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ABSTRACT 

Metastatic colorectal cancer (mCRC) involves tumor cells seeding distant organs.  Metastatic 

CRC genome biology has intrinsic properties related to heterogeneous clonal tumor cells and 

extrinsic properties of the cellular niche of the tumor microenvironment (TME).  To characterize 

mCRC’s cell types and states, we used single-cell RNA sequencing (scRNA-seq) and DNA 

sequencing (scDNA-seq) on metastases in the liver and omentum, a tissue lining the abdomen.  

We performed scRNA-seq on 49,637 cells derived from mCRC, paired normal tissue and 

peripheral blood.  We performed whole genome scDNA-seq on 3,683 mCRC cells from the same 

samples.  These metastases had intrinsic heterogeneity, with clone-specific copy number 

variation and lineage differentiation.  For the extrinsic niche, TME macrophages had a cellular 

state resembling cirrhotic macrophages and foam cells with indicators of increased activity for 

extracellular matrix (ECM) organization.  TME fibroblasts had an expression program influencing 

ECM composition that was not observed in matched normal tissue.  Only a few CD8 T cells were 

present among the liver mCRCs, indicating immune exclusion.  Receptor-ligand analysis revealed 

that TME macrophages and fibroblasts formed an interactome, thus providing intercellular 

coordination which increased T cell exhaustion and exclusion.  For one mCRC, we used in a 

patient-derived ex vivo tissue model that captures the TME components of the original metastatic 

tumor, applied specific perturbations to the TME immune cells and evaluated cellular state 

changes with scRNA-seq.  Overall, our study identified tumor cell clonal variation, characterized 

specific TME properties of the CRC metastatic niche and demonstrated an experimental model 

of perturbing the cellular TME milieu. 
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INTRODUCTION 

Nearly 50% of all patients with colorectal cancer (CRC) have metastases, either presenting with 

distant tumors outside of the colon or developing metastatic recurrence after an initial diagnosis 

of cancer limited to the colon.  The most common site for CRC’s distant spread is the liver (Andres 

et al. 2015).  The majority of patients with metastatic colorectal cancer (mCRC) receive systemic 

chemotherapy or targeted therapy.  A small number of patients who have a limited number of 

metastases undergo surgical resection of the tumors from the liver.  Regardless of the treatment, 

mCRC patients have a variable response to any type of therapy with only a small number of 

patients (17-25%) surviving beyond 10 years (Tomlinson et al. 2007).  The cellular genomic 

diversity, regulatory states and intercellular interactions of any given mCRC contribute to the 

variation in therapeutic response and impact patient survival.  Metastatic tumors are composed 

of both cancer cells and the surrounding cells of the distal organ site.  However, characterizing 

mCRC’s and their genome biology remains a significant challenge given this intermingling of 

different cell types and their diverse phenotypic characteristics. 

Metastasis is a complex process with contributions from the “seed”, i.e. migrating tumor 

cells and the “soil”, i.e. the distant organ’s cellular microenvironment (Liu et al. 2017).  As an 

intrinsic cancer property, tumor cells have important cellular genomic features that include 

transcriptional regulatory state, molecular subtype, clonal heterogeneity and specific genomic 

alterations.  These properties enable seeding, colonization and growth at a distant site.  As an 

extrinsic cancer property, the cellular composition of the metastatic site plays a major role.  The 

metastatic process depends on the remodeling of different cells in the tumor microenvironment 

(TME) which has organ-specific architecture.  These extrinsic cellular characteristics influence 

patient prognosis and survival outcomes (Donadon et al. 2018; Pitroda et al. 2018).  Citing an 

example, the liver has a variety of cell types that influence CRC metastasis such as specialized 

macrophages (i.e. Kupffer cells), endothelial cells and lymphocytes (Williamson et al. 2019).  To 
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gain insights into the biology of mCRC, it is essential to characterize the cellular genomics of both 

the intrinsic tumor cells and the extrinsic surrounding TME. 

Conventional sequencing analysis of cancer collectively averages the transcriptional and 

genomic DNA information from all of the cells in a heterogenous population such as the TME.  

For metastatic cancers, this cellular mixing prevents the determination of intrinsic and extrinsic 

cellular genomic features among the diverse cell types.  Addressing the challenges of dissecting 

the TME cellular milieu, single-cell RNA (scRNA-seq) and single-cell DNA sequencing (scDNA-

seq) provides information from each individual cell and reveals details about the resident 

populations that would be impossible to discern otherwise (Lim et al. 2020).  Single cell gene 

expression studies have delineated the transcriptional signatures (i.e. cellular state) of resident 

cells for any given tumor (Lim et al. 2020; Sathe et al. 2020).  Single cell DNA sequencing studies 

have revealed a broad spectrum of genomic alterations such as copy number variation that 

distinguishes different clonal populations (Leung et al. 2017; Andor et al. 2020; Velazquez-

Villarreal et al. 2020). 

Several scRNA-seq studies have characterized primary CRCs originating from the colon 

(Li et al. 2017; Lee et al. 2020; Zhang et al. 2020a).  As described by these studies, the primary 

CRC epithelial cells had specific gene signatures associated with the cellular states of stemness 

and self-renewal.  Moreover, the TME included a variety of different cell types such as fibroblasts, 

macrophages and other immune cells showing transcriptional differences compared to their 

counterparts in normal colon.  Notably, the intercellular communication networks, as seen by 

ligand-receptor expression patterns, indicated an immunosuppressive phenotype among these 

TME cells. 

There are only a limited number of studies describing the single cell genomics of 

metastatic CRCs.  For example, Zhang et al. analyzed a single liver metastasis (Zhang et al. 

2020b).  The authors identified changes in the cellular composition of the TME compared to 
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normal tissue.  There are no published studies using single cell genomics to study peritoneal 

mCRCs; these are metastatic tumors embedded in the peritoneum tissue which provides a lining 

of the abdomen.  A genomic study using scDNA-seq, exome and targeted sequencing on two 

patients with mCRC revealed heterogeneity in the tumor epithelium, with evidence of both 

monoclonal and polyclonal seeding linked to the original progenitor population in the primary 

tumor (Leung et al. 2017).  Heterogeneity in mCRC has also been detected using fluorescent in 

situ hybridization (Mamlouk et al. 2017) and conventional exome sequencing (Hu et al. 2019). 

To characterize the intrinsic and extrinsic properties of metastatic CRC, we used a multi-

omics approach with both scRNA-seq and scDNA-seq (Fig. 1A).  We analyzed a cohort of six 

mCRC tumors surgically resected from the liver as well as one tumor present in the omentum, 

another abdominal site.  Our study included paired normal tissues and peripheral blood derived 

cells.  Comparing tumor cells to matched normal cells enabled us to identify discrete changes 

among the individual tumor and TME cells.  As an added dimension of genome biology, we 

studied the functional characteristics of the mCRC TME using a patient-derived ex vivo tissue 

model.  Given the cellular diversity of the tumor as found in a patient, we used specific molecules 

to perturb the mCRC TME followed by scRNA-seq to characterize the transcriptional changes 

seen among the different immune cell populations.  Overall, our study identified specific TME cell 

properties of the metastatic CRC niche, the extent of tumor cell clonal variation at these sites and 

potential immunotherapeutic targets in the TME using an experimental ex vivo single cell analysis. 

 

RESULTS 

Single-cell analysis of colorectal cancer metastasis (mCRC) 

We recruited six patients with mCRC, all had liver metastasis.  These individuals underwent 

surgical resection following preoperative chemotherapy with a combination chemotherapy  
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Figure 1: (A) Schematic representation of study design. (B) UMAP representation of dimensionally reduced data 
following graph-based clustering with marker-based cell type assignments. (C) Dot plot depicting expression 
levels of specific lineage-based marker genes together with the percentage of cells expressing the marker. (D) 
Proportion of cell types from each sample detected per cell lineage. (E) UMAP representation annotated with 
sample information. 
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involving 5-fluoruracil and oxaliplatin (Supplemental Table 1).  From surgical resections, we 

obtained metastatic tumors.  In addition, we had paired normal liver tissue from five of these 

patients and peripheral blood mononuclear cells (PBMCs) from two of them.  From one patient, 

we had a second paired synchronous peritoneal metastasis located in the omentum, a tissue 

lining of the abdomen with matched normal omental tissue.  All of these tumors underwent testing 

for microsatellite instability via immunohistochemistry for the DNA mismatch repair proteins.  All 

of the mCRCs were microsatellite stable (MSS). 

We sequenced a total of 49,637 single cells from these specimens (22,718 cells from 

normal liver, 14,553 cells from liver mCRCs, 2212 cells from normal omentum, 3,184 cells from 

omentum mCRC and 6,970 PBMCs) (Supplemental Table 2).  For quality control, we filtered 

cells using quality control measures (11.7% of total cells) (Supplemental Methods).  One filter 

involved eliminating cells expressing greater than 30% mitochondrial genes which indicates cell 

death (Ilicic et al. 2016).  We excluded the doublet cells using a computational approach that 

predicts them based on their similarity with artificial doublets generated using gene expression 

profiles from randomly selected cells (McGinnis et al. 2019). 

To compare the tumor cells with matched normal tissue cells and PBMCs, we aggregated 

single-cell data across all patients and samples.  We normalized the data and performed variance-

stabilization transformation by calculating Pearson residuals from a generalized linear model that 

accounts for technical variation in sequencing depth (Hafemeister and Satija 2019).  Following 

principal component analysis, the top twenty principal components were used to construct a k-

nearest neighbors (KNN) graph.  Afterwards, the cells were iteratively grouped together using the 

Louvain algorithm (Butler et al. 2018).  We performed non-linear dimensionality reduction using 

Uniform Manifold Approximation and Projection (UMAP) (McInnes and Healy 2018) to visualize 

the resulting clusters. 
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This procedure identified a total of 35 distinct clusters, each one having cells with similar 

transcriptional signatures.  We identified differentially expressed genes among the clusters using 

the Wilcoxon rank sum test with genes expressed in greater than 25% of cells in a cluster, having 

a log fold change greater than 0.25 and a cut-off of p < 0.05 following Bonferroni correction.  We 

compared differentially expressed genes in each cluster to literature-based marker genes to 

identify cell lineages (Fig. 1B, Supplemental Table 3).  Clusters containing markers with multiple 

lineages were identified as multiplets (i.e. two or more cells in a partition) and were excluded from 

downstream analysis. 

Representative of the organ’s cellular architecture, we detected hepatocytes (ALB), 

cholangiocytes (SOX9, KRT19, DEFB1), tumor epithelial cells (TFF3, EPCAM), stromal cells 

including endothelial cells (VWF), fibroblasts (DCN, COL1A1) and smooth muscle (LUM, ACTA2).  

Representing the immune cell types, we detected myeloid lineage cells including monocytes, 

macrophages and dendritic cells (CD14, FCGR3A, CD68, HLA-DP1, CD1C) and T lymphocytes 

and NK cells (CD3D, IL7R, CD8A, GNLY) (Figs. 1C, 1D).  Cells of the same identity clustered 

together (Fig. 1E) regardless of the tissue sample, indicating no prominent batch effects.  Next, 

we performed secondary clustering analysis for each cell lineage. 

 

Malignant epithelial cells exhibit lineage differentiation 

Among the tumor epithelial cells, we discovered cellular heterogeneity that involved transcriptional 

properties related to characteristics of stem cell (i.e. “stemness”) and cell differentiation.  The 

tumor epithelial cells formed patient-specific clusters indicative of transcriptional differences 

among the different mCRCs (Fig. 2A, 2B).  For three mCRCs (P6198, P6335, P5915), we 

detected more than one tumor epithelial cell cluster indicative of intratumoral heterogeneity (ITH); 

subpopulations of distinct tumor cells had different gene expression patterns.  From patient 

P6335, we analyzed a synchronous metastasis to the liver and the omentum. 
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Figure 2: UMAP representation of dimensionally reduced data following graph-based clustering annotated by 
cluster number (A) or sample (B). (C) Heatmap depicting expression of respective genes per cluster and patient. 
(D) Trajectory plot of mCRC epithelial cells colored by sample origin and annotated by major trajectory branches 
1-4. (E) Heatmap depicting the expression of highest significantly expressed genes per trajectory branch 
(adjusted p-value < 0.05). (F) Heatmap representing average GSVA enrichment score for respective hallmark 
pathway for each trajectory branch (ANOVA with Tukey HSD p-value < 0.05). 
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 Cells from both these metastatic sites clustered together indicating similar transcriptional 

signatures and this result was consistent with a common origin, being the original primary CRC. 

We investigated the expression of marker genes for cellular lineages found in the intestinal 

crypt (Fig. 2C).  This milieu includes stem cells residing at the base of the crypt, tuft cells, 

enterocytes or absorptive cells, mucous secreting goblet cells, neuroendocrine cells and adhesion 

markers associated with CRC (Supplemental Table 3) (Li et al. 2017).  Across all patients, we 

detected expression of enterocyte genes (CEACAM1, KRT20, etc.), goblet cell genes (TFF3, 

REG4, MUC1, etc.), adhesion genes (CEACAM5, CEACAM6, etc.) and stemness genes (LGR5, 

OLFM4, PROM1, CD44).  Hence, all of these mCRCs had multilineage differentiation patterns 

observed in normal colon and primary CRCs (Li et al. 2017). 

Single cell analysis enabled us to characterize tumor cell populations with different 

properties, even in the same tumor.  Otherwise, these differences may have been overlooked.  

One of the samples represented a mixture of tumor cell types.  Referred to as mixed adeno-

neuroendocrine carcinoma (MANEC), this colon cancer has both epithelial and neuroendocrine 

cellular components.  P6198’s mCRC had higher differential expression of the SYP gene, which 

was also confirmed on clinical immunohistochemistry (IHC) staining (Supplemental Table 1).  

Also referred to as synaptophysin, SYP expression is a classic marker for neuroendocrine 

cancers.  However, these tumors cells also expressed epithelial tumor markers such as MUC1, 

DCLK1 or LGR5 which are indicative of goblet cell, tuft cell or stemness markers respectively. 

 

Differential gene expression and pathway activation in mCRC tumor epithelium 

We performed differential expression analysis at the gene and pathway level to characterize the 

heterogeneity of tumor epithelial cells.  In addition, differences in lineage differentiation and 

activation of specific signaling pathways were evidence of both interpatient and intrapatient tumor 

cellular heterogeneity. 
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Differentially expressed genes in adenocarcinoma mCRCs included the markers FABP1, 

OLFM4, KRT20, CEACAM5 and CEACAM6 (Li et al. 2017) (Supplemental Fig. 1A).  Expression 

of these genes is associated with CRC.  For example, the product of CEACAM5 is a 

carcinoembryonic antigen (CEA), which is a protein biomarker in the blood and used for 

longitudinal monitoring of mCRC.  In addition, we detected high expression levels of TSPAN8 and 

HES1, which are associated with the tumor properties of stemness and invasion (Candy et al. 

2013; Zhu et al. 2019).  Expression of these genes varied between tumors as well within sub-

clusters of the same tumor in P5915 and P6335.  Increased ERBB2 expression was detected in 

P5784’s and P6593’s tumors – the clinical immunohistochemistry results from these samples 

corroborated ERBB2 overexpression (Supplemental Table 1).  ERBB2 amplification, encoding 

the HER2 protein, is a predictive biomarker for the trastuzumab antibody against this receptor in 

mCRC (De Cuyper et al. 2020).  The variation among the tumors was also noted for hallmark 

pathway activity including for signaling in apical junction complexes and apical surfaces that 

regulate epithelial cell polarity, Wnt, Notch and PI3K.  Moreover, there was variation in gene 

expression for the angiogenesis pathways and epithelial mesenchymal transition (Supplemental 

Fig. 1B).  One of two sub-clusters in both P5915 and P6335 demonstrated a significant 

downregulation of these pathways compared to normal epithelial cells. 

P6198’s MANEC metastasis had significantly increased expression of the DEFA5 and 

DEFA6 genes.  These genes have been described to be enriched in small intestinal 

neuroendocrine tumors (Wang and Yu 2020) (Supplemental Fig. 1A).  P6198 sub-clusters varied 

in the expression of genes related to differentiation including: ID3 which is a helix-loop-helix 

protein involved in transcriptional regulation; transcription factors JUN, JUNB and ATF3.  We also 

observed differential expression of several genes involved in cell cycle regulation such as MDK, 

CDKN1A, HMGB2 and TOP2A.  Differences in hallmark pathway activity were most evident for 
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cell cycle related processes (Supplemental Fig. 1B) indicative of a sub-cluster with higher rate 

of proliferation. 

Differences in gene expression are subject to confounding effects due to stochasticity. As 

a solution to this issue, the pseudotime analysis method reconstructs cellular trajectories of cells 

progressing into stable states representing the final differentiation endpoint (He et al. 2017).  We 

applied pseudotime analysis to our CRC samples and detected four main branches in the 

trajectories of the mCRC epithelial cells (Fig. 2D, Supplemental Table 4).  Subsequently, we 

determined the differential gene expression (Fig. 2E) and hallmark pathway activation (Fig. 2F). 

Branch 1 contained cells from P6198’s MANEC metastasis with significant expression of 

the DEFA5 and DEFA6 genes.  Branch 4 was dominated by P5784’s and P6593’s tumors, both 

of which had an ERBB2 (HER2) amplification.  For these mCRCS, the high expression of ERBB2 

occurred jointly with differential expression of KRT20, SPINK1 and others.  This gene expression 

signature was an indicator of increased apical junction proteins as well as signaling pathways.  

Branches 2 and 3 had the majority of cells from P5915 and P6335 respectively, albeit with minor 

contributions from other mCRCs.  Cells in Branch 1 shared high expression of several CRC 

associated genes including TFF3, FABP1, CEACAM5 and others. 

Compared to Branch 2 with genes indicating increased apical signaling, Branch 3 was 

significantly enriched for stemness-related genes such as OLFM4, LEFTY1 and SEPT14.  This 

corresponded with an increase in Wnt, TGF-b and Hedgehog signaling in this branch.  Overall, 

the trajectory analysis confirmed that differences in mCRC were accounted for by variation in 

cancer-related signaling networks. 

 

Influence of copy number variation on tumor heterogeneity 
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Based on scDNA-seq analysis, tumor heterogeneity in mCRCs was evident based on differences 

in copy number variation (CNV) and aneuploidy changes of chromosomes.  To identify clonal 

CNVs, we performed whole genome single cell sequencing on a subset of four mCRC samples 

(P5915, P6593, P6335 and P6198).  We modeled per-cell read counts per genomic bin as a 

Poisson distribution dependent on both the GC content and the copy number as previously 

described (Andor et al. 2020), using Cell Ranger.  The GC bias was modeled as a quadratic 

function with fixed intercept and correction on a cell-by-cell basis was performed.  To estimate 

copy number for each bin, we empirically computed the effect of GC content followed by scaling 

to generate haploid-scaled copy number calls.  To identify candidate breakpoints, we calculated 

the discontinuity in copy number values among all mappable bins using the log-likelihood ratio 

statistic.  CNVs were generally restricted to regions of the genome (85-90%) where reads could 

be confidently mapped.  We determined single cell copy number profiles with an average median 

effective coverage of 230 reads per 1 Mb per cell and an average median estimated CNV 

resolution of 1.38 Mb (Supplemental Table 5).  Using the CNV segments, we performed 

hierarchical clustering to determine if there were clonal differences among the epithelial tumor 

cells (Fig. 3A).  Importantly, CNVs were not evident in the normal epithelial cells across all 

samples (Supplemental Fig. 1C). 

All of the mCRCs had significant levels of aneuploidy and deletions, indicating that these 

MSS tumors belong to the chromosomal instability (CIN) molecular subtype (Guinney et al. 2015).  

For example, chromosomes 7, 13 and 20 either had trisomy or tetrasomy across all mCRCs.  

These aneuploidy events are associated with metastasis in CRC (Mamlouk et al. 2017; Hu et al. 

2019).  We also identified deletions in chromosomes 18 and 21 in all adenocarcinoma mCRCs 

(P6335, P5915, P6593) and chromosome 8 deletion in P5915.  These genomic deletions are 

common in mCRC (Mamlouk et al. 2017; Hu et al. 2019).  Deletions in chromosomes 18 have 

been identified as a marker for increased risk of metastasis among patients with limited stage 
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CRCs (Nguyen and Duong 2018).  Amplifications in chromosome 13 and 20 have been 

associated with the development of metastasis in CRC (Haan et al. 2014).  

Interestingly, the MANEC metastasis (P6198) had these same events as well as a 

complete loss of chromosome 8p.  While CNV analysis specifically from neuroendocrine tumors 

has not been extensively described, their mutational landscape is known to resemble colorectal 

adenocarcinoma (Takizawa et al. 2015).  Therefore, our study showed that MANEC tumors with 

complex differentiation patterns can be linked to genomic instability events characteristic of 

mCRCs. 

Importantly, each mCRC had heterogenous distribution of different CNVs and aneuploidy 

events.  For P6335’s mCRC, aneuploidy was evident among 146 of the epithelial tumor cells.  

Based on different distributions of aneuploid and amplification events on chromosome 3, 11, 13 

and 20, there were three major clones and several minor sub-clones (Fig. 3A).  For P6198’s 

mCRC, 1,862 aneuploid cells contained two major clones that had different cellular distributions 

for amplification of chromosome 12 with smaller groups of cells varying in chromosome 1, 13 and 

19 amplification.  For P5915’s mCRC, we detected deletions in chromosomes 2, 3, 4, 8, 11 and 

17 in a subset of cells.  Similarly, P6593’s CRC had aneuploid cells that were heterogenous for  

amplifications in chromosomes 3, 13 and 20.  For both these samples, there was a lower number 

of total cells for scDNA-seq because of the small tissue biopsy and the reduced tumor cell counts 

as a result of prior chemotherapy (Supplemental Table 5). 

To understand the impact of this CNV heterogeneity on single-cell gene expression, we 

inferred the copy number of tumor epithelial cells based on their scRNA-seq derived gene 

expression using the InferCNV  tool (Tickle et al. 2019) (Fig. 3B).  With transcript counts, one 

identifies large-scale chromosomal CNV events by using increase or decrease in gene   
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Figure 3: (A) Hierarchical clustering of CNV profiles obtained from scDNA-seq for respective patients. Number 
of aneuploid cells analyzed per patient: 146 in P6335, 1862 in P6198, 8 in P5915, 24 in P6593 respectively.  (B) 
Inferred copy number profiles for respective patients using scRNA-seq compared to stromal cells from all samples 
as a diploid reference control.  Expression states indicate CNV levels as follows: 1= complete loss, 2 = loss of 
one copy, 3 = neutral, 4 = addition of one copy, 5 = addition of two copies, 6 = greater than 2 copies. (C-D) Violin 
plots depicting expression score for genes on respective chromosomes in each epithelial cell sub-cluster in (C) 
P6335 with T-test p-value and (D) P6198 with ANOVA and Tukey HSD  p-value respectively.  
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expression as a surrogate for gain or loss of copies respectively.  Albeit, the resolution of a given 

CNV is on the order of Mbs and does not provide the resolution of scDNA-seq. 

We used stromal cells derived from all patients as a diploid reference control.  We 

calculated an average expression score per chromosome on the basis of genes identified from 

this analysis (Supplemental Methods) (Tirosh et al. 2016).  For P6335’s tumor, the average 

expression score for genes on chromosomes 13 and 20 demonstrated an increase in copy 

number and was significantly different between the two epithelial sub-clusters (Fig. 3C).  In 

P6198, several sub-clusters differed significantly in the expression of genes on chromosomes 12 

and 19 (Fig. 3D).  This result identified the importance of gene dosage with some aneuploidy 

manifesting themselves with a corresponding increase in gene expression. 

Interestingly, some DNA-based CNV events were not observed when inferring CNVs from 

the single cell gene expression data.  Thus, gene dosage events as a result of trisomy or higher 

chromosome number increases did not always lead to increased expression for the affected 

chromosomes.  For P6335’s mCRC, we noted this difference for the clonal branch having 

chromosomes 3 and 11 aneuploidy.  For P6198’s mCRC, a similar difference was observed for 

the chromosome 4 aneuploidy.  This result is an indicator of additional mechanisms such as 

epigenetic regulation that alter gene expression and contribute to phenotypic transcriptional 

heterogeneity (Stamoulis et al. 2019). 

 

Metabolically reprogrammed mCRC macrophages influence ECM re-organization 

We discovered that macrophages in the metastatic TME had a single distinct transcriptional state 

with a gene profile resembling cirrhotic macrophages and foam cells.  This metastatic TME state 

is significantly different that the dichotomous states of macrophages in primary CRC (Zhang et 
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al. 2020a).  Notably, this transcriptional state was not present in normal liver tissue macrophages 

or peripheral blood monocytes. 

To analyze the macrophage single cell data, we performed re-clustering, differential 

expression analysis and comparisons to lineage marker genes on cells belonging to the myeloid 

lineage (Supplemental Fig. 2).  This analysis process enabled the identification of the following 

cell types: PBMC-dominant CD14 or FCGR3A (CD16) expressing monocyte sub-populations; 

dendritic cells in the liver (HLA genes, CD1C, CLEC9A, IDO1, etc.); Kupffer cells in the liver  

(CD5L, MARCO, LIPA, MAF, etc.); proliferating cells; mCRC-specific macrophages; additional 

tissue-monocyte/macrophage clusters detected in normal liver and normal omentum (Villani et al. 

2017; MacParland et al. 2018).  Cells did not express neutrophil markers (Supplemental Fig. 

2C). 

Tumor macrophages from mCRCs clustered separately from macrophages in normal 

tissue and PBMC monocytes (Fig. 4A).  This profile was different than the classic M1/M2 profiles 

of macrophage polarization (Martinez et al. 2006; Martinez and Gordon 2014) (Fig. 4B).  

Differential expression analysis revealed significantly higher expression of genes involved in 

fibrosis including SPP1, TREM2, LGALS3 and CD9.  This transcriptional profile is similar to what 

is observed among macrophages in liver cirrhosis (Ramachandran et al. 2019) (Fig. 4C, 

Supplemental Table 6).  These cells also had high expression of genes such as APOE and 

APOC which are involved in cholesterol metabolism.  Importantly, the gene expression patterns 

were similar to what is observed in foam cell macrophages located in atherosclerotic plaques, an 

obstructive lesion of arterial vessels (Fernandez et al. 2019).  Pathway analysis revealed 

significant enrichment of terms relating to ECM organization and metabolism including HDL-

mediated lipid transport, glycosphingolipid and glucose metabolism (Fig. 4D, Supplemental 

Table 7).  These metabolic changes impact macrophage function and polarization, a concept 

referred to as ‘immunometabolism’ (Viola et al. 2019).  
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Figure 4: (A) UMAP representation of dimensionally reduced data following graph-based clustering annotated by 
sample condition. (B) Heatmap depicting expression of respective genes per cluster. (C) Heatmap depicting the 
expression of highest significantly expressed genes per cluster (adjusted p-value < 0.05). (D) Selected 
differentially enriched reactome pathways in tumor macrophages. (E) Heatmap depicting average AUC activity 
of top regulons (ANOVA with Tukey HSD  p-value < 0.05) per cluster. Number in parenthesis indicates number 
of genes in the gene regulatory network. 
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 We inferred the transcriptional regulators of this phenotype by examining the activity of 

transcription factor and co-factor controlled gene regulatory networks in single cells (Aibar et al. 

2017).  Tumor macrophages, normal macrophages and PBMC monocytes showed significant 

differences in the activity of specific gene regulatory networks (Fig. 4E).  Notably, tumor 

macrophages were enriched for PPARG and MITF activity providing a molecular link to the 

metabolic phenotype that we noted previously using differential gene expression and pathway 

analysis.  PPARG encodes a member of the peroxisome proliferator-activated receptor family and 

regulates lipid pathway signaling and the formation of foam cells in atherosclerosis (Kuznetsova 

et al. 2020).  The MITF gene is a transcriptional factor that is known to regulate lipid accumulation 

in adipose tissue macrophages as well as their inflammatory phenotype (Gabriel et al. 2014). 

 

Metastatic TME has immune exhaustion and exclusion in infiltrating CD8 T cells 

The majority of liver mCRCs had relatively few CD8 T cells, suggesting an immune excluded 

phenotype where T cells are blocked from migrating into the confines of the tumor and 

surrounding TME (Binnewies et al. 2018).  We directly observed this phenomenon with the liver 

TMEs which contained an average of 133 CD8 T cells.  In contrast, paired normal liver contained 

diverse immune cell types with higher numbers.  Interestingly, we detected a rich immune cell 

infiltrate in the omental metastasis with around 620 CD8 T cells.  However, the majority of these 

cells had characteristics of immune exhaustion.  This phenotype is characterized by low cytotoxic 

potential and the upregulation of multiple immune checkpoints leading to an ineffective anti-tumor 

response (Wherry and Kurachi 2015). 

First, we analyzed all immune cells from mCRCs, PBMCs and normal tissue together 

revealing 19 clusters (Supplemental Fig. 3 A, B, C).  Based on their expression of lineage 

markers, we detected a rich immune infiltrate containing CD4 T, CD8 T, NK, gamma delta T, NK-

like, NK-T, MAIT atypical T, plasma and B cells in the normal liver (Supplemental Fig. 3D).  
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Similar to previous findings (MacParland et al. 2018), typical and atypical T and NK cells were 

mixed in some clusters.  We also detected these cell lineages in the normal omentum.  As one 

would expect, T and NK cells in PBMCs clustered separately from the same cell types in the liver 

and omental tissue; this cluster pattern were indicators of tissue-specific transcriptional 

differences which we have observed in gastric cancers (Sathe et al. 2020). 

We re-clustered tumor-specific lymphocytes from these cells to characterize them in 

greater detail.  The omentum metastasis had a diverse immune infiltrate containing CD4 T cells, 

heterogenous CD8 T cells, NK cells, regulatory T cells (Tregs), plasma and B cells (Fig. 5 A, B, 

C).  The CD4 cells expressed CXCL13 (c10_CD4) and other multiple immune checkpoints 

(Supplemental Table 8).  These cells have the potential to regulate TME immune response by 

affecting the balance between anti-tumor B cells and immunosuppressive Tregs (Gu-Trantien et 

al. 2017). We also detected the expression of several checkpoint and costimulatory molecules on 

Tregs (c8_Treg).  Tregs have an immunosuppressive role that suppresses any anti-tumor immune 

cells (Ohue and Nishikawa 2019).  Liver mCRCs were comparatively devoid of infiltrating immune 

cells (Fig. 5D), indicating an immune excluded phenotype (Binnewies et al. 2018). 

 CD8 T cells mediate an effective anti-tumor response.  The omentum metastasis (P6335) 

had with three distinct sub-clusters of CD8 T cells (c1_CD8, c6_CD8, c11_CD8) and a single 

cluster was detected from liver mCRCs predominantly from P5784 (c2_CD8) (Fig. 5D).  We 

examined the expression of known immune checkpoints, costimulatory molecules and cytotoxic 

effector genes in these cells (Fig. 5E).  Then we compared these results to previously described 

gene signatures of cytotoxicity, exhaustion and proliferation (Fig. 5F, Supplemental Methods).  

CD8 cells from liver mCRCs had significantly lower cytotoxicity (ANOVA FDR p <  
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Figure 5: UMAP representation of dimensionally reduced data following graph-based clustering annotated by (A) 
clusters and (B) sample condition. (C) Dot plot depicting expression levels of specific lineage-based marker 
genes together with the percentage of cells expressing the marker. (D) Heatmap depicting number of cells from 
each sample detected in each respective cluster. (E) Heatmap depicting the expression of respective genes in 
each cluster. (F) Heatmap representing average GSVA enrichment score for respective pathway for each cluster 
(ANOVA with Tukey HSD  p-value < 0.05). 
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5e-6).  The subsets of exhausted T cells in omentum metastasis varied in the extent of enrichment 

of cytotoxic, exhaustion and proliferation profiles as we have noted previously (Sathe et al. 2020).  

Exhausted cells expressed multiple immune checkpoints including significant expression of the 

exhaustion markers HAVCR2 (TIM3), TIGIT and LAG3 as well as the costimulatory molecule 

TNFRSF9 (41-BB) (Fig. 5E, Supplemental Table 8).  These cells also significantly expressed 

CXCL13 and RBPJ that we have previously identified in exhausted cells in the gastric cancer 

TME (Sathe et al. 2020).  Thus, we detected a rich infiltration of immune cells with a pronounced 

T cell exhaustion phenotype in the omentum mCRC and few T cells in the majority of liver mCRCs 

suggestive of an immune excluded phenotype (Binnewies et al. 2018). 

 

mCRC fibroblasts have a tumor-promoting gene expression program  

We discovered transcriptional features of mCRC cancer-associated fibroblasts (CAFs) that 

influence ECM organization and tumor growth, which were absent in the normal tissue 

counterparts and resembled stromal changes in primary CRC (Lee et al. 2020).  After re-clustering 

and differential expression analysis of stromal cells (Fig. 6A, 6B, Supplemental Table 9) we 

identified the following: omentum-derived mesothelial cells (cluster 10) (Jackson-Jones et al. 

2020); omentum-specific mesenchymal cells expressing ECM glycoproteins and proteoglycans 

(clusters 0, 1,12); mCRC enriched CAFs (clusters 2, 6); endothelial cell subsets (clusters 4, 5, 7, 

8, 13); a mixed cluster of hepatic stellate cells and vascular smooth muscle cells (cluster 3). 

We compared the differentially expressed genes from the CAFs to the ‘matrisome’, a set 

of genes which represents the collection of ECM and ECM-associated proteins (Supplemental 

Table 10, Fig. 6C) (Naba et al. 2012).  These cells expressed several collagen genes (COL1A1, 

COL3A1, COL5A1, etc.) in their core matrisome program together with a variety of ECM  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 
Figure 6: UMAP representation of dimensionally reduced data following graph-based clustering annotated by 
cluster number (A) or sample condition (B). (C) Violin plots depicting expression level of respective genes in 
each cluster. 

 
glycoproteins (FN1, TGFBI, THBS2, etc.) and proteoglycans (BGN, VCAN, etc.).  Highly 

expressed ECM regulators included MMP11, MMP14, TIMP1, LOXL1 and LOXL2.  These genes 

enable ECM remodeling (Liu et al. 2019).  The resulting ECM composition influences physical 

properties such as stiffness and contributes to tumor growth and drug resistance (Shen et al. 

2020).  Secreted factors included TGFB1, TGFB3, VEGFA, PDFGFA, PDGFC that can promote 

tumor growth as well as enable immune evasion (Sahai et al. 2020). 

 We inferred the gene regulatory networks in CAFs based on the expression of target 

genes (Aibar et al. 2017).  The ATF3, BCLAF1, CEPB, YY1, EGR1, GT2F1 and TAF7 regulons 

had an average AUC >0.3 revealing the transcription factors that control the CAF phenotype 

(Supplemental Table 11). 
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Fibroblasts and macrophages form an intercellular signaling network 

We discovered a receptor-ligand mediated mutual networking between macrophages and 

fibroblasts; the two cell types influenced each other’s transcriptional phenotype.  We also 

discovered intercellular interactions between these cells that impact both the immunocellular 

phenotypes of T cell exclusion and exhaustion. 

First, we identified cell-type specific receptor-ligand interactions to construct a mCRC TME 

interactome with a high number of unique interactions mediated by fibroblasts, macrophages and 

epithelial cells (Supplemental Fig. 4A, Supplemental Table 13) (Vento-Tormo et al. 2018).  

Prominent among these interactions were fibroblast-immune CXCL12-CXCR4 receptor ligand 

pair.  These genes mediate one of the mechanisms that drives immune suppression in the TME 

(Chen et al. 2019a) (Supplemental Fig. 4B).  Namely, the CXCL12 ligand and its co-receptor 

CXCR4 regulate the mobilization of specific immune cells into tissues.  We also detected genes 

belonging to the Nectin family as well as LGALS9 that serve as ligands for immune checkpoints 

TIGIT and HAVCR2 (TIM-3) respectively (Fujihara et al. 2013; Wu et al. 2014; Gorvel and Olive 

2020).  In addition, we observed differential expression of the macrophage-derived gene SPP1 

that suppresses T cell activation via interaction with CD44 (Klement et al. 2018).  

Next, we identified receptor-ligand interactions that are predicted to regulate specific 

transcriptional phenotypes in the TME.  Our analysis relied on ligand-target and ligand-receptor 

gene models constructed using published literature (Browaeys et al. 2020).  We identified the top 

ranked ligands that regulate mCRC fibroblasts and its matrisome expression program (Fig. 7A).  

The majority of ligands were secreted by macrophages and fibroblasts (Fig. 7B).  Confirming the 

biological validity of this ECM expression program, among the high ranked genes was the ECM 

regulator TGFB1.  Multiple studies have established this gene’s important role in ECM 

organization (Hinz 2015).  Also, we identified the macrophage secreted ligand SPP1 which  
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Figure 7: Predicted target genes and their regulatory potential for regulating the (A) fibroblast gene signature or 
(D) macrophage gene signature. (B, E) Dot plot depicting expression levels of respective ligands together with 
the percentage of cells expressing them. (C, F) Inferred receptors for the respective ligands with their interaction 
potential. 
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 regulates the matrisome program in fibroblasts.  All of these results confirmed the role of 

macrophages in regulating ECM organization, expanding the molecular network associated with 

the fibrogenic macrophage phenotype we previously discovered using differential expression 

analysis.  Corresponding receptors on fibroblasts included members of the integrin, FGF and 

TGFB family.  These genes are additional targets that can be used to experimentally modulate 

the fibroblast transcriptional phenotype (Fig. 7C). 

 We investigated the gene expression program in macrophages enriched for reactome 

pathway terms related to metabolism and extracellular matrix organization.  The top ranked 

ligands were expressed by macrophages and fibroblasts and included FGF1, TNF, APOE, PGF, 

TGFB1. (Fig. 7D, E).  For macrophages, the corresponding receptors include members of the 

TNF and integrin receptor family and the macrophage immune checkpoint CD47 (Fig. 7F).  This 

analysis thus demonstrates a signaling network between TME macrophages and fibroblasts that 

influences their transcriptional phenotype via links intercellular communication  

We analyzed the expression of the above two fibroblast and macrophage gene signatures 

in a published dataset generated from conventional RNA-seq of 93 mCRC patients (Pitroda et al. 

2018) (Methods).  The two signatures had a positive Spearman correlation (R2 = 0.59, p-value 

< 2.2e-16) (Supplemental Fig. 4C).  This result supports a role for an association between the 

fibroblast and macrophage transcriptional phenotypes. 

 

Perturbing the macrophage signaling network in TMEs 

We examined the functional impact of targeting the metastatic niche with a patient-derived ex vivo 

model that preserves all TME lineages.  Based on our discovery of a novel transcriptional state 

of macrophages in the TME, we conducted additional experiments to see if the macrophage 

signaling could be altered with external perturbations.  These experiments provided us with a way 
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to experimentally challenge the macrophages in the heterogenous TME milieu found in a patient’s 

tumor. 

We recapitulated the diverse TME cell lineages and their interactions using an organotypic 

ex vivo model (Jiang et al. 2019) from P8640’s liver mCRC resection.  We refer to these cultures 

as ‘TME-models’.  We sectioned the mCRC tissue into thin 400 µm slices using a vibrating 

microtome.  These slices were overlaid onto a permeable cell-culture insert.  Cell culture media 

was then added onto the insert allowing nutrients to reach the tissue slice. The combination of 

extremely thin tissue slices and maintained nutrient exchange eliminates the need for specialized 

ECM support or special growth factors in this system.  The native cellular architecture was kept 

intact with high cell viability.  Media acts as a vehicle for added perturbations. 

 First, we compared the original tissue and cells at the time of surgical resection, referred 

to as ‘T0’, and what was maintained ex vivo.  Hematoxylin and eosin (HE) staining revealed that 

the morphology of the ex vivo TME-models was maintained in comparison to the T0 specimen 

(Fig. 8A).  No overt signs of cell death were noted on histology review.  With scRNA-seq, we 

sampled 238 single cells from the T0 resection and an average of 1,292 cells from the TME-

models (Supplemental Table 2).  Based on cell-specific markers, all cell lineages were 

maintained in the TME-models compared to the T0 tissue sample.  The only difference was a 

reduction in the proportion of the ex vivo epithelial cells compared to that in T0 (Fig. 8B).  

Importantly, UMAP clustering revealed that profiles from lineages in the TME-models clustered 

together with T0 cells indicating that transcriptional phenotypes are maintained ex vivo (Fig. 8C, 

8D).  Cells in the ex vivo model continued to express lineage markers and genes of interest in 

various cell types such immune checkpoint expression in T cells, metabolic reprogramming genes 

in macrophages, ECM re-organization genes in stromal fibroblasts, etc. (Fig. 8E).  Overall, these 

results demonstrate that TME-models successfully recapitulate characteristics of the in vivo TME. 
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Figure 8: (A) H&E images from representative areas from T0 surgical resection or control (ctrl) ex vivo sample, 
scale bar = 50 µm. (B) Proportion of cell lineages detected in each sample. UMAP representation annotated with 
(C) cell lineage and (D) sample information. (E) Dot plot depicting expression levels of respective genes together 
with the percentage of cells expressing them in each condition. (F) Heatmap depicting the expression of 
respective genes in each cluster. 
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We treated the TME-model cells with either control media (ctrl) or one of two different 

perturbations: 1 µg/ml lipopolysaccharide (LPS), a known macrophage modulator, or 1 mM 

pirfenidone which has an impact on fibroblasts.  Pirfenidone is an anti-fibrotic and anti-

inflammatory agent used in the treatment of pulmonary fibrosis (Lopez-de la Mora et al. 2015).  

We disaggregated the treated TME-model cells and conducted scRNA-seq and histology at the 

24 hour time point after treatment. 

 We examined the effects of our perturbations on the macrophage sub-population in the 

TME-models using differential expression analysis (Fig. 8F, Supplemental Table 11).  LPS led 

to a significant increase in the expression of metallothionein family genes that have been 

previously described to mediate its effects on monocytes in vitro (Leibbrandt and Koropatnick 

1994) as well as HCK, a receptor tyrosine kinase that mediates its effects in macrophages 

(English et al. 1997).  LPS reduced the expression of several chemokines including TNF, CCL4L2, 

CCL4, CXCL3, CXCL2 and mediators of NK-FB pathway such as NFKBIZ.  Pirfenidone led to a 

significant increase in in chemokine gene expression that included CCL4L2, CCL3L1, CCL4, 

CCL3 and the macrophage regulator S100A8.  Thus, our ex vivo perturbation demonstrated that 

that TME macrophage phenotype and function could be altered via modulation with small 

molecules.  Critical chemokines that mediate intercellular signaling are altered and their effects 

can be assessed.  Hence, scRNA-seq can successfully be used to investigate the effects of 

perturbations on specific cellular lineages in ex vivo TME-models allowing the investigation of 

novel TME targets. 

 

DISCUSSION 

Our results reveal a complex picture of the intrinsic and extrinsic heterogeneity in mCRC including 

previously undescribed features of the TME.  While a minority of patients with mCRC have 

excellent prognosis with current treatment strategies, the majority have poor 5-year survival 
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(Pitroda et al. 2018).  We have identified features in the TME including gene expression programs, 

gene regulatory networks and several inter-cellular interactions that should be explored in future 

studies as novel targets for mCRC treatment.  These targets are of interest also in other cancers 

to enable the modulation of the immunosuppressive stroma and improve immunotherapy 

response (Binnewies et al. 2018). 

Previous studies have established a role for both monoclonal and polyclonal seeding in 

mCRC (Leung et al. 2017; Hu et al. 2019). Our results using both scRNA-seq and scDNA-seq 

revealed that mCRCs contain multiple sub-clones defined at the copy-number level.  We also 

discovered discordance between chromosome arm level events and their gene dosage 

suggesting that additional regulatory mechanisms determine gene expression, corroborating the 

findings of other studies (Stamoulis et al. 2019).  Experiments that analyze single-cell DNA, RNA 

and chromatin accessibility performed in parallel can provide further insights into these 

mechanisms. 

Transcriptional level heterogeneity was also confirmed with the activation of various 

signaling pathways within a single mCRC.  We also demonstrated that intratumoral heterogeneity 

in mCRC is not only characterized by specific genomic DNA events such as allelic imbalances 

but also by multi-lineage differentiation.  It has been proposed that mCRC directly results from an 

aberrant epithelial mesenchymal transition (EMT) by cancer stem cells in the primary tumor 

(Pereira et al. 2015).  Supporting this concept, we detected the presence of lineage differentiation 

including stem-like undifferentiated cells, enterocytes and goblet cells in mCRC that have been 

observed in primary CRC (Li et al. 2017).  This underlying cellular complexity suggests that 

mCRCs contain sub-populations programmed to sustain growth.  Thus targeted therapeutics may 

require multiple strategies that abrogate these different programs to ensure complete tumor 

eradication. 
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We discovered that the mCRC TME had significant differences compared to normal tissue 

including appearance of distinct transcriptional programs in macrophages, fibroblasts and 

lymphocytes. These changes in the “soil” component of the metastatic cascade could result from 

the presence of tumor cells in the colonizing metastasis as well as from systemic factors induced 

by the primary tumor.  Investigating these changes in mouse models of metastasis could provide 

more insights into the origin and regulation of these processes (Liu et al. 2017). 

 Macrophages had a complex phenotype that does not confirm to the M1/M2 classification 

as we and others have previously discovered (Martinez and Gordon 2014; Sathe et al. 2020). The 

SPP1, APOE, TREM2, CD9, etc. expressing tumor macrophage phenotype we discovered was 

enriched for pathways related to ECM reorganization. This expression program has similarities to 

recently described studies in liver cirrhosis and pulmonary fibrosis where it was demonstrated to 

be a pro-fibrogenic phenotype (Ramachandran et al. 2019; Reyfman et al. 2019). SPP1 

expressing macrophages have been demonstrated to play a role in promoting primary CRC  and 

also have the potential to influence CD8 function by their role as an immune checkpoint ligand 

(Zhang et al. 2017; Lee et al. 2020; Zhang et al. 2020a). 

This fibrogenic phenotype was accompanied by changes in genes controlling various 

metabolic pathways including glycolysis, lipid transport and sphingolipid synthesis resembling 

atherosclerotic foam cells (Fernandez et al. 2019). Macrophage metabolism influences their 

functional phenotype (Netea-Maier et al. 2018). Our findings provide several metabolic targets 

including an upstream regulator PPARG that can be perturbed to further understand their biology 

in the context of the TME. 

We detected infiltration of various lymphocyte cell types in the omentum mCRC, including 

exhausted T cells.  Peritoneal mCRC is currently treated with surgery and systemic or 

intraperitoneal chemotherapy (Sanchez-Hidalgo et al. 2019). Our results suggest that these 

patients could also be targeted with T-cell based immunotherapy. The majority of liver mCRCs 
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contained few infiltrating lymphocytes suggesting that they exhibit immune desert or immune 

excluded phenotype characterized by the absence of T cell infiltration in the tumor core 

(Binnewies et al. 2018).  Lack of infiltration was also noted for P6335 liver metastasis although 

the paired omentum metastasis contained a rich infiltrate, raising the possibility of an organ 

specific effect. 

 Fibroblasts and macrophages play a critical role in modulating such an 

immunosuppressive TME, including the phenotype of T cell exclusion (Binnewies et al. 2018). We 

discovered fibroblasts specific to the TME with the potential to regulate ECM properties that can 

in turn promote tumor growth.  This fibroblast phenotype could also be influenced by FOLFOX-

based neoadjuvant chemotherapy that was administered to all patients in the cohort (Mancini and 

Sonis 2014). 

Single cell characterization of several solid tumors has revealed TME features that are 

common across all cancers as well as unique to the tissue of origin (Qian et al. 2020).  The 

fibroblast phenotype in both liver and omentum metastases as well as the T cell phenotypes in 

the omentum metastasis are similar to findings from previous studies in other primary cancers. 

Unlike most studies in primary cancers, including primary CRC, that have detected multiple 

macrophage clusters indicative of diverse cellular states (Sathe et al. 2020; Zhang et al. 2020a), 

we detected a single cluster of macrophages in the mCRC metastatic niche. Further studies 

should investigate if this transcriptional phenotype is unique to metastasis, indicates a terminal 

differentiation state in TME macrophages or is a result of organ-specific transcriptional 

reprogramming. 

 The gene expression programs we have discovered can potentially be influenced by tissue 

dissociation processes.  We used the same dissociation protocol for matched normal liver to 

enable a controlled comparison between tumor and normal microenvironment lineages,  unlike 
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specially developed dissociation protocols for normal liver that ensure adequate dissociation of 

hepatocytes and stellate cells  (MacParland et al. 2018).  

 We demonstrated that scRNA-seq analysis can be used to understand the effect of 

perturbations in the TME in a unique patient-derived ex vivo model that recapitulates cellular 

composition and phenotypes of the in vivo TME.  We detected significant gene expression 

changes in macrophages exposed to LPS or Pirfenidone. We sampled few fibroblast cells from 

these samples.  This perturbation can be used to understand its effect in modulating the fibroblast 

phenotype resulting from interactions between macrophages and fibroblasts.  Most previous 

studies even with a known modulator like LPS have been limited to in vitro differentiated 

monocytes or animal models that do not resemble the in vivo macrophage phenotype.  Our model 

is based on organotypic slice culture and maintains the native cells in regular cell culture media 

without the need for either special cytokines or ECM components.  Air-liquid interface organoids 

derived from patients have previously been used to examine the effects of PD-1 immunotherapy 

using flow cytometry (Neal et al. 2018).  The scRNA-seq analysis provides the advantage of an 

unbiased analysis of the ex vivo TME as we have previously demonstrated using a mouse model 

of gastric cancer  (Chen et al. 2019b).  Patient-derived TME models in combination with scRNA-

seq thus provide a  clinically relevant system to investigate novel targets. 

 

METHODS 

For the sake of brevity, we provide an overview of the methods with more details reported in the 

Supplemental Methods. 

 

Sample acquisition 
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All samples were acquired with informed consent under an approved institutional review board 

protocol from Stanford University as surgical resections or matched normal tissue from sites 

displaced at least several centimeters from the tumor.   

 

Single-cell RNA sequencing 

The scRNA-seq libraries were generated from cell suspensions using Chromium Single Cell 3′ 

Library & Gel Bead Kit v2 or Chromium Next GEM Single cell Immune Profiling   5’ v1.1 (10X 

Genomics, Pleasanton, CA, USA) as per manufacturer’s protocol and sequenced on Illumina 

sequencers (Illumina, San Diego, CA) (Supplemental Table 1).  10000 cells were targeted from 

tissue dissociation suspensions and 3000 for PBMCs with 14 PCR cycles for cDNA and library 

amplification. A 1% or 2% E-Gel (ThermoFisher Scientific, Waltham, MA, USA) was used for 

quality control evaluation of intermediate products and sequencing libraries.  A Qubit (Thermofisher 

Scientific) or qPCR with Kapa library quantification kit (Kapa Biosystems, Wilmington, MA) was 

used to quantify the libraries as per the manufacturer’s protocol. Cell Ranger 3 (10X Genomics) 

‘mkfastq’ and ‘count’ commands were used with default parameters and alignment to GRCh38 to 

generate matrix of unique molecular identifier (UMI) counts per gene and associated cell barcode. 

 

Single-cell DNA sequencing  

scDNA-seq libraries were generated using Chromium Single Cell DNA Library & Gel Bead Kit or 

its beta version (Supplemental Table 5) (10X Genomics) as per manufacturer’s protocol. 2000 

cells were targeted with 14 PCR cycles for sample index PCR. Quality control was performed with 

a 1% or 2% E-Gel (Thermofisher Scientific) and libraries were quantified using Qubit (Thermofisher 

Scientific) as per the manufacturer’s protocol. Cell Ranger DNA 1.1. (10X Genomics) ‘cellranger 

dna mkfastq’ and ‘cellranger dna cnv’ commands were used to perform reference alignment to 
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GRCh38, cell calling, copy number estimation and hierarchical clustering. Cell barcodes identified 

as ‘noisy’ cells with this pipeline were omitted and outputs were reconstructed from all other cells 

using the ‘cellranger dna reanalyze’ command. Resulting hierarchical clustering was visualized in 

Loupe scDNA Browser (v 1.0.0) (10X Genomics) with 128 nodes. Cells were visualized at a 

subtree depth suitable to evaluate the majority of aneuploid cells. Subtree depth of 2 was used for 

P6335 omentum and P6198, 1 for P6593 and 3 for P5915. 

 

Ex vivo slice culture TME-models 

Surgical resection was collected in plain RPMI on ice immediately after resection and dissected 

with iris scissors. VF-310-0Z Compresstome tissue slicer and its accessories (Precisionary, 

Greenville, NC, USA) were used to generate tissue slices from a piece of the resection. Tissue 

sample was glued onto the specimen tube base using All Purpose Krazy Glue (Elmer’s Products, 

Inc., Westerville, OH, USA). 3% agarose solution was prepared by diluting UltraPure Low Melting 

Point Agarose (ThermoFisher Scientific) in water followed by heating in a microwave and cooling 

for around three-five minutes at room temperature. Tissue sample was allowed to enter the 

specimen tube and agarose solution was pipetted on top ensuring the sample was completely 

covered and no bubbles were present. Agarose was solidified by placing pre-chilled chilling block 

supplied by manufacturer over the specimen tube. Specimen tube was assembled onto 

compresstome as per manufacturer’s instructions and cold PBS was used as a solution in the 

buffer tank. Slices were generated using advance setting of 3, oscillation of 5 and thickness of 

400 µm. Slices were placed onto a 0.4 µm pore size Millicell Cell Culture Insert (Sigma-Aldrich, 

St. Loius, MO, USA) that was then placed into a 35-mm dish (ThermoFisher Scientific). 1.5 ml of 

media was placed into the surrounding dish and 0.5 ml was placed onto the slices followed by 

culture in a cell culture incubator. Media was composed of RPMI, 10% FBS, 1% Antibiotic-

Antimycotic (ThermoFisher Scientific) for control slices with either 1 µg/ml lipopolysaccharide 
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(Sigma-Aldrich) or 1 mM pirfenidone (Tocris Bioscience, Bristol, UK) in the treated conditions. At 

24 hours, slice culture TME-models were subjected to fixation for histology and dissociation 

(Supplemental Methods). 

 

DATA ACCESS 

Sequencing data deposition is in progress under dbGAP identifier phs001818.v3.p1. Cellranger 

outputs will be available on https://dna-discovery.stanford.edu/. 

 

AUTHOR CONTRIBUTIONS 

AS, GP and HPJ designed the study.  AS, BTL and JC developed the methodology and acquired 

the data. AS, SMG, BTL, XB and HPJ analyzed and interpreted the data.  AS and HPJ wrote the 

manuscript with input from all authors. 

 

ACKNOWLEDGEMENTS 

We are grateful to all patients who participated in the study as well as their families. We thank 

Christine Handy, Christina Wood-Bouwens and Alison Almeda for assistance in sample collection.  

Figure 1A was created using Biorender.com.  This work was supported by US National Institutes 

of Health grants P01HG000205 (HPJ and SMG), R01HG006137 (HPJ), U01CA217875 (HPJ and 

AS).  HPJ also received support from the American Cancer Society (124571-RSG-13-297-01) 

and the Clayville Foundation.  This work with the Stanford Cancer Institute biobank was supported 

by a National Cancer Institute Cancer Center Support Grant (P30CA124435).  The content is 

solely the responsibility of the authors and does not necessarily represent the official views of the 

National Cancer Institute.  AS received additional support from the Stanford University 

Translational Research and Applied Medicine (TRAM) pilot grant program. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

REFERENCES 

Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow 

F, Marine JC, Geurts P, Aerts J et al. 2017. SCENIC: single-cell regulatory network 

inference and clustering. Nat Methods 14: 1083-1086. 

Andor N, Lau BT, Catalanotti C, Sathe A, Kubit M, Chen J, Blaj C, Cherry A, Bangs CD, Grimes 

SM et al. 2020. Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines 

reveals rules of in vitro evolution. NAR Genom Bioinform 2: lqaa016. 

Andres A, Mentha G, Adam R, Gerstel E, Skipenko OG, Barroso E, Lopez-Ben S, Hubert C, 

Majno PE, Toso C. 2015. Surgical management of patients with colorectal cancer and 

simultaneous liver and lung metastases. Br J Surg 102: 691-699. 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich 

DI, Ostrand-Rosenberg S, Hedrick CC et al. 2018. Understanding the tumor immune 

microenvironment (TIME) for effective therapy. Nat Med 24: 541-550. 

Browaeys R, Saelens W, Saeys Y. 2020. NicheNet: modeling intercellular communication by 

linking ligands to target genes. Nat Methods 17: 159-162. 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. Integrating single-cell transcriptomic 

data across different conditions, technologies, and species. Nat Biotechnol 36: 411-420. 

Candy PA, Phillips MR, Redfern AD, Colley SM, Davidson JA, Stuart LM, Wood BA, Zeps N, 

Leedman PJ. 2013. Notch-induced transcription factors are predictive of survival and 5-

fluorouracil response in colorectal cancer patients. Br J Cancer 109: 1023-1030. 

Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, Adstamongkonkul P, Huang P, Lindeman N, 

Langer R, Jain RK. 2019a. Blocking CXCR4 alleviates desmoplasia, increases T-

lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc 

Natl Acad Sci U S A 116: 4558-4566. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Chen J, Lau BT, Andor N, Grimes SM, Handy C, Wood-Bouwens C, Ji HP. 2019b. Single-cell 

transcriptome analysis identifies distinct cell types and niche signaling in a primary 

gastric organoid model. Sci Rep 9: 4536. 

De Cuyper A, Van Den Eynde M, Machiels JP. 2020. HER2 as a Predictive Biomarker and 

Treatment Target in Colorectal Cancer. Clin Colorectal Cancer 19: 65-72. 

Donadon M, Lleo A, Di Tommaso L, Soldani C, Franceschini B, Roncalli M, Torzilli G. 2018. The 

Shifting Paradigm of Prognostic Factors of Colorectal Liver Metastases: From Tumor-

Centered to Host Immune-Centered Factors. Front Oncol 8: 181. 

English BK, Orlicek SL, Mei Z, Meals EA. 1997. Bacterial LPS and IFN-gamma trigger the 

tyrosine phosphorylation of vav in macrophages: evidence for involvement of the hck 

tyrosine kinase. J Leukoc Biol 62: 859-864. 

Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, 

Wong CK, Shamailova R, Hill CA et al. 2019. Single-cell immune landscape of human 

atherosclerotic plaques. Nat Med 25: 1576-1588. 

Fujihara S, Mori H, Kobara H, Rafiq K, Niki T, Hirashima M, Masaki T. 2013. Galectin-9 in 

cancer therapy. Recent Pat Endocr Metab Immune Drug Discov 7: 130-137. 

Gabriel TL, Tol MJ, Ottenhof R, van Roomen C, Aten J, Claessen N, Hooibrink B, de Weijer B, 

Serlie MJ, Argmann C et al. 2014. Lysosomal stress in obese adipose tissue 

macrophages contributes to MITF-dependent Gpnmb induction. Diabetes 63: 3310-

3323. 

Gorvel L, Olive D. 2020. Targeting the "PVR-TIGIT axis" with immune checkpoint therapies. 

F1000Res 9. 

Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohee S, Garaud S, Noel G, Dang Chi VL, 

Lodewyckx JN, Naveaux C et al. 2017. CXCL13-producing TFH cells link immune 

suppression and adaptive memory in human breast cancer. JCI Insight 2. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman 

P, Nyamundanda G, Angelino P et al. 2015. The consensus molecular subtypes of 

colorectal cancer. Nat Med 21: 1350-1356. 

Haan JC, Labots M, Rausch C, Koopman M, Tol J, Mekenkamp LJ, van de Wiel MA, Israeli D, 

van Essen HF, van Grieken NC et al. 2014. Genomic landscape of metastatic colorectal 

cancer. Nat Commun 5: 5457. 

Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq 

data using regularized negative binomial regression. Genome Biol 20: 296. 

He W, Zhang H, Han F, Chen X, Lin R, Wang W, Qiu H, Zhuang Z, Liao Q, Zhang W et al. 

2017. CD155T/TIGIT Signaling Regulates CD8(+) T-cell Metabolism and Promotes 

Tumor Progression in Human Gastric Cancer. Cancer Res 77: 6375-6388. 

Hinz B. 2015. The extracellular matrix and transforming growth factor-beta1: Tale of a strained 

relationship. Matrix Biol 47: 54-65. 

Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, 

Falcone A et al. 2019. Quantitative evidence for early metastatic seeding in colorectal 

cancer. Nat Genet 51: 1113-1122. 

Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. 2016. 

Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17: 29. 

Jackson-Jones LH, Smith P, Portman JR, Magalhaes MS, Mylonas KJ, Vermeren MM, Nixon M, 

Henderson BEP, Dobie R, Vermeren S et al. 2020. Stromal Cells Covering Omental Fat-

Associated Lymphoid Clusters Trigger Formation of Neutrophil Aggregates to Capture 

Peritoneal Contaminants. Immunity 52: 700-715 e706. 

Jiang X, Seo YD, Sullivan KM, Pillarisetty VG. 2019. Establishment of Slice Cultures as a Tool 

to Study the Cancer Immune Microenvironment. Methods Mol Biol 1884: 283-295. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Klement JD, Paschall AV, Redd PS, Ibrahim ML, Lu C, Yang D, Celis E, Abrams SI, Ozato K, 

Liu K. 2018. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation 

and tumor immune evasion. J Clin Invest 128: 5549-5560. 

Kuznetsova T, Prange KHM, Glass CK, de Winther MPJ. 2020. Transcriptional and epigenetic 

regulation of macrophages in atherosclerosis. Nat Rev Cardiol 17: 216-228. 

Lee HO, Hong Y, Etlioglu HE, Cho YB, Pomella V, Van den Bosch B, Vanhecke J, Verbandt S, 

Hong H, Min JW et al. 2020. Lineage-dependent gene expression programs influence 

the immune landscape of colorectal cancer. Nat Genet 52: 594-603. 

Leibbrandt ME, Koropatnick J. 1994. Activation of human monocytes with lipopolysaccharide 

induces metallothionein expression and is diminished by zinc. Toxicol Appl Pharmacol 

124: 72-81. 

Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru D, Kopetz S, Navin NE. 

2017. Single-cell DNA sequencing reveals a late-dissemination model in metastatic 

colorectal cancer. Genome Res 27: 1287-1299. 

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS 

et al. 2017. Reference component analysis of single-cell transcriptomes elucidates 

cellular heterogeneity in human colorectal tumors. Nat Genet 49: 708-718. 

Lim B, Lin Y, Navin N. 2020. Advancing Cancer Research and Medicine with Single-Cell 

Genomics. Cancer Cell 37: 456-470. 

Liu Q, Zhang H, Jiang X, Qian C, Liu Z, Luo D. 2017. Factors involved in cancer metastasis: a 

better understanding to "seed and soil" hypothesis. Mol Cancer 16: 176. 

Liu T, Zhou L, Li D, Andl T, Zhang Y. 2019. Cancer-Associated Fibroblasts Build and Secure the 

Tumor Microenvironment. Front Cell Dev Biol 7: 60. 

Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, Sanchez-Enriquez S, Lucano-

Landeros S, Macias-Barragan J, Armendariz-Borunda J. 2015. Role and New Insights of 

Pirfenidone in Fibrotic Diseases. Int J Med Sci 12: 840-847. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri 

J, Linares I et al. 2018. Single cell RNA sequencing of human liver reveals distinct 

intrahepatic macrophage populations. Nat Commun 9: 4383. 

Mamlouk S, Childs LH, Aust D, Heim D, Melching F, Oliveira C, Wolf T, Durek P, Schumacher 

D, Blaker H et al. 2017. DNA copy number changes define spatial patterns of 

heterogeneity in colorectal cancer. Nat Commun 8: 14093. 

Mancini ML, Sonis ST. 2014. Mechanisms of cellular fibrosis associated with cancer regimen-

related toxicities. Front Pharmacol 5: 51. 

Martinez FO, Gordon S. 2014. The M1 and M2 paradigm of macrophage activation: time for 

reassessment. F1000Prime Rep 6: 13. 

Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human 

monocyte-to-macrophage differentiation and polarization: new molecules and patterns of 

gene expression. J Immunol 177: 7303-7311. 

McGinnis CS, Murrow LM, Gartner ZJ. 2019. DoubletFinder: Doublet Detection in Single-Cell 

RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8: 329-337 e324. 

McInnes L, Healy J. 2018. UMAP: uniform manifold approximation and projection for dimension 

reduction.  doi:https://arxiv.org/abs/1802.03426 ArXiv. 

Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. 2012. The matrisome: in silico 

definition and in vivo characterization by proteomics of normal and tumor extracellular 

matrices. Mol Cell Proteomics 11: M111 014647. 

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, 

Smith AR et al. 2018. Organoid Modeling of the Tumor Immune Microenvironment. Cell 

175: 1972-1988 e1916. 

Netea-Maier RT, Smit JWA, Netea MG. 2018. Metabolic changes in tumor cells and tumor-

associated macrophages: A mutual relationship. Cancer Lett 413: 102-109. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

Nguyen HT, Duong HQ. 2018. The molecular characteristics of colorectal cancer: Implications 

for diagnosis and therapy. Oncol Lett 16: 9-18. 

Ohue Y, Nishikawa H. 2019. Regulatory T (Treg) cells in cancer: Can Treg cells be a new 

therapeutic target? Cancer Sci 110: 2080-2089. 

Pereira L, Mariadason JM, Hannan RD, Dhillon AS. 2015. Implications of epithelial-

mesenchymal plasticity for heterogeneity in colorectal cancer. Front Oncol 5: 13. 

Pitroda SP, Khodarev NN, Huang L, Uppal A, Wightman SC, Ganai S, Joseph N, Pitt J, Brown 

M, Forde M et al. 2018. Integrated molecular subtyping defines a curable oligometastatic 

state in colorectal liver metastasis. Nat Commun 9: 1793. 

Qian J, Olbrecht S, Boeckx B, Vos H, Laoui D, Etlioglu E, Wauters E, Pomella V, Verbandt S, 

Busschaert P et al. 2020. A pan-cancer blueprint of the heterogeneous tumor 

microenvironment revealed by single-cell profiling. Cell Res doi:10.1038/s41422-020-

0355-0. 

Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman 

JR, Matchett KP, Brice M, Marwick JA et al. 2019. Resolving the fibrotic niche of human 

liver cirrhosis at single-cell level. Nature 575: 512-518. 

Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, 

Akbarpour M, Chen CI, Ren Z et al. 2019. Single-Cell Transcriptomic Analysis of Human 

Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. Am J Respir Crit 

Care Med 199: 1517-1536. 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten 

FR, Hingorani SR, Hunter T et al. 2020. A framework for advancing our understanding of 

cancer-associated fibroblasts. Nat Rev Cancer 20: 174-186. 

Sanchez-Hidalgo JM, Rodriguez-Ortiz L, Arjona-Sanchez A, Rufian-Pena S, Casado-Adam A, 

Cosano-Alvarez A, Briceno-Delgado J. 2019. Colorectal peritoneal metastases: Optimal 

management review. World J Gastroenterol 25: 3484-3502. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 41 

Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, Poultsides G, Ji HP. 2020. Single-

Cell Genomic Characterization Reveals the Cellular Reprogramming of the Gastric 

Tumor Microenvironment. Clin Cancer Res doi:10.1158/1078-0432.CCR-19-3231. 

Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, 

Radhakrishnan P, Liang J et al. 2020. Reduction of Liver Metastasis Stiffness Improves 

Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 37: 800-817 

e807. 

Stamoulis G, Garieri M, Makrythanasis P, Letourneau A, Guipponi M, Panousis N, Sloan-Bena 

F, Falconnet E, Ribaux P, Borel C et al. 2019. Single cell transcriptome in aneuploidies 

reveals mechanisms of gene dosage imbalance. Nat Commun 10: 4495. 

Takizawa N, Ohishi Y, Hirahashi M, Takahashi S, Nakamura K, Tanaka M, Oki E, Takayanagi 

R, Oda Y. 2015. Molecular characteristics of colorectal neuroendocrine carcinoma; 

similarities with adenocarcinoma rather than neuroendocrine tumor. Hum Pathol 46: 

1890-1900. 

Tickle T, Tirosh I, Georgescu C, Brown M, Haas B. 2019. inferCNV of the Trinity CTAT Project. 

Vol 2020. Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, 

MA, USA. 

Tirosh I, Izar B, Prakadan SM, Wadsworth MH, 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman 

C, Lian C, Murphy G et al. 2016. Dissecting the multicellular ecosystem of metastatic 

melanoma by single-cell RNA-seq. Science 352: 189-196. 

Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, Kemeny N, Brennan 

MF, Blumgart LH, D'Angelica M. 2007. Actual 10-year survival after resection of 

colorectal liver metastases defines cure. J Clin Oncol 25: 4575-4580. 

Velazquez-Villarreal EI, Maheshwari S, Sorenson J, Fiddes IT, Kumar V, Yin Y, Webb MG, 

Catalanotti C, Grigorova M, Edwards PA et al. 2020. Single-cell sequencing of genomic 

DNA resolves sub-clonal heterogeneity in a melanoma cell line. Commun Biol 3: 318. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, 

Stephenson E, Polanski K, Goncalves A et al. 2018. Single-cell reconstruction of the 

early maternal-fetal interface in humans. Nature 563: 347-353. 

Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, 

Zheng S, Lazo S et al. 2017. Single-cell RNA-seq reveals new types of human blood 

dendritic cells, monocytes, and progenitors. Science 356. 

Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. 2019. The Metabolic 

Signature of Macrophage Responses. Front Immunol 10: 1462. 

Wang Q, Yu C. 2020. Expression profiling of small intestinal neuroendocrine tumors identified 

pathways and gene networks linked to tumorigenesis and metastasis. Biosci Rep 40. 

Wherry EJ, Kurachi M. 2015. Molecular and cellular insights into T cell exhaustion. Nat Rev 

Immunol 15: 486-499. 

Williamson T, Sultanpuram N, Sendi H. 2019. The role of liver microenvironment in hepatic 

metastasis. Clin Transl Med 8: 21. 

Wu C, Thalhamer T, Franca RF, Xiao S, Wang C, Hotta C, Zhu C, Hirashima M, Anderson AC, 

Kuchroo VK. 2014. Galectin-9-CD44 interaction enhances stability and function of 

adaptive regulatory T cells. Immunity 41: 270-282. 

Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim 

A et al. 2020a. Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies 

in Colon Cancer. Cell 181: 442-459 e429. 

Zhang Y, Du W, Chen Z, Xiang C. 2017. Upregulation of PD-L1 by SPP1 mediates macrophage 

polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res 359: 

449-457. 

Zhang Y, Song J, Zhao Z, Yang M, Chen M, Liu C, Ji J, Zhu D. 2020b. Single-cell transcriptome 

analysis reveals tumor immune microenvironment heterogenicity and granulocytes 

enrichment in colorectal cancer liver metastases. Cancer Lett 470: 84-94. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, Ju G, Huang J, Ge W, Chen Y et al. 2019. TSPAN8 

promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun 

10: 2863. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.273672doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.273672
http://creativecommons.org/licenses/by-nc-nd/4.0/

