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Abstract4

Balancing the speed and accuracy of decisions is crucial for survival, but how organisms manage this5

trade-off during learning is largely unknown. Here, we track this trade-off during perceptual learning in6

rats and simulated agents. At the start of learning, rats chose long reaction times that did not optimize7

instantaneous reward rate, but by the end of learning chose near-optimal reaction times. To understand8

this behavior, we analyzed learning dynamics in a recurrent neural network model of the task. The9

model reveals a fundamental trade-off between instantaneous reward rate and perceptual learning speed,10

putting the goals of learning quickly and accruing immediate reward in tension. We find that the rats’11

strategy of long initial responses can dramatically expedite learning, yielding higher total reward over12

task engagement. Our results demonstrate that prioritizing learning can be advantageous from a total13

reward perspective, and suggest that rats engage in cognitive control of learning.14

Introduction15

The speed-accuracy trade-off in decision making has been the subject of intense research, dating back16

nearly one-hundred years [1–14]. When facing noisy perceptual inputs, the longer an agent takes in17

making a choice the more likely that choice will be advantageous, but the less time is left to tackle18

subsequent choices. Choosing the right amount of time to deliberate on a particular decision is crucial19

for maximizing reward rate [9, 10].20

Studies of the speed-accuracy trade-off have focused on how the brain may solve it [9, 15], what the21

optimal solution is [10], and whether agents can indeed manage it [11, 14, 16–22]. Though most work22

in this area has taken place in humans and non-human primates, several studies have established the23

presence of a speed-accuracy trade-off in rodents [23–28]. The broad conclusion of much of this literature24

is that after extensive training, many subjects come close to optimal performance [11, 17–21, 29–31].25

When faced with deviations from optimality, several hypotheses have been proposed, including error26

avoidance, poor internal estimates of time, and a minimization of the cognitive cost associated with an27

optimal strategy [10, 30–32].28

Past studies have shown how agents behave after reaching steady state performance[11, 17–21, 29,29

30], but relatively less attention has been paid to how agents learn to approach near-optimal behavior30

(but see [18, 33]). While maximizing instantaneous reward rate is a sensible goal when the task is fully31

mastered, it is less clear that this objective is appropriate during learning.32

Here, we set out to understand how agents manage the speed-accuracy trade-off during learning by33

studying the learning trajectory of rats in a free response two-alternative forced-choice visual object34

recognition task [34]. Rats near-optimally maximized instantaneous reward rate (iRR) at the end of35

learning but chose response times that were too slow to be iRR-optimal early in learning. To understand36

the rats’ learning trajectory, we examined learning trajectories in a recurrent neural network (RNN)37

trained on the same task. We derive a reduction of this RNN to a learning drift diffusion model (LDDM)38
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with time-varying parameters that describes the network’s average learning dynamics. Mathematical39

analysis of this model reveals a dilemma: at the beginning of learning when error rates are high, iRR is40

maximized by fast responses [10]. However, fast responses mean minimal stimulus exposure, little op-41

portunity for perceptual processing, and consequently slow learning. Because of this learning speed/iRR42

(LS/iRR) trade-off, slow responses early in learning can yield greater total reward over engagement with43

the task, suggesting a normative basis for the rats’ behavior. We then experimentally tested and con-44

firmed several model predictions by evaluating whether response time and learning speed are causally45

related, and whether rats choose their response times so as to take advantage of learning opportunities.46

Our results suggest that rats exhibit cognitive control of the learning process, adapting their behavior47

to approximately accrue maximal total reward across the entire learning trajectory, and indicate that a48

policy that prioritizes learning in perceptual tasks may be advantageous from a total reward perspective.49

Results50

Trained Rats Solve the Speed-Accuracy trade-off51

We trained n = 26 rats on a visual object recognition two-alternative forced choice task (see Methods)52

[34]. The rats began a trial by licking the central of three capacitive lick ports, at which time a static53

visual object that varied in size and rotation from one of two categories appeared on a screen. After54

evaluating the stimulus, the rats licked the right or left lick port. When correct, they received a water55

reward, and when incorrect, a timeout period (Fig. 1a, Fig. S1). Because this was a free-response task,56

rats were also able to initiate a trial and not make a response, but these ignored trials made up a small57

fraction of all trials and were not considered during our analysis (Fig. S2).58

We examined the relationship between error rate (ER) and decision time (DT) during asymptotic59

performance using the drift-diffusion model (DDM) (Fig. S3). In the DDM, perceptual information is60

integrated through time until the level of evidence for one alternative reaches a threshold. The speed-61

accuracy trade-off is controlled by the subject’s choice of threshold, and is solved when a subject’s62

performance lies on an optimal performance curve (OPC; Fig. 1b) [10]. The OPC defines the mean63

normalized DT and ER combination for which an agent will collect maximal iRR (see Methods). At64

any given time, an agent will have some perceptual sensitivity (signal-to-noise ratio, SNR) which reflects65

how much information about the stimulus arrives per unit time. Given this SNR, an agent’s position66

in speed-accuracy space (the space relating ER and DT) is constrained to lie on a performance frontier67

traced out by different thresholds (Fig. 1b). Using a low threshold yields fast but error-prone responses,68

while using a high threshold yields slow but accurate responses. An agent only maximizes iRR when it69

chooses the ER and DT combination on its performance frontier that intersects the OPC. After learning70

the task to criterion, over half the subjects collected over 99% of their total possible reward, based on71

inferred SNRs assuming a DDM (Fig. 1c, d).72

Across a population, a uniform stimulus difficulty will reveal different SNRs because the internal73

perceptual processing ability in every subject will be different. Thus, although we did not explicitly vary74

stimulus difficulty [11, 18, 29, 30], as a population, animals clustered along the OPC across a range of ERs75

(Fig. 1d), supporting the assertion that well-trained rats achieve a near maximal iRR in this perceptual76

task. We note that subjects did not span the entire range of possible ERs, and that the differences in77

optimal DTs dictated by the OPC for the ERs we did observe are not large. It remains unclear whether78

our subjects would be optimal over a wider range of task parameters. Notwithstanding, previous work79

with a similar task found that rats did increase DTs in response to increased penalty times, indicating80

a sensitivity to these parameters [26]. Thus, for our perceptual task and its parameters, trained rats81

approximately solve the speed-accuracy trade-off.82

Rats Do Not Maximize Instantaneous Reward Rate During Learning83

Knowing that rats harvested reward near-optimally after learning, we next asked whether rats harvested84

instantaneous reward near-optimally during learning as well. If rats optimized iRR throughout learning,85

their trajectories in speed-accuracy space should always track the OPC.86

During learning, a representative individual (n = 1) started with long RTs that decreased as accuracy87

increased across training time (Fig. 2a). Transforming this trajectory to speed-accuracy space revealed88

that throughout learning the individual did not follow the OPC (Fig. 2b). Early in learning, the89

individual started with a much higher DT than optimal, but as learning progressed it approached the90

OPC. The maximum iRR opportunity cost is the fraction of maximum possible iRR relinquished for91
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Figure 1: Trained rats solve the speed-accuracy trade-off. (a) Rat initiates trial by licking center port,
one of two visual stimuli appears on the screen, rat chooses correct left/right response port for that stimulus and
receives a water reward. (b) Speed-accuracy space: a decision making agent’s ER and mean normalized DT (a
normalization of DT based on the average timing between one trial and the next, see Methods). Assuming a
simple drift-diffusion process, agents that maximize iRR (see Methods: Evaluation of Optimality) must lie on
an optimal performance curve (OPC, black trace) [10]. Points on the OPC relate error rate to mean normalized
decision time, where the normalization takes account of task timing parameters (e.g. average response-to-stimulus
interval). For a given SNR, an agent’s performance must lie on a performance frontier swept out by the set of
possible threshold-to-drift ratios and their corresponding error rates and mean normalized decision times. The
intersection point between the performance frontier and the OPC is the error rate and mean normalized decision
time combination that maximizes iRR for that SNR. Any other point along the performance frontier, whether above
or below the OPC, will achieve a suboptimal iRR. Overall, iRR increases toward the bottom left with maximal
instantaneous reward rate at error rate = 0.0 and mean normalized decision time = 0.0. (c) Mean performance
across 10 sessions for trained rats (n = 26) at asymptotic performance plotted in speed-accuracy space. Each cross
is a different rat. Color indicates fraction of maximum instantaneous reward rate (iRR) as determined by each rat’s
performance frontier. Errors are bootstrapped SEMs. (d) Fraction of maximum iRR, a quantification of distance
to the OPC, for same rats and same sessions as c. Fraction of maximum iRR is a comparison of an agent’s current
iRR with its optimal iRR given its inferred SNR. Approximately 15 of 26 (∼60%) of rats attain greater than 99%
fraction maximum iRRs for their individual inferred SNRs. * denotes p < 0.05, one-tailed Wilcoxon signed-rank
test for mean > 0.99.

a choice of threshold (and average DT) (see Methods). We found that this individual gave up over92

20% of possible iRR at the beginning of learning but harvested reward near-optimally at asymptotic93

performance (Fig. 2c). These trends held when the learning trajectories of n = 26 individuals were94

averaged (Fig. 2d-f). These results show that rats do not greedily maximize iRR throughout learning95

and lead to the question: if rats maximize iRR at the end of learning, what principle governs their96

strategy at the beginning of learning?97

Model Reveals That Prioritizing Learning Can Maximize Total Reward98

To simulate various learning strategies, we developed a simple linear recurrent neural network formalism99

for our task with the goal of investigating how long-term perceptual learning across many trials is100

influenced by the choice of DT (Box 1). A simple linear neural network processes input stimuli through101

weighted synaptic connections w. To model eye and body motion, the inputs are slightly jittered and102

rotated on each time step of a trial. For simplicity, the recurrent connectivity is fixed to 1 such that103

inputs are linearly integrated through time [35]. When the recurrent activity hits a threshold level, a104
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Figure 2: Rats do not greedily maximize instantaneous reward rate during learning. (a) Reaction
time (blue) and error rate (pink) for an example subject (rat AL14) across 23 sessions. (b) Learning trajectory
of individual subject (rat AL14) in speed-accuracy space. Color map indicates training time. OPC in blue. (c)
Maximum iRR opportunity cost (see Methods) for individual subject (rat AL14) (d) Mean reaction time (blue)
and error rate (pink) for n = 26 rats during learning. Sessions across subjects were transformed into normalized
sessions, averaged and binned to show learning across 10 bins. Normalized training time allows averaging across
subjects with different learning rates (see Methods). (e) Learning trajectory of n = 26 rats in speed-accuracy
space. Color map and OPC as in a. (f) Maximum iRR opportunity cost of rats in b throughout learning. Errors
reflect within-subject session SEMs for a and b and across-subject session SEMs for d, e and f.

response is made and the trial terminates. Then, to model perceptual learning, the perceptual weights105

w are updated using error-corrective learning, implemented as gradient descent on the hinge loss (see106

Methods).107

While this model can be simulated to obtain sample learning trajectories, its average dynamics can108

also be solved analytically, yielding important insights. We derived a reduction of this model to a DDM109

with time-dependent parameters. This “learning DDM” (LDDM) closely tracked simulated trajectories110

of the full network (Box 1; Fig. S4; see Methods). In short, the reduction explains how SNR in a111

DDM model changes over time on average under error-corrective learning. In designing this model, we112

kept components as simple as possible to highlight key qualitative trade-offs between learning speed and113

decision strategy. Because of its simplicity, like the standard DDM, it is not meant to quantitatively114

describe all aspects of behavior. We instead use it to investigate qualitative features of decision making115

strategy, and expect that these features would be preserved in other related models of perceptual decision116

making [9, 36–48].117

A key prediction of the LDDM is a tension between learning speed and iRR, the LS/iRR trade-off.118

This tension is clearest early in learning when ERs are near 50%. Then the rate of change in SNR is119

d

dt
SNR ∝ DT

Dtot
(1)

where the proportionality constant does not depend on DT (see derivation, Methods). Hence learning120

speed increases with increasing DT. By contrast the iRR when accuracy is 50% decreases with increasing121

DT. When encountering a new task, therefore, agents face a dilemma: they can either harvest a large122

iRR, or they can learn quickly.123
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Box 1: Recurrent Neural Network and Learning DDM models
Within a trial, inputs x(t) are filtered through perceptual weights w(trial) at discrete times t =
1dt, 2dt, · · · where dt is a small time step parameter, and added to a decision variable ŷ(t) along with
i.i.d. integrator noise η(t) ∼ N (0, c2o). When the decision variable crosses a threshold ±z(trial), a decision
is made. Panel A shows one example roll out of the recurrent neural network (RNN) through time.
These within-trial dynamics in the limit of small time steps are equivalent to a standard drift-diffusion
model (DDM) with a drift rate A(trial) toward the correct response and diffusion noise variance σ2(trial)
that depend on the distribution of inputs x(t) and weights w(trial) (see derivation, Methods). Average
performance is governed by the signal-to-noise ratio Ā(trial) = A(trial)2/σ2(trial) and threshold z(trial).
Panel B shows the decision variable for the RNN (dark gray), and other trajectories of the equivalent
DDM for different diffusion noise samples (light gray).
To implement perceptual learning, after each trial, weights in the recurrent network are updated using
gradient descent on the hinge loss, corresponding to standard practice in deep learning:

w(trial + 1) = w(trial)− λ∂Loss(trial)
∂w

. (2)

Here λ is a small learning rate and Loss(trial) = max(0, 1− y(trial)ŷ(trial)) where y(trial) = ±1 is the
correct output sign for the trial.
In the limit of small learning rates, applying Eq. (2) in the RNN is equivalent to the following SNR
dynamics in the drift-diffusion model (see derivation, Methods):

τ̃
d

dt
Ā(t) = 2

√
Ā(t)

(
Ā∗
)

c

(
1− Ā(t)

Ā∗

)5/2
ER

Dtot

DT − log(1/ER− 1)

Ā∗
(

1− Ā(t)

Ā∗

)2

 . (3)

Time t measures seconds of task engagement. The SNR dynamics depend on five parameters: the time
constant τ̃ related to the learning rate, the initial SNR Ā(0), the asymptotic achievable SNR after learning
Ā∗, the integration-noise to input-noise variance ratio c, and the choice of threshold z(t) over training.
Panels C-D show how ER and DT change over a long period of task engagement in the RNN (light gray,
simulated individual traces; dark gray, mean) compared to the theoretical predictions from the learning
DDM (blue).
An agent’s decision making strategy consists of their choice of threshold over time z(t). Threshold affects
DT and ER, and through these, the learning dynamics in Eq. (3). We consider four threshold policies:

iRR-Greedy Threshold zg(t) is set to the threshold z∗(Ā(t)) that maximizes instantaneous reward rate
for current SNR, zg(t) = z∗(Ā(t)).

iRR-Sensitive Threshold zs(t) decays with time constant γ from an initial value zs(0) = z0 toward the
iRR-optimal threshold, γ d

dt
zs(t) = z∗(Ā(t))− zs(t).

Constant Threshold zc(t) is fixed to a constant zc(t) = z0.

Global Optimal Threshold zo(t) maximizes total reward over the duration of task engagement Ttot,

zo(t) = argmax
z(t)

∫ Ttot

0

RR(t)dt.

We approximately compute this threshold function using automatic differentiation (see Methods).

124
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Just as the standard DDM instantiates different decision making strategies as different choices of125

threshold (for instance aimed at maximizing iRR, accuracy, or robustness) [30, 31], the LDDM instan-126

tiates different learning strategies through the choice of threshold trajectory over learning. In order to127

understand the rats’ learning trajectory, we evaluated several potential threshold policies (see Box 1 and128

Methods: Threshold Policies). An iRR-greedy threshold policy adjusts the threshold to maximize129

iRR at all times. This model is similar to a previously proposed neural network model of rapid threshold130

adjustment based on reward rate [16], and is iRR-optimal. A constant threshold policy is one where a131

target threshold that is optimal for some predicted future SNR is picked at the outset and kept constant132

throughout learning. Constant thresholds across difficulties have been found to be used as part of near-133

optimal and presumably cognitively cheaper strategies in humans [18]. In the iRR-sensitive threshold134

policy, the threshold starts at a specified initial value and then exponentially decays towards the threshold135

that would maximize iRR given the current SNR. Notably, with this policy, as the SNR changes due to136

learning, the target threshold also changes through time. Finally, in the global optimal threshold policy,137

the threshold trajectory throughout learning is optimized to maximize total cumulative reward at some138

known predetermined end to the task. We computed this globally optimal trajectory using automatic139

differentiation through a discretization of the reduction dynamics (see Methods). Because it relies on140

knowledge unavailable to the agent at the start of learning (such as the asymptotic achievable SNR after141

learning, and the total future duration of task engagement), this policy is not achievable in practice and142

serves as an idealized benchmark to which other models and the rats’ trajectory can be compared.143
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Figure 3: Model reveals rat learning dynamics lead to higher instantaneous reward rate and long-
term rewards than greedily maximizing instantaneous reward rate. (a) Model learning trajectories in
speed-accuracy space plotted against the OPC (black). (b) Decision time through learning for the four different
threshold policies in a. (c) Error rate throughout learning for the four different threshold policies in a. (d)
Instantaneous reward rate as a function of task engagement time for the full learning trajectory and a zoom-in
on the beginning of learning (inset). (e) Cumulative reward as a function of task engagement time for the full
learning trajectory and a zoom-in on the beginning of learning (inset). Threshold policies: iRR-greedy (green),
constant threshold (blue), iRR-sensitive (orange) and global optimal (red). (f) In the speed-accuracy trade-off
(left), ER (blue) decreases with increasing initial mean RT. iRR (green) at high error rates (∼ 0.5) also decreases
with increasing initial mean RT. Thus, at high ERs, an agent solves the speed-accuracy trade-off by choosing fast
RTs that result in higher ERs and maximize iRR. In the learning speed/iRR trade-off (right), initial learning speed
(dSNR/dt, pink) increases with increasing initial mean RT, whereas iRR (green) follows the opposite trend. Thus,
an agent must trade iRR in order to access higher learning speeds. Plots generated using LDDM model.

In order to qualitatively understand how these models behave through time, we visualized their144

learning dynamics. To approximately place the LDDM task parameters in a similar space to the rats, we145

performed maximum likelihood fitting using automatic differentiation through the discretized reduction146

dynamics (see Methods). The four policies we considered clustered into two groups, distinguished by147

their behavior early in learning. A “greedy” group, which contained just the iRR-greedy policy, remained148

always on the OPC (Fig. 3a), and had fast initial response times (Fig. 3b), a long initial period at high149

error (Fig. 3c), and high initial iRR (Fig. 3d). By contrast, a “non-greedy” group, which contained the150

iRR-sensitive, constant, and global optimal policies, started far above the OPC (Fig. 3a), and had slow151

initial response times (Fig. 3b), rapid improvements in ER (Fig. 3c), and low iRR (Fig. 3d). Notably,152
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while members of the non-greedy group started off with lower iRR, they rapidly surpassed the slow153

learning group (Fig. 3d) and ultimately accrued more total reward (Fig. 3e). Overall, these results show154

that threshold strategy strongly impacts learning dynamics due to the learning speed/iRR trade-off155

(Fig. 3f), and that prioritizing learning speed can achieve higher cumulative reward than prioritizing156

instantaneous reward rate.157

We further analyzed the differences between the three strategies in the non-greedy group. The global158

optimal policy selects extremely slow initial DTs to maximize the initial speed of learning. By contrast,159

the iRR-sensitive and constant threshold policies start with moderately slow responses. Nevertheless,160

we found that these simple strategies accrued 99% of the total reward of the global optimal strategy161

(Fig. S6). Hence these more moderate policies, which do not require oracle knowledge of future task162

parameters, derive most of the benefit in terms of total reward and may reflect a reasonable approach163

when the duration of task engagement is unknown.164

Considering the rats’ trajectories in light of these strategies, their slow responses early in learning165

stand in stark contrast to the fast responses of the iRR-greedy policy (c.f. Fig. 2b, Fig. 3a). Equally,166

their responses were faster than the extremely slow initial DTs of the global optimal model. Both167

the iRR-sensitive and constant threshold models qualitatively matched the rats’ learning trajectory.168

However, DDM parameter fits of the rats’ behavior indicated that their thresholds decreased throughout169

learning, ruling out the constant threshold model (Fig. S5, see Methods). Furthermore, subsequent170

experiments (Fig. 4) also rule out a simple constant threshold strategy. Consistent with substantial171

improvements in perceptual sensitivity through learning, DDM fits to the rats also showed an increase in172

drift rate throughout learning (Fig. S5). Similar increases in drift rate have been observed as a universal173

feature of learning throughout numerous studies fitting learning data with the DDM [18, 49–53]. These174

qualitative comparisons suggest that rats adopt a “non-greedy” strategy that trades initial rewards to175

prioritize learning in order to harvest a higher iRR sooner and accrue more total reward over the course176

of learning.177

Learning Speed Scales with Reaction Time178

To test the central prediction of the LDDM that learning (change in SNR) scales with mean DT, we179

designed a RT restriction experiment and studied the effects of the restriction on learning in the rats.180

Previously trained rats (n = 12) were randomly divided into two groups in which they would have to181

learn a new stimulus pair while responding above or below their individual mean RTs (‘slow’ and ‘fast’)182

for the previously trained stimulus pair (Fig. 4a). Before introducing the new stimuli, we carried out183

practice sessions with the new timing restrictions to reduce potential effects related to a lack of familiarity184

with the new regime. After the restriction, RTs were significantly different between the two groups (Fig.185

4b). In the model, we simulated a RT restriction by setting two different DTs (Fig. 4c).186

We found no difference in initial mean session accuracy between the two groups, followed by signifi-187

cantly higher accuracy in the slow group in subsequent sessions (Fig. 4d). The slope of accuracy across188

sessions was significantly higher in the slow group (Fig. 4d, inset). Importantly, the fast group had a189

positive slope and an accuracy above chance by the last session of the experiment, indicating this group190

learned (Fig. 4d).191

Because of the speed-accuracy trade-off in the DDM, however, accuracy could be higher in the slow192

group even with no difference in perceptual sensitivity (SNR) or learning speed simply because on average193

they view the stimulus for longer during a trial, reflecting a higher threshold. To see if underlying194

perceptual sensitivity increased faster in the slow group, we computed the rats’ inferred SNR throughout195

learning, which takes account of the relationship between RT and ER. The SNR of the slow group196

increased faster (Fig. 4e), consistent with a learning speed that scales with DT.197

We found that the slow group had a lower initial iRR, but that this iRR exceeded that of the fast198

group halfway through the experiment (Fig. 4f). Similarly, the slow group trended towards a higher199

cumulative reward by the end of the experiment (Fig. 4g). The LDDM qualitatively replicates all of our200

behavioral findings (Fig. 4h-k). These results demonstrate the potential total reward benefit of faster201

learning, which in this case was a product of enforced slower RTs.202

Our experiments and simulations demonstrate that longer RTs lead to faster learning and higher203

reward for our task setting both in vivo and in silico. Moreover, they are consistent with the hypothesis204

that rats choose high initial RTs in order to prioritize learning and achieve higher iRRs and cumulative205

rewards during the task.206
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times were predicted to learn faster, reach a higher instantaneous reward rate sooner and accumulate more total
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Rats Choose Reaction Time Based on Learning Prospects207

The previous experiments suggest that rats trade initial rewards for faster learning. Nonetheless, it is208

unclear how much control rats exert over their RTs. A control-free heuristic approach, such as adopting209

a fixed high threshold (our constant threshold policy), might incidentally appear near optimal for our210

particular task parameters, but might not be responsive to changed task conditions. If an agent is211

controlling the reward investment it makes in the service of learning, then it should only make that212

investment if it is possible to learn.213

To test whether the rats’ RT modulations were sensitive to learning potential, we conducted a new214

experiment in which we divided rats into a group that encountered new learnable visible stimuli (n = 16,215

sessions = 13), and another that encountered unlearnable transparent or near-transparent stimuli (n = 8,216

sessions = 11) (Fig. 5a). From the perspective of the LDDM, both groups start with approximately217

zero SNR, however only the group with the visible stimuli can improve that SNR. If the rats choose218

their RTs based on how much it is possible to learn, then: (1) rats encountering stimuli that they can219

learn will increase their RTs to learn quickly and increase future iRR. (2) Rats encountering stimuli220
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Figure 5: Rats choose reaction time based on stimulus learnability. (a) Schematic of experiment: rats
trained on stimulus pair 1 were presented with new visible stimulus pair 2 or transparent (alpha = 0, 0.1) stimuli.
If rats change their reaction times based on stimulus learnability, they should increase their reaction times for
the new visible stimuli to increase learning and future iRR and decrease their reaction time to increase iRR for
the transparent stimuli. (b) Learning across normalized sessions in speed-accuracy space for new visible stimuli
(n = 16, crosses) and transparent stimuli (n = 8, squares). Color map indicates time relative to start and end of the
experiment. (c) iRR-sensitive threshold model runs with “visible” (crosses) and “transparent” (squares) stimuli
(modeled as containing some signal, and no signal) plotted in speed-accuracy space. The crosses are illustrative
and do not reflect any uncertainty. Color map indicates time relative to start and end of simulation. (d) Mean
change in reaction time across sessions for visible stimuli or transparent stimuli compared to previously known
stimuli. Positive change means an increase relative to previous average. Inset : first and second half of first session
for transparent stimuli. * denotes p < 0.05 in permutation test. (e) Correlation between initial individual mean
change in reaction time (quantity in d) and change in SNR (learning speed: slope of linear fit to SNR per session)
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of the mean in b and d. (f) Decision time across time engagement time for visible and transparent stimuli runs
in model simulation. (g) Instantaneous change in SNR (dSNR/dt) as a function of initial reaction time (decision
time + non-decision time t0) in model simulation.

that they cannot learn might first increase their RTs to learn that there is nothing to learn, but (3) will221

subsequently decrease RTs to maximize iRR.222

We found that the rats with the visible stimuli qualitatively replicated the same trajectory in speed-223

accuracy space that we found when rats were trained for the first time (Fig. 2b, Fig. 5b). Because these224

previously trained rats had already mastered the task mechanics, this result rules out non-stimulus-related225

learning effects as the primary explanation for long RTs at the beginning of learning. Any slowdown in226

RT in this experiment was only attributable to stimulus changes. We calculated the mean change in RT227

(mean ∆RT) of new stimuli versus known stimuli. The visible stimuli group had a significant slow-down228

in RT lasting many sessions that returned to baseline by the end of the experiment (Fig. 5d, black trace).229

Rats with the transparent stimuli also approached the OPC by decreasing their RTs across sessions to230

better maximize iRR (Fig. 5b). After a brief initial slow-down in RT in the first half of the first session231

(Fig. 5d, inset), RTs rapidly decreased (Fig. 5d, grey trace). Notably, RTs fell below the baseline RTs,232

indicating a strategy of responding quickly, which is iRR-optimal for this zero SNR task. Hence rodents233

are capable of modulating their strategy depending on their learning prospects.234

This experiment also argues against several simple strategies for choosing reaction times. If rats235

respond more slowly after error trials, a phenomenon known as post-error slowing (PES), they might236

exhibit slower RTs early in learning when errors are frequent [54]. Indeed, we found a slight mean PES237

effect of about 50ms that was on average constant throughout learning, though it was highly variable238

across individuals (Fig. S7). However, rats viewing transparent stimuli had ERs constrained to 50%,239

yet their RTs systematically decreased (Fig. 5b), such that PES alone cannot account for their strategy.240

Similarly, choosing RTs as a simple function of time since encountering a task would not explain the241

difference in RT trajectories between visible and transparent stimuli (Fig. 5d).242
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A simulation of this experiment with the iRR-sensitive threshold LDDM model qualitatively replicated243

the rats’ behavior (Fig. 5c, f, g). Rodent behavior is thus consistent with a threshold policy that starts244

with a relatively long DT upon encountering a new task, and then decays towards the iRR-optimal DT.245

All other threshold strategies we considered fail to account for the totality of the results. The iRR-246

greedy strategy—as before—stays pinned to the OPC and speeds up upon encountering the novel stimuli247

rather than slowing down. The constant threshold strategy fails to predict the speedup in DT for the248

transparent stimuli. Finally, the global optimal strategy (which has oracle knowledge of the prospects249

for learning in each task) behaves like the iRR-greedy policy from the start on the transparent stimuli250

as there is nothing to learn.251

Our RT restriction experiment showed that higher initial RTs led to faster learning, a higher iRR and252

more cumulative reward. Consistent with these findings, there was a correlation between initial mean253

∆RT and initial ∆SNR across subjects viewing the visible stimuli, indicating the more an animal slowed254

down, the faster it learned (Fig. 5e). We further tested these results in the voluntary setting by tracking255

iRR and cumulative reward for the rats in the learnable stimuli setting with the largest (blue, n = 4)256

and smallest (black, n = 4) “self-imposed” change in RT (Fig. 6a). The rats with the largest change257

started with a lower but ended with a higher mean iRR, and collected more cumulative reward (Fig. 6b,258

c). Thus, in the voluntary setting there is a clear relationship between RT, learning speed, and its total259

reward benefits.260
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with largest and smallest mean changes in reaction time across task engagement time. (c) Mean cumulative reward
over task engagement time for subjects as in b.

Discussion261

Our theoretical and empirical results identify a trade-off between the need to learn rapidly and the need262

to accrue immediate reward in a perceptual decision making task. We find that rats adapt their decision263

strategy to improve learning speed and approximately maximize total reward, effectively navigating264

this trade-off over the total period of task engagement. In our experiments, rats responded slowly upon265

encountering novel stimuli, but only when there was a visual stimulus to learn from, indicating they chose266

to respond more slowly in order to learn quickly. This behavior requires foregoing both a cognitively267

easier strategy—guessing as quickly as possible—and relinquishing a higher immediately available reward268

for several sessions spanning multiple days. By imposing different response times in groups of animals, we269

empirically verified our theoretical prediction that slow responses lead to faster learning and greater total270

reward in our task. These findings collectively show that rats exhibit cognitive control of the learning271

process, that is, the ability to engage in goal-directed behavior that would otherwise conflict with default272

or more immediately rewarding responses [22, 55–57].273

Our high-throughput behavioral study with a controlled training protocol permits examination of274

the entire trajectory of learning, revealing hallmarks of non-greedy decision making. Nonetheless, it is275

accompanied by several experimental limitations. Our estimation of SNR improvements during learning276

relies on the drift-diffusion model. Importantly, while this approach has been widely used in prior work277

[18, 35, 49, 58], our conclusions are predicated on this model’s approximate validity for our task. Future278

work could address this issue by using a paradigm in which learners with different response deadlines279
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are tested at the same fixed response deadline, equalizing the impact of stimulus exposure at test. This280

model-free paradigm is not trivial in rodents, because response deadlines cannot be rapidly instructed.281

Our study also focuses on one visual perceptual task. Further work should verify our findings with other282

perceptual tasks across difficulties, modalities, and organisms.283

To understand possible learning trajectories, we introduced a theoretical framework based on a re-284

current neural network, and from this derived a learning drift-diffusion model. The LDDM extends the285

canonical drift-diffusion framework to incorporate long-term perceptual learning, and formalizes a trade-286

off between learning speed and instantaneous reward. However, it remains approximate and limited in287

several ways. The LDDM builds off the simplest form of a drift-diffusion model, and various exten-288

sions and related models have been proposed to better fit behavioral data, including urgency signals [47,289

59–62], history-dependent effects [63–69], imperfect sensory integration [35], confidence [58, 70, 71], and290

multi-alternative choices [72, 73]. More broadly, it remains unclear whether the drift-diffusion framework291

in fact underlies perceptual decision making, with a variety of other proposals providing differing ac-292

counts [38, 74, 75]. We speculate that the qualitative learning speed/instantaneous reward rate trade-off293

that we formally derive in the LDDM would also arise in other models of within-trial decision making294

dynamics. In addition, on a long timescale over many trials, the LDDM improves performance through295

error-corrective learning. Future work could investigate learning dynamics under other proposed learning296

algorithms such as feedback alignment [76], node perturbation [77], or reinforcement learning [33].297

Conceptually, the learning speed/instantaneous reward rate trade-off is related to the explore/exploit298

trade-off common in reinforcement learning, but differs in detail. As traditionally framed in reinforcement299

learning, exploration permits sampling of the value associated with fully observable states and actions300

[78, 79]. By contrast, in our setting, the value of each action given object identity is clear, but object301

identity must be inferred from noisy measurements over time [80]. Exploration of the stimulus through302

long decision times permits integration of enough stimulus information such that error feedback reliably303

identifies informative stimulus features, improving future state inferences. Our trade-off therefore reflects304

a perceptual rather than value-based learning process. However, because there are reward benefits to305

improving future state inferences, this perceptual learning process is also necessarily value-based. The306

distinction between perceptual and value-based decision making may be due to the fact that they have307

been studied with paradigms obviating one another [81]. Even though our task was one with known308

decision values, the focus on learning revealed the value-based components of a perceptual learning309

process. Advances in deep reinforcement learning, where the marriage of perceptual learning mechanisms310

from deep learning and value-based learning mechanisms in reinforcement learning are an exciting avenue311

to further understand biological learning [82]. State-of-the-art deep reinforcement learning agents, which312

succeed in navigating the traditional explore/exploit dilemma on complicated tasks like Atari games,313

nevertheless fail to learn perceptual decisions like those considered here [83]. Our findings may offer314

routes to improving these artificial systems.315

In order to navigate the learning speed/instantaneous reward rate trade-off, our findings suggest that316

rats deploy cognitive control of the learning process. Cognitive control has been defined as the allocation317

of mental faculties for goal-directed behavior over other default or more immediately rewarding behaviors318

[57]. Two main features of cognitive control govern its use: it is limited [84], and it is costly [55, 85–90]. If319

control is costly, then its application needs to be justified by the benefits of its application. The Expected320

Value of Control (EVC) theory posits that control is allocated in proportion to the expected value of321

control [56]. Previous work demonstrated that rats are capable of the economic reasoning required for322

optimal control allocation [91–93]. We demonstrated that rats incur a substantial initial instantaneous323

reward rate opportunity cost to learn the task more quickly, foregoing a cognitively less demanding fast324

guessing strategy that would yield higher initial rewards. Rather than optimizing instantaneous reward325

rate, which has been the focus of prior theories [9, 10, 18], our analysis suggests that rats approximately326

optimize total reward over task engagement. Relinquishing initial reward to learn faster, a cognitively327

costly strategy, is justified by a larger total reward over task engagement.328

Assessing the expected value of learning in a new task requires knowing how much can be learned329

and how long the task will be performed. Neither of these quantities is directly observable upon first330

encountering a new task, opening the question of how rodents know to slow down in one task but not331

another. Importantly, rats only traded reward for information when learning was possible, a result in332

line with data demonstrating that humans are more likely to trade reward for information during long333

experimental time horizons, when learning is more likely [94]. Moreover, previous work has highlighted334

the explicit opportunity cost of longer deliberation times [47], a trade-off that will differ during learning335

and at asymptotic performance, as we demonstrate here. One possibility is that rats estimate learnability336

and task duration through meta-learning processes that learn to estimate the value of learning through337

experience with many tasks [95–97]. The amount of control allocated to learning the current task could338
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be proportional to its estimated value, determined based on similarity to previous learning situations339

and their reward outcomes and control costs [98]. Previous observations of suboptimal decision times340

in humans analogous to those we observed in rats [11, 18, 30, 31], might reflect incomplete learning, or341

subjects who think they still have more to learn. Future work could test further predictions emerging342

from a control-based theory of learning. An agent should assess both the predicted duration of task343

engagement and the predicted difficulty of learning in order to determine the optimal decision making344

strategy early in learning, and this can be tested by, for instance, manipulating the time horizon and345

difficulty of the task.346

The trend of a decrease in response time and an increase in accuracy through practice—which we347

observed in our rats—has been widely observed for decades in the skill acquisition literature, and is348

known as the Law of Practice [99–102]. Accounts of the Law of Practice have posited a cognitive control-349

mediated transition from shared/controlled to separate/automatic representations of skills with practice350

[101, 103–105]. On this view, control mechanisms are a limited, slow resource that impose unwanted351

processing delays. Our results suggest an alternative non-mutually-exclusive reward-based account for352

why we may so ubiquitously observe the Law of Practice. Slow responses early in learning may be353

the goal of cognitive control, as they allow for faster learning, and faster learning leads to higher total354

reward. When faced with the ever-changing tasks furnished by naturalistic environments, it is the speed355

of learning which may exert the strongest impact on total reward.356
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Methods373

Behavioral Training374

Subjects375

All care and experimental manipulation of animals were reviewed and approved by the Harvard In-376

stitutional Animal Care and Use Committee. We trained animals on a high-throughput visual object377

recognition task that has been previously described [34]. A total of 44 female Long-Evans rats were used378

for this study, with 38 included in analyses. Twenty-eight rats (AK1—12 & AL1—16) initiated training379

on stimulus pair 1, and 26 completed it (AK8 and AL12 failed to learn). Another 8 animals (AM1—8)380

were trained on stimulus pair 1 but were not included in the initial analysis focusing on asymptotic381

performance and learning (Fig. 1d, e; Fig. 2) because they were trained after the analyses had been382

completed. Subjects AM5—8, although trained, did not participate in other behavioral experiments so383

do not appear in this study. Sixteen animals (AL1—8, AL13—16 & AM1—8) participated in learning384

stimulus pair 2 (“new visible stimuli”; canonical only training regime) while 10 animals (AK1—3, 5—7,385

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.259911doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.259911


9—12) initially participated in viewing transparent (alpha = 0; AK1, 3, 6, 7, 11) or near-transparent386

stimuli (alpha = 0.1; AK2, 5, 9, 10, 12), with the subjects sorted randomly into each group. The trans-387

parent and near-transparent groups were aggregated but 2 animals from the near-transparent group were388

excluded for performing above chance (AK5 & AK12) as this experiment focused on the effects of stimuli389

that could not be learned. The same 16 animals used for stimulus pair 2 were used for learning stimulus390

pair 3 under two different reaction time restrictions in which the subjects were sorted randomly. One rat391

(AL1) was excluded from the outset for not having learned stimulus pair 2. Two additional rats (AL4 &392

AL7) were excluded for not completing enough trials during practice sessions with the new reaction time393

restrictions. A final rat (AM1) was excluded because it failed to learn the task. The 12 remaining rats394

were grouped into 7 subjects required to respond above (AL3, AL8, AL13, AL15, AL16, AM3, AM4)395

and 5 subjects required to respond below their individual average reaction times (AL2, AL5, AL6, AL14,396

AM2). Finally, 8 rats (AN1—8) were trained on a simplified training regime (“canonical only”) used as397

a control for the typical “size & rotation” training object recognition regime (described below). Table398

S1 summarizes individual subject participation across behavioral experiments.399

Behavioral Training Boxes400

Rats were trained in high-throughput behavioral training rigs, each made up of 4 vertically stacked401

behavioral training boxes. In order to enter the behavioral training boxes, the animals were first indi-402

vidually transferred from their home cages to temporary plastic housing cages that would slip into the403

behavioral training boxes and snap into place. Each plastic cage had a porthole in front where the ani-404

mals could stick out their head. In front of the animal in the behavior boxes were three easily accessible405

stainless steel lickports electrically coupled to capacitive sensors, and a computer monitor (Dell P190S,406

Round Rock, TX; Samsung 943-BT, Seoul, South Korea) at approximately 40◦ visual angle from the407

rats’ location. The three sensors were arranged in a straight horizontal line approximately a centimeter408

apart and at mouth-height for the rats. The two side ports (L/R) were connected to syringe pumps (New409

Era Pump Systems, Inc. NE-500, Farmingdale, NY) that would automatically dispense water upon a410

correct trial. The center port was connected to a syringe that was used to manually dispense water dur-411

ing the initial phases of training (see below). Each behavior box was equipped with a computer (Apple412

Macmini 6,1 running OsX 10.9.5 [13F34] or Macmini 7,1 running OSX El Capitan 10.11.13, Cupertino,413

CA) running MWorks, an open source software for running real-time behavioral experiments (MWorks414

0.5.dev [d7c9069] or 0.6 [c186e7], The MWorks Project https://mworks.github.io/). The capacitive sen-415

sors (Phidget Touch Sensor P/N 1129 1, Calgary, Alberta, Canada) were controlled by a microcontroller416

(Phidget Interface Kit 8/8/8 P/N 1018 2) that was connected via USB to the computer. The syringe417

pumps were connected to the computer via an RS232 adapter (Startech RS-232/422/485 Serial over IP418

Ethernet Device Server, Lockbourne, OH). To allow the experimenter visual access to the rats’ behavior,419

each box was, in addition, illuminated with red LEDs, not visible to the rats.420

Habituation421

Long-Evans rats (Charles River Laboratories, Wilmington, MA) of about 250 g were allowed to acclimate422

to the laboratory environment upon arrival for about a week. After acclimation, they were habituated423

to humans for one or two days. The habituation procedure involved petting and transfer of the rats424

from their cage to the experimenter’s lap until the animals were comfortable with the handling. Once425

habituated to handling, the rats were introduced to the training environment. To allow the animals to426

get used to the training plastic cages, the feedback sounds generated by the behavior rigs, and to become427

comfortable in the behavior training room, they were transferred to the temporary plastic cages used in428

our high-throughput behavioral training rigs and kept in the training room for the duration of a training429

session undergone by a set of trained animals. This procedure was repeated after water deprivation, and430

during the training session undergone by the trained animals, the new animals were taught to poke their431

head out of a porthole available in each plastic cage to receive a water reward from a handheld syringe432

connected to a lickport identical to the ones in the behavior training boxes in the training rigs. Once433

the animals reliably stuck their head out of the porthole (one or two days) and accessed water from the434

syringe, they were moved into the behavior boxes.435

Early Shaping436

On their first day in the behavior boxes, rats were individually tutored as follows: Water reward was437

manually dispensed from the center lickport which is normally used to initiate a trial. When the animal438

licked the center lickport, a trial began. After a 500 ms tone period, one of two visual objects (stimulus439
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pair 1) appeared on the screen (large front view, degree of visual angle 40◦) chosen pseudo-randomly440

(three randomly consecutive presentations of one stimulus resulted in a subsequent presentation of the441

other stimulus). This appearance was followed by a 350 ms minimum reaction time that was instituted to442

promote visual processing of the stimuli. If the animal licked one of the side (L/R) lickports during this443

time, then the trial was aborted, there would be a minimum intertrial time (1300 ms), and the process444

would begin again.445

At the time of stimulus presentation, a free water reward was dispensed from the correct side (L/R)446

lickport. If the animals licked the correct side lickport within the allotted amount of time (3500 ms) then447

an additional reward was automatically dispensed from that port. This portion of training was meant to448

begin teaching the animals the task mechanics, that is to first lick the center port, and then one of the449

two side ports.450

After the rats were sufficiently engaged with the lickports and began self-initiating trials by licking451

the center lickport (usually 1 to several days, determined by experimenter) no more water was dispensed452

manually through the center lickport, but the free water rewards from the side lickports were still given.453

Once the rats were self-initiating enough trials without manual rewards from the center lickport (>200454

per session), the free reward condition was stopped, and only correct responses were rewarded.455

Training456

Data collection for this study began once the rats had demonstrated proficiency of the task mechanics457

(as described above). The training curriculum followed was similar to that by Zoccolan and colleagues458

[34]. Rats performed the task for about 2 hours daily. Initially, the rats were only presented with large459

front views (40◦ visual angle , 0◦ of rotation) of the two stimuli (stimulus pair 1). Once the rats reached460

a performance level of ≥70% with these views, the stimuli decreased in size to 15◦ visual angle in a461

staircased fashion with steps of 2.5◦ visual angle. Once the rats reached 15◦ visual angle, rotations of462

the stimuli to the left or right were staircased in steps of 5◦ at a constant size of 30◦ visual angle. Once463

the rats reached ±60◦ of rotation, they were considered to have completed training and were presented464

with random transformations of the stimuli at different sizes (15◦ to 40◦ visual angle, step = 15◦; 0◦ of465

rotation) or different rotations (−60 to +60◦ of rotation, step = 15◦; 30◦ visual angle). After this point,466

ten additional training sessions were collected to allow the animals’ performance to stabilize with this467

expanded stimulus set.468

During training, there was a bias correction that tracked the animals’ tendency to be biased to one469

side. If biased, stimuli mapped to the unbiased side were presented for a maximum of 3 consecutive470

trials. For example, if the bias correction detected an animal was biased to the right, the left-mapped471

stimulus would appear three trials at a time in a non-random fashion and the animals’ performance472

would drop from 50% to 25%, reducing the advantageousness of a biased strategy dramatically. If the473

animals continued to exhibit bias after one or two sessions of bias correction, then the limit was pushed474

to 5 consecutive trials. Once the bias disappeared, stimulus presentation resumed in a pseudo-random475

fashion.476

The left/right mapping of the stimuli to lickports was counterbalanced across animals, ruling out477

any effects related left/right stimulus-independent biases, or left/right-independent stimulus bias across478

animals.479

Training Regime Comparison480

Although object recognition is supposed to be a fairly automatic process [106], it is possible that the 14481

possible presentations of each stimulus of stimulus pair 1 (6 sizes at constant rotation, and 8 rotations482

at constant size) varied in difficulty. To rule out any possible difficulty effects during training and at483

asymptotic performance, We trained n = 8 different rats to asymptotic performance on the task but484

only on large, front-views of the visual objects (Fig. S8a). We compared the learning and asymptotic485

performance of the “size & rotation” cohort and the “canonical only” cohort across a wide range of486

behavioral measures. During learning, animals in both regimes followed similar learning trajectories in487

speed accuracy space (Fig. S8b), and clustered around the OPC at asymptotic performance (Fig. S8c).488

Comparisons of accuracy, reaction time, and fraction maximum instantaneous reward rate trajectories489

during learning and at averages asymptotic performance revealed no detectable differences (Fig. S8d—f).490

Total trials per session, and voluntary intertrial intervals after error trials did show slightly varied tra-491

jectories during learning, though there were no differences in their means after learning (Fig. S8g, h).492

The difference in total trials per session could be unrelated to the difference in training regimes. The493

difference in voluntary intertrial intervals, however, could be related to the introduction of different sizes494
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and rotations: a sudden spike in this metric is seen about halfway through normalized sessions and decays495

over time. If this is the case, it is a curious result that rats choose to display their purported “surprise”496

in-between trials, and not during trials, as we found no difference in the reaction time trajectories. Both497

training regimes had overlapping fraction trials ignored metrics during learning, with a sharp decrease498

after the start, and a small significant difference in their number at asymptotic performance (Fig. S8i).499

We point out the fact that we do not consider voluntary intertrial intervals nor ignored trials in our500

analysis, so the differences between the regimes do not affect our conclusions. Overall, these results501

suggest that there is not a measurable or relevant difficulty effect based on our training regime with a502

variety of stimulus presentations.503

Stimulus Learnability Experiment504

Transparent Stimuli. In order to assess how animals behaved in a scenario with non-existent learning505

potential, a subset of already well-trained animals were presented with transparent (n = 5, alpha =506

0) or near-transparent (n = 5, alpha = 0.1) versions of the familiar stimulus pair 1 for a duration of507

11 sessions. Before these sessions, four sessions with stimulus pair 1 at full opacity (alpha = 1) were508

conducted to ensure animals could perform the task adequately before the manipulation. We predicted509

that the near-transparent condition would segregate animals into two groups, those that could perform510

the task and those that could not, based on each individual’s perceptual ability. The animals in the511

near-transparent condition that remained around chance performance (n = 3, rat AK2, AK9 & AK10)512

were grouped with the animals from the transparent condition, while those that performed well above513

chance (n = 2, rat AK5 & AK12) were excluded.514

Reaction times were predicted to decrease during the course of the experiment, so to measure the515

change most effectively, the minimum reaction time requirement of 350 ms was removed. However,516

removing the requirement could lead to reduced reaction times regardless of the presented stimuli. To be517

able to measure whether the transparent stimuli led to a significant difference in reaction times compared518

to visible stimuli, we ran sessions with visible stimuli with no reaction time requirement for the same519

animals and compared these reaction times with those from the transparent condition. We found that the520

aggregate reaction time distributions were significantly different (Fig. S9a). A comparison of Vincentized521

reaction times revealed that there was a significant difference in the fastest reaction time decile (Fig.522

S9b), confirming that reaction times decreased significantly during presentation of transparent stimuli.523

New Visible Stimuli. In order to assess how animals behaved in a scenario with high learning potential,524

a subset (n = 16) of already well-trained animals on stimulus pair 1 were presented with a never before525

seen stimulus pair (stimulus pair 2) for a duration of 13 sessions. Before these sessions, 5 sessions526

with the familiar stimulus pair 1 were recorded immediately preceding the stimulus pair 2 sessions in527

order to compare performance and reaction time after the manipulation for every animal. Previous pilot528

experiments showed that the animals immediately assigned a left/right mapping to the new stimuli based529

on presumed similarity to previously trained stimulus pair, so in order to enforce learning, the left/right530

mapping contrary to that predicted by the animals in the pilot tests was chosen. Because of this, animals531

typically began with an accuracy below 50%, as they first had to undergo reversal learning for their initial532

mapping assumptions. Because the goal of this experiment was to measure effects during learning and533

not demonstrate invariant object recognition, the new stimuli were presented in large front views only534

(visual angle = 40◦, rotation = 0◦).535

Behavioral Data Analysis536

Software537

Behavioral psychophysical data was recorded using the open-source MWorks 0.5.1 and 0.6 software538

(https://mworks.github.io/downloads/).The data were analyzed using Python 2.7 with the pymworks539

extension.540

Drift-Diffusion Model Fit541

In order to verify that our behavioral data could be modeled as a drift-diffusion process, the data were542

fit with a hierarchical drift-diffusion model [107], permitting subsequent analysis (such as comparison543

to the optimal performance curve) based on the assumption of a drift-diffusion process (Fig. S3). In544

order to assess parameter changes across learning, we fit the DDM to the start and end of learning for545

both stimulus pair 1 and stimulus pair 2, the first and second set of stimuli learned by the animals (Fig.546
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S5). Drift rates increased and thresholds decreased by the end of learning, in agreement with previous547

findings [18, 49–53].548

Behavioral Metrics549

Error Rate (ER) was calculated by dividing the number of error trials by the number of total trials550

(error + correct) within a given window of trials or a the trials in a full behavioral training session.551

Accuracy was calculated as 1 - ER.552

ER =
error trials

total trials
(4)

Accuracy = 1− ER (5)

Reaction Time (RT) for one trial was measured by subtracting the time of the first lick on a response553

lickport from the stimulus onset time on the computer monitor. Mean RT was calculated by averaging554

reaction times across trials within a given window of trials or the trials in a full behavioral training555

session.556

〈RT 〉 =
1

n

trial n∑
trial i=1

RTi (6)

Vincentized Reaction Time is one method to report aggregate reaction time data meant to preserve557

individual distribution shape and be less sensitive to outliers in the group distribution [108, 109], al-558

though some scientists have argued parametric fitting (with an ex-Gaussian distribution, for example)559

and parameter averaging across subjects outperforms Vincentizing as sample size increases [110, 111].560

Each subject’s reaction time distribution is divided into quantiles (e.g. deciles; similar to percentile, but561

between 0 and 1), and then the quantiles across subjects are averaged.562

Decision Time (DT) for one trial was measured by subtracting the non-decision time T0 (see Esti-563

mating T0) from RT. Mean DT 〈DT 〉 was calculated by subtracting T0 from the mean RT 〈RT 〉 across564

trials within a given window of trials or the trials in a full behavioral training session.565

〈DT 〉 = 〈RT 〉 − T0 (7)

566

Mean Normalized Decision Time 〈DT 〉/Dtot was measured by dividing mean DT 〈DT 〉 by Dtot, the567

sum of the non-decision time T0 and DRSI, the mean response-to-stimulus interval (see Determining568

DRSI, Derr, Dcorr).569

〈DT 〉
Dtot

=
〈RT 〉 − T0

T0 +DRSI
(8)

Mean Difference in Mean Reaction Time ∆RT was calculated by subtracting the mean reaction570

time of a number of baseline sessions from the mean reaction time of an experimental session. A positive571

difference indicates an increase over baseline mean reaction time. The mean of the two immediately572

preceding sessions with stimulus pair 1 were subtracted from the mean reaction time of every session573

with stimulus pair 2 or transparent stimuli for every animal individually (Fig. 5d, e). These differences574

were then averaged to get a mean difference in mean reaction time ∆RT.575

Mean Reward Rate 〈RR〉 is defined as mean accuracy per mean time per trial [9]:576

〈RR〉 =
mean accuracy

mean time per trial
(9)

The mean time per trial is composed of the mean decision time 〈DT 〉, non-decision-time T0, the577

post-error time Derr (see Determining DRSI, Derr, Dcorr) scaled by the fraction of errors, and the578

post-correct time Dcorr scaled by the fraction of correct choices:579

mean time per trial = 〈DT 〉+ T0 + (1− ER)DcorrER ·Derr (10)

If we define Dp as the extra penalty time, that is, the difference between Derr and Dcorr:580

Dp = Derr −Dcorr (11)
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We can calculate the mean reward rate by equation A26 in Bogacz et al, 2006[10]:581

〈RR〉 =
1− ER

〈DT 〉+ T0 +Dcorr + ER ·Dp
(12)

Mean Total Correct Trials is a model-free measure of the reward attained by the animals within582

a given window of trials. Every correct response yields an identical water reward, hence, reward can be583

counted by counting correct responses across trials. For one subject a ∈ [1, 2, 3,..., k ], total correct trials584

at trial n are the sum of correct trials up to trial n:585

can =

trial n∑
trial i=1

oai (13)

where oai is an element in a vector oa containing the outcomes of those trials oa = [oa1 , o
a
2 , o

a
3 , ..., o

a
n].586

For correct and error responses oan = 1 and 0 respectively (e.g. oan = [0, 0, 1, 1, 0, ..., 1]).587

Mean total correct trials up to trial n is calculated by taking the average of total correct trials across588

all animals k up to trial n.589

〈cn〉 =
1

k

trial n∑
trial i=1

c1i + c2i + c3i + ...+ cki (14)

Mean Cumulative Reward is a measure of the reward attained by the animals within a given window590

of trials. To calculate this quantity, a moving average of RT and accuracy for a given window size are first591

calculated for every animal individually. To avoid averaging artifacts, only values a full window length592

from the beginning are considered. Given these moving averages, RR is then calculated for every animal593

and subsequently averaged across animals to get a moving average of mean reward rate. To calculate594

the mean cumulative reward, a numerical integral over a particular task time, such as task engagement595

time (see Measuring Task Time) is then calculated using the composite trapezoidal rule.596

Signal-to-Noise Ratio (SNR) is a measure of an agent’s perceptual ability in a discrimination task.597

Given an animal’s particular ER and 〈DT 〉, we use a standard drift-diffusion model equation to infer its598

SNR Ā:599

Āinfer =
1− 2ER

2〈DT 〉 log
1− ER
ER

(15)

The SNR equation defines a U-shaped curve that increases as ERs move away from 0.5. For cases600

early in learning where ERs were below 0.5 because of potential initial biases, we assumed the inferred601

SNR was negative (meaning the animals had to unlearn the biases in order to learn, and thus had a602

monotonically increasing SNR during learning).603

SNR Performance Frontier is a measure of an agent’s possible error rate and reaction time com-604

binations based on their current perceptual ability. Because of the speed-accuracy trade-off, not all605

combinations of ER and 〈DT 〉 are possible. Instead, performance is bounded by an agent’s SNR Ā at606

any point in time, and their particular (ER, 〈DT 〉) combination will depend on their choice of threshold.607

Given a fixed Dtot (as in the case of our experiment), this bound exists in the form of a performance608

frontier—-the combination of all resultant ERs and mean normalized DTs possible given a fixed SNR Ā609

and all possible thresholds z̄.610

Given an animal’s particular ER and 〈DT 〉, we use a standard drift-diffusion model equation to infer611

its SNR Ā:612

Āinfer =
1− 2ER

2〈DT 〉 log
1− ER
ER

(16)

We can then use that Āinfer to calculate its performance frontier for a range of thresholds z̄ ∈ [0, ∞)613

with standard equations from the drift-diffusion model:614

ERĀinfer
=

1

1 + e2z̄Āinfer
(17)

DTĀinfer
= z̄ tanh

(
z̄Āinfer

)
(18)

(19)
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For every performance frontier there will be one unique (ERĀinfer
, DTĀinfer

) combination for which615

reward rate will be greatest, and it will lie on the OPC.616

Fraction Maximum Instantaneous Reward Rate is a measure of distance to the optimal perfor-617

mance curve, i.e. optimal performance. Given an animal’s ER and 〈DT 〉, we inferred their SNR and618

calculated their performance frontier as described above. We then divided the animal’s reward rate by619

the maximum reward rate on their performance frontier, corresponding to the point on the OPC they620

could have attained given their inferred SNR Ainfer:621

fraction max RR =
RRER,〈DT 〉

max RRĀinfer

(20)

Maximum Instantaneous Reward Rate Opportunity Cost, like Fraction Maximum Reward Rate,622

is also measure of distance to the optimal performance curve, i.e. optimal performance, but it emphasizes623

the reward rate fraction given up by the subject given its current ER and 〈DT 〉 combination along its624

SNR performance frontier. It is simply:625

max RR opportunity cost = 1− fraction max RR (21)

Mean Post-Error Slowing is a metric to account for the potential policy of learning by slowing down626

after error trials. In order to quantify the amount of post-error slowing in a particular subject, the627

subject’s reaction times for in a session are segregated into correct trials following an error, and correct628

trials following a correct choice, and separately averaged. The difference between these indicates the629

degree of post-error slowing present in that subject during that session.630

post-error slowing (PES) = 〈RTpost−error correct trials〉 − 〈RTpost−correct correct trials〉 (22)

631

632

The mean post-error slowing for one session is thus the mean of this quantity across all subjects k.633

〈PES〉 =
PES1 + PES2 + PES3 + ...+ PESk

k
(23)

Computing Error634

Within-subject session errors (e.g. Fig. 1d) for accuracy and reaction times were calculated by635

bootstrapping trial outcomes and reaction times for each session. We calculated a bootstrapped standard636

error of the mean by taking the standard deviation of the distribution of means from the bootstrapped637

samples. A 95% confidence interval can be calculated from the distribution of means as well.638

Across-subject session errors (e.g. Fig. 5d) were computed by calculating the standard error of the639

mean of individual animal session means.640

Across-subject sliding window errors (e.g. Fig. 5b; Fig. 6b) were calculated by averaging trials641

over a sliding window (e.g. 200 trials) for each animal first, then taking the standard error of the642

mean of each step across animals. Alternatively, the average could be taken across a quantile (e.g. first643

decile, second decile, etc.), and then the standard error of the mean of each quantile across animals was644

computed.645

Measuring Task Time646

Trials are the smallest unit of behavioral measure in the task and are defined by one stimulus presen-647

tation accompanied by one outcome (correct, error) and one reaction time.648

Sessions are composed of as many trials as an animal chooses to complete within a set window of wall649

clock time, typically around 2 hours once daily. An error rate (fraction of error trials over total trials for650

the session) and a mean reaction time can be calculated for a session.651

Normalized Sessions are a group of sessions (e.g. 1, 2, 3, ..., 10) where a particular session’s normalized652

index corresponds to its index divided by the total number of sessions in the group (e.g. 0.1, 0.2, 0.3, ...,653
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1.0). Because animals may take different numbers of sessions in order to learn to criterion, for instance,654

a normalized index for sessions allows better comparison of psychophysical measurements throughout655

learning.656

Stimulus Viewing Time measures the time that the animals are viewing the stimulus, defined as the657

sum of all reaction times up to trial n as:658

stimulus viewing time =

trial n∑
trial i=1

RTi (24)

Task Engagement Time measures the time relevant for reward rate. We define task engagement time659

as the sum of reaction times plus all mandatory task time, essentially the cumulative sum of the average660

task time used to calculate reward rate:661

task engagement time =

trial n∑
trial i=1

RTi + ncorrDcorr + nerrDerr (25)

the sum of reaction times up to trial n plus the sum of Derr = 3136 ms and Dcorr = 6370 ms, the662

mandatory post-error and post-correct response-to-stimulus intervals, proportional to the number of error663

and correct trials (n = ncorr + nerr).664

Statistical Analyses665

Figure 1d: We wished to test whether the mean fraction maximum reward rate of our subjects over666

the ten sessions after having completed training were significantly different from optimal performance.667

A Shapiro-Wilk test failed to reject (p<0.05) a null hypothesis for normality for 18/26 subjects, with668

the following p-values (from left to right): (0.8162, 0.1580, 0.3746, 0.6985, 0.0025, 0.0467, 0.0040, 0.6522,669

0.0109, 0.1625, 1.8178e-05, 0.0901, 0.7606, 0.0295, 0.0009, 0.2483, 0.5627, 0.0050, 0.4464, 0.6839, 0.5953,670

0.0140, 0.1820, 0.1747, 0.6385, 0.2304). Thus, we conducted a one-sided Wilcoxon signed-rank test on671

our sample against 0.99, testing for the evidence that each subject’s mean fraction max reward rate was672

greater than 99% of the maximum (p<0.05), and obtained the following p-values (from left to right):673

(0.0025, 0.0025, 0.0025, 0.1013, 0.2223, 0.0063, 0.0047, 0.0025, 0.0025, 0.0025, 0.0025, 0.0571, 0.6768,674

0.0047, 0.7125, 0.0372, 0.8794, 0.4797, 0.7125, 0.8987, 0.0372, 0.0109, 0.9975, 0.9766, 0.9917, 0.9975).675

Figure 4b: We wished to test the difference in mean RT between two randomly chosen groups of animals676

before and after a RT restriction to assess the effectiveness of the restriction. A Shapiro-Wilk test did not677

support an assumption of normality for the ’below’ group in either condition resulting in the following678

(W statistic, p-value) for the pre-RT restriction ’above’ and ’below’ groups and post-RT restriction679

’above’ and ’below’ groups: (0.9073, 0.3777), (0.6806, 0.0059), (0.8976, 0.3168), (0.6583, 0.0033). Hence,680

we conducted a Wilcoxon rank-sum test for the pre- and post-RT restriction groups and found the681

pre-RT restriction group was not significant (p = 0.570) while the post-RT restriction group was (p =682

0.007), indicating the two groups were not significantly different before the RT restriction, but became683

significantly different after the restriction.684

Figure 4d: We wished to test the difference in accuracy between the ’above’ and ’below’ groups for every685

session of stimulus pair 3. A Shapiro-Wilk Test failed to reject the assumption of normality (p < 0.05)686

for any session from either condition (except session 4, ’above’, which could be expected given there were687

16 tests), with the following (W statistic, p-value) for [session: ’above’, ’below’] by session: [1: (0.9340,688

0.6240),(0.8959, 0.3068)], [2: (0.9381, 0.6522), (0.8460, 0.1130)], [3: (0.9631, 0.8291), (0.9058, 0.3676)], [4:689

(0.7608, 0.0374), (0.9728, 0.9177)], [5: (0.8921, 0.3680), (0.9779, 0.9486)], [6: (0.7813, 0.0565), (0.9702,690

0.9002)], [7: (0.8942, 0.3786), (0.9711, 0.9062)], [8: (0.7848, 0.0605), (0.9611, 0.8280)]691

A Levene Test failed to reject the assumption of equal variances for every pair of sessions except the692

first (statistic, p-value): (6.3263, 0.0306), (2.2780, 0.1621), (1.2221, 0.2948), (0.8570, 0.3764), (2.7979,693

0.1253), (0.7364, 0.4109), (0.0871, 0.7739), (0.0088, 0.9269).694

Hence, we performed a two-sample independent t-test for every session with the following p-values:695

(0.4014, 0.04064, 0.0057, 0.0038, 0.0011, 0.0038, 0.0006, 6.3658e-05).696

We also wished to test the difference between the slopes of linear fits to the accuracy curves for697

both conditions. A Shapiro-Wilk Test failed to reject the assumption of normality (p < 0.05) for either698

condition, with the following (W statistic, p-value) for ’above’ and ’below’: (0.8964, 0.3095), (0.8794,699

0.3065). A Levene Test failed to reject the assumption of equal variances (p < 0.05) for each condition700
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(statistic, p-value): (0.2141, 0.6535). Hence, we performed a two-sample independent t-test and found a701

significant difference (p = 0.0027).702

Figure 5d, e: We wished to test whether the animals had significantly changed their session mean RTs703

with respect to their individual previous baseline RTs (paired samples). To do this, we conducted a704

permutation test for every session with the new visible stimuli (stimulus pair 2) or the transparent705

stimuli. For 1000 repetitions, we randomly assigned labels to the experimental or baseline RTs and706

then averaged the paired differences. The p-value for a particular session was the fraction of instances707

where the average permutation difference was more extreme than the actual experimental difference. For708

sessions with stimulus pair 2, the p-values from the permutation test were: (0.0034, 0.0069, 0.0165, 0.0071,709

0.0291, 0.0347, 0.06, 0.0946, 0.3948, 0.244, 0.244, 0.4497, 0.3437). For sessions with transparent stimuli710

(plus rats AK2, AK9, & AK10 from the near-transparent stimuli) the p-values from the permutation711

were (0.0859375, 0.44921875, 0.15625, 0.03125, 0.02734375, 0.015625, 0.26953125, 0.02734375, 0.03125,712

0.01953125, 0.0546875). To investigate whether the animals’ significantly slowed down their mean RTs713

compared to baseline during the first session of transparent stimuli, we divided RTs in the first session714

in half and ran a permutation test on each half with the following p-values: (0.0390625, 0.2890625).715

In order to test the correlation between the initial change in RT and the initial change in SNR for716

stimulus pair 2, we ran a standard linear regression on the average per subject for each of these variables717

for the first 2 sessions of stimulus pair 2. The R2 refers to the square of the correlation coefficient, and718

the p-value is from a Wald Test with t-distribution of the test statistic.719

Figure S5a—h: Statistical significance of differences in means between start of learning and after learn-720

ing for stimulus pair 1 for the average predicted threshold distribution, and for the individual predicted721

thresholds were determined via a Wilcoxon signed-rank test. The p-values were: (a) average predicted722

threshold: <1e-4, (b) individuals predicted threshold: 0.0006, (c) average predicted drift rate: <1e-4,723

(d) individuals predicted drift rate: <1e-4.724

For stimulus pair 2 we also used a Wilcoxon signed-rank test, and performed three tests per condition:725

baseline stimulus pair 1 versus start learning, start learning versus after learning, and baseline stimulus726

pair 1 versus after learning. In this order, the p-values were: (a) average predicted threshold: <1e-4,727

<1e-4, 0.3016, (b) individuals predicted threshold: 0.0386, 0.0557, 0.8767, (c) average predicted drift728

rate: <1e-4, <1e-4, <1e-4, (d) individuals predicted drift rate: 0.0004, 0.0004, 0.1089.729

Figure S7b, d: We tested for a difference in mean post-error slowing between the first 2 sessions and730

last 2 sessions of training for each animal for stimulus pair 1 (b) or the last 2 sessions of stimulus pair731

1 and the first 2 sessions of stimulus pair 2 (d) via a Wilcoxon-signed rank test. The p-values were (b)732

0.585 and (d) 0.255.733

Figure S8d—i: Statistical significance of differences in means between the two training regimes for a734

variety of psychophysical measures was determined by a Wilcoxon rank-sum test with p ¡ 0.05. The735

p-values were: (d) accuracy: 0.21, (e) reaction time: 0.81, (f) fraction max iRR: 0.22, (g) total trial736

number: 0.46, (h): voluntary iti after error: 0.75, (i) fraction trials ignored: 0.03.737

Figure S9a, b: We tested for a difference in the aggregate reaction time distributions of a transparent738

stimuli condition (n = 5 subjects), and a no minimum reaction time condition with known stimuli (n =739

5 subjects) via a 2-sample Kolmogorov-Smirnov Test and found a p-value of <1e-10.740

We tested for the difference in the first decile of vincentized reaction times between these two condi-741

tions via a Wilcoxon rank-sum test and found a p-value of 0.047.742

Evaluation of Optimality743

Under the assumptions of a simple drift-diffusion process, the optimal performance curve (OPC) defines744

a set of optimal threshold-to-drift ratios with corresponding decision times and error rates for which an745

agent maximizes instantaneous reward rate [10]. Decision times are scaled by the particular task timing as746

mean normalized decision time: 〈DT 〉/Dtot. The OPC is parameter free and can thus be used to compare747

performance across tasks, conditions, and individuals. An optimal agent will lie on different points on the748

OPC depending on differences in task timing (Dtot) and stimulus difficulty (SNR). Assuming constant749

task timing, the SNR will determine different positions along the OPC for an optimal agent. For 〈DT 〉750
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> 0 and 0 < ER < 0.5, the OPC is defined as:751

〈DT 〉
Dtot

=

[
1

ER log 1−ER
ER

− 1

1− 2ER

]−1

(26)

and exists in speed-accuracy space, defined by 〈DT 〉/Dtot and ER. Given estimates for T0 and752

DRSI, the ER and 〈DT 〉 for any given animal can be compared to the optimal values defined by the OPC753

in speed-accuracy space.754

Moreover, because ER should decrease with learning, learning trajectories for different subjects and755

models can also be compared to the OPC and to each other in speed-accuracy space.756

Mean Normalized Decision Time Depends Only on T0 and Derr757

To determine what times the normalizing term Dtot includes, we re-derive the OPC from average reward758

rate. According to Gold & Shadlen [9], average reward rate is defined as:759

RR =
average accuracy

average time per trial
(27)

The average time per trial is composed of the average decision time, non-decision-time, the post-error760

time scaled by number of errors, and the post-correct time scaled by the number of correct choices:761

average time per trial = 〈DT 〉+ T0 + (1− ER)Dcorr + ER ·Derr (28)

Define the extra penalty time Dp = Derr −Dcorr. We can write the average reward rate as equation762

A26 from [10],763

RR =
1− ER

〈DT 〉+ T0 +Dcorr + ER ·Dp
. (29)

Optimal behavior is defined as maximizing reward rate with respect to the thresholds in the drift-764

diffusion model. We thus re-write ER and DT in terms of average threshold and average SNR,765

RR =
1− 1

1+e2z̄Ā

z̄ tanh
(
z̄Ā
)

+ T0 +Dcorr + 1

1+e2z̄Ā
·Dp

(30)

=
1

z̄ +Dcorr + T0 + (Dcorr + T0 +Dp − z̄) · e−2z̄Ā
. (31)

Next to find the extremum, we take the derivative of RR with respect to the threshold and set it to766

zero,767

∂RR

∂z̄
= −1 + (−1− 2Ā(Dcorr + T0 +Dp − z̄)) · e−2z̄Ā

(z̄ +Dcorr + T0(D + T0 +Dp − z̄) · e−2z̄Ā)2
(32)

0 = 1−
[
1 + 2Ā(T0 +Derr − z̄)

]
e−2z̄Ā (33)

=
1− 2ER

ER
− T0 +Derr

DT
(1− 2ER) log

1− ER
ER

− log
1− ER
ER

(34)

where in the final step we have rewritten z̄ and Ā in terms of ER and 〈DT 〉.768

Rearranging to place DT on the left hand side reveals an OPC where decision time is normalized by769

the post-error response-to-stimulus time Derr:770

〈DT 〉
T0 +Derr

=

[
1

ER log 1−ER
ER

− 1

1− 2ER

]−1

(35)

Notably, the post-correct response-to-stimulus time Dcorr is not part of the normalization. Intuitively,771

this is because post-correct delays are an unavoidable part of accruing reward and therefore do not772

influence the optimal policy.773
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Estimating T0774

T0 is defined as the non-decision time component of a reaction time, comprising motor and perceptual775

processing time [31]. It can be estimated by fitting a drift-diffusion model to the psychophysical data.776

Because of the experimentally imposed minimum reaction time meant to ensure visual processing of the777

stimuli, however, our reaction time distributions were truncated at 350 ms, meaning a drift-diffusion778

model fit estimate of T0 is likely to be an overestimate. To address this issue, we set out to determine779

possible boundaries for T0 and estimated it in a few ways, all of which did indeed fall between those780

boundaries (Fig. S10e).781

We found that after training, in the interval between 350-375 ms, nearly all of our animals had782

accuracy measurements above chance (Fig. S10b), meaning that the minimum reaction time of 350 ms783

served as an upper bound to possible T0 values.784

To determine a lower bound, we obtained measurements for the two components comprising T0: motor785

and initial perceptual processing times. To measure the minimum motor time required to complete a786

trial, we analyzed licking times across the different lickports. The latency from the last lick in the central787

port to the first lick in one of the two side ports peaked at around 80 ms (Fig. S10c). In addition, the788

latency from one lick to the next lick at the same port at any of the lickports was also around 80 ms789

(data not shown). Thus, the minimum motor time was determined by the limit on licking frequency,790

and not on a movement of the head redirecting the animal from the central port to one of the side ports.791

To measure the initial perceptual processing times, we looked to published latencies of visual stimuli792

traveling to higher visual areas in the rat. Published latencies reaching area TO (predicted to be after793

V1, LM and LI in the putative ventral stream in the rat) were around 80 ms (Fig. S10d) [112]. Based794

on these measurements, we estimated a T0 lower bound of approximately 160 ms.795

One worry is that our lower bound could potentially be too low, as it is only estimated indirectly.796

Recent work on the speed-accuracy trade-off in a low-level visual discrimination tasks in rats found that797

accuracy was highest at a reaction time of 218 ms [28]. However, accuracy was still above chance for798

reaction times binned between 130—180 ms. In this task, reaction time was measured when an infrared799

beam was broken, which means we can assume there was no motor processing time. This leaves decision800

time, and initial perceptual processing time (part of T0) within the 130-180 ms duration. The complexity801

of solving a high-level visual task like ours and a low-level one will result in substantial differences in802

decision time, but should not in principle affect non-decision time. Considering a latency estimate of 80803

ms based on physiological evidence [112] can account for the initial perceptual processing component of804

T0 and gives an estimate T0 = 80 ms for this study.805

Because a reaction time around T0 should not allow for any decision time, accuracy should be around806

50%. To estimate T0 based on this observation, we extrapolated the time at which accuracy would drop807

to 50% after plotting accuracy as a function of reaction time (Fig. S10a) and found values of 165 and808

225 ms for linear and quadratic extrapolations respectively. Finally, we fit our behavioral data with a809

hierarchical drift-diffusion model [107] and found a T0 estimate of 295 ± 4 ms (despite there being no810

data below 350 ms). To address this issue, we fit drift-diffusion model to a small number of behavioral811

sessions we conducted with animals trained on the minimum reaction time of 350 ms but where that812

constraint was eliminated and found a T0 estimate of 265 ± 120 (SD) ms. We stress that because the813

animals were trained with a minimum reaction time, they likely would have required extensive training814

without that constraint to fully make use of the time below the minimum reaction time, thus this estimate815

is likely to also be an overestimate. We do note however that the estimate is lower than the estimate816

with an enforced minimum reaction time and has a much higher standard deviation (spanning our lower817

and upper bound estimates).818

Despite the range of possible T0 values, we find that our qualitative findings (in terms of learning819

trajectory and near-optimality after learning) do not change (Fig. S10f, g), and proceed with a T0 =820

160 ms for the main text.821

Determining Derr and Dcorr822

The experimental protocol defines the mandatory post-error and post-correct response-to-stimulus times823

(Derr and Dcorr respectively). However, these times may not be accurate because of delays in the software824

communicating with different components such as the syringe pumps, and other delays such as screen825

refresh rates. We thus determined the actual mandatory post-error and post-correct response-to-stimulus826

times by measuring them based on timestamps on experimental file logs and found that Derr = 3136 ms,827

and Dcorr = 6370 ms (Fig. S11).828
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Determining DRSI829

Mean normalized decision time, as described above, is calculated by dividing the mean decision time830

〈DT 〉 by Dtot, equal to T0 + DRSI, the response-to-stimulus interval [31]. The response-to-stimulus831

interval comprises two components, the mandatory response-to-stimulus interval (punishment or reward832

time, times for auditory cues, mandatory intertrial interval, etc.) (Fig. S11), and any extra voluntary833

intertrial interval (Fig. S12):834

response-to-stimulus interval = mandatory interval + voluntary interval (36)

We assume that the animals optimize reward rate based on task engagement time, the sum of reaction835

times plus all mandatory task time, exiting the task during any extra voluntary inter-trial intervals. Thus,836

for the purposes of mean normalized decision time:837

response-to-stimulus interval = mandatory interval (37)

A derivation concluded that the response-to-stimulus interval after an error trial was the only relevant838

interval (see Mean Normalized Decision Time Depends only on T0 and Derr for derivation), thus:839

DRSI = Derr = mandatory post-error response-to-stimulus interval (38)

Voluntary Intertrial Interval840

We conducted a detailed analysis of the voluntary intertrial intervals after both correct and error trials841

(Fig. S12). To prevent a new trial from initiating while the animals were licking one of the side lickports,842

the task included a 300 ms interval at the end of a trial where an extra 500 ms were added if the animal843

licked one of the side lickports (Fig. S11). There was no stimulus (visual or auditory) to indicate the844

presence of this task feature so the animals were not expected to learn it. It was clear that the animals845

did not learn this task feature as most voluntary intertrial intervals are clustered in 500 ms intervals846

and decay after each boundary (Fig. S12a). Aligning the voluntary intertrial distributions every 500 ms847

reveals substantial overlap (Fig. S12c, d), indicating similar urgency in every 500 ms interval, with an848

added amount of variance the farther the interval from zero. Moreover, measuring the median voluntary849

inter-trial interval from 0-500, 0-1000 and 0-2000 ms showed very similar values (47, 67, 108 ms after850

error trials, Fig. S12b). The median was higher after correct trials (55, 134, 512 ms, Fig. S12b) because851

the animals were collecting reward from the side lickports and much more likely to trigger the extra 500852

ms penalty times.853

Reward Rate Sensitivity to T0 and Voluntary Intertrial Interval854

To ensure that our results did not depend on our chosen estimate for T0 and our choice to ignore855

voluntary intertrial intervals when computing metrics like DRSI and reward rate, we computed fraction856

maximum instantaneous reward rate as a function of T0 and vountary intertrial interval. We conducted857

this analysis across n = 26 rats at asymptotic performance (Fig. S13a, b), and during the learning858

period (Fig. S13c, d). During asymptotic performance, sweeping T0 from our estimated minimum to859

our maximum possible values generated negligible changes in reward rate across a much larger range of860

possible voluntary intertrial intervals than we observed (Fig. S13a). Reward rate was more sensitive to861

voluntary intertrial intervals, but did not drop below 90% of the possible maximum when considering a862

median voluntary intertrial interval up to 2000 ms (the median when allowing up to a 2000 ms window863

after a trial, after which agents are considered to have “exited the task”) (Fig. S13b). During learning, we864

found similar results, with possible voluntary intertrial interval values have a larger effect on reward rate865

than T0, however even with the most extreme combination of a maximum T0 = 350 ms, and the median866

voluntary intertrial interval up to 2000ms (Fig. S13d, light grey trace), fraction maximum reward rate867

was at most 10-15% away from the least extreme combination of T0 = 350 ms and voluntary intertrial868

interval = 0 (Fig. S13c, horizontal line along the bottom of the heat map) for most of the learning869

period. These results confirm that our qualitative findings do not depend on our estimated values of T0870

and choice to ignore voluntary intertrial intervals.871

Ignore Trials872

Because of the free-response nature of the task, animals were permitted to ignore trials after having873

initiated them (Fig. S2). Although the fraction of ignored trials did seem to be higher at the beginning874
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of learning for the first set of stimuli the animals learned (stimulus pair 1; Fig. S2a), this effect did not875

repeat for the second set (stimulus pair 2, Fig. S2b). This suggests that the cause for ignoring the trials876

during learning was not stimulus-based but rather related to learning the task for the first time. Overall,877

the mean fraction of ignored trials remained consistently low across stimulus sets and ignore trials were878

excluded from our analyses.879

Post-Error Slowing880

In order to verify whether the increase in reaction time we saw at the beginning of learning relative to881

the end of learning was not solely attributable to a post-error slowing policy, we quantified the amount882

of post-error slowing during learning for both stimulus pair 1 and stimulus pair 2. For stimulus pair 1,883

we found that there was a consistent but slight amount of average post-error slowing. (Fig. S7a). This884

amount was not significantly different at the start and end of learning (Fig. S7b).885

We re-did this analysis for stimulus pair 2 and found similar results: animals had a consistent, modest886

amount of post-error slowing but it did not change across sessions during learning (Fig. S7c). We tested887

for a significant difference in post-error slowing between the last 2 sessions of stimulus pair 1 and the888

first 2 sessions of the completely new stimulus pair 2 and found none (Fig. S7d) even though there889

was a large immediate change in error rate. In fact, there was a trend towards a decrease in post-error890

slowing (and towards post-correct slowing) in the first few sessions of stimulus pair 2. This is consistent891

with the hypothesis that post-error slowing is an instance of a more general policy of orienting towards892

infrequent events [54]. As correct trials became more infrequent than error trials when stimulus pair 2893

was presented, we observed a trend towards post-correct slowing, as predicted by this interpretation.894

Our subjects exhibit a modest, consistent amount of post-error slowing, which could at least partially895

explain the reaction time differences we see throughout learning. An experiment with transparent stimuli896

where error rate was constant but reaction times dropped, however, strongly contradicts the account897

that the rats implement a simple strategy like post-error slowing to modulate their reaction times during898

learning.899

Recurrent Neural Network Model and Learning DDM (LDDM) Reduc-900

tion901

We consider a recurrent network receiving noisy visual inputs over time. In particular, we imagine that902

an input layer projects through weighted connections to a single recurrently connected read-out node,903

and that the weights must be tuned to extract relevant signals in the input. The read-out node activity is904

compared to a modifiable threshold which governs when a decision terminates. This network model can905

then be trained via error-corrective gradient descent learning or some other procedure. In the following906

we derive the average dynamics of learning.907

To reduce this network to a drift-diffusion model with time-dependent SNR, we first note that due908

to the law of large numbers, activity increments of the read-out node will be Gaussian provided that the909

distribution of input stimuli has bounded moments. We can thus model the input-to-readout pathway at910

each time step as a Gaussian input x(t) flowing through a scalar weight u, with noise of variance c2o added911

before the signal is sent into an integrating network. Taking the continuum limit, this yields a drift-912

diffusion process with effective drift rate Ã = Au and noise variance c̃2 = u2c2i +c2o. Here A parameterizes913

the perceptual signal, c2i is the input noise variance (noise in input channels that cannot be rejected),914

and c2o is the output noise variance (internal noise in output circuitry). The resulting decision variable915

ŷ at time T is Gaussian distributed as N(AuTy, u2c2iT + c2oT ) where y is the correct binary choice. A916

decision is made when ŷ hits a threshold of ±z.917

Within-trial Drift-diffusion Dynamics918

On every trial, therefore, the subject’s behavior is described by a drift-diffusion process, for which the919

average reward rate as a function of signal to noise and threshold parameters is known [10]. The accuracy920

and decision time of this scheme is determined by two quantities. First, the signal-to-noise ratio921

Ā =

(
Ã

c̃

)2

=
A2u2

u2c2i + c2o
, (39)
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and second, the threshold-to-drift ratio z̄ = z/Ã = z
Au(t)

. We can rewrite the signal-to-noise ratio as922

Ā(t) =
A2u(t)2

c2iu(t)2 + c2o
=

A2

c2i + c2o/u(t)2
. (40)

From this it is clear that, when learning has managed to amplify the input signals such that u(t)→∞,923

the asymptotic signal-to-noise ratio is simply Ā∗ = A2/c2i . Further, rearranging to924

Ā(t) =
Ā∗

1 + (c2o/c
2
i ) /u(t)2

(41)

shows that there are in fact just two parameters: the asymptotic achievable SNR Ā∗ and the output- to925

input-noise variance ratio c ≡ c2o/c2i ,926

Ā(t) =
Ā∗

1 + c/u(t)2
. (42)

The mean error rate (ER), mean decision time (DT), and mean reward rate (RR) are therefore927

ER =
1

1 + e2z̄Ā
(43)

DT = z̄ tanh
(
z̄Ā
)

(44)

RR =
1− ER

DT +D + T0 +Dp · ER
(45)

where we have suppressed the dependence of Ā and z̄ on time for clarity. Here D is the interval between928

a correct response and the next trial, T0 is the time required for non-decision making processing (e.g.,929

motor responses or initial sensory delays), and Dp is extra penalty time added to error responses.930

The term z̄Ā is a measure of the total evidence accrued on average, and is equal to931

z̄Ā =
z

Au(t)

Ā∗

1 + c/u(t)2
(46)

=
zĀ∗/A

u(t) + c/u(t)
. (47)

Here for a fixed threshold z, the denominator shows the trade-off for increasing perceptual sensitivity:932

small u(t) causes errors due to output noise, while large u(t) causes errors due to overly fast integration933

for the specified threshold level.934

Across-trial Error-Corrective Learning Dynamics935

To model learning, we consider that animals adjust perceptual sensitivities u over time in service of936

minimizing an objective function. In this section we derive the average learning dynamics when the937

objective is to minimize the error rate. The Learning DDM (LDDM) can be conceptualized as an “outer-938

loop” that modifies the SNR of a standard DDM “inner-loop” described in the preceding subsection. If939

perceptual learning is slow, there is a strong separation of timescales between these two loops. On the940

timescale of a single trial, the agent’s SNR is approximately constant and evidence accumulation follows941

a standard DDM, whereas on the timescale of many trials, the specific outcome on any one trial has only942

a small effect on the network weights w, such that the learning-induced changes are driven by the mean943

ER and DT.944

To derive the mean effect of error-corrective learning updates, we suppose that on each trial the945

network uses gradient descent on the hinge loss to update its parameters, corresponding to standard946

practice for supervised neural networks. The hinge loss is947

L(u, y) = max(0, 1− ŷy), (48)

yielding the gradient descent update948

u[r + 1]← u[r]− λ∂L(u[r], y)

∂u
(49)

where λ is the learning rate and r is the trial number.949
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When the learning rate is small (λ � 1), each trial changes the weights minimally and the overall950

update is approximately given by the average continuous-time dynamics951

du

dr
= −

〈
λ
∂L(u, y)

∂u

〉
(50)

= −λ
〈〈

∂L(u, y)

∂u

∣∣∣∣error

〉
+

〈
∂L(u, y)

∂u

∣∣∣∣correct

〉〉
(51)

= −λER
〈
∂L(u, y)

∂u

∣∣∣∣error

〉
(52)

= λER

〈
y
∂ŷ

∂u

∣∣∣∣error

〉
(53)

where 〈·〉 denotes an average over the correct answer y, the inputs and the output noise. The first step952

follows from iterated expectation. The second step follows from the fact that the probability of an error953

is simply the error rate ER, and for correct trials, the derivative of the hinge loss is zero. Next,954

∂ŷ

∂u
=

∂

∂u

(
T∑
i=0

uxi + ηi

)
(54)

=

T∑
i=0

xi (55)

where T is the time step at which ŷ crosses the decision threshold ±z. Returning to Eq. (53),955

λER

〈
y
∂ŷ

∂u

∣∣∣∣error

〉
= λER

〈
y

T∑
i=1

xi

∣∣∣∣error

〉
. (56)

Hence the magnitude of the update depends on the typical total sensory evidence given that an error is956

made. To calculate this, let x̄t =
∑t
i=0 xi be the total sensory evidence up to time t, and η̄t =

∑t
i=0 be957

the total decision noise up to t. These are independent and normally distributed as958

x̄t ∼ N
(
yAtdt, c2i tdt

)
(57)

η̄t ∼ N
(
0, c2otdt

)
. (58)

Therefore, we have959 〈
y

T∑
i=1

xi

∣∣∣∣error

〉
=

〈
yx̄T

∣∣∣∣error

〉
(59)

=

〈
yx̄T

∣∣∣∣ux̄T + η̄T = −yz
〉

(60)

=

〈
yx̄T

∣∣∣∣ux̄T /y + η̄T /y = −z
〉
. (61)

These variables are jointly Gaussian. Letting v1 = yx̄T and v2 = ux̄T /y + η̄T /y, the means µ1, µ2,960

variances σ2
1 , σ

2
2 , and covariance Cov(v1, v2) of v1, v2 given the hitting time T are961

µ1 = ATdt (62)

µ2 = uATdt (63)

σ2
1 = c2iTdt (64)

σ2
2 = u2c2iTdt+ c2oTdt (65)

Cov(yx̄T , ux̄T /y + η̄T /y) = 〈yx̄T (ux̄T /y + η̄T /y)〉 − 〈yx̄T 〉〈ux̄T /y + η̄T /y〉 (66)

= u〈x̄2
T 〉 − u〈x̄T 〉2 (67)

= uc2iTdt. (68)
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The conditional expectation is therefore962

〈〈v1|v2 = −z, T 〉〉T |error =

〈
µ1 +

Cov(v1, v2)

σ2
2

(−z − µ2)

〉
T |error

(69)

=

〈
ATdt+

uc2i
u2c2i + c2o

(−z − uATdt)
〉
T |error

(70)

= A(DT )− uc2i
u2c2i + c2o

(z + uA(DT )) (71)

where we have used the fact that 〈Tdt〉T |error = DT , because in the DDM model the mean decision time963

is the same for correct and error trials. Inserting Eq. (71) into Eq. (56) yields964

d

dr
u = λER

(
A(DT ) +

1

1 +
c2o

u2ci2

(−z/u−A(DT ))

)
(72)

= λER

(
A(DT )− 1

1 + c/u2
(z/u+A(DT ))

)
. (73)

Finally, we switch the units of the time variable from trials to seconds using the relation dt = Dtotdr,965

yielding the dynamics966

τ
d

dt
u = ER

(
A
DT

Dtot
− 1

1 + c/u2

[
z

uDtot
+A

DT

Dtot

])
. (74)

The above equation describes the dynamics of u under gradient descent learning. We note that here,967

the dependence of the dynamics on threshold trajectory is contained implicitly in the DT , ER, and Dtot968

terms.969

To obtain equivalent dynamics for the SNR Ā, we have970

τ
d

dt
Ā = 2

A2c2ou

(c2i + c2o/u(t)2)2
u(t)−3 d

dt
u (75)

= 2
c

Ā∗
Ā2u−3 d

dt
u. (76)

Rearranging the definition of Ā yields971

u2 =
cĀ

Ā∗ − Ā
. (77)

Inserting Eq. (77) into Eq. 76 and simplifying, we have972

τ
d

dt
Ā = 2

√
Ā
(
Ā∗
)

c

(
1− Ā

Ā∗

)3/2
d

dt
u (78)

= 2

√
Ā
(
Ā∗
)

c

(
1− Ā

Ā∗

)3/2
ER

Dtot

(
A(DT )− 1

1 + c/u2

[ z
u

+A(DT )
])

(79)

= 2A

√
Ā
(
Ā∗
)

c

(
1− Ā

Ā∗

)5/2
ER

Dtot

DT − log(1/ER− 1)

Ā∗
(

1− Ā
Ā∗

)2

 . (80)

Here in the second step we have used the fact that Ā = 1−2ER
2〈DT 〉 log 1−ER

ER
and Eq. (77). Finally, absorbing973

the drift rate A into the time constant τ = 1
Aλ

, we have the dynamics974

τ̃
d

dt
Ā = 2

√
Ā
(
Ā∗
)

c

(
1− Ā

Ā∗

)5/2
ER

Dtot

DT − log(1/ER− 1)

Ā∗
(

1− Ā
Ā∗

)2

 . (81)

This equation reveals that the Learning DDM has four scalar parameters: the asymptotic SNR Ā∗,975

the output-to-input-noise variance ratio c, the initial SNR at time zero Ā(0), and the combined drift-976

rate/learning rate time constant τ̃ . In addition, it requires the choice of threshold trajectory z(t).977
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To reveal the basic learning speed/instantaneous reward rate trade-off in this model, we investigate978

the limit where Ā is small but finite (low signal-to-noise) and the threshold is small, such that the error979

rate is near ER = 1/2. Then the second term in Eq. (81) goes to zero, giving980

τ̃
d

dt
Ā ≈

√
Ā
(
Ā∗
)

c

(
1− Ā

Ā∗

)5/2
DT

Dtot
(82)

∝ DT

Dtot
(83)

such that learning speed is increasing in DT . By contrast the instantaneous reward rate when ER = 1/2981

is982

RR ≈ 1/2

DT +D + T0 +Dp/2
, (84)

which is a decreasing function of DT .983

Threshold Policies984

We evaluate several simple threshold policies. The iRR-greedy policy sets z̄ = z̄∗, the instantaneous re-985

ward rate optimal policy at all times. The constant threshold policy sets z̄ to a fixed constant throughout986

learning. The iRR-sensitive policy initializes the threshold to a fixed initial condition, and then moves987

towards the iRR-optimal decision time using the dynamics988

d

dt
z̄ = γ

DT ∗ −DT
Dtot

(85)

where γ controls the rate of convergence.989

Finally, the global optimal policy optimizes the entire function z̄(t) to maximize total cumulative990

reward during exposure to the task. To compute the optimal threshold trajectory, we discretize the991

reduction dynamics in Eq.(74) and perform gradient ascent on z̄(t) using automatic differentiation in the992

PyTorch python package. While this procedure is not guaranteed to find the global optimum (due to993

potential nonconvexity of the optimization problem), in practice we found highly reliable results from a994

range of initial conditions and believe that the identified threshold trajectory is near the global optimum.995

Parameter Fitting996

The LDDM model has several parameters governing its performance, including the asymptotic optimal997

SNR, the output/input noise variance ratio, the learning rate, and parameters controlling threshold poli-998

cies where applicable. To fit these, we discretized the reduction dynamics and performed gradient ascent999

on the log likelihood of the observed data under the LDDM model, again using automatic differentiation1000

in the Pytorch python package. Because our model is highly simplified, our goal was only to place the1001

parameters in a reasonable regime rather than obtain quantitative fits. We note that our fitting proce-1002

dure could become stuck in local minima, and that a range of other parameter settings might also be1003

consistent with the data. The best-fitting parameters we obtained and used in all model results were1004

A = 0.9542, ci = 0.3216, co = 30, u0 = .0001. We used a discretization timestep of dt = 160. For the1005

constant threshold and iRR-sensitive policies, the best fitting initial threshold was z(0) = 30. For the1006

iRR-sensitive policy, the best fitting decay rate was γ = 0.00011891.1007
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Table S1: Individual Animal Participation Across Behavioral Experiments

Animal Sex Stimulus Pair 1 Stimulus Pair 2 Transparent Stimuli Stimulus Pair 3

AK1 F size & rotation alpha = 0
AK2 F size & rotation alpha = 0.1
AK3 F size & rotation alpha = 0.0
AK4 F size & rotation
AK5 F size & rotation alpha = 0.1 (excluded)‡
AK6 F size & rotation alpha = 0
AK7 F size & rotation alpha = 0
AK8 F size & rotation (excluded)*
AK9 F size & rotation alpha = 0.1
AK10 F size & rotation alpha = 0.1
AK11 F size & rotation alpha = 0.0
AK12 F size & rotation alpha = 0.1 (excluded)‡
AL1 F size & rotation canonical only (excluded)§
AL2 F size & rotation canonical only below
AL3 F size & rotation canonical only above
AL4 F size & rotation canonical only below (excluded)¶
AL5 F size & rotation canonical only below
AL6 F size & rotation canonical only below
AL7 F size & rotation canonical only below (excluded)¶
AL8 F size & rotation canonical only above
AL9 F size & rotation
AL10 F size & rotation
AL11 F size & rotation
AL12 F size & rotation (excluded)*
AL13 F size & rotation canonical only above
AL14 F size & rotation canonical only below
AL15 F size & rotation canonical only above
AL16 F size & rotation canonical only above
AM1 F size & rotation† canonical only below (excluded)‖
AM2 F size & rotation† canonical only below
AM3 F size & rotation† canonical only above
AM4 F size & rotation† canonical only above
AM5 F size & rotation†
AM6 F size & rotation†
AM7 F size & rotation†
AM8 F size & rotation†
AN1 F canonical only
AN2 F canonical only Exclusions
AN3 F canonical only * failed to learn task.
AN4 F canonical only † not included in initial learning experiment.
AN5 F canonical only ‡ above chance for near-transparent stimuli.
AN6 F canonical only § failed to learn previous stimuli.
AN7 F canonical only ¶ not enough practice trials with reaction time restrictions.
AN8 F canonical only ‖ failed to learn stimuli with reaction time restrictions.
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Figure S1: Task schematic for error trials. (a) Error trial: rat chooses incorrect left/right response port and
incurs a timeout period.
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Figure S2: Fraction of ignored trials during learning. (a) Schematic of an ignore trial: rat does not choose
a left/right response port and receives no feedback. (b) Fraction of trials ignored (ignored trials / (correct +
incorrect + ignored trials)) during learning for animals encountering the task for the first time (stimulus pair 1).
(c) Fraction of trials ignored for animals learning stimulus pair 2 after training on stimulus pair 1.
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package [107] (b) Estimated parameter value across all animals. The parameter estimates are distributions because
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Figure S4: Analytical reduction of LDDM matches error-corrective learning neural network dynam-
ics during learning. (a) The recurrent linear neural network can be analytically reduced. In the reduction, the
decision variable draws an observation from one of two randomly chosen Gaussian “stimuli.” The observations are
scaled by a perceptual weight. After the addition of some irreducible noise, the value of the decision variable at
previous time step is added to the current time step. A trial ends once the decision variable hits a predetermined
threshold. The dynamics of the perceptual weight capture the mean effect of gradient descent learning in the recur-
rent linear neural network. (b) Weight w of neural network across task engagement time for multiple simulations
of the network (grey), the mean of the simulations (black) and the analytical reduction of the network (blue). (c)
Same as in b but for the threshold z. (d) Same as in b but for the error rate (e) Same as in b but for the decision
time (f) Same as in b but for the instantaneous reward rate (correct trials per second) (g) Learning trajectory in
speed-accuracy space for simulations, simulation mean and analytical reduction (theory). OPC is shown in red.
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Figure HDDMpreds: Simple DDM fits indicate threshold decreases and drift rate increases during learning. The data from 
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reports a distribution of possible parameter values for the population (a, c, e, g), as well as fits for individuals (b, d, f, h). (a) Predicted 
threshold values for average model across rats (n = 26) for start of learning and after learning (first 1000 and last 1000 trials for each 
subject); ‘start’ and ‘after’ (p < 1e-4). (b) Same as a but for individuals (grey and their mean and SEM (black); ‘start’ and ‘after’ learning 
(p = 0.0006). (c) Predicted drift rate values for average model across rats (n = 26) for start of learning and after learning (p < 1e-4). 
(d) Same as c but for individuals (grey) and their mean and SEM (black); ‘start’ and ‘after’ (p < 1e-4). (e) Predicted threshold values 
for average model across rats (n = 16) for baseline trials with stimulus pair 1, start of learning and after learning of stimulus pair 2 (last 
500 trials with stimulus pair 1, first 500 and last 500 trials with stimulus pair 2 for each subject); baseline and ‘start’  (p = 0.0386), ‘start’ 
and ‘after’ (p = 0.0557), baseline and ‘after’ (p = 0.8767). (f) Same as e but for individuals (grey and their mean and SEM (black); 
baseline and ‘start’  (p < 1e-4), ‘start’ and ‘after’ (p < 1e-4), baseline and ‘after’ (p = 0.301601). (g) Predicted drift rate values for 
average model across rats (n = 16) for baseline, start of learning and after learning; baseline and ‘start’  (p < 1e-4), ‘start’ and ‘after’ 
(p < 1e-4), baseline and ‘after’ (p < 1e-4). (h) Same as g but for individuals (grey) and their mean and SEM (black); baseline and ‘start’  
(p = 0.0004), ‘start’ and ‘after’ (p = 0.0004), baseline and ‘after’ (p = 0.1089). Wilcoxon signed-rank test for all tests, * denotes p < 0.05, 
n.s. denotes’not significant’ (p > 0.05).
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Figure S5: Simple DDM fits indicate threshold decreases and drift rate increases during learning.
(a) The learning data from stimulus pair 1 and 2 were fit with a simple DDM using the HDDM framework [107].
The HDDM framework reports a distribution of possible parameter values for the population (a, c, e, g), as well
as fits for individuals (b, d, f, h). (a) Predicted threshold values for average model across rats (n = 26) for start
of learning and after learning (first 1000 and last 1000 trials for each subject); ‘start’ and ‘after’ (p ¡ 1e-4). (b)
Same as a but for individuals (grey and their mean and SEM (black); ‘start’ and ‘after’ learning (p = 0.0006).
(c) Predicted drift rate values for average model across rats (n = 26) for start of learning and after learning (p
¡ 1e-4). (d) Same as c but for individuals (grey) and their mean and SEM (black); ‘start’ and ‘after’ (p ¡ 1e-4).
(e) Predicted threshold values for average model across rats (n = 16) for baseline trials with stimulus pair 1, start
of learning and after learning of stimulus pair 2 (last 500 trials with stimulus pair 1, first 500 and last 500 trials
with stimulus pair 2 for each subject); baseline and ‘start’ (p = 0.0386), ‘start’ and ‘after’ (p = 0.0557), baseline
and ‘after’ (p = 0.8767). (f) Same as e but for individuals (grey and their mean and SEM (black); baseline and
‘start’ (p ¡ 1e-4), ‘start’ and ‘after’ (p ¡ 1e-4), baseline and ‘after’ (p = 0.301601). (g) Predicted drift rate values
for average model across rats (n = 16) for baseline, start of learning and after learning; baseline and ‘start’ (p ¡
1e-4), ‘start’ and ‘after’ (p ¡ 1e-4), baseline and ‘after’ (p ¡ 1e-4). (h) Same as g but for individuals (grey) and
their mean and SEM (black); baseline and ‘start’ (p = 0.0004), ‘start’ and ‘after’ (p = 0.0004), baseline and ‘after’
(p = 0.1089). Wilcoxon signed-rank test for all tests, * denotes p ¡ 0.05, n.s. denotes ‘not significant’ (p ¿ 0.05).

40

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.259911doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.259911


task engagement time (s)
0 15000

0.0

1.5

fra
ct

io
n 

iR
R

w.
r.t

. g
re

ed
y 

po
lic

y

task engagement time (s)
0 15000

100

a c

during learning during learning

fraction instantaneous reward rate
w.r.t. greedy threshold policy

fraction instantaneous reward rate
w.r.t. global optimal threshold policy

constant threshold
iRR-sensitive
iRR-greedy

global optimal

threshold policy

1.0

0.5

10

1
fra

ct
io

n 
iR

R
w.

r.t
. g

lo
ba

l o
pt

im
al

 p
ol

ic
y

iRR-sensitive policy collects large 
fraction of greedy policy reward rate 
at the beginning of learning

non-greedy policies collect higher 
reward rate than greedy policy
early because of faster learning

iRR-sensitive policy collects
higher reward rate than 
global optimal policy at start

0 800000

1.0

0 800000

b dfull trajectory

0.0

1.5

fra
ct

io
n 

iR
R

w.
r.t

. g
re

ed
y 

po
lic

y 1.0

0.5 fra
ct

io
n 

iR
R

w.
r.t

. g
lo

ba
l o

pt
im

al
 p

ol
ic

y

0.8

0.9

iRR-sensitive policy collects
and maintains nearly optimal 
reward rate early on

greedy policy 
has highest initial 
reward rate

non-greedy policies collect
substantially larger reward rate
than greedy policy for extended
time period

full trajectory

task engagement time (s) task engagement time (s)
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Figure S7: Post-error slowing during rat learning dynamics. (a) Individual (grey) and mean (black) post-
error slowing across first 15 sessions for n = 26 animals. Post-error slowing was calculated by taking the difference
between RTs on trials with previous correct trials and previous error trials. A positive difference indicates post-error
slowing. (b) Individual mean (grey) and population mean (black) post-error slowing for first 2 sessions of learning
and last 2 sessions of learning for n = 26 animals. A Wilcoxon signed-rank test found no significant difference in
post-error slowing between the first 2 and last 2 sessions for every animal (p = 0.585). (c) Same as in a for n = 16
rats, with the addition of 4 baseline sessions with stimulus pair 1 plus the 13 sessions while subjects were learning
stimulus pair 2. (d) Same as in b but comparing the last 2 baseline sessions with stimulus pair 1 and the first 2
sessions learning stimulus pair 2. A Wilcoxon signed-rank test found no significant difference in post-error slowing
when the animals started learning stimulus pair 2 (p = 0.255).
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Figure S8: Comparison of training regimes. (a) ‘Canonical only’: rats trained to asymptotic performance
with only front-view image of each of the two stimuli. ‘Size & rotation’: rats first shown front-view image of
stimuli. After reaching criterion (accuracy = 0.7), size staircased. Following criterion, rotation staircased. Upon
criterion, stimuli randomly drawn across size and rotation. (b) Learning trajectory in speed-accuracy space over
normalized training time for rats trained with the ‘size & rotation’ (left panel) and the ‘canonical only’ training
regimes (right panel). (c) Average location in speed-accuracy space for 10 sessions after asymptotic performance
for individual rats in both training regimes, as in b. (d) Mean accuracy over learning (left panel) and for 5 sessions
after asymptotic performance (right panel) for rats trained with the ‘size & rotation’ (n = 26) and the ‘canonical
only’ (n = 8) training regimes. (e) Mean reaction time. (f) Mean fraction max iRR. (g) Mean total trials per
session. (h) Mean voluntary intertrial interval up to 500 ms after error trials. (i) Mean fraction ignored trials. All
errors are SEM. Significance in right panels of d-i determined by Wilcoxon rank-sum test with p ¡ 0.05.
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Figure S9: Reaction time analysis of transparent stimuli experiment. (a) During transparent stimuli,
the reaction time (RT) minimum was relaxed to 0 ms to fully measure a possible shift in RT behavior. To be
able to ascertain whether transparent stimuli led to a significant chance in RT, the RT histogram of transparent
stimuli (purple) sessions was compared to control sessions with visible stimuli (green) with no RT minimum.
Medians indicated with dashed lines. Kolmogorv-Smirnov 2-sample test over distributions found significant different
(p¡10−10 (b) Vincentized RTs for transparent and control visible stimuli sessions with no minimum reaction time.
A Mann-Whitney U Test for the first quantile (fastest RTs) found a significant difference between the two groups
(p = 0.047).
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Figure S10: Estimating T0. (a) Linear and quadratic extrapolations to accuracy as a function of reaction time.
The t0 estimate is when each extrapolation intersects chance accuracy (0.5). (b) Mean accuracy for trials with
reaction times 350-375 ms for n = 26 rats. (c) Minimum motor time estimated by looking at first peak of time
between licks to/from center port for n = 11 rats. (d) Cartoon of stimulus onset latency across visual areas from
Vermaercke et al., 2014 [112] to estimate minimum visual processing time. (e) Diagram of t0 estimates, with an
upper limit (minimum reaction time) and lower limit (minimum motor time + minimum visual processing time).
(f) Mean learning trajectory for n = 26 rats with various t0 estimates. (g) Subjects (n = 26) in speed-accuracy
space with various t0 estimates.
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Figure S11: Mandatory post-error (Derr) and post-correct (Dcorr) response-to-stimulus interval times.
(a) Diagram of intertrial interval (ITI) after previous error trial. All times (punishment stimulus, enforced intertrial
interval, cannot lick reward ports and pre-stimulus time) were verified based on timestamps on experimental file
logs. After the punishment stimulus and enforced intertrial interval, there is a 300 ms period where rats cannot
lick the reward ports. If violated, 500 ms are added to the intertrial interval followed by another 300 ms ‘cannot
lick’ period. In addition to this restriction, rats may take as much voluntary time between trials as they wish.
Any violation of the ‘cannot lick’ period is counted as voluntary time, and only the minimum mandatory time of
3136 ms is counted for Derr. (b) Diagram of ITI after previous correct trial. All times (dispense water reward,
collect water reward, enforced intertrial interval, cannot lick reward ports, pre-stimulus time) was verified based on
timestamps on experimental file logs. The same ‘cannot lick’ period is present as in a. All times (dispense water
reward, collect water reward, enforced intertrial interval, cannot lick reward ports, pre-stimulus time) was verified
based on timestamps on experimental file logs. Any violation of the ‘cannot lick’ period is counted as voluntary
time, and only the minimum mandatory time of 6370 ms is counted for Dcorr.
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Figure S12: Analysis of voluntary intertrial intervals. (c) Histogram of voluntary ITIs (time in addition
to mandatory experimentally determined Derr and Dcorr) for n = 26 rats across 10 sessions for previous correct
(blue) and previous error (red) ITIs. Voluntary ITIs are spaced every 500 ms because of violations to the ‘cannot
lick’ period. Inset : proportion of voluntary ITIs below 500, 1000 and 2000 ms boundaries. (d) Median voluntary
ITIs up too 500, 1000 and 2000 ms boundaries. (e) Overlay of voluntary ITIs spaced 500 ms apart after previous
correct trials. (f) Overlay of voluntary ITIs spaced 500 ms apart after previous error trials.

47

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.259911doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.259911


1

0.8
350160

fra
ct

io
n 

m
ax

 iR
R

possible t0 (ms)

b
1

0.8
10000

fra
ct

io
n 

m
ax

 iR
R

possible voluntary iti (ms)

a

n = 26

t0 = 160 ms
t0 = 350 ms

sessions = 10
voluntary iti = median up to 500 ms 
voluntary iti = 0

voluntary iti = median up to 2000 ms
voluntary iti = median up to 1000 ms

n = 26
sessions = 10

2000

0
10.1

normalized sessions

po
ss

ib
le

 v
ol

un
ta

ry
in

te
rtr

ia
l i

nt
er

va
l (

m
s)

2000

0
10.1

normalized sessions

dc

t0 = 160 ms t0 = 350 ms
1

0.5

fraction m
ax iR

R

asymptotic performance 

learning period

to 500 ms

to 2000 ms
to 1000 ms

n = 26
weighted error/correct avg of median vol. iti

Figure S13: Reward rate sensitivity to T0 and voluntary inter-trial interval. (a) Fraction of maximum
instantaneous reward rate across n = 26 rats over 10 sessions at asymptotic performance over possible voluntary
ITI values of 0 - 1000 ms and over the minimum and maximum estimated t0 values. (b) Fraction of maximum
instantaneous reward rate across n = 26 rats over 10 sessions at asymptotic performance over possible t0 values
from 160 - 350 ms (min to max estimated t0 values) and over the median voluntary ITIs with 500, 1000 and 2000
ms boundaries. (c) Fraction of maximum instantaneous reward rate across n = 26 rats as a function of normalized
training time during learning period and possible voluntary ITIs from 0 to 2000 ms calculated with the t0 minimum
of 160 ms. The grey curves represent a weighted average over previous correct/error median voluntary ITIs over
normalized training time. Contours with different fractions of maximum instantaneous reward rate in pink. (d)
Same as in c but calculated with t0 maximum of 350 ms.
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