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ABSTRACT 

Trajectory inference (TI) for single cell RNA sequencing (scRNAseq) data is a powerful approach to 

interpret dynamic cellular processes such as cell cycle and development. Still, however, accurate 

inference of trajectory is challenging. Recent development of RNA velocity provides an approach to 

visualize cell state transition without relying on prior knowledge. To perform TI and group cells based 

on RNA velocity we developed VeTra. By applying cosine similarity and merging weakly connected 

components, VeTra identifies cell groups from the direction of cell transition. Besides, VeTra suggests 

key regulators from the inferred trajectory. VeTra is a useful tool for TI and subsequent analysis. 

 

Keyword: single cell RNA sequencing, Trajectory Inference, RNA velocity, Weakly Connected 

Component 
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Introduction 

Trajectory analysis using single cell transcriptomics is useful to understand temporal transition 

of cell states. By showing transcriptional changes along the obtained trajectory (or pseudo-time), TI has 

been applied to studying various biological processes including cell cycle, cancer development and cell 

differentiation (Tran & Bader, 2020).  

Besides pseudo-temporal analysis, TI has been used to assist identifying gene regulatory rules. 

Visual inspection of gene expression changes along the inferred trajectory suggested potential 

regulators for the biological processes (Trapnell et al., 2014). Systemic approaches have been 

developed to reconstruct gene regulatory networks (GRNs) using the gene expression changes along 

the inferred trajectory (Kim, T. Jakobsen, Natarajan, & Won, 2021; Matsumoto et al., 2017). Well 

inferred trajectory helped improve the performance of GRN reconstruction (Qiu et al., 2020).     

At present, more than 70 methods have been published to infer trajectory from scRNAseq data 

(Saelens, Cannoodt, Todorov, & Saeys, 2019). Majority of TI approaches have been developed based 

on the transcriptomic similarity among cells. Pseudo-time is obtained from the ordered cells based on 

the transcriptomic similarities (Saelens et al., 2019). However, transcriptomic similarity cannot specify 

the initial and the terminal points of the trajectory. When using TI algorithms based on the 

transcriptomic similarity, a user has to provide the direction of a cellular process, roots/terminals using 

the marker genes or any prior knowledge about experiments to obtain pseudo-time (Haghverdi, Büttner, 

Wolf, Buettner, & Theis, 2016; Setty et al., 2016; Trapnell et al., 2014).  

It is more challenging to infer trajectory when cell dynamics are complex. It is difficult to 

assign an accurate fate (lineage) to a cell around branching regions. To improve robustness in detecting 

TI, there have been attempts to confine the inferred trajectory to a set of fixed topological structures, 

e.g. linear, bifurcation, and cycle (Saelens et al., 2019). However, the use of pre-defined structures can 

restrict the opportunity to identify new structures.  
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Recently, RNA velocity has been suggested to analyze scRNAseq data by incorporating mRNA 

dynamics (La Manno et al., 2018). Notably, RNA velocity can provide the direction and the speed of 

movement of individual cells and visualize the dynamic cell transitions without any prior knowledge. 

The direction information from RNA velocity provides a potential solution to determine the 

developmental trajectory of a cell around branching points. Therefore, RNA velocity can be useful in 

developing precise TI tools.  

To obtain precise TI and subsequent analysis without prior information, we developed VeTra. 

VeTra identifies cell groups belonging to the same lineage and suggests potential regulators in the 

identified groups. Compared with previous undirected graph based methods such as minimum spanning 

tree (Street et al., 2018) and graph-partitioning algorithm (Wolf et al., 2019),  VeTra builds directed 

graph from RNA velocity. VeTra identifies isolated cell transition paths by searching for weakly 

connected components (WCC) which represent the coarse-grained structure of connected community 

(An, Janssen, & Milios, 2004). The isolated paths are further grouped together using the hierarchical 

clustering algorithm to finally form potential development lineages. As the results, VeTra identifies cell 

transition trajectory and determines the memberships of cells to each trajectory even around branching 

points. VeTra further suggests key regulators along each trajectory by integrating the engine of TENET 

(Kim et al., 2021). VeTra is a user-friendly tool for TI and subsequent analysis.  

 

Results 

VeTra groups the cells belonging to the same stream of trajectory 

VeTra is an RNA velocity based TI tool that enables accurate lineage tracing and subsequent analysis 

for gene regulation. VeTra performs lineage tracing from the root to the terminal states by grouping 

cells based on the similarity in direction of cell transition. This enables VeTra to perform TI without 

prior knowledge or pre-defined lineage topology. 
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VeTra reconstructs the pseudo-temporal order of cells based on the coordinates and the velocity 

vector of cells in the low-dimensional embedding. The velocity vectors are estimated by extrapolating 

the spliced/unspliced read ratio to the local neighboring cells (La Manno et al., 2018). Given velocity 

vectors (Figure 1A), VeTra reconstructs multiple directed graphs. To link cells based on transition, k 

nearest neighbours of a cell with similar direction are selected using cosine similarity (cos1) (Figure 1B, 

Methods). Among them, the nearby cell located upstream with the highest cosine similarity (cos2) is 

selected (Figure 1B, Methods). Once all cells were investigated for their next transition, multiple 

directed graphs are obtained (Figure 1C). To find a coarse-grained structure of the directed graph, 

VeTra identifies WCCs where every cell is reachable from every other cell regardless of the direction 

of relationships (Walker, 1992) (Figure 1D). The WCCs are grouped together when they are similar 

and close each other (Method) (Figure 1E). Finally, we obtained the pseudo-time ordering of cell 

groups (Figure 1F) by projecting the member cells onto the principal curve (Hastie & Stuetzle, 1989). 

 

VeTra’s trajectory matches well with the known lineage or biological process 

We applied VeTra to infer the trajectory for various scRNAseq datasets with known cell dynamics 

structures for pancreatic development (Bastidas-Ponce et al., 2019; Bergen, Lange, Peidli, Wolf, & 

Theis, 2020), chromaffin cell differentiation (Furlan et al., 2017; La Manno et al., 2018), neural 

lineages in the hippocampus (Hochgerner, Zeisel, Lönnerberg, & Linnarsson, 2018; La Manno et al., 

2018), and cell cycle (Xia, Fan, Emanuel, Hao, & Zhuang, 2019). For benchmarking we used Slingshot 

(Street et al., 2018), FateID (Herman & Grün, 2018) and PAGA (Wolf et al., 2019) since they showed 

best performance in recent benchmarking tests (Saelens et al., 2019). We also include CellRank 

(Bergen et al., 2020) and CellPath (Zhang & Zhang, 2021a) as they are developed based on RNA 

velocity. We used Diffusion pseudo-time (DPT) to provide pseudo-time ordering to CellRank. We 

provided known roots and terminals cell to run Slingshot and FateID.  
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Pancreatic development (a topology with crossing branches) 

During the pancreatic development endocrine progenitors differentiate into alpha or beta cells 

(Bastidas-Ponce et al., 2019).  Ductal cells are originated from common progenitors, which  are fated to 

endocrine and exocrine lineages (Reichert & Rustgi, 2011). From the transcriptome of pancreatic 

development (E15.5), VeTra identified three major trajectory groups; i) alpha cell differentiation from 

endocrine progenitors (EP), ii) beta/epsilon differentiation from EP, and iii) ductal development 

(Figure 2A). The first two clusters were commonly originated from EPs and bifurcated into different 

lineages.  

CellRank identified similar three trajectories with a slightly different starting point close to 

ductal cells for alpha and beta cell trajectories (Figure 2A). FateID identified the trajectory to alpha 

and beta cells but failed in identifying ductal lineage. Slingshot did not find delta/beta cell lineage as 

well as ductal cell lineage (Figure 2A). PAGA inferred coarse-grained trajectories from EP to alpha, 

beta, delta and epsilon cells but it also found trajectories between unrelated cell types (e.g. between 

alpha and beta cells) (Supplementary Figure 1). CellPath did not find the path to ductal cells 

(Supplementary Figure 2B).  

 

Chromaffin cell development (a topology with diverging branches) 

During the development, the chromaffin cells and sympathoblasts cells are generated from 

Schwann cell precursors (SCPs) (Furlan et al., 2017). Vetra, FateID and Slingshot successfully 

captured the branches towards sympathoblasts and chromaffin cells (Figure 2B). CellRank identified 

SCPs as initial states but failed to identify proper terminal states (Figure 2B). PAGA connected 

bridging cells presumably falsely as their fates are already committed to each branch (based on RNA 

velocity) (Supplementary Figure 1). CellPath only identified the path to the chromaffin cells 

(Supplementary Figure 2C). 
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Cell cycle (a cycling topology) 

We applied TI tools on the scRNAseq dataset from U-2 OS cells (Xia et al., 2019) and 

investigate the topology for cell cycle. VeTra identified a single circular trajectory, starting at G1 phase 

towards G1/S, G2/M, and M phase, and finally going back to G1 phase (Figure 2C). Given the root 

cells in G1 phase, Slingshot identified similar trajectory. On the other hand, CellRank and CellPath 

estimated a linear-like trajectory (Figure 2C, Supplementary Figure 2D).  PAGA connected cell 

populations with cycle, but inferred wrong trajectories between separated cell cycles (Supplementary 

Figure 1).  

 

Hippocampus development (complex diverging branches) 

        We further evaluated the performance using the scRNAseq data for hippocampus development, 

which has been identified to have five diverging branches: astrocytes, oligodendrocyte progenitor cells 

(OPC), dentate gyrus granule neurons and pyramidal neurons including CA1, CA2, CA3 and 

subiculum (La Manno et al., 2018). Among these five main branches, astrocytes and OPCs are 

commonly branched from radial glial cells and the other neuronal branch cells are originated from 

immature neuroblast cells (La Manno et al., 2018). 

VeTra identified five lineages towards CA1-subiculum, CA2-3-4, granule, astrocytes, OPC 

(Figure 2D). VeTra also predicted that CA2-3-4 cells and granules share the same neuroblastic origin 

(Nbl1) and astrocytes and oligodendrocyte progenitors share the same intermediate progenitor origin 

(nIPC), which is consistent with the original RNA velocity results (La Manno et al., 2018). CellRank 

identified one correct (Nbl1) and two incorrect (Granule, and CA1-Sub) initial states (Figure 2D). The 

five terminal states estimated by CellRank were CA, CA2-3-4, ImmAstro, GliaProg, and nIPC, 

including three potential misclassified intermediate states (GliaProg, nIPC and CA). Due to potential 

incorrect initial and terminal state assignment, the trajectory inferred by CellRank failed in 

distinguishing the five separated trajectories. Slingshot detected five lineages (Figure 2D) but 
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determined wrong initial states (always from ImmAstro). FateID did not infer any meaningful 

trajectories (Figure 2D). PAGA inferred clear trajectories from Nbl1 to CA1-sub, CA2-3-4 and 

Granule. However, PAGA falsely connected ImmAstro and GlialProg (Supplementary Figure 1). 

CellPath showed severely truncated paths for this dataset (Supplementary Figure 2A).   

 

Performance evaluation using simulated datasets 

The assessment using scRNAseq data demonstrated the outstanding performance of VeTra 

(Figure 2). However, the gold standard annotation for individual cells is usually not provided and it is 

hard to quantify the performance. For quantitative assessment, we simulated scRNAseq datasets using 

Dyngen (Cannoodt, Saelens, Deconinck, & Saeys, 2020) and generated three lineage structures: binary 

tree, trifurcation and converging. We additionally included a disconnected structure from VeloSim 

(Zhang & Zhang, 2021b). Beside visualization, we calculated the matching score by obtaining the 

average value of the normalized hamming distances (�� between the predicted and the known lineages. 

We used �1 � �� � 100 as the score.  

VeTra successfully identified the identified lineages for four simulated datasets. Slingshot 

identified successfully except for the disconnected path. However, other approaches were not 

successful compared with VeTra or Slingshot (Supplementary Figure 3). The overall comparison 

(Supplementary Table 1) demonstrates the robustness of VeTra in TI.  

 

VeTra provides condition-specific master regulator 

It has been studied that TI can influence the performance of GRN reconstruction. VeTra is 

equipped with a function to suggest key regulators by adopting the engine of TENET (Kim et al., 2021) 

that we previously developed to reconstruct GRN. TENET has a function to identify key regulators 

from the inferred causal relationships with their target genes (Kim et al., 2021). Incorporating TENET, 

VeTra has a function to identify most influential transcription factors (TFs) for the inferred trajectory. 
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Using the RNAseq dataset from pancreas development (Bastidas-Ponce et al., 2019), VeT

found key regulators for the three predicted major branches: alpha, beta and ductal (Figure 3A). T

key predicted regulators that distinguishing alpha cell development against others were Pax6, and A

Pax6 and Arx have been known to have a role during alpha cell development (Ashery-Padan et 

2004; Gosmain, Cheyssac, Heddad Masson, Dibner, & Philippe, 2011). Pax6 regulates genes related

glucagon production (Ashery-Padan et al., 2004). Arx has been shown to play a similar role in alp

cell development (Gosmain et al., 2011). VeTra also identified Neurog3 an endocrine (alpha and be

specific key regulator (Gradwohl, Dierich, LeMeur, & Guillemot, 2000; Gu, Dubauskaite, & Melt

2002; Schwitzgebel et al., 2000). 

In addition, VeTra revealed condition-specific regulators for the five lineages of hippocamp

development (Figure 3B). For instance, Nr4a3 (Nor-1) is predicted a CA2-3-4 specific regulator 

VeTra. Nor-1 deficient mice appear to have abnormal pyramidal cell layer in CA1 to CA3 (Pönniö

Conneely, 2004).  

 
 

Methods 

To pick the most appropriate cell to which the vector of the cell i is pointing, k closest neighb

cells are collected from the head of the vector of a cell i in the low-dimensional space (Figure 1

Among the neighbor cells, cells with similar direction are selected using a cosine similarity criter

between the cell i and the neighbor cell j (cos1ij =  > 0.5) (Figure 1B), where vi and

denote velocity vectors (2D coordinates) of cell i and cell j. The cell with the highest similarity 

cos2ij ( , where δij is the vector from vi to vj) located upstream of the cell i is finally selec

to obtain a directed graph in the same stream of trajectory (Figure 1B). 
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The hierarchical clustering is applied to the WCCs for further grouping (Figure 1E). The 

distance between the two sub-graphs is defined by the maximum distance of all the closest pairs of 

cells. To calculate the distance between cells, we calculated the Euclidean distance in the four-

dimensional space (two dimensions using the gene expression and the other two using the velocity 

vector in the reduced dimensional space). To obtain full trajectory (from the root to the branch), we 

extended the memberships if a cell located nearby is similar (cos1ij > 0.7). We obtained the pseudo-time 

ordering by projecting the member cells onto the principal curve (Hastie & Stuetzle, 1989). 

 

Discussion 

TI is a widely used approach to understand temporal dynamics of cells from scRNAseq data. A 

number of approaches have already been developed to infer the trajectories. As shown in the examples 

using the simulated as well as real scRNAseq data (Figure 2 and Supplementary Figure S1-3), however, 

there is still room for algorithmic improvement for accurate detection of trajectory. We have noticed 

that the results of current TI tools do not always match with the cell dynamics observed by RNA 

velocity (La Manno et al., 2018). RNA velocity, by providing the direction of cell transition, enabled 

visual inspection of cell trajectory. VeTra is designed to group cells in accordance with the cell 

transition drawn by RNA velocity. To fully use the vector space provided by RNA velocity, VeTra 

used cosine similarity and obtained cell groups. The use of cosine similarity makes VeTra rely on the 

vector space for TI.  

Our benchmarking test on the scRNAseq datasets exemplifies that VeTra successfully identified 

the trajectory drawn by RNA velocity and produced reasonable results that matched with the known 

topological structures for cell development and biological processes. It is interesting that VeTra 

outperformed other RNA velocity based methods such as CellRank (Bergen et al., 2020) and CellPath 

(Zhang & Zhang, 2021a) in our tests. Instead of using RNA velocity directly, CellRank calculates the 
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probabilities of each cell transition to all terminals from initials. Therefore, the terminal states are not 

deterministic for CellRank. This may have influenced the performance of CellRank.  CellPath uses 

meta-cells to obtain smoothed RNA velocity and reduce the computing cost (Zhang & Zhang, 2021a). 

In our test, CellPath has failed to annotate large number of cells for each lineage. A meta-cell is a 

cluster of cells. We suspect that meta-cells may smooth cell direction too much when cells exhibit 

diverse direction.  Compared with them, VeTra tried to follow the velocity vector using cosine 

similarity without further processing them.  

As the results, VeTra relies on RNA velocity calculation. RNA velocity can heavily depend on 

the correct measurement of spliced and unspliced RNA abundance. A recent study showed that the 

choice of experimental setting can change the results of RNA velocity (Soneson, Srivastava, Patro, & 

Stadler, 2021). As a downstream analysis tool of RNA velocity, VeTra can use the output from 

Velocyto (La Manno et al., 2018) or scVelo (Bergen et al., 2020). A previous study shows that the 

results of Velocyto and scVelo can be different (Cannoodt et al., 2020), which can also cause different 

results for VeTra. We investigated VeTra’s output after running Velocyto and scVelo. For the cell 

cycle and chromaffin development datasets, both Velocyto and scVelo showed similar results. 

However, we found different results for the hippocampus and the pancreas development datasets 

(Supplementary Figure 4). For VeTra, CellRank and CellPath, we selected the RNA velocity approach 

that produces the better performance for each dataset.  

VeTra is equipped with the tool to predict key regulators by adopting the gear of TENET, a 

GRN reconstructor based on TE. It was discussed previously that TENET is capable of detecting key 

regulators using the aligned scRNAseq (Kim et al., 2021). VeTra equipped with the TENET engine 

will be useful for downstream analysis of TI. 

VeTra requires the 2D coordinates embedded from expression profile and the RNA velocity 

vectors for each cell. A user can specify the number of groups. The output files include i) 2D 

embedding figures colored by grouping of cells, ii) 2D embedding figures colored by pseudo-time 
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ordering, iii) lists of selected cells for each group, and iv) the pseudo-time ordering information for 

each group.  

 

Availability 

Vetra is available at https://github.com/wgzgithub/VeTra. 
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Figure 1. VeTra reconstructs single-cell trajectories for multiple cell lineages. A. A 2D embedding 

plot using the scRNAseq for pancreatic development. B. Cosine similarity to search for the neighboring 

cells with similar direction. cos1 finds the vectors with similar direction and cos2 identifies the cell to 

transit from a cell. C. The directed graph obtained by applying cosine similarity. D. The WCCs 

obtained using all possible paths. E. The grouped WCCs using a hierarchical clustering algorithm. F. 

The pseudo-time for each lineage identified by VeTra. 
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Figure 2. Performance assessment of the TI tools using the scRNAseq datasets with various 

topologies. The trajectories inferred by VeTra, CellRank, FateID and Slingshot using the scRNAseq 
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data for A. pancreatic development.  B. chromaffin and sympathoblasts development. C. cell cycle D.  

hippocampus development. 
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Figure 3. Key regulators for each trajectory identified by VeTra. A. The key regulators identified 

from the trajectories for ductal, alpha and beta cell development. B. The key regulators identified from 

the five developmental trajectories in mouse hippocampus. 
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