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Abstract

Point process generalized linear models (GLMs) provide a powerful tool for
characterizing the coding properties of neural populations. Spline basis functions are
often used in point process GLMs, when the relationship between the spiking and
driving signals are nonlinear, but common choices for the structure of these spline bases
often lead to loss of statistical power and numerical instability when the signals that
influence spiking are bounded above or below. In particular, history dependent spike
train models often suffer these issues at times immediately following a previous spike.
This can make inferences related to refractoriness and bursting activity more
challenging. Here, we propose a modified set of spline basis functions that assumes a
flat derivative at the endpoints and show that this limits the uncertainty and numerical
issues associated with cardinal splines. We illustrate the application of this modified
basis to the problem of simultaneously estimating the place field and history dependent
properties of a set of neurons from the CA1 region of rat hippocampus, and compare it
with the other commonly used basis functions. We have made code available in
MATLAB to implement spike train regression using these modified basis functions.

Introduction

Statistical neural models are often used to relate the likelihood of observing particular
spike patterns in individual neurons to a variety of factors, including biological and
behavioral signals, the neuron’s own past spiking history, and the influences of other
neurons in a local population [1]. For instance, statistical models for neurons in the CA1
region of rat hippocampus have been used to model these neurons’ place field properties,
theta rhythmicity and precession [2, 3], and the neuron’s past spiking history [4]. Point
process generalized linear models (GLMs) are often used because they provide robust
and computationally efficient methods for estimating model parameters. They also
provide powerful analysis tools for computing model uncertainty, assessing
goodness-of-fit, and model refinement [1, 5–7]. Often, point process GLMs are
constructed using basis functions to capture complex functional relationships between
neural spiking and the signals that influence it. In particular, splines are a common
choice of basis functions that use locally defined, 3rd order polynomials to capture
nonlinear relationships between spiking and covariates. Splines are flexible, have
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parameters that are interpretable, and have been successful in capturing nonlinear
functional relationships in a variety of neural systems [2, 8, 9]. The most common class
of splines used for point process neural modeling are cardinal splines. Each cardinal
spline is defined by a sparse set of knots, or control points, such that the value of the
function at any point along the spline and the value of its derivative are determined by
a linear combination of the four nearest control points [10,11].

Cardinal splines have been successfully deployed to capture nonlinear influences on
neural spiking activity, however there are a number of issues that can arise when
cardinal splines are used to model the influence of signals that are bounded above or
below. This occurs, for example, when modeling hippocampal place fields in a bounded
environment. Another example is modeling history dependent spiking, where a neuron’s
recent spiking activity can influence current spiking; only spikes that occur before the
current time can have an influence on current spiking, placing a bound on the temporal
influences of spiking. One issue with standard cardinal spline basis functions is a loss of
statistical power in estimating the influence of a covariate near its bounds relative to
estimating the influence away from the bound. This is a natural consequence of having
samples observed only on one side of each bound, but is exacerbated by the need to
estimate the derivative of the spline at the bounds with limited data. In cases where
firing rates are suppressed when a covariate approaches its bound, such as with
refractoriness in history dependent models, cardinal splines can often lead to numerical
instability in estimating the model parameters. Even with high firing rates near the
bounds, this loss of power leads to large confidence intervals. Finally, limited data near
the bounds can lead to estimates of the derivative of the spline function with large
magnitude, that suggest rapid changes in firing responses that may not capture known
receptive field structure. Together, these issues can make it difficult to assess the
significance of the influence of bounded neural signals near their bounds.

In this paper, we develop a simple modification to the cardinal spline basis functions
to allow us to account more appropriately for sampling at the boundary. The issues
discussed above are related to the fact that cardinal spline regression models use the
data to estimate the intensity of spiking activity and its derivative simultaneously.
These issues may be assuaged by making an assumption about the derivative near the
boundaries to preserve statistical power. We construct a modified cardinal spline basis,
assuming that its derivative is zero at the boundary. This reduces the number of
parameters that need to be estimated, alleviates some of the unnecessary reduction in
statistical power near the boundary, and leads to more computationally robust model
fits. We illustrate the application of this model to the problem of simultaneously
estimating the place field and history-dependent properties of 45 neurons recorded from
the CA1 region of rat hippocampus [12].

The remainder of this paper is structured as follows. First, we review the
fundamentals of point process generalized linear modeling (GLM) and its application to
neural coding problems. Then, we explain the derivation of cardinal splines and their
ability to capture nonlinear functional relationships. Next, we derive the modified
cardinal spline basis functions. Finally, we apply these modified basis functions to real
data recorded from the rat hippocampus and demonstrate how they can limit the
uncertainty and numerical issues at the boundaries. We also compare the modified
splines with the other commonly used basis functions in order to understand their
properties.

Materials and methods

We begin by reviewing the point process GLM modeling framework for neural spike
train data along with the definition of cardinal splines and their use as basis functions
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in this framework. Next, we propose a modification to these functions that improve
statistical power and limit numerical instability near the boundaries of the factors
influencing spiking. Finally, we discuss maximum likelihood parameter estimation and
methods for evaluating the goodness-of-fit of these models to the data.

Point Process-GLM Framework

A point process provides a probability model for a set of binary events occurring in
continuous time. Point process models are often used to characterize the factors that
influence spiking activity in individual neurons or neural populations [1]. Any point
process can be characterized by its conditional intensity function [13],

λ(t|H(t)) = lim
∆→0

P [N(t+ ∆)−N(t) = 1|H(t)]

∆
(1)

where N(t) is number of spikes in time interval (0, t] and H(t) is the past spiking
history of the neuron or neural population being modeled up to time t. For small ∆,
λ(t|H(t))∆ is approximately the probability of observing a spike in the time interval
(t, t+ ∆] given the spiking history.

A neural point process model expresses λ(t|H(t)) as a function of a set of covariates
thought to influence spiking activity. Point process GLMs are one class of models that
are easy to fit, interpret, and assess. These models relate the firing intensity to a linear
combination of functions of the covariates influencing spiking through a nonlinear link
function. One common GLM structure defines the log of the conditional intensity of
each neuron to be linear combinations of functions of extrinsic covariates related to
spiking, functions of the neuron’s own spike history, and functions of the past spiking
activity of other, simultaneously recorded neurons [1]

log λ(t|θ,H(t)) =

p∑
i=1

θigi[νi(t)] (2)

Where gi(·) is a basis function acting on a covariate νi(t), and p is the dimension of
the model parameter θ. In the data analysis example below, we model the firing
intensity of a population of neurons in the CA1 region of the hippocampus of rats
performing a spatial navigation task by letting νi(t) include both the rat’s location and
the past spiking history of the modeled neuron. We will compare different sets of basis
functions for these covariates.

Spline Functions

Splines are piecewise, low-degree polynomials that interpolate continuously and
smoothly between a set of control points. These functions were proposed to resolve the
severe oscillation of high-degree polynomials in large intervals particularly (Runge’s
phenomenon) [14]. There are multiple classes of splines, which reflect different choices
in the degree of polynomials, the functions used to represent those polynomials, and the
assumptions about these functions’ smoothness. A common choice for spike train
models is the cardinal spline, which uses cubic Hermite polynomials to interpolate
between a set of control points and has derivatives at each control point determined by
neighboring control points (Fig 1B) [15]. Typically, cubic cardinal splines, defined by
third-order polynomials, are used for neural point process regression. If we let xi
represent the location of the ith control point, the equation for the spline at a point x
between control points xi and xi+1 is
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S(u) = (2u3 − 3u2 + 1)pi + (u3 − 2u2 + u)p′i + (−2u3 + 3u2)pi+1 + (u3 − u2)p′i+1 (3)

Here,

• u = x−xi

xi+1−xi
.

• pi = f(xi) is the value of the function at the ith control point and p′i = f ′(xi)

It is clear from Eq (3) that S(u) passes through the control points. The derivatives at
the control points are determined by a tension parameter, s, and the values at
neighboring control points:

• p′i = s(pi+1 − pi−1)

• p′i+1 = s(pi+2 − pi).

The general expression for the cardinal spline is therefore

S(u) =
[
−s(u3 − 2u2 + u)

]
pi−1 +

[
(2u3 − 3u2 + 1)− s(u3 − u2)

]
pi+[

(−2u3 + 3u2) + s(u3 − u2 + u)
]
pi+1 +

[
s(u3 − u2)

]
pi+2

(4)

Eq (4) indicates that the value of a cardinal spline at any point is given by a linear
combination of four nearest control points. As discussed above, while these functions
have been successfully used to model neural spiking activity, the specification of the
derivative using surrounding control points can lead to loss of statistical power at the
boundaries of x.

Modified Cardinal Spline

In this section, we derive a modified spline function that assumes that the derivative is
equal to zero at the end control points but uses the neighboring control points to
determine the derivatives at interior control points (See Fig 1).

For any value of x such that there are at least two control points less than x and 2
control points greater than x (Fig 1 B) , the spline equation is still given by Eq (4). We
can also express Eq (4) in matrix form as follows:

S(u) =
[
u3 u2 u 1

] 
−s 2− s s− 2 s
2s s− 3 3− 2s −s
−s 0 s 0
1 0 0 0



pi−1

pi
pi+1

pi+2

 (5)

Near the lower boundary, for any value of x that has only one control point less than x
(but still two control points greater than x), we construct a spline segment satisfying
these conditions (Fig 1A):

• S(u)|u=0 = p1 and S(u)|u=1 = p2

• S′(u)|u=0 = 0 and S′(u)|u=1 = s(p3 − p1)

Plugging these conditions into Eq (3) we obtain the following solution for the initial
spline segment:

S(u) =
[
(2− s)u3 + (s− 3)u2 + 1

]
p1 + (−2u3 + 3u2)p2 +

[
s(u3 − u2)

]
p3

=
[
u3 u2 1

] 2− s −2 s
s− 3 3 −s

1 0 0

p1p2

p3

 (6)
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Fig 1. Modified cardinal spline function. Modified spline function at A: Initial
segment, B: Middle segments, and C: Final segments.

Near the upper boundary, for any value of x such that there is only one control point
greater than x (but there are still two control points less than x) we construct a spline
segment satisfying these conditions (Fig 1C):

• S(u)|u=0 = pn−1 and S(u)|u=1 = pn

• S′(u)|u=0 = s(pn − pn−2) and S′(u)|u=1 = 0

Here, n is the total number of control points. Plugging these conditions into Eq (3) we
obtain the following solution for the final spline segment:

S(u) =
[
−s(u3 − 2u2 + u)

]
pn−2 + (2u3 − 3u2 + 1)pn−1+[

(s− 2)u3 + (3− 2s)u2 + (s)u
]
pn

=
[
u3 u2 u 1

] 
−s 2 s− 2
2s −3 3− 2s
−s 0 s
0 1 0


pn−2

pn−1

pn

 (7)

The above expressions fully define the modified cardinal spline in the case where at
least three control points are used. In the unusual case where a model is built using a
spline with only two control points, we can solve for the single segment between these
control points based on the following conditions

• S(u)|u=0 = p1 and S(u)|u=1 = p2

• S′(u)|u=0 = S′(u)|u=1 = 0

Plugging these conditions into Eq (3) we obtain the following solution for a model with
a single spline segment:

S(u) = (2u3 − 3u2 + 1)p1 + (−2u3 + 3u2)p2

=
[
u3 u2 u 1

] 
2 2
−3 3
0 0
1 0

[p1

p2

]
(8)

Maximum Likelihood Parameter Estimation

Point process GLMs of the form of Eq (2) have a number of properties that make it
easy to estimate model parameters, construct confidence intervals, and assess
goodness-of-fit. The form of this model guarantees that the likelihood surface is convex,
ensuring that there exists a unique maximum. For GLMs, this maximum is typically
found using an iteratively re-weighted least squares (IRLS) procedure, due to its
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computational simplicity, efficiency and robustness [1]. In addition to finding the
maximum likelihood estimates of all of the model parameters, the IRLS procedure
provides the observed Fisher information matrix, Iθ̂, which allows for the construction
of confidence intervals and standard tests of significance of the influence of individual or
multiple covariates [1, 6, 7]. The maximum likelihood estimates for the parameters
multiplying the modified spline basis functions are directly interpretable; since the
spline interpolates between the control points, when the signal, x takes a value equal to
the control point location associated with basis element gi, the conditional intensity is

equal to eβ̂i . Confidence intervals for each spline parameter can be computed directly
from the diagonal entries of inverse of the Fisher information, I−1

θ̂
. The intensity and

confidence associated with other values of x can also be computed, but require
incorporating the estimated covariance between multiple parameter estimates using the
full Fisher information. Statistical software packages such as R and MATLAB include
routines that can be used to fit point process GLMs and compute confidence bounds;
these routines also output multiple goodness-of-fit measures, including the model
deviance and model residuals.

Data Analysis Example

To demonstrate the properties of our modified cardinal spline basis functions, we
constructed history dependent place field models of a population of neurons in the CA1
region of rat hippocampus while the animal performed a spatial navigation task. One
male Long–Evans rat weighing 450 –550 g was implanted with a movable array of
recording tetrodes in the CA1 region of its hippocampus. All procedures were
conducted in accordance with the guidelines of the National Institutes of Health and
approved by the Institutional Animal Care and Use Committees at University of
California San Francisco and Brandeis University. The animal had been trained to
perform a spatial alternation task on a W-shaped track, alternating between the left
and right arms before returning to the center arm. It received a reward at the ends of
the left and right arms after each correct alternation [12,16].

We constructed point process GLMs for each of 45 neurons in this population based
on Eq (2) as follows:

log λ(t|θ,H(t)) =

p∑
i=1

θigi(c(t)) +

q∑
j=1

γjfj(Hj(t)) (9)

Here, the first sum represents the component related to the rat’s position; the second
one represents the influence of the neuron’s own firing history. θi, and γj are the model
parameters. gi(·) represents a set of basis functions acting on the rat’s position c(t) for
a set of i = 1, 2, .., p parameters and fj(·) represents basis functions acting on the past
spiking history of the neuron being modeled.

We compared 4 choices of basis functions to capture the place fields and history
dependence of these neurons: raised cosines, indicator functions, standard cardinal
splines, and our modified splines. All of the models had a common form given by Eq (9),
where g(·) and f(·) are the different choices of basis function for each model. Details for
the raised cosine and indicator basis functions are provided below. We compared the
neural models in terms of the width of the confidence intervals for the history dependent
component of the model. In order to quantify the effect of the choice of basis function
on the size of the confidence bounds, we computed a confidence interval width ratio:

CIWR =
Wend

W interior

(10)
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where Wend is the confidence interval width at the specified endpoint of the variable of
interest, and W interior is the average of the confidence interval width in an interior
region from 0.05 to 0.95 times the range of the variable.

Raised Cosines are a set of restricted cosine functions with a logarithmic scaling of
the x axis, given by the following expression

Bj(x) =
cos(a log[x+ c]− φj)

2
(11)

such that a log(x+ c) ∈ [phij − π, phij + π] and 0 elsewhere. a and c are parameters
that are set by hand and φj is a parameter that determines where the peaks occur with
π/2 radian spacing between them. We construct raised cosine models by replacing the
basis functions g(·) and f(·) in Eq (9) with B(·) from Eq (11). These bases allow for
fine representation of time and space [17,18].

Indicator Functions are a set of step functions that are nonzero over non-overlapping
subsets of the domain of x. Here, the range of x is partitioned into a set of intervals, Aj ,
and the indicator basis function are defined as:

111Aj
(x) =

{
1 if x ∈ Aj
0 if x /∈ Aj

(12)

For a sufficiently small partition, these functions can capture rapid changes in the
influence of x on the spiking intensity. We construct indicator models by using indicator
functions as the bases g(·) and f(·) in Eq (9) to represent both the temporal and spatial
components.

MATLAB code

We provide software tools for constructing and fitting our modified spline basis
functions using MATLAB on the companion GitHub repository. The repository
contains functions for constructing modified spline basis functions (as well as the
indicator, raised cosine, and unmodified spline bases) and code for fitting model
parameters and computing confidence bound about individual parameters and the
intensity function as a whole. For illustration purposes, we provide code that has been
applied to simulated neural spiking data based on the features of our real data. It
should be simple to adapt this code to any neural spiking data set.

Results

It is well known that the activity of neural ensembles in the CA1 region of rat
hippocampus correlates with the position of the animal when actively exploring an
environment [2, 3] and with the past spiking history of each neuron [4]. Fig 2 shows an
example of spatial and temporal coding of a single hippocampal neuron. Fig 2A shows
the place field for the neuron with the blue trajectory showing the movement of the rat
and the red dots showing the locations where the neuron fired. This neuron is more
active when the rat is on the right side of the track. Fig 2B illustrates the place field
structure of the neuron in a linearized version of this track, using an
occupancy-normalized histogram. Each color represents the firing rate of the neuron in
each arm of the maze. As we expect from Fig 2A, we observe the highest spiking
activity in the right arm. Fig 2C shows the spike autocorrelation function, where the
x-axis represents a time lag in ms. This neuron’s spiking is highly correlated with its
past activity. The negative autocorrelation at a lag of 2 ms reflects the refractory period
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of the neuron. We have significant positive correlation at 3-70 ms lags which reflects the
tendency of the neuron to fire with a theta rhythm. Fig 2D shows the interspike interval
(ISI) histogram of the neuron. We observe a peak in ISIs between 5-25 ms interval,
suggesting that the neuron tends to fire in bursts with short ISIs in its place field.

Fig 2. Activity of a single neuron in the hippocampus during behavior. A:
Place field for one neuron. The rat’s movement trajectory is shown in blue and the
locations where the neuron spikes is shown in red. B: Occupancy-normalized histogram
of firing activity of the neuron in a linearized version of the environment. Each color
represents the firing rate of the neuron in a different arm of the W-maze. C:
Autocorrelation of the spike train of the neuron. The x-axis is time lag using 1 ms bins.
D: Interspike interval (ISI) histogram.

We compared the properties of the modified spline to other basis functions often
used to model spike trains: raised cosines, cardinal splines, and indicator functions.
Fig 3 illustrates four example sets of bases functions used to model the dependence of
neural spiking on its past history up to two hundred ms in the past. 100 indicator
functions over each 2ms bin are shown in Fig 3A. Fig 3B shows a set of raised cosine
basis functions, using a log-scaling of the time axis to provide fine representation at
early lags and broader coverage at later lags. Fig 3C and 3D show classical and
modified cardinal splines that also provide finer resolution at early lags. The modified
spline uses two fewer basis functions and differs in the functions with support near the
endpoints, but uses identical functions for the remaining basis elements.

We used these bases in a point process GLM to capture the spatial and the temporal
structure of the firing rate of each recorded neuron. Fig 4 shows an example of the fit
for the spatial and history dependent components of the resulting model fits for a single
neuron. Fig 4A shows the history dependent component going back two hundred lags in
the past. All of the model fits capture the basic properties of refractoriness in the first
few ms after a previous spike, and increased excitability around 20 after a previous
spike. As expected, the model based on the indicator basis produces estimates that are
less smooth than those based on the other 3. Additionally, the models differ in their
estimated uncertainty, as evidenced by the size of their confidence bounds, especially
near lags 0 and 200. For the model based on indicator basis functions, the variability of
the estimates and large confidence bounds make it difficult to draw inferences about
spiking dynamics from this model fit. For the model based on raised cosines, the size of
the confidence intervals becomes smaller with increasing lag, to the point where they
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Fig 3. Sets of basis functions for comparison. We used four basis functions to
represent spiking history A: 100-dimensional indicator function. B: 5-dimensional raised
cosine function. C: 7-dimensional cardinal spline. D: 5-dimensional modified cardinal
spline.

are very evidently too small at lags near 200, expressing unwarranted confidence based
on the data. The logarithmic temporal scaling of the raised cosine functions means that
estimates of history dependence at later lags integrate spiking over longer periods; a
spike occurring 100 ms after another will influence the model estimate not only at a lag
of 100 ms but also at a lag of 200 ms, leading to smoother estimates with smaller
estimated uncertainty as lag increases. The computed CIWR value for the raised cosine
model at lag 0 is 8.11 whereas it is 0.06 at lag 200, which corroborates the observation
that the variability at later lags is underestimated. For the unmodified cardinal spline
model, the confidence intervals have consistent width for lags in the interior, away from
0 and 200. Near lags 0 and 200 the magnitude of the confidence intervals increases
substantially. Some of this is attributable to the fact that we have fewer spikes with
which to estimate the parameters near the boundaries. We might expect the confidence
bounds to increase by a factor of around

√
2 to account for the fact that about 1/2 the

spikes are available for fitting these parameters. However, the estimated CIWR for the
unmodified cardinal spline is 133.17 at lag 0 and 21.68 at lag 200, reflecting an extreme
loss of certainty near the endpoints. The bottom right panel of Fig 4 shows how the
modified cardinal spline basis can resolve this uncertainty and instability at the
boundaries. The confidence intervals flare out slightly at the boundaries, reflecting the
decrease in data for parameter estimation, but do not expand nearly as much as the
unmodified spline model. The CIWR for the modified spline model is 2.78 and 1.53 at
the beginning and end points respectively.

Fig 4B shows the neuron’s place field, estimated using each set of basis functions.
The upper left panel shows that the indicator function basis lead to nonsensical
confidence intervals (note that the x axis reaches values on the order of 1079). This
occurs whenever no spike is present over any of the intervals of support for the indicator
functions. In that case, the maximum likelihood estimate for the corresponding
parameter should go to −∞, at which point, the likelihood will be flat. Numerically,
this leads to parameter estimates that are extremely negative and estimated confidence
bounds that are enormous. This issue is sometimes called the perfect prediction or
complete separation problem. The raised cosine basis does not lead to the perfect
prediction problem because each basis element is defined globally rather than locally (ie.
it has support over its entire domain). However, globally defined bases can lead to other
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issues, such as difficulty in interpreting individual model parameters and substantial
covariance between those parameters [17, 18]. The raised cosine model fit shows a clear
place field at locations between 0 and 100 cm along the track. The cardinal spline basis
functions are defined locally (ie. each basis function is defined over a distinct
subinterval of its domain), but does not lead to the perfect predictor problem for the
model fit for this neuron. The model using unmodified cardinal spline basis functions
shows a similar place field structure, but again shows increased uncertainty at the
boundaries at positions 0 cm and 300 cm. The model using the modified cardinal spline
basis functions shares the advantage of locality with the unmodified basis but corrects
the uncertainty at the boundaries.

Fig 4. Spatial and temporal components of the neuron’s receptive field.
Four classes of basis functions were used in a point process GLM to capture the place
field and history dependence of a place cell. A: Firing intensity modulation from each
previous spike, going back 200 ms in the past. Intensity modulation is in blue and
confidence bounds are in black. B: Spatial component of the firing rate against the
linearized position of the animal for the neuron. Blue line represents the place field and
confidence bounds are shown in black.

Fig 5 shows the estimated correlation between the parameter estimates for each
basis component used to model history dependence, computed using the inverse Fisher
information matrix [6]. For the indicator function basis, there is no off-diagonal
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correlation, suggesting that each parameter estimate is independent. Each parameter is
interpretable on its own - it represents the influence of previous spikes that occur over
non-overlapping lags - and its uncertainty is not related to that of other parameters.
The correlation matrix for the model with raised cosine basis functions shows a
checkerboard pattern, which suggests that the parameter estimates are highly
intercorrelated. The influence of a spike at any previous time is determined by a linear
combination of all the raised cosine functions, and overestimation of one parameter is
likely associated with overestimation or underestimation of all the remaining
parameters. This makes it challenging to interpret and perform tests on the influence of
past spiking over a particular set of lags (eg. whether a significant refractory period
exists). The correlation matrix for the model with unmodified cardinal spline basis
functions shows minimal correlation structure for the parameters representing the
interior of the domain of lags (parameters 3-5), but substantial correlation between
parameters 1 & 2 and between parameters 6 & 7. This makes interpretation and
inference about the effects of past spiking more difficult at lags near the boundary.
However, the correlation matrix for the model with unmodified cardinal spline basis
functions shows minimal correlation between any of the estimated model parameters.
Each parameter represents the influence of past spiking over a small set of lags.
Parameters representing nearby regions are slightly anticorrelated, and this correlation
diminishes for parameters representing more distal regions to each other.

Fig 5. Correlation matrices of the estimated temporal model parameters
for each class of basis function. Indicator functions show no off-diagonal
correlation between model parameters. Raised cosines show significant correlation
structure among all of the parameters, making it difficult to interpret and conduct tests
about individual parameters. Unmodified cardinal splines show correlation between
parameters near each endpoint, making it difficult to perform tests about parameters
that define firing at these endpoints (eg. tests about significance of a refractory period).
Modified cardinal splines show minimal correlation between parameters.

While Figures 4 and 5 show the properties of the model fits using different choices of
basis functions for a single example neuron, Fig 6 summarizes these properties for a
population of 45 neurons in the hippocampus. For the temporal component of the
model fits, we plotted the distribution of the confidence interval width ratio (CIWR)
between parameters at the boundaries of the set of lags considered over parameters in
the interior of this set of lags. The ratio for parameters at the start of the set of lags
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(lag 0) are shown in blue and the ratio for parameters at the end of the set of lags (lag
200) are shown in red. For models that reflect only the relative uncertainty due to less
data around these boundary points, we expect this distribution to be centered between 1
and around

√
2. We excluded the indicator basis functions from this analysis because of

their tendency to have perfect predictors, which makes the confidence bound ratio less
meaningful. For the raised cosine basis functions, the confidence intervals near lag 0
show the expected distribution across all neurons, but the confidence intervals at the
largest lags considered are all much smaller than we would expect. This suggests that
these basis functions lead to model fits with inappropriately small uncertainty of the
influence of spikes at longer lags. Hypothesis tests about these influences are more likely
to result in type I errors. For the unmodified cardinal spline basis functions, the
distributions for both the start and end boundaries are skewed to larger than expected
values, suggesting inappropriately large uncertainty at the boundaries. Hypothesis tests
about these influences are more likely to result in type II errors. For the modified
cardinal spline basis functions, the distributions for both the start and end boundaries
fall more in line with our expectations for models reflecting only the relative uncertainty
due to the reduction of data near the endpoints. Both distributions are centered between
1 at about 1.5, with few values near 0 or above 3. This suggests that our modifications
have been consistently successful at correctly capturing uncertainty near the boundaries.

Fig 6. Distribution of relative confidence interval with at endpoints across
hippocampal population. Each panel shows for a different set of basis functions the
distribution of computed confidence interval width ratio (CIWR) values for each of 45
hippocampal neurons for the temporal component of the model. The distribution for
lags near 0 are shown in blue and the distribution for lags near 200 ms are shown in red.

Discussion

Statistical modeling provides a natural approach for studying neural codes at the level
of individual neurons or populations. Point process regression models have been used
successfully to capture neural receptive fields from spiking data in a variety of systems
and brain areas [1,5]. Ordinary regression and gamma regression models have also been
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used to model neural coding properties from imaging and local field data [19, 20]. Since
neural receptive fields are rarely fully captured by linear relationships, many successful
neural models use basis function expansions to produce flexible, robust, and
interpretable model fits. Cardinal splines are a popular choice of basis functions because
they are locally defined, smooth, and provide interpretable parameter estimates.
However, the need to define additional parameters to control the derivative of the model
at its boundaries can lead to a dramatic reduction in statistical power. In this work, we
have derived a modification to the cardinal spline basis that increases statistical power
at the endpoints by using the assumption that the derivative at the endpoints is zero.

We illustrated the application of this modified basis to the problem of
simultaneously estimating the place field and history dependent properties of a set of
neurons from the CA1 region of rat hippocampus, and compared the resulting model
fits with other commonly used basis functions. These analyses showed that the modified
basis maintains the splines’ advantages of smoothness, local definition, and direct
interpretability, but has appropriately sized confidence intervals at the endpoints of
both the place field and history modulation functions. In addition to improving the
statistical power of hypothesis tests about firing around these boundary areas, this
makes the confidence intervals arising from neural model fits more visually interpretable.
Finally, the fact that parameter estimates representing nearby regions are only slightly
correlated and those representing far removed regions are uncorrelated means that
meaningful hypothesis tests can be conducted on individual parameters or small subsets
of parameters.

The choice of basis provides a trade-off between model flexibility and statistical
power. If the goals of an analysis require estimating derivatives of a coding relationship
near its endpoints, this modification would not be appropriate. In cases where there are
ample data to fit coding relationships near their endpoints, this modification might not
be necessary. However, in many cases the assumption of a flat derivative may be a small
price for the resulting gain in statistical power. Additionally, goodness-of-fit methods
such as AIC analysis [21,22] and time rescaling [23,24] can be used to assess the
quality of the flat derivative assumption. However, we note that it may be the case that
a model using the unmodified spline basis might lead to a better overall goodness-of-fit
than one using the modified basis, where the gain in statistical power is still worth the
trade-off.

These methods and applications may be extended in a number of directions. While
we developed a particular modification based on the assumption of a flat derivative,
other modifications are possible to achieve different levels of trade-off between model
flexibility and power. In particular, a different spline modification that uses individual
control points at the boundaries to estimate both the conditional intensity and
derivative, may be more numerically robust than the unmodified cardinal splines, which
use separate control points to estimate the derivative. Additionally, while we focused
here on the example of fitting point process models of the receptive fields of spiking
neurons, statistical models using standard regression or gamma regression methods have
been used to characterize neural coding from imaging and field data as well [19, 20].
Our modified basis functions can be naturally adapted to these model settings.

For understanding neural coding, statistical models that are flexible, interpretable,
and allow for statistically powerful inference are essential. As neuroscience experiments
become more complicated, with recordings from larger populations across multiple brain
areas and scientific questions involving multivariate relationships during naturalistic
tasks, the need for robust modeling tools increases. We believe that the methods
developed here, and the associated software tools available at our GitHub repository
will provide a valuable addition to the toolbox for neural statistical modeling.
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