. The resulting rich variety of curves indicate the sensitivity of the system to
these initial conditions. In Fig.3C, different dose-response curves are generated to show
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the steady state tGEF* values. If [mGAP ](0) = 0µM (blue and red dots), only the
coupling connection affects the system, since mGAP cannot be activated by tGEF*.
When [mGAP ](0) = 1 (green squares), a similar steady state profile emerges, with
[tGEF ∗] s.s increasing for [mG](0) ≤ 5µM and remaining constant [mG](0) > 5.
When [mGAP ](0) = 8µM , [tGEF ∗] is zero for [mG](0) < 2µM and increases un-
til [mG](0) < 5µM . For [mG](0) > 5, the steady state achieves its maximum value
slightly above [tGEF ∗] > 2. Finally when [mGAP ](0) = 11µM , tGEF ∗ becomes
fully recruited by mGAP and the [tGEF ∗] s.s is zero for all [mG](0) values. In Fig.3D,
we scan the space of initial amounts of mG and mGAP. When [mGAP ](0) > 10µM , the
[tGEF ∗] s.s is zero, while for [mGAP ](0) < 10µM is becomes nonzero and dependent
of [mG](0). In Figs. 3 (E), (F), and (G), we analyze the tG* concentration values and
obtain similar results.

Fig.4 illustrates the dynamics of the system when the feedback loops tGEF → mGAP

and tG∗ → mGAP are added to the coupling connection (Fig.4A). In Fig.3B, we plot
several [tGEF ∗] trajectories starting at [tGEF ∗] = 5µM for different [mG](0) and
[mGAP ](0) values. In Fig.3C, different dose-response curves are generated to show
the steady state tGEF* values. As in the previous case with only one feedback loop,
if [mGAP ](0) = 0µM (blue and red dots), mGAP cannot be activated by tGEF*.
When [mGAP ](0) = 1 (green squares), a similar steady state profile emerges, with
[tGEF ∗] s.s increasing for [mG](0) ≤ 5µM and remaining constant [mG](0) > 5.
When [mGAP ](0) = 8 and 11 µM , [tGEF ∗] increases until [mG](0) < 5µM . For
[mG](0) > 5, the steady state achieves its maximum value. In Fig.4D, we scan the space
of initial amounts of mG and mGAP and we observe a more graded response in compar-
ison with Fig.3. In Figs. 4 (E), (F), and (G), we analyze the tG* concentration values
and obtain similar results.

In Fig.5, we investigate the space of initial conditions for mG* and mGAP* in which
the system converges to the different steady states. Fig.5A shows the simplest system
where the two GTPase switches are connected by the coupling mG∗ → tGEF . Two
steady states are obtained depending on the initial amount of mG*. For [mG∗](0) <

[tGEF ](0) − [mGAP ∗](0) = 5µM , the trajectories converge to steady state 1 with
no mG and mG* concentrations. On the other hand, for [mG∗](0) > [tGEF ](0) −
[mGAP ∗](0) = 5µM , then the system achieves the steady state 2 with non zero concen-
trations of both m and t-GTPase. Fig.5B shows the results for the coupling connection,
and feedback loops tGEF → mGAP (arrows 1+2). In this particular example, the
four steady states can be achieved for [mGAP ∗](0) and [mG∗](0) ranging from 0 to 12
µM and 0 and 10 µM , respectively. In the vertical direction, the initial amount of mG*
governs the transitions from steady states 3 to 4 (lower [mGAP ∗](0)) and 1 to 2 (higher
[mGAP ∗](0)). In both steady states 2 and 4 (Eqs. 3.34 and 3.36), the concentrations of
mGTPase are nonzero. Therefore, we predict that an increase of initial concentration of
mG* would favor the emergence of these two steady states. In the horizontal direction,
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(A)

(B) (C)

(E) (F)

(D)

(G)

FIGURE 3. Trajectories of the system and steady states (s.s) (arrows 1 and 2).
(A) Schematics of the coupled GTPases with the coupling connection mG∗ → tGEF

(arrow 1) and the feedback loop tGEF → mGAP (arrow 2). (B) [tGEF ∗] trajecto-
ries for [mGAP ](0) = 0, 1, 8, and 11 µM . For each [mGAP ](0) value, we plot two
curves for [mG](0) = 1 (dashed) and 10 µM (solid) (C) Dose response curves show
[tGEF ∗] s.s when [mG](0) ranges from 0 to 10 µM . If [mGAP ](0) = 0µM (blue and
red dots), there will be no mGAP activation and therefore no effects of the feedback. For
[mGAP ](0) > 0µM , the feedback becomes effective and generate different [tGEF ∗]

responses. (D) Colormap for [tGEF ∗] s.s concentrations for a range of [mG](0) and
[mGAP ](0) values. A sharp decrease on [tGEF ∗] occurs when [mGAP ](0) ≥ 10µM .
When [mGAP ](0) < 10µM , the [tGEF ∗] s.s depend on [mG](0). (E) [tG∗] trajecto-
ries for [mGAP ](0) = 0, 5, 9, and 11 µM and same [mG](0). (F) Dose response curves
for [tG∗] s.s depend on [mGAP ](0). (G) Colormap for [tG∗] s.s.; lower tG* concentra-
tions result from higher [mGAP ](0) values, since tGEF* is recruited for mGAP activa-
tion. Parameter values: kon = 3(s.µMs)−1, koff = 1(s.µM)−1, [mG∗](0) = 0µM ,
[tGEFtot](0) = 10µM , [tGEF ∗](0) = 5µM , T ∗(0) = 0.5, [tGtot] = 10µM ,
[mGAP ∗](0) = 1µM , [tGAP ∗](0) = 1µM , [mGEF ∗] = 1µM . Simulation times:
5s (B and E) and 50s (C, D, F, and G). Numerical simulations were performed using
the solver ode23s in Matlab R2018a. All parameters were arbitrarily chosen only to
illustrate the dynamic features of the model.

when the initial amount of mGAP* increases, the available mGAP (inactive) decreases
as we set the total mGAP as 12 µM , which reduces the effects of the feedback loops and
thus facilitates the emergence of the steady states 1 and 2 where the concentrations of
tGTPase are nonzero.
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FIGURE 4. Trajectories of the system and steady states (s.s) (arrows 1, 2, and 3).
(A) Schematics of the coupled GTPases with the coupling connection mG∗ → tGEF

(arrow 1) and the feedback loops tGEF → mGAP (arrow 2) and tG∗ → mGAP

(arrow 3). (B) [tGEF ∗] trajectories for [mGAP ](0) = 0, 1, 8, and 11 µM . For
each [mGAP ](0) value, we plot two curves for [mG](0) = 1 and 10 µM . (C)
Dose response curves show [tGEF ∗] s.s when [mG](0) ranges from 0 to 10 µM . If
[mGAP ](0) = 0µM (blue and red dots), there will be no mGAP activation and there-
fore no effects of the feedback loops. For [mGAP ](0) > 0µM , the feedback becomes
effective and generate different [tGEF ∗] responses. (D) Colormap for [tGEF ∗] s.s
concentrations for a range of [mG](0) and [mGAP ](0) values. A more graded decrease
on [tGEF ∗] occurs when [mGAP ](0) ≥ 10µM in comparison with Fig.3D. (E) [tG∗]

trajectories for [mGAP ](0) = 0, 5, 9, and 11 µM and same [mG](0). (F) Dose re-
sponse curves for [tG∗] s.s depend on [mGAP ](0) and does not change significantly as
[mG](0) increases. (G) Colormap for [tG∗] s.s.; lower tG* concentrations result from
higher [mGAP ](0) values, since tGEF* and tG* are recruited for mGAP activation.
Parameter values: kon = 3(s.µMs)−1, koff = 1(s.µM)−1, [mG∗](0) = 0µM ,
[tGEFtot](0) = 10µM , [tGEF ∗](0) = 5µM , T ∗(0) = 0.5, [tGtot] = 10µM ,
[mGAP ∗](0) = 1µM , [tGAP ∗](0) = 1µM , [mGEF ∗] = 1µM . Simulation times:
5s (B and E) and 50s (C, D, F, and G) . Numerical simulations were performed using
the solver ode23s in Matlab R2018a. All parameters were arbitrarily chosen only to
illustrate the dynamic features of the model.

Fig.5C shows a similar colormap for the system with both feedback loops tGEF →
mGAP and tG∗ → mGAP . It is worth noticing the expansion of the basin of attraction
of Families 1 and 2 compared to Fig.5A, while the basin of Families 3 and 4 shrinks.
Remarkably, in both Figs. 5B and 5C, there is a critical point (represented by a black

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.08.31.276311doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276311
http://creativecommons.org/licenses/by-nd/4.0/


26 L.M. STOLERMAN, P. GHOSH, AND P. RANGAMANI

cross) of intersection of the four basins of attraction. In this case, disturbances in the
initial conditions around that intersection point can drive the system to different steady
states. Thus, while coupling the two GTPase switches with a forward arrow only gives
two possible steady states, the negative feedback afforded by arrows 2 and 3 give rise
to a larger range of possibilities. Additionally, the existence of a critical point emerges
in the presence of the negative feedback suggesting a rich phase space for this coupled
system. Finally, in Figs 5(D-F),we sample the kon’s from a normal distribution with
mean 30(s.µM)−1 and standard deviation 1(s.µM)−1 and new koff ’s from a normal
distribution with mean 10(s.µM)−1 and standard deviation 1(s.µM)−1. We note that the
system behavior does not change for changes in kinetic parameters. By doing so, we
illustrate how the basins of attraction remain the same, given distinct reaction rates with
a different order of magnitude.

4. DISCUSSION

GTP-binding proteins (GTPases) regulate crucial aspects of numerous cellular events.
Their ability to act as biochemical switches is essential to promote information process-
ing within signaling networks. The two types of GTPases - monomeric (m) and trimeric
(t) - have traditionally believed to function independently until recent experimental work
revealed that m- and tGTPases coregulate each other in the Golgi through a functionally
coupled circuit [32]. Using a simplified model of ODEs, our analyses have shown that
the coupled switch gives rise to steady state configurations that cannot be achieved in sys-
tems of isolated GTPase switches. To the best of our knowledge, this is the first modeling
effort that has described the stability properties of these coupled GTPase switches.

A major result from our analysis is a systematic characterization of the steady state con-
centrations of both m- and tGTPases, as well as their GEFs and GAPs. We show the
obtained steady states in all three arrow combinations that were informed by experi-
ments (Table 3). Remarkably, the different steady states show a variety of configurations
in which both m- and tGTPase can be interpreted as having low or high concentration
values. We also note that the stability properties of these steady states are independent of
the choice of kinetic parameters in this model. We next interpret these different steady
states in their biological context.

First and foremost, the coupling of the two switches allows for the emergence of two
stable steady states. The first steady state (Eq. 3.7) has zero mG and mG* values and
finite tG and tG* values. This concentration distribution of the species can be interpreted
as a scenario in which nearly all the available mG proteins are activated to mG*, and that
nearly all the mG* species have successfully engaged with the available tGEFs, thereby
maximally recruiting tGEF on the Golgi membranes. This steady state emerges when
the total amount of mG protein is less than the concentration of tGEF in cells. Similarly,
the steady state 2 will emerge when the total concentration of mG is greater than tG. In
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s.s 1 
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FIGURE 5. Basins of Attraction – dependency on [mG∗(0)] and [mGAP ∗(0)] (A)
The two steady states of the system with coupling connection (Section 3.1) are only
driven by changes in the initial amount of mG* (B) When the coupling connection
and both feedback loops tGEF → mGAP are considered, we observe the emergence
of four regions (green,yellow, dark blue and light blue colored) corresponding to the
four steady states from Section 3.2 (C) A similar result was found when we analyzed
the system with the coupling connection and both feedback loops tGEF → mGAP

and tG∗ → mGAP . A black cross indicates a critical point at the intersection of the
four basins of attraction. (D), (E), and (F) The basins of attraction remain unaltered
when we consider distinct activation/deactivation rates of different orders of magni-
tude. Parameter values for panels (A), (B), and (C): kmGon = ktGon = 3 (s.µM)−1,
kion = 3 or 0 (s.µM)−1 for i = I, II, or III , kmGoff = ktGoff = 1 (s.µM)−1. Reaction
rates for panel (D) in (s.µM)−1 : kIon = 32.9841, kIIon = 30.8527, kIIIon = 30.4140,
kmGoff = 9.0960, kmGon = 29.4273, ktGoff = 10.4226, ktGon = 29.8986, Reaction rates
for panel (E) in (s.µM)−1: kIon = 31.5946, kIIon = 29.2870, kIIIon = 29.7058,
kmGoff = 10.1447, kmGon = 31.4250, ktGoff = 10.4106, ktGon = 29.8115 Reaction rates
for panel (F) in (s.µM)−1): kIon = 29.8231, kIIon = 28.6578, kIIIon = 31.0219,
kmGoff = 9.8054, kmGon = 30.1932, ktGoff = 11.2932, ktGon = 29.8454. Initial condi-
tions: [mG](0) = 0µM , [tG](0) = 5µM , [tG∗](0) = 0µM , [tGEF ](0) = 5µM ,
[tGEF ∗](0) = 0µM , [mGAP ](0) = 12µM − [mGAP ∗](0), [tGAP ∗](0) = 1µM ,
[mGEF ∗](0) = 1µM

this case, the reduced system will converge to steady state 2 where some finite, nonzero
distribution of mG, mG*, tG, tG* are present (Eq. 3.8), given sufficiently close initial
and steady state concentration values.

When we couple the connection of the two GTPase switches with the feedback loop
tGEF → mGAP (arrows 1 and 2 in Fig.1 C, respectively), we obtain four steady states.
Steady states 1 and 2 (Eqs. 3.33 and 3.34) are similar to the two steady states obtained
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TABLE. 3. Main results and conclusions from steady state analysis. We performed
a steady state analysis of a GTPase coupled circuit that has been observed experimen-
tally. For three biologically relevant combinations among the coupling connection and
two feedback loops, we present the steady states and their interpretation. Moreover, we
established the required initial conditions for the existence of the steady states. Each
connection adds to the richness of the functioning of these coupled GTPase switches.

in Section 3.1, although with different concentration values. On the other hand, steady
states 3 and 4 (Eqs. 3.35 and Eqs. 3.36) newly emerge in the system, in which tG*
attains zero concentration. This zero concentration can be interpreted as a scenario in
which nearly all the available tGTPase has cycled through the GTP-cycle and is inac-
tivated. The inequalities obtained in Theorem 3.2 for C1 and C2, allow us to obtain
relationships among the initial conditions of the original system (Eqs. 3.10 – 3.17) that
are associated with each one of the four steady states. Two conditions guarantee the ex-
istence of steady state 1: (1) The total amount of mG protein must be initially less than
the concentration of tGEF and (2) the sum of the concentrations of total mG protein and
tGEF* must be initially higher than the concentration of mGAP. Similar analysis reveals
that for steady state 2 (Eq. 3.34), the total amount of mG protein must be initially higher
than the concentration of tGEF and the total amount of tGEF must be initially higher than
concentration of mGAP. For steady state 3 (Eq. 3.35), the total amount of mG protein
must be initially less than the concentration of tGEF and the sum of the concentrations of
total mG protein and tGEF* must be initially less than the concentration of mGAP. For
steady state 4 (Eq. 3.36), the total amount of mG protein must be initially higher than
the concentration of tGEF and the total amount of tGEF must be initially less than the
concentration of mGAP.

Finally, when the coupled switches have both feedback effects on mGAP through Ar-
rows 2 and 3, we obtain four families of steady states. Interestingly, the Families 1 –
4 resemble the steady states 1 – 4 from Section 3.2. Family 1 has no mG and mG* at
steady state, and both tG and tG* have nonzero steady state values (similar to steady state
1). Moreover, Family 2 has both m- and tGTPases with nonzero steady states (similar to
steady state 2). For Family 3, mG and mG* steady state values are zero, and the tGTPase
is fully inactivated (similarly to steady state 3). Finally, Family 4 has tGTPase is fully
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inactivated, and both mG and mG* have nonzero steady states (similarly to steady state
4). Recalling the definitions of C̃1 and C̃2 and the fact that Eqs. 3.37 and 3.38 hold at all
times, including t = 0, we can infer necessary relationships among the initial conditions
for each steady state family.

Thus, our model shows that when the m- and t-GTPase switches are coupled with a
simple forward coupling (Arrow 1), there are two steady states. The addition of feedback
from the t-GTPase switch to the m-GTPase switch (Arrow 2 alone or Arrows 2 and 3),
expands this space to either 4 steady states or 4 families of steady states. We confirmed
that all steady states obtained with a coupling connection and feedback loop tGEF →
mGAP (arrow 1 or arrows 1+2 in Fig.1C) are locally asymptotically stable. However,
when the two feedback loops are considered along with the coupling connection (arrows
1+2+3 in Fig.1C), the local stability analysis cannot be performed because the steady
states are not isolated. Instead, we obtain four one-parameter families that depend on
the amount of inactive tGTPase. At this point, further investigation would be needed to
determine the behavior of the system near those steady state families. Even as we aim
to develop complex models that are refined with iterative experimental validations, we
note that our analysis gives insight to different steady states that emerge due to different
couplings that may not exist in physiology. Such insights may become meaningful in
the context of disease pathogenesis where copy numbers of each player in the network
motif may change relative to each other, and do so dynamically (e.g., when responding
to stress/stimuli), or disease-driving mutations alter their functions (e.g., activating and
inactivating mutations in GTPases, GAPs, or GEFs).

Limitations of this study include a simplified mathematical structure of the model. De-
spite this simplification, we find a rich phase space for the coupled GTPase switches by
analyzing the combination of network connections that have more biological meaning.
Future studies could also explore the role of external stimulus, the temporal and spatial
organization of these switches. While the current model is likely incomplete, it serves as
a stepping stone for future adaptations that can be coupled with experimental measure-
ments [41], including dose-response curves, response times, and noise fluctuations, as
done recently in [72].
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APPENDIX A. PROOF OF PROPOSITION 3.1

We must find nonnegative [̂mG], [̂mG∗], Ĝ∗, and T̂ ∗ satisfying the following system:

[̂mG]− ρmGoff [mGAP ∗][̂mG∗]− ρIon[tGEFtot](1− Ĝ∗)[̂mG∗] = 0 (A.1)

ρtGon [tGEFtot]Ĝ∗(1− T̂ ∗)− ρtGoff T̂ ∗ = 0 (A.2)

(1− Ĝ∗)[̂mG∗] = 0 (A.3)

[̂mG] + [̂mG∗] + [tGEFtot]Ĝ∗ = C (A.4)

From Eq. A.3, we must have [̂mG∗] = 0 or Ĝ∗ = 1. Thus we divide the steady state
analysis in two cases.

Case 1: [̂mG∗] = 0.

From Eq. A.1 we must have [̂mG] = 0 and from Eq. A.4, we obtain Ĝ∗ = C
[tGEFtot]

.

Since Ĝ∗ ≤ 1 by definition, we conclude that

C ≤ [tGEFtot]. (A.5)

Eq. A.5 is also sufficient for [̂mG∗] = 0. Otherwise, if C ≤ [tGEFtot] and [̂mG∗] > 0,
then Ĝ∗ = 1 (Eq. A.3) and from Eq. A.4, we would conclude that [̂mG] + [̂mG∗] ≤ 0,
which is impossible.

Finally, by substituting Ĝ∗ in Eq. A.2, we obtain T̂ ∗ = 1

1+
ρtG
off

ρtGonC

and therefore the steady

state is given by

(
[̂mG], [̂mG∗], T̂ ∗, Ĝ∗

)
=

0, 0,
1

1 +
ρtGoff
ρtGonC

,
C

[tGEFtot]


Case 2: Ĝ∗ = 1

In this case, [̂mG∗] ≥ 0 and from Eqs. A.1 and A.4,we obtain

[̂mG∗] =
C − [tGEFtot]

1 + ρmGoff [mGAP
∗]

and

[̂mG] =
ρmGoff [mGAP

∗]

1 + ρmGoff [mGAP
∗]
(C − [tGEFtot]) .

In this case, since the steady state has to be nonnegative, we must have

C ≥ [tGEFtot]. (A.6)
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which is also sufficient for Ĝ∗ = 1. Otherwise if C ≥ [tGEFtot] and Ĝ∗ < 1, then
[̂mG∗] = [̂mG] = 0 (Eqs. A.1 and A.3) and, from Eq. A.4, we would have

C = [̂mG] + [̂mG∗] + [tGEFtot]Ĝ∗ < [tGEFtot],

which is impossible.

Finally, by substituting Ĝ∗ = 1 in Eq. A.2, we obtain

ρtGon[tGEFtot](1− T̂ ∗)− ρtGoff T̂ ∗ = 0

which gives T̂ ∗ = ρtGon [tGEFtot]

ρtGon [tGEFtot]+ρ
tG
off

and therefore

(
[̂mG], [̂mG∗], T̂ ∗, Ĝ∗

)
=

(
ρmGoff [mGAP

∗]

1 + ρmGoff [mGAP
∗]
(C − [tGEFtot]) ,

C − [tGEFtot]

1 + ρmGoff [mGAP
∗]
,

ρtGon [tGEFtot]

ρtGon [tGEFtot] + ρtGoff
, 1

)
. (A.7)
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APPENDIX B. PROOF OF THEOREM 3.2

We begin our proof by computing the steady states of the system, which are solutions of
the algebraic system given by Eqs. 3.27–3.32. We also establish necessary and sufficient
conditions involving the parameters C1, C2, and [mGAPtot] for the existence of each
steady state. We then compute the Jacobian matrix of the system and determine the local
stability of the steady state based on the classical linearization procedure [61].

Steady states. We divide our analysis into four different cases that emerge from the
preliminary inspection of the system given by Eqs. 3.27–3.32.

Case 1: [̂mG∗] = 0 and ̂[mGAP ∗] = [mGAPtot].

From Eq. 3.27, we have [̂mG] = 0 and from Eq. 3.31, ̂[tGEF ∗] = C1 − [mGAPtot].
Thus C1 ≥ [mGAPtot] since the steady state must be nonnegative. Now Eq. 3.32 gives
̂[tGEF ] = C2 − C1 and that implies C2 ≥ C1.

Finally, Eq. 3.28 yields

ρtGon(C1 − [mGAPtot])(1− T̂ ∗)− ρtGoff T̂ ∗ = 0

and hence

T̂ ∗ = ρtGon (C1 − [mGAPtot])

ρtGon(C1 − [mGAPtot]) + ρtGoff

The steady state is therefore given by

x̂ =

(
0, 0,

ρtGon (C1 − [mGAPtot])

ρtGon(C1 − [mGAPtot]) + ρtGoff
, C2 − C1, C1 − [mGAPtot], [mGAPtot]

)
.

We now observe that the two parameter relations

C1 ≥ [mGAPtot] and C2 ≥ C1 (B.1)

are sufficient for [̂mG∗] = 0 and ̂[mGAP ∗] = [mGAPtot]. First, we observe that if
C2 ≥ C1 then [̂mG∗] = 0. In fact, by subtracting 3.31 from Eq. 3.32, we obtain

̂[tGEF ]− [̂mG] + [̂mG∗] = C2 − C1 ≥ 0

and hence ̂[tGEF ] ≥ [̂mG] + [̂mG∗]. On the other hand, from Eq. 3.29, we must have
̂[tGEF ] = 0 or [̂mG∗] = 0. Thus if ̂[tGEF ] = 0 then [̂mG] + [̂mG∗] ≤ 0 and hence the

nonnegativeness of the steady state implies [̂mG] = [̂mG∗] = 0. Now, Eq. 3.31 gives
̂[tGEF ∗] = C1 − ̂[mGAP ∗] and from Eq. 3.30, we must have ̂[mGAP ∗] = [mGAPtot]

or ̂[tGEF ∗] = 0. If ̂[tGEF ∗] = 0, then ̂[mGAP ∗] = C1 ≥ [mGAPtot] and hence
̂[mGAP ∗] = [mGAPtot]. Therefore, we have shown that Eq. B.1 imply [̂mG∗] = 0 and
̂[mGAP ∗] = [mGAPtot]. Consequently, the steady state in this case must be given by

Eq. 3.33.

Case 2: ̂[tGEF ] = 0 and ̂[mGAP ∗] = [mGAPtot]
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From Eq. 3.32, ̂[tGEF ∗] = C2 − [mGAPtot] and hence [mGAPtot] ≤ C2. From Eq.
3.31, we must have [̂mG] + [̂mG∗] = C1 −C2 and that implies C1 ≥ C2. Now, Eq. 3.27
gives

(
C1 − C2 − [̂mG∗]

)
= ρmGoff [mGAPtot][̂mG

∗]

and therefore

From Eq. 3.28, we must have

ρtGon (C2 − [mGAPtot]) (1− T̂ ∗)− ρtGoff T̂ ∗ = 0

from which we obtain

T̂ ∗ = ρtGon(C2 − [mGAPtot])

ρtGon(C2 − [mGAPtot]) + ρtGoff

and therefore the steady state is given by

x̂ =

(
ρmGoff [mGAPtot]

1 + ρmGoff [mGAPtot]
(C1 − C2),

(C1 − C2)

1 + ρmGoff [mGAPtot]
,

ρtGon(C2 − [mGAPtot])

(C2 − [mGAPtot]) + ρtGoff
, 0, C2 − [mGAPtot], [mGAPtot]

)

We now observe that the two parameter relations

C2 ≥ [mGAPtot] and C1 ≥ C2 (B.2)

are sufficient for ̂[tGEF ] = 0 and ̂[mGAP ∗] = [mGAPtot].

In fact, if C1 ≥ C2 then ̂[tGEF ] = 0 from the same argument as in Case 1. Now, Eq.
3.32 gives ̂[tGEF ∗] = C2 − ̂[mGAP ∗] and from Eq. 3.30, we must have ̂[mGAP ∗] =

[mGAPtot] or ̂[tGEF ∗] = 0. If ̂[tGEF ∗] = 0 then ̂[mGAP ∗] = C2 ≥ [mGAPtot] (from
Eq. B.2) and thus ̂[mGAP ∗] = [mGAPtot]. Therefore, we have shown that Eq. B.2
imply ̂[tGEF ] = 0 and ̂[mGAP ∗] = [mGAPtot]. Consequently, the steady state in this
case must be given by Eq. 3.34.

Case 3: [̂mG∗] = 0 and ̂[tGEF ∗] = 0.

From Eq. 3.27, we have [̂mG] = 0 and from Eq. 3.28, we also get T̂ ∗ = 0 since
ρtGoff > 0. Now, Eq. 3.31 gives ̂[mGAP ∗] = C1 and thus we must have C1 ≤ [mGAPtot].

Moreover, Eq. 3.32 results in ̂[tGEF ] = C2 − C1 and since all steady states must be
nonnegative, we obtain C2 ≥ C1. In this case, the steady state is given by

x̂ = (0, 0, 0, C2 − C1, 0, C1) (B.3)

We now observe that the two parameter relations

C1 ≤ [mGAPtot] and C2 ≥ C1 (B.4)
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are sufficient for [̂mG∗] = 0 and ̂[tGEF ∗] = 0. In fact, C2 ≥ C1 implies [̂mG∗] = 0

from the same argument as in Case 1.

Now, Eq. 3.31 gives ̂[tGEF ∗] = C1 − ̂[mGAP ∗] and from Eq. 3.30, we must have
̂[tGEF ∗] = 0 or ̂[mGAP ∗] = [mGAPtot]. If ̂[mGAP ∗] = [mGAPtot], then ̂[tGEF ∗] =

C1 − [mGAPtot] ≤ 0 (from Eq. B.4) and thus ̂[tGEF ∗] = 0. Therefore, we have shown
that Eq. B.4 imply [̂mG∗] = 0 and ̂[tGEF ∗] = 0. Consequently, the steady state in this
case must be given by Eq. 3.35.

Case 4: ̂[tGEF ] = 0 and ̂[tGEF ∗] = 0

From Eq. 3.32, we obtain ̂[mGAP ∗] = C2 and hence C2 ≤ [mGAPtot]. From Eq. 3.31,
we have [̂mG] + [̂mG∗] = C1−C2 and that implies C1 ≥ C2 since the concentrations at
steady state must be nonnegative. Eq. 3.27 then gives

from which we obtain

[̂mG∗] =
1

1 + ρmGoffC2

(C1 − C2) and [̂mG] =
ρmGoffC2

1 + ρmGoffC2

(C1 − C2).

From Eq. 3.28, we have T̂ ∗ = 0 and therefore the steady state is given by

x̂ =

(
1

1 + ρmGoffC2
(C1 − C2), 0, 0, 0, C2

)
.

We now observe that the two parameter relations

C2 ≤ [mGAPtot] and C1 ≥ C2 (B.5)

are sufficient for ̂[tGEF ] = 0 and ̂[tGEF ∗] = 0. In fact, if C1 ≥ C2 then by subtracting
Eq. 3.32 from Eq. 3.31, we have

[̂mG] + [̂mG∗]− ̂[tGEF ] = C1 − C2 ≥ 0

and hence [̂mG] + [̂mG∗] ≥ ̂[tGEF ]. On the other hand, from Eq. 3.29, we must have
̂[tGEF ] = 0 or [̂mG∗] = 0. Thus if [̂mG∗] = 0 then [̂mG] = 0 (from Eq. 3.27)

and hence the nonnegativeness implies ̂[tGEF ] = 0. Hence we conclude that Eq. B.5
guarantee ̂[tGEF ] = 0.

Now, Eq. 3.32 gives ̂[tGEF ∗] = C2 − ̂[mGAP ∗] and from Eq. 3.30, we must have(
[mGAPtot]− ̂[mGAP ∗]

)
= 0 or ̂[tGEF ∗] = 0. If ̂[mGAP ∗] = [mGAPtot] then

̂[tGEF ∗] = C2 − [mGAPtot] ≤ 0 (from Eq. B.5) and thus ̂[tGEF ∗] = 0. Therefore,
we have shown that Eq. B.5 implies ̂[tGEF ] = 0 and ̂[tGEF ∗] = 0. Consequently, the
steady state in this case must be given by Eq. 3.36.
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Local Stability Analysis. We begin reducing the ODE system with the conservation
laws given by Eqs. 3.19 and 3.20. In fact, if we write

[mG] = C1−[mG∗]−[tGEF ∗]−[mGAP ∗] and [tGEF ] = C2−[tGEF ∗]−[mGAP ∗]

then Eqs. 3.21 – 3.26 can be written in the form

d[mG∗]

dt
= f1([mG

∗], T ∗, [tGEF ∗], [mGAP ∗]) (B.6)

dT ∗

dt
= f2([mG

∗], T ∗, [tGEF ∗], [mGAP ∗]) (B.7)

d[tGEF ∗]

dt
= f3([mG

∗], T ∗, [tGEF ∗], [mGAP ∗]) (B.8)

d[mGAP ∗]

dt
= f4([mG

∗], T ∗, [tGEF ∗], [mGAP ∗]) (B.9)

where

f1([mG
∗], T ∗, [tGEF ∗], [mGAP ∗]) = (C1 − [mG∗]− [tGEF ∗]− [mGAP ∗])

− ρtGoff [mGAP ∗][mG∗]− ρIon (C2 − [tGEF ∗]− [mGAP ∗]) [mG∗],

f2([mG
∗], T ∗, [tGEF ∗], [mGAP ∗]) = ρtGon [tGEF

∗](1− T ∗)− ρtGoffT ∗,

f3([mG
∗], T ∗, [tGEF ∗], [mGAP ∗]) = ρIon (C2 − [tGEF ∗]− [mGAP ∗]) [mG∗]

− ρIIon[tGEF ∗] ([mGAPtot]− [mGAP ∗]) ,

and

f4([mG
∗], T ∗, [tGEF ∗], [mGAP ∗]) = ρIIon[tGEF

∗] ([mGAPtot]− [mGAP ∗]) .

The eigenvalues of the Jacobian Matrix can be thus calculated for each one of the four
steady states given by Eqs. 3.33 – 3.36. We prove that all steady states are LAS by
showing that the eigenvalues of the Jacobian Matrix are all negative real numbers. We
perform the calculations with MATLAB’s R2019b symbolic toolbox and analyze each
case separately (see supplementary file with MATLAB codes). We analyze each case
separately.

(1) If C1 > [mGAPtot] and C2 > C1, the Jacobian matrix evaluated at the steady
state given by Eq. 3.33 gives the eigenvalues

λ1 = −ρmGon (C1 − [mGAPtot]) and λ2 = −ρtGon(C1 − [mGAPtot])− ρtGoff

which are negative. Moreover, the other eigenvalues λ3 and λ4 are such that
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λ3 + λ4 = ρIon(C1 − C2)− 1− ρmGoff [mGAPtot] < 0

and

λ3λ4 = −ρIon(C1 − C2) > 0

and thus λ3 and λ4 are negative and hence the steady state is LAS.

(2) If C2 > [mGAPtot] and C1 > C2, the Jacobian matrix evaluated at the steady
state given by Eq. 3.34 gives the eigenvalues

λ1 = −ρtGoff − ρtGon(C2 − [mGAPtot]), λ2 = −1− ρmGoff [mGAPtot],

λ3 = −ρIIon(C2 − [mGAPtot]) and λ4 = −
ρIon(C1 − C2)

ρmGoff [mGAPtot] + 1

which are all negative and hence the steady state is LAS.

(3) If C1 < [mGAPtot] and C2 > C1,the Jacobian matrix evaluated at the steady
state given by Eq. 3.35 gives the eigenvalues

λ1 = ρIIon(C1 − [mGAPtot]) and λ2 = −ρtGoff

which are negative. Moreover, the other eigenvalues λ3 and λ4 are such that

λ3 + λ4 = ρIon(C1 − C2)− C1ρ
mG
off − 1 < 0

and

λ3λ4 = −ρIon(C1 − C2) > 0

and thus λ3 and λ4 are negative and hence the steady state is LAS.

(4) If C2 < [mGAPtot] and C1 > C2, the Jacobian matrix evaluated at the steady
state given by Eq. 3.36 gives the eigenvalues

λ1 = −1− C2ρ
mG
off , λ2 = ρIIon(C2 − [mGAPtot]), λ3 = −ρtGoff

and
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λ4 = −
ρIon(C1 − C2)

C2ρmGoff + 1

which are all negative and hence the steady state is LAS.
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APPENDIX C. PROOF OF THEOREM 3.3

We proceed with the steady state analysis in the same way of Theorem 3.2. We consider
the same four different cases and calculate the ξ-dependent families of steady states,
where ξ ≥ 0 represent the tG concentration. We also obtain necessary relationships for
the conserved quantities C̃2, C̃1, and [mGAPtot], as well as admissible intervals for ξ that
guarantee the existence of nonnegative steady states.

Case 1: [̂mG∗] = 0 and ̂[mGAP ∗] = [mGAPtot] .

From Eq. 3.39, we have [̂mG] = 0 and subtracting Eq. 3.38 from Eq. 3.37, we get
̂[tGEF ] = C̃2 − C̃1 ≥ 0 only if C̃2 ≥ C̃1. Substituting ̂[tGEF ] on the conservation law

given by Eq. 3.38 and using Eq. 3.40 to write [̂tG∗] = ρtGon
̂[tGEF ∗]ξ

ρtGoff
, we obtain

ξ +
ρtGon

̂[tGEF ∗]ξ
ρtGoff

+ (C̃2 − C̃1) + ̂[tGEF ∗] + [mGAPtot] = C̃2

and hence

̂[tGEF ∗] =
(
C̃1 − [mGAPtot]− ξ]

) ρtGoff
ρtGoff + ρtGonξ

only if C̃1 − [mGAPtot] ≥ ξ. Therefore, in this case the ξ-dependent family of steady
states is given by

x̂ξ =

0, 0, ξ,

(
C̃1 − [mGAPtot]− ξ

)
ρtGonξ

ρtGoff + ρtGonξ
, C̃2 − C̃1,

(
C̃1 − [mGAPtot]− ξ

) ρtGoff
ρtGoff + ρtGonξ

, [mGAPtot]

)

Case 2: ̂[tGEF ] = 0 and ̂[mGAP ∗] = [mGAPtot]

Using Eq. 3.39 to write [̂mG] = ρmGoff [mGAPtot][̂mG
∗] and subtracting Eq. 3.38 from

Eq. 3.37, we obtain the expressions for [mG∗] and [mG]

[̂mG∗] =
(C̃1 − C̃2)

ρtGoff [mGAPtot] + 1
and [̂mG] =

(C̃1 − C̃2)ρ
tG
off [mGAPtot]

ρtGoff [mGAPtot] + 1

and thus we must have C̃1 ≥ C̃2. Now looking at Eq. 3.38 and substituting [̂tG∗] =
ρtGon

̂[tGEF ∗]ξ

ρtGoff
from Eq. 3.40, we obtain
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̂[tGEF ∗] =
(
C̃2 − [mGAPtot]− ξ]

) ρtGoff
ρtGoff + ρtGonξ

only if C̃2 − [mGAPtot] ≥ ξ. Therefore, in this case the ξ-dependent family of steady
states is given by

x̂ξ =

(
(C̃1 − C̃2)ρ

mG
off [mGAPtot]

1 + ρmGoff [mGAPtot]
,

(C̃1 − C̃2)

1 + ρmGoff [mGAPtot]
,

ξ,

(
C̃2 − [mGAPtot]− ξ]

)
ρtGonξ

ρtGoff + ρtGonξ
, 0,

(
C̃2 − [mGAPtot]− ξ]

)
ρtGoff

ρtGoff + ρtGonξ
, [mGAPtot]

)

Case 3: [̂mG∗] = 0 and ̂[tGEF ∗] = 0

From Eqs. 3.39 and 3.40, we have [̂mG] = 0 and [̂tG∗] = 0, respectively. Subtracting
Eq. 3.38 from Eq. 3.37, in this case we get ̂[tGEF ] = C̃2 − C̃1 ≥ 0 only if C̃2 ≥ C̃1.
Now, from the conservation law given by Eq. 3.37, we obtain ̂[mGAP ∗] = C̃1 − ξ and
thus ̂[mGAP ∗] ∈ [0, [mGAPtot]] only if max(0, C̃1 − [mGAPtot]) ≤ ξ ≤ C̃1. In this
case, the ξ-dependent family of steady states is given by

x̂ξ =
(
0, 0, ξ, 0, C̃2 − C̃1, 0, C̃1 − ξ

)
.

Case 4: ̂[tGEF ] = 0 and ̂[tGEF ∗] = 0

Eq. 3.40 gives [̂tG∗] = 0 and the conservation law given by Eq. 3.38 yields ̂[mGAP ∗] =

C̃2 − ξ. Now using Eq. 3.39 to write [̂mG] = ρmGoff (C̃2 − ξ)[̂mG∗], the conservation law
given by Eq. 3.38 gives

[̂mG∗] =
(C̃1 − C̃2)

1 + ρmGoff (C̃2 − ξ)
and [̂mG] =

ρmGoff (C̃1 − C̃2)(C̃2 − ξ)
1 + ρmGoff (C̃2 − ξ)

and since [mGAP ∗] ∈ [0, [mGAPtot]] and the steady states must be nonnegative, we
must have

max(0, C̃2 − [mGAPtot]) ≤ ξ ≤ C̃2 ≤ C̃1.

The ξ-dependent familiy of steady states is therefore given by

x̂ξ =

(
ρmGoff (C̃1 − C̃2)(C̃2 − ξ)

1 + ρmGoff (C̃2 − ξ)
,

(C̃1 − C̃2)

1 + ρmGoff (C̃2 − ξ)
, ξ, 0, 0, 0, C̃2 − ξ

)
.
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