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Key Results: 

• Combining a 2-label U-Net (cartilage vs background) with a multi-class U-Net for 

segmentation of cartilage compartment boosts the accuracy of our deep learning model 

leading to the recovery of missing annotations in the manual dataset.  

• Automatically generated segmentations have high Dice coefficients (0.85-0.90) and reduce 

inter-slice discontinuity artefact caused by slice wise delineation. 

• Model refinement yields more anatomically plausible segmentations where each cartilage 

label is composed of only a single 3D region of interest.  
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Abstract 
 
Purpose 

To evaluate the performance of an ensemble learning approach for fully automated cartilage 

segmentation on knee magnetic resonance images of patients with osteoarthritis.  

Materials and Methods 

This retrospective study of 88 participants with knee osteoarthritis involved the study of three-

dimensional (3D) double echo steady state (DESS) MR imaging volumes with manual segmentations 

for 6 different compartments of cartilage (Data available from the Osteoarthritis Initiative). We 

propose ensemble learning to boost the sensitivity of our deep learning method by combining 

predictions from two models, a U-Net for the segmentation of two labels (cartilage vs background) 

and a multi-label U-Net for specific cartilage compartments. Segmentation accuracy is evaluated 

using Dice coefficient, while volumetric measures and Bland Altman plots provide complimentary 

information when assessing segmentation results. 

Results  

Our model showed excellent accuracy for all 6 cartilage locations: femoral 0.88, medial tibial 0.84, 

lateral tibial 0.88, patellar 0.85, medial meniscal 0.85 and lateral meniscal 0.90. The average volume 

correlation was 0.988, overestimating volume by 9% ± 14% over all compartments. Simple post 

processing creates a single 3D connected component per compartment resulting in higher 

anatomical face validity.      

Conclusion 

Our model produces automated segmentation with high Dice coefficients when compared to expert 

manual annotations and leads to the recovery of missing labels in the manual annotations, while 

also creating smoother, more realistic boundaries avoiding slice discontinuity artifacts present in the 

manual annotations. 
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1. Introduction  
Osteoarthritis (OA) is the most common joint disorder; the highest occurrence of OA is the knee joint 

with an estimated prevalence of 13% in the adult population in Europe (1,2). It is associated with an 

increasing socioeconomic impact owing to the aging and increasingly obese population (3). Manual 

segmentation of cartilage tissue from MRI has shown sufficient sensitivity to detect changes, 

including early progression (4,5). Also, greater rates of cartilage loss are associated with frequent 

knee pain, irrespective of adjustment or stratification for radiographic disease (6). While clinical OA 

is a late stage condition for which disease modifying opportunities are limited, early identification 

may offer a window of time for potentially more effective treatment (7). However, manual 

segmentation of cartilage is time-consuming and susceptible to inter-rater variability (8) while 

traditional automated registration and shape-based classification (9–13) have weaker performance 

metrics when compared to deep learning approaches (14–18). 

Fully Convolutional Neural Networks (CNNs)  provide an efficient and precise alternative for the 

segmentation of many anatomical structures in medical images. (19–21). In particular U-Nets, which 

comprise a contraction path (encoder) to capture context followed by an expansion path (decoder) 

to enable localisation, and shortcuts between selected layers, have shown improved segmentation 

accuracy (22).   

Two dimensional and more resource-expensive fully volumetric 3D U-Nets have been proposed for 

multi-label segmentation of knee cartilage (15–17). U-Net-derived architectures have shown 

promising results when trained and evaluated on small datasets with as few as 20 subjects without 

augmentation for the segmentation of knee joint structures (9). Further refinements have been 

made using conditional random fields (22), statistical shape modelling (SSM), and applied to 

meniscal cartilage (23)  femoral cartilage (11) and tibial cartilage (11,12). 2D U-Nets may struggle to 

differentiate medial from lateral cartilage. While SSM methods referenced may overcome this using 

3D U-Nets and bespoke registration templates they are more computationally expensive.  

In this study, we propose ensemble learning to increase the accuracy of our deep learning method 

while keeping computational resources limited by training a 2D U-Net with only two labels (cartilage 

vs background) to offset the high inter-rater variability in manual annotations (13,24), and a multi-

label U-Net to identify cartilage compartment. Using simple post-processing, we create anatomically 

valid segmentations that contain only a single region of interest per cartilage label. Our ensemble 

learning approach performed as well as or better than existing methods that provide labels for all 

cartilage compartments.  

2. Materials and Methods  
2.1 Study Dataset 

We utilized data from the Osteoarthritis Initiative (OAI), with cartilage annotations produced by 

iMorphics which are available online (25). The data for this retrospective analysis consisted of 3D-

DESS MRI scans from 88 subjects with osteoarthritis; imaging was acquired at two timepoints 

doubling the number of images available for training. We included images from all subjects with 

manual segmentations for 6 cartilage compartments. The manual segmentations were performed by 

a trained musculoskeletal radiologist and reviewed by a technical specialist at iMorphics (26). The 

segmentations passed the iMorphics cartilage segmentation training protocol, requiring an intra-

observer coefficient of variation lower than 3% on paired test images (26). The subjects consisted of 

45 male and 43 female participants of age 61.2 � 10.0 years and BMI of 31.3 � 4.6kg/m2 (mean 

� standard deviation). Based on the Kellgren-Lawrence (KL) scores for classification of knee OA (27), 
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baseline scores were: KL-1  2%, KL-2  34%, KL-3  59% and KL-4 5%. MRI volumes had a 140mm field 

of view; 0.7mm slice thickness and matrix of 384×384 with 160 slices. Manual annotations were 

provided for the patellar, femoral, lateral tibial, medial tibial, lateral meniscal and medial meniscal 

cartilage. 

2.2 Data Preparation  
We applied N4 Bias field correction to remove low frequency intensity non-uniformity in the MRI 

data (28). Each MRI volume was intensity normalized by subtracting the mean voxel intensity and 

dividing by the standard deviation. As the dataset consisted of baseline and 12-month MRI we chose 

to randomly split the dataset by subject to avoid the same person appearing in the training and test 

sets. We used a 70/20/10% split for training, validation, and testing. To train our 2-label U-Net (2l 

model) for cartilage segmentation we reduced the number of labels to two, cartilage and 

background. For the 7-label U-Net (7l model) we used the fully annotated dataset as provided by 

iMorphics.       

2.3 Model Architecture and training 
Using the U-Net architecture shown in Figure 1, we trained a 2-label model for segmentation of 

cartilage from background and a 7-label model for segmentation of each cartilage compartment. 

Convolutional layer inputs were zero padded to preserve the height and width of the outputs from 

these layers. We trained our network using the Adam optimizer (29) with a learning rate of 1×10-4; a 

weighted categorical cross-entropy loss function was used to account for imbalances in the number 

of training examples for each cartilage label. We trained the U-Net for 300 epochs on the training 

dataset. At each epoch, the Dice coefficients were averaged over all labels for the entire validation 

dataset to give a multi-label Dice score. The model weights from the epoch with the highest multi-

label Dice coefficient was selected for our combined model.   

We combined our models based on pixel voting; the 2-label model was used to determine if a voxel 

contained cartilage, and if so the 7-label model was used to determine the cartilage compartment 

(ignoring the background class). All code was implemented in Python 3.7.3 utilizing Tensorflow 

1.13.1 (https://www.tensorflow.org/) and Keras 2.2.4 (https://keras.io/) packages. All training and 

evaluation were carried out on a dedicated server hosting a 64-bit CentOS 7 operating system. 

Computing hardware included 80 Intel Xeon E5-2698 v4 CPUs @ 2.20GHz, 512GB DDR4RAM, and 

two Nvidia Tesla K10 graphic cards. 

2.4 Post-processing  
To refine the outputs of our combined network (7l2l model) we applied rule-based post processing 

to the segmentation maps provided by our model (Figure 2). For each cartilage compartment, we 

relabelled the connected components based on the labels of neighbouring voxels where the largest 

connected component keeps its original labels, assigned by the U-Net. We used 3D connected 

components with a connectivity type of 26 such that voxels were connected if their faces, edges, or 

corners touch. The remaining connected components were relabelled based on the most frequent 

label of neighbouring voxels. 

2.5 Model Evaluation  
Evaluation was performed based on a 3-fold cross validation approach in which 10% of the data was 

held out for testing. We took a similar approach to previous studies which used a varying number of 

folds ranging from 2 to 5 folds (16,17,23). For each fold we used the remaining 70% for training the 

model and 20% for internal validation at each epoch to prevent overfitting. The resulting 

segmentations from the test sets were pooled when evaluating our segmentation model. The 

accuracy of tissue segmentation was calculated using the Dice similarity coefficient for each cartilage 
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compartment, and was defined as DSC = 2|S∩R|/(|S|+|R| ) where S denotes the automatically 

segmented voxels and R denotes the reference manually annotated voxels. Dice coefficients have a 

range of between 0 and 1 for each cartilage compartment with 1 representing a perfect overlap and 

0 representing no overlap of the segmentations. Volumetric measures (scatter and Bland-Altman) 

were used to compare our corrected 7l2l model and manual segmentations. 

 

Figure 1:  U-net architecture for cartilage segmentation. Each blue box corresponds to a multi-

channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided 

at the left edge of each depth layer. Grey boxes represent copied feature maps. The arrows denote 

the different operations. In the expansion path the first 3 ×3 Convolution operator has a stride of 2 

to reduce the size of the feature map. In the last output operation (softmax layer) the number of 

channels is changed to train either a 2-label cartilage model or a 7-lable cartilage model.  

 

 

Figure 2:  Refinement of the combined model, mislabelled cartilage is either relabelled or removed. 

This post processing reduces the number of connected components to a single connected 

component per cartilage type.    

1. Identify all connected components for a 
given cartilage subtype. 

2. For each component (excluding the 
largest), extract the neighbouring voxels 
in contact with the perimeter of the 
object. 

3. Relabel the object based on the most 
frequent neighbouring voxel. 

4. Repeat steps 1-3 for all cartilage 
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3. Results  
For each fold the overall training time was approximately 48 hours given the computing hardware in 

the current study. The segmentation of all 6 regions of interest took 13.6s in total for each image 

volume with a mean computing time of 3.6s for the application of the combined U-Net and 10s for 

the post-processing. 

Figure 3 shows the Dice coefficients for each individual segmented cartilage structure. The Dice 

coefficient for each label was evaluated over the test sets obtained from the 3-fold cross validation; 

this was to avoid small or large cartilage regions from a given subject from biasing the Dice score, for 

a given cartilage compartment. Our combined 7l2l model achieved higher Dice scores across all 

compartments compared to our initial 7l model. While the improvements in Dice from post 

processing were small (corrected 7l2l model) the number of connected components was reduced 

from 21 per cartilage compartment to just one connected component per cartilage compartment. 

Visual assessment showed that the refinement yields more anatomically plausible segmentations, 

which may improve the quality of radiomics features from these segmentations.  

The Dice coefficient was used to compare our results to other automated methods for segmentation 

using the iMorphics dataset (Table 1).  Our approach reached state-of-the-art segmentation 

accuracy compared to other deep learning based methods (11,12,15–18,23) and outperformed 

competing methods that also provided automated segmentations for all cartilage labels. Dice 

coefficients (mean and 95% confidence intervals) for our method were: femoral 0.88 ± 0.03, medial 

tibial 0.84 ± 0.08, lateral tibial 0.88 ± 0.04, patellar 0.85 ± 0.10, medial meniscal 0.85 ± 0.05 and 

lateral meniscal 0.90 ± 0.04.  

Table 1: Dice coefficients for automatic segmentation methods using the iMorphics dataset. Data are 

means with 95% intervals in parentheses.  

Author Femoral 

Cartilage 

Tibial  Cartilage 

(Medial   Lateral) 

Patellar 

 Cartilage 

Meniscal Cartilage 

(Medial   Lateral) 

Norman et al. 2018 
(15) 

0.87(0.03)  0.78(0.03)   0.80 
(0.04) 

0.77(0.09) 0.73(0.05)    0.81 (0.03) 

Raj et al. 2018 (16) 0.85(0.01) 0.81(0.02)    

0.86(0.01) 

0.78(0.04) 0.80(0.01)    0.85(0.01) 

Tack et al. 2018*  (23) - - - 0.84(0.06)    0.89 (0.02) 

Ambellan et al. * 
2019 (11) 

0.89(0.02)  0.86(0.05)    0.90 
(0.02) 

- - 

Tack et al 2019. * (12) 
- 0.88(0.04)    

0.91(0.02) 
- - 

Desari et al. 2019 (18) 0.88(0.03) - - - 

Panfilov et al. 2019 
(17) 

0.91(0.02)   0.90(0.03) †   0.87(0.05)    0.86(0.03) † 

Ours 
0.88(0.03) 0.84(0.08)    

0.88(0.04) 
0.85(0.10) 0.85(0.05)    0.90(0.04) 

Note. *Incorporates 2D U-Nets, statistical shape modelling and 3D U-Nets, †lateral and medial 

components were combined.  

Figure 4 shows sagittal examples of tissue segmentation performed on the 3D DESS images in the 

test sets. The results from the 7-label U-Net demonstrate good agreement with the overall contours 

of the manual segmentation. In the example, the annotation for the lateral meniscus is missing in 

the manual annotations. The intermediary (uncorrected) 7l2l model recovers some of this 
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information but does not correctly label all the voxels; the proper label is recovered by our corrected 

7c2c model.    

Also shown in Figure 4 are the 3D rendered volumes for the corrected 7l2l model and manual 

segmentation. Noticeably, in the presence of advanced tissue degeneration, there is less agreement 

between the automatically segmented structures and the manual annotations. This is partly due to 

the increased subjectivity of segmentation in these regions as adjacent structures have comparable 

signal contrasts. In addition, cropping and irregular boundaries are visible in the manual annotations, 

while the automated segmentations have smoother boundaries. However, automated 

segmentations occasionally spill over into adjacent structures, as seen in the patellar. 

Figure 5 shows scatter and Bland-Altman plots for our corrected 7l2l model when applied to the 

pooled test sets. The volume of test data sets for manual and automatic segmentations show a 

strong linear relationship across all cartilage compartments. For the pooled test sets, the average 

volume correlation across cartilage compartments was 0.988, with an average absolute mean 

difference across compartments of 0.43cm
3
. The regression on the scatterplot shows a significant 

trend towards larger predicted volumes (gradient 1.034, 95% confidence interval 1.003 – 1.067). On 

the Bland Altman plot, the root mean squared error (RMSE) appears stable across the range of 

volumes (-9.3%). While the standard deviation is normally distributed (Kolmogorov–Smirnov test, p < 

0.05) the percentage difference between actual and predicted volume tends to decrease for larger 

volumes.  

Figure 3:  Box and jitter plot of the Dice coefficient values for each segmented cartilage type in the 

pooled test sets. Values are shown for the 7 label U-net (7l), combined model (7l2l), and corrected 

7l2l model. Dice scores have a higher value and have a lower standard deviation for femoral 

cartilage, L. meniscal and L. tibial cartilage compared to patellar, M. meniscal and M. tibial cartilage.       
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Figure 4. Tissue segmentations performed on a 3D Double Echo Stead State (DESS) MRI of a subject 

with full thickness cartilage loss in the medial compartment. Sagittal slices show the different 

models, while the 3D renderings are generated for the corrected 7l2l model and manual 

segmentations; these are visually very similar and demonstrate similar patterns of cartilage damage. 

Note the recovery of some unlabeled lateral meniscal cartilage in our corrected 7l2l model, and 

smoother border profiles in the 3D renderings.   

 

Figure 5. Scatterplots and Bland-Altman plot shows the comparison of volumetric measurements 

produced from our corrected 7l2l model compared to manual annotations, results are broken down 

by cartilage type. (Note that the linear regression, mean difference, and standard errors were 

calculated using the entire test data, not between compartments.) 
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4. Discussion  
In this study we aimed to increase the accuracy of automated knee cartilage segmentation by 

combining predictions from a 2 label (cartilage vs background) U-Net with a 7-label U-Net to 

determine the type of cartilage. Our results achieved the highest Dice scores of any competing 

models that provide segmentations for all 6-cartilage compartments. Authors used different splits of 

training, validation, and testing so results should be compared carefully. We demonstrate a gain in 

Dice across all cartilage labels when comparing our combined model to our 7-label model. In 

addition, our post-processing is very simple and has a similar effect to SSM in removing small 

isolated regions in the segmentation mask and assigning the correct labels to different cartilage 

compartments. 

Studies that have used SSM to provide segmentations for specific cartilage targets have also 

produced high Dice scores (11,12,23). However, this multistep process requires 2D and 3D U-Nets in 

addition to prior shape information for each target; also this method has been shown to fail to 

adequately segment  cases which exhibit full thickness cartilage denudation (23). Furthermore, SSM 

methods are more computationally expensive; based on estimates using a single computational 

node segmentation of a single knee joint (cartilage and bone) took around 10mins (11). Despite 

differences in hardware U-nets are computationally more efficient, our combined model takes 13.6s 

to segment a single MRI volume, making it more feasible to segment entire databases such as the 

OAI which contains 50000 or more MRIs. 

We observe that Dice coefficients of medial cartilage is lower than that of their lateral counterparts; 

a finding reproduced in other studies (11,12,15,16). The prevalence of radiographic medial 

compartment OA may be 5–10 times higher than in the lateral compartment (30). We hence suggest 

that lower Dice coefficients may result from greater uncertainty in the manual segmentations in 

medial regions due to advanced cartilage degeneration. Notably, for manual segmentations where 

the volume is less than 50% of the mean for a given label (n = 14) the average Dice coefficient is 

0.68, compared to remainder of the data (n = 304) with a DICE coefficient of 0.87. 

The Dice coefficient for inter-rater agreement was 0.79 in a similar dataset (24), while we achieved a 

Dice coefficient ≥ 0.85 across all cartilage compartments; suggesting automated segmentation is at 

least as good as manually generated annotations. When comparing our corrected 2l7l U-net results 

to those presented by Normal et al (15) the average volume correlation is higher (0.988 compared to 

0.938), and the average absolute mean difference across compartments is lower (  compared to 

0.510cm3).  

Our U-net architecture is 2D rather than 3D and therefore does not account for spatial information 

in the through-slice direction. This reduces the constrain to match the shape of the manual 

annotations in this direction which exhibit inter-slice discontinuity artefacts caused by slice wise 

delineation, resulting in the recovery of missing labels in the manual annotations, and  smoother, 

more realistic boundaries around automatically generated segmentations. When compared to the 

2D U-net by Panfilov et al (17), our Dice coefficients are slightly lower, however our model is able to 

differentiate medial from lateral components which  may be of particular importance given the role 

of laterality in knee osteoarthritis.   

U-nets tend to overestimate total volume segmentation in the OAI dataset, in the study by Dam et 

al. this was 14% for medial tibial and femoral compartments (31), and 12% across all compartments 

measured by Normal et al (8). In our study, or corrected 2l7l U-net overestimated the volume by 9% 

over all compartments. This result is similar to inter-observer reproducibility measures by Kristina et 
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al who calculated a RMSE of 9.9% for medial meniscal cartilage using DESS MRI volumes from the 

OAI (32).  

In this study we do not have quantifiable measures as to the causes of the differences between 

manual annotations and automatic segmentations. This limitation could be addressed in further 

work using higher resolution MRI, utilizing either higher field strengths or post-mortem imaging. Our 

model is limited by its lack of generalizability to clinical imaging protocols as training data consists 

entirely of DESS MRI. Improvements could include augmenting training data from clinically acquired 

scans or using generative adversarial networks to create images with synthetic DESS contrast.   

In this paper, we propose an ensemble learning approach based on a 2-label 2D U-Net to 

differentiate cartilage from background, followed by a multi-label U-Net to distinguish between 

different cartilage types. Our combined model offers rapid and accurate cartilage segmentation with 

favourable performance compared to previous multi-compartment segmentation algorithms that 

were tested using the OAI/iMorphics dataset. Visually, the presented automated segmentations 

appear smoother with anatomically more realistic boundaries compared to manual annotations.     
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