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Abstract 
 
Sensory cue integration is one of the primary areas in which a normative mathematical 
framework has been used to (1) define the “optimal” way in which to make decisions based 
upon ambiguous sensory information and (2) compare these predictions to an organism’s 
behaviour. The conclusion from such studies is that sensory cues are integrated in a 
statistically optimal fashion. Problematically, numerous alternative computational 
frameworks exist by which sensory cues could be integrated, many of which could be 
described as “optimal” base on different optimising criteria. Existing studies rarely assess the 
evidence relative to different candidate models, resulting in an inability to conclude that 
sensory cues are integrated according to the experimenters preferred framework. The aims 
of the present paper are to summarise and highlight the implicit assumptions rarely 
acknowledged in testing models of sensory cue integration, as well as to introduce an 
unbiased and principled method by which to distinguish the probability with which 
experimental data is consistent with a set of candidate models. 
 

Introduction 
 

Integrating sensory information into a robust percept 
 
Humans have access to a rich array of sensory data from both within and between modalities 
upon which to based perceptual estimates and motor actions. This sensory data is treated as 
consisting of quasi-independent sensory “cues”. For example, in the visual modality incoming 
sensory information is broken into cues such as horizontal and vertical disparity (Howard & 
Rogers, 2002; Rogers & Bradshaw, 1993), vergence (Tresilian & Mon-Williams, 2000; Tresilian, 
Mon-Williams, & Kelly, 1999), texture (Knill, 1998b), shading (Bulthoff & Mallot, 1988), 
perspective (Hershenson, 1999) and blur (Held, Cooper, & Banks, 2012; Vishwanath, 2012). 
There is no fully agreed definition of what constitutes a “cue” (Glennerster, Tcheang, Gilson, 
Fitzgibbon, & Parker, 2006; Ho, Landy, & Maloney, 2006; Knill, 1998a, 1998b; Zabulis & 
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Backus, 2004), however for the present purposes we will adopt the definition provided by 
Ernst and Bülthoff (2004, p. 163) and treat a cue as “… any sensory information that gives rise 
to a perceptual estimate”.  
 
For an observer making an estimate about a property of the world, 𝑆, the perceptual estimate 
of that property from the 𝑖th cue is given by 
 

𝑆#! = 𝑓!(𝑆) 
 

(1) 
 
Here 𝑓!  represents the generative function relating the property in the world to the 
perceptual estimate of that property (Ernst & Banks, 2002). Given a set of cues from within 
or between modalities the question then becomes how information from cues is integrated 
to generate a robust percept of the world (Ernst & Bulthoff, 2004). Mathematically, there are 
multiple ways in which this could occur (Jones, 2016; Tassinari & Domini, 2008; 
Trommershauser, Körding, & Landy, 2011), however currently the most popular theory is that 
of “modified weak fusion” (MWF) (Landy, Maloney, Johnston, & Young, 1995; Maloney & 
Landy, 1989). Whilst there are clearly multiple benefits of combining and integrating sensory 
information (Ernst & Bulthoff, 2004), MWF posits that a key goal (or optimising criteria) of 
sensory integration is to maximise the precision of the integrated cues sensory estimate. We 
first describe the key predictions of MWF and how they can be tested experimentally. This is 
essential to examining the probability with which alternative models can be distinguished 
from MWF in an experimental setting.  
 
MWF is applicable to the integration of any number of cues, however, here is will be described 
in terms of two cues, 𝑆#"  and 𝑆##, which provide redundant information about a property of 
the world, 𝑆. If each cue is corrupted by statistically independent Gaussian noise with 
variances 𝜎"$ and 𝜎#$ such that each cue can be represented a Gaussian probability density 
function, it can be shown, given some additional assumptions, that the integrated cues 
estimate, 𝑆#% , is given by a simple weighted average (Cochran, 1937; Oruc, Maloney, & Landy, 
2003). 
 

𝑆#% = 𝑤"𝑆#" +𝑤#𝑆## 
(2) 

 
The cue “weights”,	𝑤"and 𝑤#, are determined by the relative reliability of each cue, 𝑤" =
𝑟"/(𝑟" + 𝑟#) and 𝑤# = 𝑟#/(𝑟" + 𝑟#), where the reliability of the 𝑖&' cue is defined as the 
inverse of its variance 𝑟! = 1/𝜎!$. 
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𝑤" =
1 𝜎"$⁄

1 𝜎"$⁄ + 1 𝜎#$⁄  

 
(3) 

 

𝑤# =
1 𝜎#$⁄

1 𝜎"$⁄ + 1 𝜎#$⁄  

 
(4) 

 
The weights of the cues sum to unity (𝑤" +𝑤# = 1) and the variance of the integrated cues 
estimator is given by 
 

𝜎%$ =
𝜎"$ ∗ 𝜎#$

𝜎"$ + 𝜎#$
 

(5) 
 
As such, the standard deviation (sigma) of the Gaussian probability density function 
representing the integrated cues estimator is given by 
 

σ% = 2
𝜎"$ ∗ 𝜎#$

𝜎"$ + 𝜎#$
 

 
(6) 

 
The key benefit of integrating cues in this way is that the sigma of the integrated cues 
estimator is always less than or equal to the sigma of the most reliable of the individual 
sensory cues. As a result, integrating cues in this way is often termed optimal cue integration 
(Trommershauser et al., 2011). The maximal reduction in sigma is achieved when the two 
cues are equally reliable (Figure 1). That is, setting σ" = σ# = 	σ and assuming σ > 0, solving 
Equation 6 gives 
 

σ% =
σ
√2

 

 
(7) 

 
As the reliability of the cues get progressive more unbalanced, the benefits of integrating cues 
in accordance with Equations 2 and 6 diminishes (Figure 1b). There are additional benefits of 
combining sensory information, for example, increased robustness through redundancy in 
perceptual estimates (Ernst & Bulthoff, 2004), however, if an organism is to benefit from 
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integrating cues to the increase the precision of the integrated cue estimate, as proposed by 
MWF (Landy et al., 1995; Maloney & Landy, 1989), it would do so only when the cues are 
approximately matched in reliability. For unmatched cue reliabilities, the benefits of Equation 
6, compared to simply choosing the most reliable of the two cues can become minimal. This 
is shown by the narrowing of the shaded region in Figure 1b as the ratio of single cue sigmas 
diverges from one. 
 

 
 
Figure 1: (a) Shows a hypothetical example of combining two cues (A and B) with identical 
reliabilities (for both cues 𝜎 = 1). In this instance an observer would maximally benefit from 
combining cues in accordance with Equation 6 and obtain a √2 reduction in sigma (i.e. 
Equation 7). (b) Plots single cue sigmas and the integrated cues sigma associated with two 
hypothetical cues for a range of sigma ratios. A sigma ratio of one indicates that the two cues 
are equally reliable (as in (a)). A value greater than one indicates that Cue B is more variable 
than Cue A. The shaded region shows the increased precision afforded by integrating cues in 
accordance with Equation 6. The black arrow shows the maximally achievable increase in 
precision shown in (a). 
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Clearly for Equation 2 and 6 to hold, the units of 𝑆#" and 𝑆## have to be the same. As such MWF 
has a “cue promotion” stage prior to averaging, where cues are promoted so as to be in 
common units (Landy et al., 1995). The cue promotion stage, whilst critical, is rarely directly 
studied (although see Burge, Fowlkes, & Banks, 2010; Burge, Peterson, & Palmer, 2005), so 
experimenters tend to assume a priori that cues estimates are in the same units. As such, 
MWF is often referred to as “weighted averaging” in reference to Equation 2. A related issue 
is that the units in which 𝑆#" and 𝑆## are modelled has to be equivalent to the units that the 
observer is using to make perceptual estimates. Again, this is normally assumed a priori, 
however, it is possible to examine this assumption directly (though is rarely done). For 
example, Hillis et al. (2004) investigated the perception of slant from texture and disparity 
cues. Here the estimates need to be in common units of “slant” (e.g. degrees or radians), as 
such, they conducted a control experiment to ensure that observers were judging disparity 
defined surfaces in units of “slant”, rather than on the basis of the gradient of horizontal 
disparity. Clearly, the slant units across cues (degrees or radians) would also need to be the 
same. 
 
Equation 2 has a couple of additional interesting properties. Firstly, it holds regardless of the 
difference in the estimates provided by each cue (𝑆#" and 𝑆##). This is problematic, as it makes 
little sense to integrate cues if they provide wildly discrepant estimates of an environmental 
property. For example, if two cues suggest that the size of an object is 5.5cm and 5.4cm, and 
a third that the object is 500cm, it would be sensible to ignore the massively discrepant 
perceptual estimate. To get around this problem the perceptual system is assumed to be 
robust, such that cues are “vetoed” if they provide discrepant estimates (Landy et al., 1995). 
In the case of only two cues, as examined here, the situation is more complex, as it is unclear 
which cue to veto. Experimentally, it has been shown that for two cues with a large 
discrepancy, veto does occur, but puzzlingly, the vetoed cue is not necessarily the less reliable 
cue (Girshick & Banks, 2009). 
 
Second, cues are integrated regardless of their perceptual bias. By “bias” we mean a 
difference between (a) the perceptual estimate of a property of the world and (b) the actual 
physical value of that property. This has been termed “external accuracy” (Burge, Girshick, & 
Banks, 2010). Bias is a problem, in part, because there is no reason to assume that cues which 
are most reliable are also least biased. As a result, there are a mathematically definable range 
of circumstances where integrating cues in accordance with Equations 2 and 6 results in 
perceptual estimates which are more precise, but less accurate with respect to the world 
(Scarfe & Hibbard, 2011). In these instances, observers integrated cue estimates are in effect 
“more precisely wrong” (“wrong” meaning inaccurate). Bias is difficult to account for in 
models of cue integration, as by definition, observers have no direct access to properties of 
the world (Descartes, 1641) and experimenters have no direct access to an observers internal 
perceptual estimates. Because of this, cues are generally assumed a priori to be unbiased, 
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with any bias typically being attributed to unmodelled cue conflicts or response bias (Watt, 
Akeley, Ernst, & Banks, 2005).  
 
The assumption of unbiased estimators would be reasonable if our sensory systems got error 
signals sufficient to calibrate out bias through the process of sensory adaptation (Adams, 
Banks, & van Ee, 2001; Henriques & Cressman, 2012; McLaughlin & Webster, 1967; Scarfe & 
Glennerster, 2014; Welch, Bridgeman, Anand, & Browman, 1993). However, this seems 
unlikely in all instances given the observed large reproducible perceptual biases in real world 
environments (Bradshaw, Parton, & Glennerster, 2000; Koenderink, van Doorn, Kappers, & 
Lappin, 2002; Koenderink, van Doorn, Kappers, & Todd, 2002; Koenderink, van Doorn, & 
Lappin, 2000; Wagner, 1985), as well as in expertly controlled experiments with computer 
generated stimuli where cue conflicts cannot be evoked to explain away perceptual bias 
(Watt et al., 2005). Importantly, it has been shown that the integration of sensory cues does 
not lead to the calibration of those same cues (Smeets, van den Dobbelsteen, de Grave, van 
Beers, & Brenner, 2006). As a result, it is now becoming more widely accepted that cues can 
provide biased sensory estimates and that this needs to be accounted for in models of cue 
integration (see Ernst & Di Luca, 2011). We discuss the effect of perceptual bias on testing the 
predictions of MWF below.  
 

Experimentally testing MWF 
 
Numerous studies have investigated sensory cue integration and purport to show that 
humans combine cues ‘optimally’ in accordance with MWF (Burge, Girshick, et al., 2010; 
Ernst, 2006; Ernst & Banks, 2002; Gepshtein, Burge, Ernst, & Banks, 2005; Girshick & Banks, 
2009; Glennerster et al., 2006; Helbig & Ernst, 2007; Hillis, Ernst, Banks, & Landy, 2002; Hillis 
et al., 2004; Johnston, Cumming, & Landy, 1994; Johnston, Cumming, & Parker, 1993; Knill & 
Saunders, 2003; Lovell, Bloj, & Harris, 2012; Saunders & Chen, 2015; Scarfe & Hibbard, 2011; 
Svarverud, Gilson, & Glennerster, 2010; Watt et al., 2005). Here, to provide context for what 
follows, we describe the standard methodology used for testing the predictions of MWF (for 
a more detailed exposition see the excellent practical tutorial provided by Rohde, van Dam, 
& Ernst, 2016).  
 
In its simplest form, testing MWF comes down to seeing if the numerical predictions made by 
Equations 2 and 6 correspond to observers’ behaviour. Equation 2 predicts the perceptual 
estimate observers will make when cues are in conflict, whereas Equation 6 predicts the 
increased precision of the integrated cues estimate. Of the two predictions, Rohde, van Dam 
and Ernst (2016, p. 7) describe Equation 6 as the  “essential prediction” of optimal cue 
integration, stating that “… noise reduction is the most important hallmark of optimal 
integration”. They point out that seeing performance line with Equation 2 is “… by itself not 
sufficient to show that optimal integration occurs” (Rohde et al., 2016, p. 7). One of the 
reasons for this is that, as we will examine below, identical predictions to Equation 2 can be 
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made by alternative models of perceptual processing, including those in which cues are not 
integrated in any way. As a result, “(i)f one can show only a bias in the results (equation (2)) 
but not a reduction in noise (equation (6)), one cannot conclude that optimal integration 
occurred …” (Rohde et al., 2016, p. 10. Note: equation numbers have been changed to 
correspond to the equivalent equations in the current paper and italics added.). 
 
In order to test the predictions made by Equations 2 and 6 an experimenter needs estimates 
of the internal parameters σ", σ#, 𝑆#" and 𝑆## (here the hat refers to an estimate on the part 
of the observer). To estimate the sigma parameters of individual and integrated cues 
estimates a two-alternative forced choice (2AFC) task is typically adopted. For example, in 
Ernst and Banks (2002) observers were presented with a ridge defined by vision, haptics, or 
both, across two intervals. One interval contained the “standard” stimulus, which was a fixed 
height, and the other the “comparison” stimulus, which was of a variable height. By varying 
the height of the comparison stimulus one can map out a psychometric function, which is 
typically fit with a Cumulative Gaussian function (based on the assumption that both cues can 
be represented by Gaussian probability density functions, so the difference between these 
distributions will also be Gaussian). The experimental estimate of the sigma of the cue (or 
integrated cues) is taken to be the sigma of the fitted Cumulative Gaussian divided by √2. The 
division being necessary as there are two stimuli being judged, one per interval (Green & 
Swets, 1974). By entering the single cue sigma’s into Equation 6 one can get a numerical 
prediction of the integrated cues sigma, which can be compared with that observed 
experimentally. 
 
To test the predictions of Equation 2 a “perturbation analysis” is typically used whereby cue 
conflicts are experimentally introduced into the combined cues stimuli and the weight 
assigned to each cue is estimated by the extent to which each cue determines the integrated 
cues percept (Young, Landy, & Maloney, 1993). For example, Ernst and Banks (2002) 
presented observers with visual-haptic stimuli in which the bar height specified by vision and 
haptics was in conflict. The predicted weights given to vision and haptics were used to 
examine the extent to which vision or haptics would determine the integrated cues percept 
and this compared to observer’s behaviour.  
 
To demonstrate this idea, following on from the example above, we can add a perturbation 
of value ∆ to the cue 𝑆##, such that 
 

𝑆#% = 𝑤"𝑆#" +𝑤#(𝑆## + ∆) 
(8) 

 
Recognising that 𝑆#" = 𝑆## and 𝑤" = 1 − 𝑤# we get 
 

𝑆#% = (1 − 𝑤#) ∗ 𝑆#" +𝑤# ∗ (∆ + 𝑆#") 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.277400doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277400


 8 

(9) 
 
Solving for 𝑤# we get 
 

𝑤# =
𝑆#% − 𝑆#"
∆  

(10) 
 
Finally, recognising that the numerator is the change in percept compared to the single cue 
estimates (𝑆#% − 𝑆#" = ∆𝑆#) gives 
 

𝑤# =
∆𝑆#
∆  

(11) 
 
Thus, cue weighting can be inferred from the ratio of the change in the integrated cues 
percept,	∆𝑆#, and the perturbation, ∆, added to the cue, 𝑆#". Again, the key insight is that the 
relative reliabilities of the individual cues determines the integrated cues percept. In 
experiments such as Ernst and Banks (2002), equal and opposite perturbations are added to 
each cue, but the result is the same; single cue sensitivities (σ" and σ#) are used to predict 
cue weights, which are in turn used to predict the integrated cues percept when cues are in 
conflict.  
 
As can be seen from Equations 8 through 11, a core assumption of a perturbation analysis is 
that single cue estimates are not biased relative to the physical value of the stimulus (𝑆#" =
𝑆## = 𝑆). If single cues estimates are biased, the physical perturbation an experimenter 
includes in an experiment will not be equivalent to the perceptual estimate of this 
perturbation. Under these circumstances, when using a perturbation analysis, the inferred 
weights given to cues will be misestimated relative to the true values. Due to the difficulties 
inherent in measuring perceptual bias experimenters typically assume that perceptual 
estimates are by definition unbiased. Indeed, the 2AFC procedure used to measure single cue 
functions offers no way in which to measure perceptual bias as the mean of the fitted function 
will be zero by definition. In the following we detail the consequences of perceptual bias for 
inferring weights via a perturbation analysis as it serves to reiterate the reason why Equation 
6 is the  “essential prediction” (Rohde et al., 2016, p. 7) of optimal cue integration. 
 
Let’s assume we have two equally weighted cues 𝑆#" and 𝑆## and that each cue is unbiased, 
signalling the correct value of an environment property, 𝑆, such that 𝑆#" = 𝑆## = 𝑆. Let’s also 
assume that we have done a perfect job of matching cue reliabilities in our experiment such 

that 𝑤" = 𝑤# =
(
$
. We conduct a perturbation analysis to measure cue weights by adding a 

perturbation value ∆ to the cue 𝑆##. Now Equation 8 can be written as 
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𝑆#% =
𝑆#"
2 +

𝑆## + ∆
2  

(12) 
 
We can ask what level of bias, 𝛽, would need to be present in 𝑆#" to completely eliminate any 
effect of the cue perturbation ∆, such that 𝑆#% = 𝑆. 
 

𝑆#% = 𝑆 =
𝑆#" + 𝛽
2 +

𝑆## + ∆
2  

(13) 
 
Solving Equation 13 for 𝛽 gives 
 

𝛽 = −∆ 
 

(14) 
 
Thus, if 𝑆#" is biased by an equal and opposite amount to the perturbation added to 𝑆##, all 
evidence of optimal cue integration will be eliminated. More generally, this is the case for any 
level of cue weighting. Given 
 

𝑆#% = 𝑤":𝑆#" + 𝛽; + 𝑤#(𝑆## + ∆) 
(15) 

 
Recognising that 𝑤" +𝑤# = 1, that cue weights are determined cues variances (Equation 3 
and 4) and setting 𝑆#" = 𝑆## = 𝑆#%  in Equation 15 and solving for 𝛽 gives 
 

𝛽 = −∆
𝜎"$

𝜎#$
 

(16) 
 
Therefore, for any relative weighting of cues, all evidence of optimal cue integration as 
measured by a perturbation analysis can be eliminated if one (or more generally both) of the 
cues are biased. The bias needed to do this is a function of the perturbation and the relative 
reliability of the cues. This is equivalent to the idea of there being perceptual metamers i.e. 
perceptually indistinguishable stimuli which each consist of different values/magnitudes of 
the constituent cues (Backus, 2002; Hillis et al., 2002). Given that the typical perturbation 
added in an experiment is small so as not to elicit cue veto, cues only need to be biased by a 
small amount to significantly interfere with accurately determining cue weights through a 
perturbation analysis. For example, Rohde et al. (2016) recommend that ∆ be 1 to 1.5 (and 
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no larger than 2) Just Noticeable Differences (JND), where a JND is given by 𝜎√2. This 
illustrates a further reason why “… noise reduction is the most important hallmark of optimal 
integration” (Rohde et al., 2016, p. 7). 
 

MWF and Bayesian Inference 
 
MWF is itself a special case of a wider theoretical framework which models perception as a 
process of Bayesian inference; formalised in terms of Bayes Theorem (Equation 17). Studies 
on cue integration have been widely used to support the idea that the human nervous system 
performs some kind of Bayesian inference during perceptual processing (Kersten, Mamassian, 
& Yuille, 2004; Knill & Richards, 1996). Indeed, cue integration has been described as the “… 
poster child for Bayesian inference in the nervous system” (Beierholm, Shams, Kording, & Ma, 
2009, p. 1). 
 

𝑝(𝑆|𝐼) =
𝑝(𝐼|𝑆)𝑝(𝑆)

𝑝(𝐼)  

(17) 
 
In the Bayesian framework, the task of the observer defined as estimating the most probable 
state of the world, 𝑆, given the current sensory information, 𝐼. The information available to 
the observer to do this is contained in the posterior probability distribution, 𝑝(𝑆|𝐼), which is 
determined by current and past sensory information. Current sensory information is 
represented by the likelihood function, 𝑝(𝐼|𝑆), which embodies the generative function 
which transforms the property of the world, 𝑆, into sensory information 𝐼 (see Equation 1). 
Past sensory information is represented by the prior, 𝑝(𝑆), which embodies the prior 
probability over states of the world, independent of current sensory information. 𝑝(𝐼) is the 
prior probability over the sensory data and is typically considered as a normalising constant 
allowing 𝑝(𝑆|𝐼) to integrate to one (Mamassian, Landy, & Maloney, 2002).  
 
If the prior is uniform or is much broader than the likelihood function (and dropping the 
normalising constant) Equation 17 simplifies to  
 

𝑝(𝑆|𝐼) = 𝑝(𝐼|𝑆) 
(18) 

 
For the case with conditionally independent cues 𝐴 and 𝐵, this can be written as 
 

𝑝(𝑆|𝐼", 𝐼#) = 𝑝(𝐼"|𝑆)𝑝(𝐼#|𝑆) 
 

(19) 
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Given the posterior probability distribution over states of the world, the observer has to make 
a single perceptual estimate, 𝑆#. The “best” way to make an estimate is determined by the 
costs associated with making errors (Kording, 2007). These costs are embodied in the “loss 
function” for a given task. Common choices include choosing the maximum of the posterior 
probability distribution, which minimizes the delta loss function, or choosing the mean of the 
posterior probability distribution, which minimizes mean squared error loss. When the 
likelihood functions of the cues are Gaussian, choosing the mean or maximum of the posterior 
are equivalent. Making estimates in this way is termed maximum likelihood estimation (MLE) 
(Ernst & Banks, 2002). 
 
On a given trial in an experiment MLE provides a single estimate 𝑆#, of the underlying world 
property 𝑆, which is based on the information provided by the two cues, 𝑆" and 𝑆# (i.e. the 
information provided by the experimenter in the experiment from the two cues, not the 
observers estimates of these, 𝑆#" and 𝑆##). As pointed out by Beierholm, Körding, Shams and 
Ma (2009), the posterior, 𝑝(𝑆|𝐼", 𝐼#), is therefore not strictly speaking the experimentally 
observed distribution of estimates across trials, 𝑝:	𝑆#B𝑆#", 𝑆##;. However, this too will be 
Gaussian if the underlying distributions are normally distributed. In this case, performing 
estimation in this way will be mathematically equivalent to Equations 2 and 6 (Figure 2).  
 

 
 
Figure 2: Shows the equivalence of modelling cue integration as Bayesian Inference and as a 
weighted average for a two-cue example. The Gaussian PDF for Cue A has a mean of 4 and 
sigma of 2 and the PDF for Cue B a mean of 8 and sigma of 1. Given that Cue B is more reliable 
than Cue A, the Integrated Cues PDF is shifted toward that of Cue B. The plotted distributions 
are calculated analytically by multiplying probability distributions via Equation 19 (with 
normalisation). As predicted by Equations 2 and 6, the mean of integrated cues PDF (dotted 
line) is 6.67 and its sigma 0.82.  
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Bayesian Inference provides a broader, more widely applicable framework than MWF. As a 
result it is acknowledge that MWF is likely to provide a local approximation to the reality of 
how cues are integrated (Landy, Banks, & Knill, 2011). Any model, in any domain, is likely to 
be only an approximation of the underlying phenomena. One of the primary benefits of MWF 
is therefore its simplicity, as formulating “full” Bayesian models can be much more complex 
(Schrater & Kersten, 2000). Indeed, the wider Bayesian framework has been criticised as being 
so permissive that it is in effect unfalsifiable (Bowers & Davis, 2012). The simplicity of MWF 
(and its easier falsifiability) arises from the additional assumptions MWF makes about the 
nature of perceptual processing. Most of the assumptions of MWF result from assuming that 
perceptual estimates can be represented as statistically independent Gaussian distributions 
over a linear perceptual scale. Without these assumptions Equations 2 and 6 do not hold and 
either a fuller Bayesian analysis is needed, or corrections need to be made to the MWF 
equations, if possible.  
 
A clear case where the Gaussian assumption does not hold is in the case circularly distributed 
variables such as planar direction. With circularly distributed variables the von Mise 
distribution should be used. A full Bayesian approach could be taken here but simplified 
equations similar to MWF can be derived with some additional assumptions (Murray & 
Morgenstern, 2010). However, many studies simply assume that over the stimulus domain 
tested, Gaussian distributions provide a good enough approximation to the underlying von 
Mise distributions (Hillis et al., 2004). When statistical independence does not hold, 
corrections to the weighted averaging equations can again be derived to account for 
correlated noise (Oruc et al., 2003), without resort to a full Bayesian model. Correlated noise 
will likely be more problematic for cues with the same modality than across modalities, 
however, experimentally, regardless of modalities, the correlation between cues is assumed 
to be zero or so small that MWF provides a valid approximation.  
 
Non-linear perceptual scales and perceptual bias cause a number of problems in modelling 
cue integration which cannot be easily accounted for. For example, it has been suggested that 
in the case of the perception of slant from texture the standard 2AFC methodology used 
misestimates the variance of the underlying estimators (Todd, Christensen, & Guckes, 2010). 
This misestimate is proposed to arise from systematic biases in observers judgements of slant 
produced by confounding 2D cues which are unrelated to the perception of slant, but which 
may be used to discriminate between the images of two textured surfaces (Todd et al., 2010; 
Todd & Thaler, 2010). Whilst this example is an area of active debate (Saunders & Chen, 2015; 
Todd, 2015), it is known and acknowledged that perceptual scales are not linear (Rohde et al., 
2016), as a result, the domain over which cue integration is investigated it typically restricted 
and over this domain the scale is assumed to be a close approximation to being linear (e.g. 
Hillis et al., 2004). 
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Alternative models to MWF 
 
Although MWF is the most widely accepted model of cue integration, there are numerous 
alternative ways in which sensory cues could be integrated, many of which take into account 
the reliability of sensory cues (Arnold, Petrie, Murray, & Johnston, 2019; Domini & Caudek, 
2009; Jones, 2016; Tassinari & Domini, 2008). Much of the difference between models comes 
down to the computational architecture of the underlying system and many of these models 
could be described as “Bayesian” in nature (Beierholm et al., 2009; K. P. Kording et al., 2007; 
Trommershauser et al., 2011). Therefore, as within any area of science, the question comes 
down to designing experiments which are able to distinguish between competing models of 
the underlying phenomena. Problematically, until recently, very few papers compared the 
predictions of MWF to alternative models of sensory integration in any rigorous fashion (for 
exceptions see de Winkel, Katliar, Diers, & Bulthoff, 2018; Lovell et al., 2012). This has been 
recognised as a clear weakness in claims that cues are integrated “optimally” in accordance 
with MWF (Arnold et al., 2019) 
 
An additional problem is that readers are often required to judge the fit of the data to MWF 
“by eye”, without any accompanying statistics detailing the fit of the model to the data (e.g. 
Ernst & Banks, 2002; Hillis et al., 2004). Indeed, a recent review has suggested that the 
adherence to optimal cue integration (without comparison to alternative models) can be 
assessed visually and has provided a visual taxonomy of “optimal”, “sub-optimal”, 
“ambiguous”, “near optimal” and “supra-optimal” performance (Rohde et al., 2016, p. 23). 
This visual taxonomy, of judging the fit to the predictions of optimal cue integration based 
upon visual inspection of (1) the data, (2) the error bars around the data, and (3) the 
predictions of optimal cue integration, has started to be used by researchers to assess 
“optimality” of experimental data through adherence to MWF (Negen, Wen, Thaler, & 
Nardini, 2018).  
 
A visual taxonomy is problematic for a number of reasons. Firstly, across a number of 
disciplines, including psychology, behavioural neuroscience and medicine, leading 
researchers have been shown to have fundamental and severe misconceptions about how 
error bars relate to statistical significance and how they can be used to support statistical 
inferences from data (Belia, Fidler, Williams, & Cumming, 2005; Cumming, Fidler, & Vaux, 
2007). Second, as will be seen, alternative models of cue integration provide highly correlated 
predictions with one another. Therefore, “eyeballing” the fit to a single model based on visual 
inspection is likely to lead to fundamental mistakes in inferring the extent to which a given 
model fits the data. Finally, as we will demonstrate, there are computational techniques 
which can be easily used to assess the fit of a set of candidate models to data in a far more 
objective way.  
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Outline of the current study 
 
Here we present a technique which can be used to determine the probability with which a 
given experiment on sensory integration can experimentally distinguish between alternative 
models of the underlying phenomena. This technique consists of simulating end-to-end 
experiments (behaviour of observers in an experiment, fitting of psychometric functions, 
estimation of parameters from data, and final statistical analysis) in which observers act in 
accordance with a candidate model (or models), and examining the probability with which 
the data can be distinguished from the predictions made by a range of alternative models. 
Given the ubiquity of MWF, we focus primarily on the extent to which the predictions of MWF 
can be distinguished from two popular alternative models, however, our methods are fully 
generalisable and can be used to compare any set of models. As we will see, due to alternative 
models providing highly correlated predictions with MWF, it can become very difficult to 
experimentally distinguish between candidate models of sensory cue integration. 
 

Methods and Results 
 

Alternative models compared to MWF 
 
For the simulations presented, the predictions of MWF were compared to two alternative 
models (a) choose the cue with the minimum sigma (MS), and (b) probabilistic cue switching 
(PCS). There are clearly numerous other models which could have been chosen for 
comparison (Jones, 2016), however, these two models have the benefits of (1) being 
conceptually similar to MWF, (2) require experimental estimation of the same parameters, 
and (3) are reducible to comparably simple equations, with no requirement to model the 
combination of full probability density functions. They also have the benefit of having been 
compared to the predictions of MWF in previous papers.  
 
MS cue is conceptually very similar to MWF, in that, when the reliabilities of the two cues are 
imbalanced the mean and sigma of the integrated cues estimator in MWF is determined 
nearly entirely by the more reliable of the two cues. When one cue dominates the integrated 
cues percept it has been termed ‘cue capture’ (Ernst & Banks, 2002). The similarities of the 
predictions to MWF can be seen in Figure 3 where we re-plot discrimination thresholds for 
the visual, haptic and  integrated cue estimators from Ernst and Banks (2002) (see Appendix 
A). As can be seen, for the 0, 67 and 200% noise conditions the threshold for the integrated 
cues estimator is visually indistinguishable from the discrimination thresholds of the most 
reliable of the individual cues (visual or haptic). Therefore, the only condition in this paper 
which can test the MWF model, relative to choosing the cue with the minimum sigma, is the 
133% noise condition where the reliabilities of the two cues are nearly identical (grey 
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rectangle). Be aware that this statement is statement based upon a visual judgement from a 
graph of the data. But, it is one which will be backed up computationally below.  
 
 

 
 
Figure 3: Replot of the threshold data from Ernst and Banks (2002) Figure 3d. The threshold is 
defined as the difference between the 84% and 50% point of the underlying psychometric 
function. Thus, smaller thresholds represent more precise perceptual estimates. Thresholds 
are plotted against the % of noise in the visual modality stimulus (see Ernst & Banks, 2002 for 
full details). The only datapoint which can distinguish MWF from simply choosing the most 
reliable of the two cues is the 133% noise level stimulus (grey rectangle).  
 
When choosing the cue with the minimum sigma the sigma of the integrated cues estimator 
is given by 
 

σ% = C𝑚𝑖𝑛{𝜎"$, 𝜎#$} 

(20) 
 
The mean of the integrated cues estimator is simply that of whichever cue is most reliable 
(either 𝑆#" or 𝑆##). 
 
Probabilistic cue switching (PCS) (Byrne & Henriques, 2013; de Winkel et al., 2018; Nardini, 
Jones, Bedford, & Braddick, 2008; Serwe, Drewing, & Trommershauser, 2009) proposes that 
observers do not integrate cues to form a single perceptual estimate, rather, they use a single 
cue at a given time, and switch between cues with the probabilities 𝑝" and 𝑝# (where 𝑝" +
𝑝# = 1). The mean and sigma of the integrated cues estimator is given by 
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𝑆#% = 𝑝"𝑆#" ∗ 𝑝#𝑆## 
(21) 

 
and 
 

σ% = C𝑝":𝑆#"$ + 𝜎"$; + 𝑝#:𝑆##$ + 𝜎#$; − :𝑝"𝑆#" ∗ 𝑝#𝑆##;
$
 

(22) 
 
The probabilities 𝑝" and 𝑝# are determined by the relative reliabilities of each cue, such that 
𝑝" = 𝑤" and 𝑝# = 𝑤#. Substituting Equations (3) and (4) into (22) and simplifying gives 
 
 

σ% = 2𝜎"
$𝜎#$ H𝑆#"$ − 2 ∗ 𝑆#"𝑆## + 𝑆##$ + 2 ∗ (𝜎"$+𝜎#$)I

(𝜎"$ + 𝜎#$)$
 

(23) 
 
When 𝑆#" = 𝑆##, Equation 23 simplifies further to 

 

σ% = √22
𝜎"$ ∗ 𝜎#$

𝜎"$ + 𝜎#$
 

(24) 
 
The similarities between Equations (2) and (21), and Equations (6) and (24) are clear. Note in 
particular that Equations (2) and (21) provide identical predictions for the mean of the 
integrated cues estimator. In other words, for the mean of the integrated cues estimator, a 
model in which cues are not integrated and instead used completely independently can 
produce identical predictions to MWF. This is one of the core reasons that noise reduction is 
essential hallmark of optimal cue integration (Rohde et al., 2016). 
 

Correlated predictions of alternative models 
 
We have already seen how MWF and PCS can provide identical predictions regarding the 
mean of the integrated cues estimator. Here we examine similarities in the predictions of 
MWF, MS and PCS in terms of the sensitivity of the integrated cues estimator. Figure 4 plots 
the predictions for the sigma of the integrated cues estimator under our three candidate 
models; MWF, MS and PCS. Here, for PCS, the two cues have been set to have the same mean 
(i.e. Equation 24). As can be seen, the three models provide highly correlated predictions 
regarding the predicted sigma of the integrated cues estimator.  
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Figure 4: Shows the integrated cues sigma, calculated for a range of two-cue sigma values 
under our three models of cue integration, (a) optimal cue integration (MWF; Equation 6), (b) 
choose the cue with the minimum sigma (MS; Equation 20) and (c) probabilistic cue switching 
(PCS; Equation 24). 
 
We can take the difference between the predictions of each model to examine the areas of 
the parameter space in which MWF can be most easily disambiguated from these two 
alternative models (Figure 5). Doing this shows that MS and PCS both provide maximally 
different predictions from MWF regarding the integrated cues reliability, when the sigmas of 
the individual cues are identical (positive diagonal). The absolute magnitude of the difference 
between predictions also increases with the sigma of the two cues (compare the bottom left 
to top right in each plot). Also plotted in Figure 5 are data points from two of the most widely 
cited papers on optimal cue integration, Ernst and Banks (2002) and Hillis, Watt, Landy and 
Banks (2004). Whilst some of these datapoints lay near the positive diagonal, many 
datapoints fall into areas of the parameter space which poorly distinguished MWF from MS 
and PCS based upon the core prediction of increased sensory precision.  
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Figure 5: Plots the difference in integrated cues sigma predictions calculated under (a) MS 
versus MWF and (b) PCS versus MWF. Green symbols show the cue sigma values from Figure 
3d in Ernst and Banks (2002) for the perception of object height. Cyan and grey symbols show 
cue sigma values from Figure 11 in Hillis, Watt, Landy and Banks (2004) for the perception of 
surface slant (cyan symbols observer JMH and grey symbols observer ACD). If data are to best 
disambiguate models they should fall along the positive diagonal in each plot. 
 

General methods 
 
All simulations were carried out in MATLAB (2020a) (MathWorks, Natick, MA, USA) on an 8-
Core Intel Core i9 processor in a MacBook Pro running macOS 10.15. The extensive range of 
simulations reported were computationally expensive, so where possible they were 
distributed over the computers CPU processing cores using MATLAB’s Parallel Processing 
Toolbox. The Palamedes toolbox was used to parametrically simulate observers and fit 
psychometric functions (Kingdom & Prins, 2010, 2016; Prins & Kingdom, 2009, 2018).  
 

Simulation Set 1: Effects of relative reliability and number of observers in an 
experiment on distinguishing between candidate models 
 

Methods 
 
Observers were assumed to have access to two cues (𝑆#" and 𝑆##) from which to make an 
integrated cues perceptual estimate (𝑆#%) about a property of the world. The mean of the two 
cues prior to any perturbation was the same (55mm as in Ernst and Banks (2002)). Cue A 
always had the same sigma σ" = 4.86, which is approximately that of the haptic cue in Ernst 
and Banks (2002). Cue B had a sigma given by σ# = σ"𝑟 where 𝑟 varied between 1 and 4 in 
27 linearly spaced steps. It has been suggested that to test for optimal cue integration the 
sigma ratio should be lay within the range 0.5 to 2 (Rohde et al., 2016, p. 15), however, it is 
clear that experimenters go beyond this reliability ratio (Figure 5). Therefore, we included 
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simulated experiments beyond this recommended range to be more consistent with the 
existing experimental literature. For each reliability ratio we simulated experiments where 
there were 4 through 30 (in steps of 1) participants. Cue integration experiments are typically 
very time consuming, so there are normally few observers per experiment, but a substantial 
amount of data collected per observer (Rohde et al., 2016). For example, Ernst and Banks 
(2002) and Hillis, Watt, Landy and Banks (2004), each used four observers. Our highest 
observer number per experiment therefore represents an upper limit to the observers one 
might reasonably expect to see in a cue integration study. 
 
The procedure described was repeated for three levels of cue conflict and four data collection 
regimes. The simulated conflicts, ∆, were 0, 3 and 6mm (as in Ernst and Banks (2002)). 
Conflicts were added by perturbing each cue by opposite amounts equal to half of the total 
cue conflict (i.e. 0, ±1.5 and ±3mm), that is 𝑆" = 55 + ∆/2 and 𝑆# = 55 − ∆/2. Estimated 
from the data of Ernst and Banks (2002), the (above zero) conflicts represented approximately 
0.8 and 0.4 JNDs, which is around the recommended magnitude of cue conflict to use in a 
perturbation analysis (Rohde et al., 2016). In Ernst and Banks (2002) there were conditions 
with equal and opposite cue conflicts applied (i.e. ±3mm and ±6mm total cue conflict) in 
order avoid perceptual adaptation. With real observers this is needed as if one cue always 
received a negative perturbation and the other cue always received a positive perturbation, 
over time the brain may recalibrate the cues (Burge, Girshick, et al., 2010). We did not 
replicate this here as our simulated observers have no mechanisms of adaptation and all of 
their responses are statistically independent of one another. 
 
We simulated performance and estimated three psychometric functions for each observer in 
each experiment. Two single cue functions, corresponding to the stage at which an 
experimenter estimates singles cue sensitivities, and an integrated cues condition where 
observers behaved in accordance with MWF. Observers were simulated in accordance with a 
Cumulative Gaussian function consistent with the underlying mean and sigma of the Gaussian 
probability density function representing the internal estimator. Functions were sampled 
with the method of constant stimuli, under four data collection regimes. The method of 
constant stimuli was selected as this is the most widely used procedure for estimating a 
psychometric function. Rohde, van Dam and Ernst describe it as “… the simplest and least 
biased method to measure a complete psychometric function”. (p.15). 
 
In sampling a psychometric function using the method of constant stimuli an experimenter 
has to make four decisions, (1) the range of stimuli to be presented, (2) which stimulus value 
this range should be centred upon, (3) how many points to sample across the stimulus space, 
and (4) how many times to sample each stimulus. There are no deterministic rules for deciding 
any of these, though clearly, the more thoroughly one samples the whole psychometric 
function, the better the experimental estimates of the underlying parameters. In terms of 
coverage, it is widely excepted that to gain reliable estimates of the parameters of a 
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psychometric function one should include sampled points where the observer can clearly 
discriminate the stimuli (Wichmann & Hill, 2001a, 2001b), however, “(t)here is no need to use 
many, finely spaced stimulus levels. Concentrating responses at just a few appropriately 
distributed stimulus levels should suffice to obtain reliably estimates of the parameters of a 
PF” (Kingdom & Prins, 2016, p. 57 (PF being short for Psychometric Function)).  
 
Rohde et al. (2016) in discussing the various factors which feed into this decision process 
conclude that “(i)n most cases a fixed set of seven or nine comparison stimuli can be identified 
that suits most observers” (p. 14). Here we adopt the upper of these suggestions. The range 
of the sampling space, 20mm, was based upon that of Ernst and Banks (2002). The sampling 
space was always centred upon the true mean of the psychometric function. For single cue 
functions the mean was 𝑆#! = 55mm± ∆/2, and for the integrated (MWF) cue function the 
mean was given by Equation 2, where 𝑆#" = 𝑆#" + ∆/2 and 𝑆## = 𝑆## − ∆/2. Centring the 
function on the true mean represents a best-case scenario for estimating the (normally 
unknown) function parameters. The 9 stimulus values used were linearly spaced across the 
range. 
 
In terms of numbers of trials per stimulus level, for cue integration experiments, Rohde, van 
Dam and Ernst (2016) suggest that where the mean and slope of the PSE need to be estimated 
around 150 trials should be used. In contrast, Kingdom and Prins (2010) suggest that 
“although there is no hard-and-fast rule as to the minimum number of trials necessary, 400 
trials is a reasonable number to aim for when one wants to estimate both the threshold and 
slope of the PF” (p. 57. PF, being Psychometric Function). In a simulation study, Wichmann 
and Hill (2001a) found that for some of their simulated sampling schemes 120 samples in total 
per function was often “… too small a number of trials to be able to obtain reliable estimates 
of thresholds and slopes …” (p. 1302). Therefore, here, in separate simulations, we examined 
sampling with 10, 25, 40 and 55 trials per stimulus level. This gave us 90, 225, 360, and 495 
trials in total per function, which encompassed the above recommendations.  
 
Piloting showed that for the cue reliability range, cue perturbations, and sampling regimes 
used throughout the present study, these parameters resulted in well fit psychometric 
functions (see Appendix B and also the criteria adopted for rejected functions detailed 
below). Whilst not as widely used, we could have used an adaptive method by which to 
sample the psychometric function (Leek, 2001). We opted not to do so for a number of 
reasons. First, to be consistent with the most widely used psychophysical methods used in 
the literature (Rohde et al., 2016). Second, to avoid issues in justifying which of the many 
adaptive methods to use, for example: Psi (Kontsevich & Tyler, 1999), Psi-Marginal (Prins, 
2013), QUEST (Watson & Pelli, 1983), QUEST+ (Watson, 2017), the “best PEST” (Pentland, 
1980) or a staircase procedure (Kingdom & Prins, 2016). Third, with all adaptive methods, a 
“stopping criteria” needs to be defined (e.g. number of reversals in a staircase procedure), as 
well as the allowable steps between stimulus values, both of which need to be justified.  
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Fourth, if using a staircase procedure, different staircases rules converge at different points 
on the psychometric function, so the question becomes which rule (or rules) to use (Kingdom 
& Prins, 2016). Finally, for a number of adaptive methods there are issues related to getting 
“stuck” in specific areas of the parameter space, causing the algorithm to repeatedly sample 
high intensity stimulus values (see Prins, 2013 for an extended discussion). Therefore, overall 
there seemed far more open questions to address if an adaptive procedure were adopted. An 
additional reason why adaptive procedures are used is because the experimenter does not 
know the parameters of the underlying function(s), which was not the case here with our 
simulated observers. With the above permutations, for the first set of simulations, we 
simulated 27 (reliability ratios) x 27 (number of observers / experiment) x 4 (data collection 
regimes) x 3 (cue conflicts) x 100 (repetitions of experiment) = 874800 simulated experiments. 
In total these experiments contained 14871600 simulated observers.  
 

Simulating observers and fitting functions 
 
Simulated data were fit with Cumulative Gaussian functions by maximum likelihood using the 
Palamedes toolbox. Whilst other fitting methods could be used, for example, fitting based on 
a Bayesian criterion (Kingdom & Prins, 2010; Kuss, Jakel, & Wichmann, 2005; Schutt, 
Harmeling, Macke, & Wichmann, 2016), fitting by maximum likelihood was chosen as it is 
currently the most widely used technique in the literature (Kingdom & Prins, 2010; Wichmann 
& Hill, 2001a, 2001b). In order to appropriately fit a function to an observers data three 
assumptions need to be met, (1) the observer does not improve or degrade at the task they 
are performing over time, (2) each perceptual judgement an observer makes is statistically 
independent of all others, and (3) performance of the observer can be well characterised by 
the psychometric function that the experimenter is fitting to the data (Kingdom & Prins, 2010, 
2016). As we are parametrically simulating observers, we know that all these assumptions are 
met.  
 
This is clearly not the case in an experimental setting. Here there is clear evidence that the 
decisions made by an observer on given trial can be influenced by previous decisions the 
observer has made (Fischer & Whitney, 2014; Frund, Haenel, & Wichmann, 2011; Kiyonaga, 
Scimeca, Bliss, & Whitney, 2017; Lages & Jaworska, 2012; Liberman, Fischer, & Whitney, 2014; 
Liberman, Manassi, & Whitney, 2018; Liberman, Zhang, & Whitney, 2016; Xia, Leib, & 
Whitney, 2016). Techniques exist to account for this potential “non-stationarity” in observers 
behaviour during fitting of a psychometric function (Frund et al., 2011; Schutt et al., 2016), 
but currently these methods have not been widely adopted. In terms of fitting the correct 
psychometric function this largely comes down to the experimenters current understanding 
of the computational mechanisms underlying behaviour. Techniques exist to fit smooth 
functions to data without assuming a parametric model (Zychaluk & Foster, 2009), but these 
are not widely used and often much of the power of applying a parametric model comes from 
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an understanding of the model in relation to the inferred computational architecture of 
sensory processing.  
 
For all simulations we modelled observers as making zero lapses, so during fitting functions 
we fixed the lapse rate to be zero. This sidesteps problems related to the extent to which 
fitting with a (1) zero, (2) fixed non-zero, or (3) variable (but bounded) non-zero lapse rate, 
effects inferences about the mean and sigma of the “true” psychometric function (Prins, 
2012; Wichmann & Hill, 2001a, 2001b). This again comes down to the fact that we as 
experimenters have no direct access to the underlying computational mechanisms that 
produce behaviour. Therefore, the decisions made regarding simulating observers represent 
a best-case scenario under which we can estimate the underlying psychometric function 
parameters and therefore distinguish between candidate models of the data. The simulation 
data presented therefore likely represents an overestimate of an experimenter’s ability to 
distinguish between alternative models of cue integration.  
 
The mean and standard deviation of the fitted functions were taken as the experimental 
estimates of the observers’ true internal parameters. In cases where a function could not be 
fit due to the simulated data being (1) at / around chance performance across all stimulus 
levels, or (2) a step function, the data for that simulated observer were removed from the 
analysis (see also Appendix B). Overall this represented 0.047% of the data. Poorly fit 
functions were most prevalent when sampling each stimulus level 10 times, giving 90 trials 
per psychometric function (removed observers for each number of “trials per psychometric 
function”: 90 trials / function = 0.183%, 225 trials / function = 0.0025%, 360 trials / function 
= 0.00006%, and 495 trials / function = 0%). Thus, all other things being equal, 150 trials per 
function (Rohde et al., 2016) would give somewhere between 0.0025% and 0.183% cases 
where an observers data could not be fit, and 400 trials per function (Kingdom & Prins, 2010, 
2016) somewhere between 0% and 0.00006% cases. Clearly, the more data one has, the 
better one is able to estimate experimental parameters. An alternative analysis where poorly 
fit functions are replaced by a newly simulated observer (rather than removed) results in 
identical conclusions being made throughout the paper. 
 

Comparing the data to alternative models 
 
For each simulated observer, the estimated mean and sigma of the single cue function with 
the lowest sigma was taken as the experimental prediction for the MS alternative model. For 
PCS, the estimated mean and sigma of the single cue functions were entered into Equations 
21 and 23 to provide predictions of the mean and sigma of the integrated cues function. In a 
real experiment, functions are measured in a two-interval forced choice experiment so the 
sigma of the fitting functions need to be divided by √2 as there are two stimuli / intervals in 
the experiment (Green & Swets, 1974). As the functions were parametrically simulated here, 
this step was not needed. This procedure allowed us to compare the data from a population 
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of n “optimal” observers behaving in accordance with MWF with the experimentally derived 
predictions of our two alternative models. We could have compared to the alternative models 
using the true underlying parameter values and predictions of each model, however by 
definition an experimenter only has access to experimentally derived estimates of these 
internal parameters, not their true values 
 
To statistically test the behaviour of our simulated observers to the predictions of each model 
the comparisons can be posed in different ways. Here, for each experiment, we entered the 
data from our simulated observers into one-sample within-subjects t-test to compare the 
data to the point predictions of the two alternative models. For a given experiment, the mean 
value of the alternative model predictions across observers was taken as the point prediction 
for each model. Obviously, in an experimental setting, unless one specifically matches the 
relative reliability of cues across observers, an experiment is highly unlikely to have a set of 
optimal observers with the same single cue reliability ratios. However, the aim of these first 
simulations was to clearly show the effects of the (1) single cue reliability ratio and (2) number 
of observers in an experiment, on an experimenters’ ability to distinguish the data of a set to 
optimal observers behaving in accordance with MWF from the two alternative candidate 
models, in a best case scenario where cue reliabilities are perfectly matched. In our second 
set of simulations (see below) we examine the case where we have a heterogeneous 
population of observers with different cue reliability ratios. This is a weaker way in which to 
test the MWF model, but one which is more representative of a cue typical integration 
experiment.  
 
With statistical tests such as the one-sample t-test used here, the experimenter is making 
assumptions about the structure of the underlying data. For example, for a one-sample t-test, 
the data should be normally distributed, measured on an interval or ratio scale and all 
observations should be independent of one another. The latter two assumptions we know to 
be met. In terms of normality, for those cue integration experiments which present statistical 
comparisons, we have never seen the results of normality tests presented. This might be due 
to the fact that given the very small number of observers in a typical cue integration 
experiment (e.g. four observers (Ernst & Banks, 2002; Hillis et al., 2004)) it would be difficult 
or impossible to reliably estimate the normality of the data. Thus, adopting parametric tests 
rather than non-parametric tests was considered a reasonable choice. Using a non-parametric 
Wilcoxon signed rank test results in the same conclusions being made throughout the paper 
but with a decreased ability to distinguish between alternative models due to the reduced 
power of nonparametric, compared to parametric, tests.  
 

Group analysis: integrated cues sensitivity 
 
First, we examine the extent to which MWF, MS and PCS can be distinguished on the basis of 
the sensitivity of the integrated cues estimator, 𝜎%Q. Figures 6 shows the results of running a 
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one-sample t-test on the sigmas of the Cumulative Gaussian functions fit to our simulated 
MWF observers in each experiment to see if the data statistically differed from the sigma 
value predicted by MS. The shading of each pixel in the 27 by 27 grid represents the 
percentage of our 100 simulated experiments in which the results of a population of 
observers behaving in accordance with MWF could be statistically distinguished from the 
numerical predictions of MS (Figure 6). 
 

 
 
Figure 6: Shows the percentage of experiments in which the sigmas of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of choosing the cue with the 
minimum sigma (MS). Each pixel in the image shows this percentage as calculated across 100 
simulated experiments, for a given sigma ratio and number of participants. The four panes 
show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 
psychometric function. 
 
 
Consistent with the correlated predictions of  candidate models  (Figure 5), as the sigma of 
the individual cues becomes unbalanced, it becomes more and more difficult to 
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experimentally distinguish between MWF and MS. This is especially apparent with the low 
number of observers that characterise typical cue integration experiments. As would be 
expected, when more data is collected per function models can be more easily distinguished. 
In Figure 7 we plot the these results for just the simulated experiments with four observers 
(i.e. the same number of observers in Ernst and Banks (2002) and Hillis et al. (2004)). The 
vertical grey line shows the maximum recommended sigma ratio to use in cue integration 
experiments (Rohde et al., 2016), whereas the dashed grey line shows the point at which 
there is a 50% chance of distinguishing models in a given experiment.  
 
In an ideal world an experimenter would run an experiment and have a 100% chance of 
distinguishing between candidate models of the underlying phenomena. It is not clear how 
much lower this probability could go before being considered unacceptably low by an 
experimenter. However, Figure 7 highlights that with a representative number of observers 
in a typical cue integration experiment, to have any reasonable chance of distinguishing MWF 
and MS, one needs to (1) collect a large amount of data per participant and (2) very closely 
match the reliabilities of the individual cues. Collecting 150 trials per function across four 
observers with a sigma ratio of 2 would result in an approximately 25% chance of 
distinguishing these models based in the “essential prediction” of MWF. Thus, the 
experimental conditions suggested by Rohde et al. (2016) may need to be improved upon to 
stand any reasonable chance of distinguishing models.  
 

 
 
Figure 7: Plots the percentage of experiments in which the sigmas of the Cumulative Gaussian 
functions fit to a simulated population of four MWF observers could be statistically 
distinguished from the experimentally derived prediction of choosing the cue with the 
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minimum sigma (MS). The dashed grey line represents the point at which there is a 50% 
chance of distinguishing the data from the predictions of MS. The vertical grey line shows the 
maximum recommended sigma ratio to use in cue integration experiments (Rohde et al., 
2016). 
 
Figures 8 shows plots the results in the same format as Figure 6, but this time for 
distinguishing our simulated MWF observers from the predictions of PCS. As would be 
expected from comparing Equations 6 and 24, the sigmas of the Cumulative Gaussian 
functions fit to our simulated MWF observers can be easily distinguished from the sigma value 
predicted by PCS. This is true cross all sigma ratios and data collection regimes. Even in 
simulated experiments with only four observers (Figure 9) the models can be well 
disambiguated with all, but the most minimal data collection regime. 
 

 
 
Figure 8: Shows the percentage of experiments in which the sigmas of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of PCS. Each pixel in the image shows 
this percentage as calculated across 100 simulated experiments, of a given sigma ratio and 
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number of participants. The four panes show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated 
trials per stimulus level on the psychometric function. 
 

 
 
Figure 9: Plots the percentage of experiments in which the sigmas of the Cumulative Gaussian 
functions fit to a simulated population of four MWF observers could be statistically 
distinguished from the experimentally derived prediction of PCS. The dashed grey line 
represents the point at which there is a 50% chance of distinguishing the data from the 
predictions of PCS. The vertical grey line shows the maximum recommended sigma ratio to 
use in cue integration experiments (Rohde et al., 2016). 
 
 

Group analysis: integrated cues percept 
 
Next we examine the extent to which MWF can be distinguished from MS and PCS based upon 
the predicted integrated cues percept when a discrepancy is experimentally introduced 
between cues (a ‘perturbation analysis’ (Young et al., 1993)). With zero cue conflict the only 
differences in 𝑆#" , 𝑆## and 𝑆#%  will be due to the simulated data collection and the effect this 
has on the fit of the psychometric function. Therefore, as expected, when this is the case the 
predictions of MWF are experimentally near indistinguishable from the predictions of both 
MS (Figure 10) and PCS (Figure 11). Of note is that there are “false positives” where 
statistically a population of MWF observers can be distinguished from the predictions of the 
alternative models, even though the underlying parameters are identical. This is the case for 
around 16% of simulated experiments for MS (for 10, 25, 40 and 55 repetitions per function, 
the percentages are 15.99%, 16.09%, 16.21%, and 15.83%) and around 14% of simulated 
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experiments for PCS (for 10, 25, 40 and 55 repetitions, the percentages are (13.62%, 13.69%, 
13.82%, and 13.57%). The small difference between the false positives for comparison with 
MS and PCS is due to the effect that the sigma of the simulated function has on the variability 
of the inferred mean of the function across participants (this differs between models, see 
Figure 4). More succinctly, whilst the mean and sigma of a Cumulative Gaussian functions are 
mathematically independent, our ability to infer these parameters by fitting psychometric 
functions to data is not.  
 

 
 
Figure 10: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of MS, when there is zero cue 
conflict. Each pixel in the image shows this percentage as calculated across 100 simulated 
experiments, of a given sigma ratio and number of participants. The four panes show this for 
(a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the psychometric function.  
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Figure 11: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of PCS, when there is zero cue 
conflict. Each pixel in the image shows this percentage as calculated across 100 simulated 
experiments, of a given sigma ratio and number of participants. The four panes show this for 
(a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the psychometric function. 
 
 
Figures 12 and 13 show the data for the 3mm and 6mm cue conflict simulations. As can be 
seen, the predictions of MWF and MS can now be distinguished, but as with distinguishing 
models on the basis of the sigma’s, the ability to distinguish between models is strongly 
affected by the relative reliability of the cues and the data collection regime. Consistent with 
expectations, the probability of distinguishing between models is greater with a larger cue 
conflict (compare Figure 13 to Figure 12). Due to PCS and MWF providing identical predictions 
regardless of the experimental cue conflict the only times a population of MWF observers are 
distinguishable from the predictions of PCS again represent false positives (Figures 14 and 
15). 
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Figure 12: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of MS with an experimental cue 
conflict of 3mm. Each pixel in the image shows this percentage as calculated across 100 
simulated experiments, of a given sigma ratio and number of participants. The four panes 
show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 
psychometric function. 
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Figure 13: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of  MWF observers could be statistically 
distinguished from the experimentally derived prediction of MS with an experimental cue 
conflict of 6mm. Each pixel in the image shows this percentage as calculated across 100 
simulated experiments, of a given sigma ratio and number of participants. The four panes 
show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 
psychometric function. 
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Figure 14: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of PCS with an experimental cue 
conflict of 3mm. Each pixel in the image shows this percentage as calculated across 100 
simulated experiments, of a given sigma ratio and number of participants. The four panes 
show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 
psychometric function. 
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Figure 15: Shows the percentage of experiments in which the mean of the Cumulative 
Gaussian functions fit to our simulated population of MWF observers could be statistically 
distinguished from the experimentally derived prediction of PCS with an experimental cue 
conflict of 6mm. Each pixel in the image shows this percentage as calculated across 100 
simulated experiments, of a given sigma ratio and number of participants. The four panes 
show this for (a) 10, (b) 25, (c) 40 and (d) 55, simulated trials per stimulus level on the 
psychometric function. 
 
In Figure 16 we show the ability to experimentally distinguish between MWF and MS based 
upon the predicted integrated cues percept for just the simulated experiments with four 
observers (Ernst & Banks, 2002; Hillis et al., 2004). When there is no cue conflict (Delta 0) 
there is a false positive rate of around 12% across all data collection regimes and sigma ratios. 
For both cue conflict values (Delta 3 and 6), the closer the reliability of cues is matched, and 
the more data collected, the better one is able to discriminate our population of MWF 
observers from MS. For a Delta of 3, the ability to distinguish models rapidly drops off within 
the range of sigma ratios acceptable for a cue integration experiment (Rohde et al., 2016). 
With a sigma ratio of 3 and above, performance is comparable to that of the false positive 
rate. By comparison, with a Delta of 6, within the range of sigma ratios acceptable for a cue 
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integration experiment the ability to discriminate between models is good, with performance 
dropping substantially for only the most minimal data collection regime.   
 

 
 
Figure 16: Plots the percentage of experiments in which the PSE’s of the Cumulative Gaussian 
functions fit to a simulated population of four MWF observers could be statistically 
distinguished from the experimentally derived prediction of MS. The dashed grey line 
represents the point at which there is a 50% chance of distinguishing the data from choosing 
the cue with the minimum variance. The vertical grey line shows the maximum recommended 
sigma ratio to use in cue integration experiments (Rohde et al., 2016). 
 
 
One of the most striking things about the analysis presented is just how rapid the drop-off in 
an experimenter’s ability to distinguish a population of “optimal” MWF observers from the 
predictions of the two alternative candidate models is, as the reliability of cues becomes 
unmatched. This is especially true when examining the “essential prediction” of increased 
integrated cues reliability, in comparison to simply choosing the more reliable cue. MWF 
observers are easily distinguished from the predictions of PCS in terms of the cue reliability, 
but impossible to distinguish based upon the integrated cues percept when cues are in 
conflict. MWF observers can be more easily distinguished from MS based upon the integrated 
cues percept, but only dramatically so for larger cue conflicts. Problematically, distinguishing 
models based upon the integrated cues percept alone is not sufficient to demonstrate that 
observers are behaving in accordance with MWF (Rohde et al., 2016).  
 

Simulation Set 2: Using variation across experimental observers to distinguish 
between models 
 
The simulations presented above were designed to show the effects of the number of 
observers in and experiment and the relative cue reliability on an experimenter’s ability to 
distinguish a population of optimal observers from two alternative models: choose the cue 
with the minimum sigma and probabilistic cue switching. As such, all simulated observers in 
an experiment had matched cue reliabilities. This focuses data collection in areas of the 
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parameter space where MWF, MS and PCS provide most divergent predictions regarding the 
key signature of MWF (increased sensory precision) (Takahashi, Diedrichsen, & Watt, 2009), 
but it is not representative of a typical cue integration experiment where there may be 
variation in cue reliabilities across observers (Hillis et al., 2004; Scarfe & Hibbard, 2011) and 
properties of the stimuli may naturally (Hillis et al., 2004) or artificially (Ernst & Banks, 2002; 
Helbig & Ernst, 2007) be used to modulate the relative reliability of cues across experimental 
conditions. Therefore, in a second set of simulations we examine the case where a where 
individual observers in an experiment have different relative cue reliabilities.  
 

Methods 
 
For these simulations we focused on comparing MWF and MS. The comparison with PCS is 
less interesting as its predictions as regards the integrated cues percept are by definition 
indistinguishable from MWF (Figures 14 and 15, and Equation 21), whereas PCS and MWF are 
easily distinguished upon the basis of integrated cues sensitivity (Figure 8, Equation 23). In 
contrast MWF and MS can be distinguished from one another upon both the integrated cues 
percept and its precision, with this ability clearly being modulated by experimental 
parameters such as the relative reliability of cues, the number of observers in an experiment 
and the data collection regime. As before, observers were simulated as having access from 
two cues (𝑆#" and 𝑆##) from which to make an integrated cues perceptual estimate (𝑆#%). These 
cues were in conflict with one another such that 𝑆" = 55 + ∆/2 and 𝑆# = 55 − ∆/2, where, 
in separate experiments, ∆ was either 3 or 6mm.  
 
For each observer in a given experiment, Cue A always had the same variability σ" = 4.86, 
which is approximately that of the haptic cue in Ernst and Banks (2002), whereas Cue B had a 
variability σ# = σ"𝑟 where for each observer 𝑟 was between 0.5 and 2 (i.e. Cue B twice as 
reliable as Cue A, through to  Cue B half as reliable as Cue A). These limits are consistent with 
recommendations for the maximum reliability ratio to use in experiments on cue integration 
(Rohde et al., 2016). To select values with equal probability between these limits, for each 
observer we generated a random number x! ∈ 	 [−1, 1], and set 𝑟 = 2)!. Thus, each observer 
had a different predicted integrated cues PSE and sigma. Separate simulations were run with 
4, 12 and 36 observers per simulated experiment, and for 10, 25, 40 and 55 trials per stimulus 
level. For each combination of (a) data collection regime, (b) number of observers per 
experiment, and (c) cue conflict (4 × 3 × 2), we simulated 1000 experiments i.e. 32000 
experiments with 416000 observers in total. 
 
As before, for each observer in each experiment we simulated performance in two single cues 
conditions. The parameters derived from the fitted single-cue functions were then fed into 
the equations for MWF and MS to give predictions for the two candidate models (both in 
terms of the sigma and PSE of the integrated cues estimator). Next, we simulated the 
performance of each observer behaving in accordance with both  MWF and MS. This allowed 
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us to compare the behaviour of a heterogenous population of observers behaving in 
accordance with either MWF or MS to the experimentally derived predictions for each model 
(MWF or MS). 
 
With a heterogenous population of observers the relationship between predicted and 
observed data are often compared using a linear regression analysis. For example, Burge, 
Girshick and Banks (2010) examined the perception of slant from disparity and haptic cues 
and reported an R2 of 0.60 for predicted versus observed integrated cues sensitivity. Knill and 
Saunders (2003) also examined the perception of slant, but from disparity and texture cues, 
and reported R2 values between around 0.15 and 0.46 for the predicted and observed cue 
weighting for different base slants. Svarverud et al. (2010) examined “texture-based” and 
“physical-based” cues to distance and reported R2 values of about 0.95 for predicted and 
observed cue weights. The median value of the an R2 value in these studies is 0.53; in all 
instances the authors concluded that observers were combining cues optimally in accordance 
with MWF.  
 
Following these studies, a regression analysis was adopted here. For each experiment the 
data from the population of observers behaving in accordance with either MWF or MS were 
plotted against the predictions of each of the two candidate models. The data were fit with 
first order polynomial by least squares and an R2 value for the fit of each model to the data 
calculated. Thus, there were four possible regression comparisons: (1) “MWF v MWF” – 
experimentally derived predictions of the MWF model, plotted against the data of a 
population of observers behaving in accordance with MWF; (2) “MS v MS” – experimentally 
derived predictions of the MS model, plotted against the behaviour of a population of 
observers behaving in accordance with MS; (3) “MWF v MS” – experimentally derived 
predictions of the MWF model, plotted against the data of a population of observers behaving 
in accordance with MS; and (4) “MS v MWF” – experimentally derived predictions of the MS 
model, plotted against the data of a population of observers behaving in accordance with 
MWF. 
 
In what follows we will refer to (1) and (2) as “consistent” predicted and observed data, as 
the simulated data and predictions are from the same model, conversely, we refer to (3) and 
(4) as “inconsistent” predicted and observed data, as the simulated data and predictions arise 
from different models. A set of example data from 36 observers behaving in accordance with 
MWF, with 55 samples per stimulus value and a delta of 3mm, can be seen in Figure 17 for 
the “MWF v MWF” and “MS v MWF” comparisons. This example represents the upper limit 
of observers in a typical cue combination experiment (Rohde et al., 2016) and the upper limit 
of trials per stimulus level for a psychometric function (Kingdom & Prins, 2016). The upper 
two plots in Figure 17 plot the PSE data from the MWF observers against the experimentally 
derived predictions of the two candidate models. The green and red dashed lines show the 
true underlying PSE for each cue. 
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When plotting the observed data from a population of MWF observers against the 
experimentally derived predictions of the MWF model (Figure 17a) the data fall between the 
dashed lines representing the PSE of each cue clustered along the grey unity line. When the 
data from the MWF observers are plotted against the predictions of the MS model (Figure 
17b) the datapoints deviate from the unity line and are clustered around the vertical dashed 
lines representing the PSE of each cue. The data are clustered around these lines, rather than 
falling directly upon them as the experimenter has no direct access to the internal parameters 
of the observer, only estimates of these. Asymptotically, with an infinite amount of data per 
function, all data in Figure 17a would fall between the dashed vertical lines on the unity line, 
and all data in Figure 17b directly on the dashed vertical lines. 
 
The lower two plots in Figure 17 plot the observed sigma data from the MWF observers 
against the experimentally derived predictions of the two candidate models. Here, the dashed 
red line shows the fixed sigma of Cue A and the green dashed line the minimum possible 
sigma for Cue B. Thus, if there were no sampling noise, (1) all data points in Figure 17c and 
Figure 17d would fall to the left of the dashed red line, and (2) in Figure 17d all data would 
fall to the right of the green dashed line. What is most striking from this example is that the 
observed R2 values for both PSE’s and sigmas are directly comparable to those found in the 
literature, regardless of whether the data from a population of MWF observers fit fitted with 
a regression against the predictions of either MWF or MS.  
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Figure 17: Linear regression example where the data (blue points) from 36 observers behaving 
in accordance with MWF (with 55 samples per stimulus value and a delta of 3mm) are plotted 
against the predictions of the two candidate models (MWF (a and c) and MS (b and d)) for 
both PSE (a and b) and Sigma (c and d). The least squares first order polynomial is shown as 
the solid blue line, the dashed blue lines and shaded region in each graph show the 95% 
confidence bounds around the fit. In (a) and (b) the dashed red line shows the true underlying 
PSE for Cue A, and the green dashed line shows the true underlying PSE for Cue B. In (c) and 
(d) the red dashed line shows the (fixed) sigma for Cue A, and the dashed green line the 
minimum possible sigma for Cue B (which varied across simulated observers). 
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Figure 18 shows histograms of the observed R2 values for the same example, but across all 
1000 simulated experiments. The raw histograms are shown overlaid with smooth kernel 
distributions, given by 
 

𝐹Y*(𝑥) =
1
𝑛ℎ\ 𝒦H

𝑥 − 𝑥!
ℎ I

+

!,(
 

(25) 
 
Here	𝒦 is a Gaussian kernel function, x! ∈ 	 [0, 1] (i.e. the domain of the R2 value is 0 to 1), 
and 𝐹Y* is the estimate of the unknown probability density function 𝐹). 
 
The key parameter of interest is the extent to which these distributions overlap, as this 
determines the extent to which an the R2 value from fitting predicted to observer data can be 
used to distinguish between candidate models of cue integration. The overlap of two smooth 
kernel distributions 𝐹Y* and 𝐹Y- can be estimated via numerical integration (Pastore & Calcagni, 
2019) 
 

�̂�(𝑋, 𝑌) = b 𝑚𝑖𝑛 H𝐹Y*(𝑧), 𝐹Y-(𝑧)I 𝑑𝑧
.

(
 

(26) 
 
Numerically the overlap value lays between 0 (no overlap) and 1 (full overlap). This is shown 
inset into each graph in Figure 18. As can be seen there is substantial overlap in the 
distribution of R2 values, especially so for the predicted and observed PSEs. Any overlap in the 
distributions is clearly problematic for using R2 values to conclude that observers are behaving 
in accordance with MWF.  
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Figure 18: Shows the full distribution for the R2 value across all 1000 simulated experiments 
for the example shown in Figure 17 (36 observers per simulated experiment, each behaving in 
accordance with MWF, 55 samples per stimulus value and a delta of 3mm). (a) shows data for 
the PSE and (b) data for sigma. Data are show as bar histograms and as smoothed histograms 
(smoothed Gaussian kernel distribution; Equation 25). Blue data show the case where the data 
from the simulated MWF observers is plotted against the predictions of MWF, red data show 
the case where the data from the simulated MWF observers is plotted against the predictions 
of MS. The median for each data set is shown in the graphs. The inset graph shows the overlap 
of the smoothed histograms (Equation 26). Note that the axes of the inset graphs is smaller 
to ensure clarity of the overlapping region.  
 
 
Data across all comparisons for both PSE and sigma are shown in Figures 19, 20 and 21, for 
the 4, 12, and 36 participants per experiment conditions respectively. As one would expect, 
with more data collected per function and more observers per experiment the R2 values 
improve, with a maximal median of ~0.7-0.8. Problematically, this pattern is present 
regardless of whether one is plotting consistent predicted and observed data (MWF v MWF 
and MS v MS), or inconsistent predicted and observed data (MWF v MS and MS v MWF). 
Across all plots there is the large overlap in the distributions of R2 values when plotting 
“consistent” and “inconsistent” predicted and observed data. With fewer observers per 
experiment (4 and 12 versus 36) the overlap increases greatly, to the extent that with four 
observers per experiment the data have near complete overlap.  
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Figure 19: Box and whisker plots showing the distribution of R2 values for all conditions and 
comparisons in which there were 36 simulated observers per experiment. The central box line 
shows the median (also shown as a line connecting the boxes), the limits of the boxes show 
the 25% and 75% quantiles and the limits of the bars (whiskers) show the maximum and 
minimum values. Also shown are all 1000 datapoints per condition (dots). For increased clarity 
the dots have been randomly jittered laterally.  
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Figure 20: Box and whisker plots showing the distribution of R2 values for all conditions and 
comparisons in which there were 12 simulated observers per experiment. The central box line 
shows the median (also shown as a line connecting the boxes), the limits of the boxes show 
the 25% and 75% quantiles and the limits of the bars (whiskers) show the maximum and 
minimum values. Also shown are all 1000 datapoints per condition (dots). For increased clarity 
the dots have been randomly jittered laterally.   
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Figure 21: Box and whisker plots showing the distribution of R2 values for all conditions and 
comparisons in which there were 4 simulated observers per experiment. The central box line 
shows the median (also shown as a line connecting the boxes), the limits of the boxes show 
the 25% and 75% quantiles and the limits of the bars (whiskers) show the maximum and 
minimum values. Also shown are all 1000 datapoints per condition (dots). For increased clarity 
the dots have been randomly jittered laterally. 
 
 
Figure 22 shows the overlap (Equation 26) for the distributions where a population of 
observers behaving in accordance with MWF were compared to the experimentally derived 
predictions of MWF and MS. Whereas, in Figure 23 shows the overlap for the distributions 
were a population of observers behaving in accordance with MS were compared to the 
experimentally derived predictions of MWF and MS. Consistent with Figures 19, 20 and 21, 
the distribution overlap decreases with increasing amounts of data collected per function. As 
expected, for the PSE distributions, the distribution overlap is less with a ∆ of 6mm versus 
3mm, and the delta magnitude has no effect on the overlap of the sigma distributions. As is 
clear, distribution overlap is greater than 50% (overlap fraction of 0.5) for virtually all 
conditions. A large overlap means that it is not possible to determine whether a given R2 value 
arises from plotting and analysing “consistent” and “inconsistent” predicted and observed 
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data. This strongly questions one’s ability to use R2 values to assess the extent to which a set 
of data is consistent with the predictions of MWF. 
 

 
 
Figure 22: Overlap of the smooth kernel distributions of R2 value values produced from fitting 
a first order polynomial to observed data from a set of MWF observers against the 
experimentally derived predictions of MWF and MS. An overlap value of 1 (upper solid grey 
line) means that the distributions completely overlap and are fully confusable (100% overlap) 
and overlap of 0 (lower solid grey line) means that the distributions do not overlap at all and 
are thus not confusable (0% overlap). The dashed grey line shows the case where the 
distributions overlap by 50%. Panels (a) through (c) show data for PSE’s, and (d) through (f) 
data for sigmas. Columns are number of observers per simulated experiment.  
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Figure 23: Overlap of the smooth kernel distributions of R2 value values produced from fitting 
a first order polynomial to observed data from a set of MS observers against the 
experimentally derived predictions of MWF and MS. An overlap value of 1 (upper solid grey 
line) means that the distributions completely overlap and are fully confusable (100% overlap) 
and overlap of 0 (lower solid grey line) means that the distributions do not overlap at all and 
are thus not confusable (0% overlap). The dashed grey line shows the case where the 
distributions overlap by 50%. Panels (a) through (c) show data for PSE’s, and (d) through (f) 
data for sigmas. Columns are number of observers per simulated experiment. 
 
 
Interestingly we also observed that for a low number of observers per experiment (especially 
coupled with low samples per stimulus level), in addition to the 𝑅$distributions having near 
complete overlap, there was a distinct peak around an 𝑅$ ≈ 0. This is because with such an 
impoverished data collect regime the simulated data could show both a positive or negative 
relationship between the predicted and observed PSE or sigma. Thus, functions with an 𝑅$ ≈
0 all fell into the minimum histogram bin but could be due to either a shallow positive or 
negative relationship between the predicted and observed data (i.e. slope is a signed variable, 
whereas, 𝑅$ is unsigned). Together with the previous simulations this highlights the fact that 
a low number of observers per experiment (Ernst & Banks, 2002; Hillis et al., 2004), coupled 
with a small number of samples per point on a psychometric function (Rohde et al., 2016), is 
insufficient to test models of sensory cue integration. 
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A further problem with this type of analysis is that the 𝑅$ value does not measure the 
deviation of the data from predictions of a model (dark grey diagonal lines in Figure 17), 
rather, the 𝑅$ gives a measure of the fit relative to the fitted polynomial. As such, one can 
obtain an 𝑅$ = 1 when the predicted and observed data have highly discrepant values (Figure 
24a) as well as the opposite predicted relationship (Figure 24b). Clearly an experimenter 
would not conclude that the data in Figure 24b support the MWF model, however, it is not 
clear what would be conclude in the case of Figure 24a. The magnitude of the offsets (black 
arrows) can take any value and still give an 𝑅$ = 1. Thus, a regression analysis negates one 
of the key benefits of MWF (and other models), which is the ability to, in advance, predict 
absolute value of the integrated cues percept and its reliability and compare this to that 
observed experimentally (Lipton, 2005).  
 

 
 

Figure 24: Shows some hypothetical cue integration data for predicted and observed PSE’s in 
the same format to Figure 17a and b. The blue data points show example data where there is 
an absolute one-to-one relationship between predicted and observed PSE’s. The blue line 
shows the best fit (least squares) first order polynomial, which aligns with the absolute one-
to-one relationship shown by the dark grey line. The red data points are offset relative to the 
blue data points in (a) this offset is 𝑦 = 𝑥 + 1, in (b) this offset is 𝑦 = 82.15 − 	0.5 ∗ 𝑥. The 
red line shows the best fit (least squares)  first order polynomial. In all cases 𝑅$ = 1. 
 

Discussion 
 
Seeing perception as a process of probabilistic Bayesian inference offers a powerful and 
elegant way in which to make principled predictions about how observers should make 
perceptual decisions (Adams & Mamassian, 2004; Kersten et al., 2004; Knill & Pouget, 2004; 
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Knill & Richards, 1996; Mamassian et al., 2002). This is part of what is called an Ideal Observer 
Analysis, whereby a normative mathematical model can be used to define the “optimal” way 
in which to make discissions based upon noisy and ambiguous sensory information and these 
predictions can then be compared to human performance (Geisler, 2011). The MWF model 
of cue integration is one such normative model (Landy et al., 2011; Landy et al., 1995; 
Maloney & Landy, 1989) and a large body of research purports to show that human observers 
integrate sensory cues in accordance with MWF, both within and between the senses (Ernst 
& Banks, 2002; Helbig & Ernst, 2007; Hillis et al., 2004; Scarfe & Hibbard, 2011; Svarverud et 
al., 2010). As such, sensory cue integration has been described as the “… poster child for 
Bayesian inference in the nervous system” (Beierholm et al., 2009, p. 1).  
 
In any area of science it is the job of a scientist to design experiments which are able to best 
distinguish between alternative models of the underlying phenomena. Unfortunately, in the 
area of cue integration, this is rarely done. Despite there being a wide range of competing 
models for how human observers might integrate information from sensory cues (Beierholm 
et al., 2009; Jones, 2016; K. P. Kording et al., 2007; Mamassian et al., 2002; Trommershauser 
et al., 2011), in many instances the results of an experiment are simply visually inspected 
relative to the predictions of the experimenters preferred model. Indeed, a recent tutorial 
detailing how to test for optimal cue integration has proposed a visual taxonomy by which 
one can judge the fit of a set of data to MWF by visual inspection of the data, associated error 
bars and model predictions (Rohde et al., 2016). This taxonomy has started to be used 
researchers to assess the adherence to MWF (Negen et al., 2018).  
 
This approach is problematic as leading researchers have fundamental misconceptions about 
how error bars relate to statistical significance and the way in which they can be used to 
support statistical inferences from data (Belia et al., 2005; Cumming et al., 2007). This includes 
the fields of psychology and behavioural neuroscience where models of sensory cue 
integration are tested. A visual taxonomy is even more problematic because candidate 
models often make highly correlated predictions to one another (Arnold et al., 2019 and 
Figures 4 and 5; Jones, 2016). Therefore, “eyeballing” data relative to an experimenters’ 
preferred model is not a sufficient method to (a) determine the fit of the preferred model to 
the data, or (b) distinguish between competing models, and will likely result in inferential 
errors about computational phenomena that have resulted in the measured behaviour.  
 
In the present paper we first sought to draw attention to the many, often unacknowledged, 
assumptions an experimenter makes when fitting and modelling data from a cue integration 
experiment and second, introduce a principled objective method by which to determine the 
probability with which alternative models of the data can be distinguished in a given 
experiment. The second aim was accomplished by simulating end-to-end experiments and 
examining the probability with which a population of observers behaving in accordance with 
MWF (or MS) could be experimentally distinguished from the predictions of a set of 
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alternative models. We showed that the low number of observers in typical cue integration 
experiments, coupled with unmatched cue reliabilities, results in a widespread inability to 
test the adherence of a set of data to the predictions of MWF.  
 
As one would expect, there was a clear link between (1) the correlated predictions of different 
models for a given metric, and (2) an experimenter’s ability to distinguish between these 
models based on this metric. PCS is a clear example of this; it can be easily distinguished from 
MWF in terms of the sigma of the integrated cues estimator but is impossible to distinguish 
on the basis of the integrated cues percept. The problem inherent in distinguish between 
models for sensory integration was present even under conditions where all observers in an 
experiment have matched cue reliabilities (where MWF predicted the greatest gain in sensory 
precision) (Takahashi et al., 2009). At all decision points the simulations were designed to be 
(1) consistent with published guidelines stating how to test models of cue integration (Rohde 
et al., 2016), (2) consistent with the existing literature (Ernst & Banks, 2002), and (3) 
consistent with best practice as regards experimental methods (Frund et al., 2011; Kingdom 
& Prins, 2016; Prins, 2012, 2013; Rohde et al., 2016; Wichmann & Hill, 2001a, 2001b).  
 
In addition to this, many of the nuisance parameters which would impede an experimenter’s 
ability to distinguish between models were not simulated. For example, for our simulated 
observers there was (1) statistical independence between trials, with no learning or boredom 
effects (Frund et al., 2011), (2) a known generative function underlying behaviour (Kingdom 
& Prins, 2016; Murray & Morgenstern, 2010), (3) no perceptual bias (Scarfe & Hibbard, 2011), 
(4) stimulus values for the psychometric function were centred on the true mean of the 
psychometric function, (5) simulated observers exhibited no lapses (Prins, 2012; Wichmann 
& Hill, 2001a, 2001b), (6) the simulated data were not contaminated by the effect of 
decisional (or other sources of) noise (Hillis et al., 2004), (7) cues were statistically 
independent from one another (Oruc et al., 2003) and (8) there were no conflicting sources 
of sensory information (Watt et al., 2005). As these assumptions are known to be violated in 
many, if not all, experimental settings, the simulations presented are highly likely to 
overestimate one’s ability to distinguish between models.  
 

Can single cues truly be isolated? 
 
A grounding assumption of the cue integration literature (and the presented simulations) is 
that there exist separable sources of sensory information which provide independent 
perceptual estimates about properties of the world (Ernst & Bulthoff, 2004). In practice, it 
rapidly becomes apparent just how difficult it is to experimentally isolate sensory cues and to 
eliminate alternate cues which are not of interest. This is true even with artificial stimuli for 
which the experimenter has control over all aspects of the stimulus. For example, random dot 
stereograms (Julesz, 1971) which are used to measure thresholds for the disparity cue 
normally contain a potentially useful texture cue (changes in dot density) and a conflicting 
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texture cue (fixed aspect ratio of the dots defining the surface). In an elegant exposition, 
Zabulis and Backus (2004) show the great lengths that one needs to go to in order to create 
a “texture” which can be used in random dot stereogram which contains no other cues to 
depth. 
 
Watt et al. (2005) clearly showed how focus cues in computer generated stimuli, which have 
been typically assumed to be weak and of little utility, can in fact influence perceived depth 
and surface orientation. This feeds into the ongoing debate as to what “cues” observers use 
in an experimental setting to perform the tasks that experimenter asks of them, and whether 
these cues are the ones identified by the experimenter (Saunders & Chen, 2015; Todd, 2015; 
Todd et al., 2010). Ho, Landy and Maloney (2006), in a roughness constancy task, nicely 
showed how “pseudocues” (cues which were valid indicators to roughness under a single 
lighting condition, but not invariant under changes in lighting condition) could influence 
observers’ perceptions of surface roughness. These examples all represent instances where 
“nuisance cues” contaminate measurements related to the cues of interest to the 
experimenter, but there are also instances where pre-existing identified cues will also 
contaminate measurements made by an experimenter.  
 
In a fMRI imaging study Murphy, Ban and Welchman (2013) measured slant thresholds for 
texture and disparity cues. When measuring a “single-cue” texture threshold, they avoided 
monocular presentation, which is normally used to isolate the texture cue, as it “… is known 
to significantly affect both univariate and multivariate fMRI responses” (p. 192), so during 
measurements of a texture threshold disparity always signalled zero slant. Similarly, when 
measuring a “single-cue” disparity threshold, slant from disparity was varied but texture 
always signalled zero slant. A similar approach was taken by Svarverud et al. (2010) in a virtual 
reality study investigating “texture-based” and “physical-based” cues to distance. In each 
instance, “single-cue”  functions were measured in the presence of the “other” class of cue 
which was held constant. In both of these cases measurements of single cue sensitivities will 
have been contaminated by the presence of a conflicting cue that was held constant. Under 
these circumstances it demonstratively false that the conflicting cue is weak and can thus be 
ignored. 
 

Controlling for the effects of conflicting cues when measuring “single cue” sensitivities 
 
Here, we briefly examine the consequences of inferring single cue sensitivities in the presence 
of a conflicting sensory cue and how this can be mathematically controlled for. Let’s assume 
that an experimenter is using a two-interval forced choice experiment to measure the 
sensitivity of a cue 𝑆" for judgements of size. On each trial, in one interval the experiment 
presents a “standard” stimulus and in the other interval a “comparison” stimulus, the 
difference between these being ∆𝑆". The observer has to signal in which interval the “larger” 
stimulus was presented. Next, let’s assume that this is done in present of a conflicting 
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“nuisance” cue, ∆𝑆/, which is constant and signals that the stimulus is unchanged across 
intervals. This means that the “single cue” stimulus is in fact an integrated cues stimulus and 
following Equation (2) can be described as 
 

∆𝑆0 = 𝑤"∆𝑆" +𝑤/∆𝑆/ 
(25) 

 
For each stimulus value ∆𝑆0(𝑖) the experimenter measures 𝑝:"𝑙𝑎𝑟𝑔𝑒𝑟"B∆𝑆0(𝑖); and with the 
assumption that the “standard” and “comparison” stimuli can be represented by Gaussian 
probability density functions, maps out a psychometric function by (incorrectly) plotting 
𝑝:"𝑙𝑎𝑟𝑔𝑒𝑟"B∆𝑆0(𝑖); against ∆𝑆"(𝑖) and fits a Cumulative Gaussian to the data. Clearly, the 
experimenter will incorrectly estimate 𝜎" from this fitted function. More specifically, they will 
overestimate 𝜎" because each stimulus that they present is in fact an attenuated version of 
that which they intended (i.e. ∆𝑆0(𝑖) < ∆𝑆"(𝑖)). The extent to which the experimenter 
misestimates 𝜎" will be a function of 𝑤/ (the weight given to the nuisance cue 𝑆/, which is 
signally no change across intervals). As  𝜎/ → ∞, the weight given to the nuisance cue will 
approach zero, 𝑤/ → 0, and 𝜎" will be estimated accurately. However, for any non-infinite 
value of 𝜎/, the experimenter will misestimate 𝜎".  
 
In effect, what one needs to do is “warp” the x-axis of the measured psychometric function 
such that one is plotting 𝑝("𝑙𝑎𝑟𝑔𝑒𝑟") against ∆𝑆0(𝑖) instead of ∆𝑆"(𝑖) (Figure 24). To 
determine this “warping”, we can ask, what scale factor, 𝑘, would we would need to apply to 
∆𝑆" such that in all cases ∆𝑆0 = ∆𝑆".  
 
Recognising that 𝑤/ = 1 − 𝑤", we can write this as 
 

∆𝑆" = ∆𝑆0 = 𝑤"(∆𝑆" ∗ 𝑘) + (1 − 𝑤")∆𝑆/ 
(26) 

 
Solving for 𝑘, we get  
 

𝑘 =
∆𝑆" − ∆𝑆/
∆𝑆" ∗ 𝑤"

 

(27) 
 
Given that ∆𝑆/ = 0 this simplifies to 
 

𝑘 =
1
𝑤"

 

(28) 
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Intuitively we can see that this makes sense, as when 𝑤" = 1, no scaling is required to combat 
the attenuation caused by ∆𝑆/, because it receives zero weight, however, as soon as 𝑤" < 1, 
scaling is needed (i.e. 𝑘 > 1). Next, we can ask, given the true value of 𝜎", what would be our 
estimate, 𝜎r", of this be in the presence of the conflicting nuisance cue. To do this we recognise 
that for a probability density function of a random variable 𝑋 distributed according to 𝐹*(𝑥), 
the probability density function of a variable 𝑌 = 𝑔(𝑋) is also a random variable. If 𝑔 is 
differentiable and 𝑔:	ℝ → ℝ is a monotonic function, we can then use a change of variables 
to transform between probability density functions. 
 

𝐹-(𝑦) = 𝐹*(𝑥) u
𝑑𝑥
𝑑𝑦u 

(29) 
 
Here, (𝑥) = 𝑔1((𝑦) and the support of 𝑌 is 𝑔(𝑥) with the support of 𝑋 being 𝑥 (Blitzstein & 
Hwang, 2015). For our example, the Gaussian probability density function representing our 
cue 𝑆", can be written as 
 

𝐹*(𝑥) =
1

𝜎"√2𝜋
𝑒
1(31))

"

$5#
"  

(30) 
 
This function has a mean of 𝜇 and standard deviation of 𝜎". From Equation 28, using the 
transform 𝑥 ∗ 𝑘, a change of variables gives  
 

𝐹-(𝑦) =
𝑤"

𝜎"√2𝜋
𝑒
1(316#∗))

"

$5#
"  

(31) 
 
This represents our experimentally inferred probability density function for cue 𝑆". The 
standard deviation of 𝐹-(𝑦) is given by 
 

𝜎"8 =
𝜎"
𝑤"

 

(32) 
 
Therefore, if the weight given to a nuisance cue is greater than zero, 𝑤" will be less than 1 
and we will therefore overestimate the true value of 𝜎". In Figure 24 we show a visual example 
of the process described above.  
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Figure 24: An experimenter presents a range of stimuli ∆𝑆" (∆	𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠) and for each of these 
measures the probability of a “larger” response (“Measured Data”, shown as blue points). This 
is done in the presence of a conflicting cue, 𝑆/, which signals no change across intervals. For 
this visual example, 𝜎" = 1 and 𝜎/ = 0.5, therefore 𝑤" = 0.2 and 𝑤/ = 0.8 (Equations 3 and 
4). The experimentally measured points are consistent with a measured psychometric function 
(blue Cumulative Gaussian function (given by Equation 31)). This function has a standard 
deviation 𝜎r" =

5#
6#

= 5. In reality, each stimulus ∆𝑆"(𝑖) is in fact cue conflict stimuli ∆𝑆%(𝑖) 

(given by Equation 25), thus the data should be shifted along the x-axis toward ∆	𝑆𝑡𝑖𝑚𝑢𝑙𝑢𝑠 =
0 (black by arrows) to accurately plot the function. These shifted points (“Transformed Data”, 
shown as red points, Equation 26) are consistent with the true underlying psychometric 
function for the cue 𝑆" (red Cumulative Gaussian function (given by Equation 30)). This 
function is steeper than the (measured) blue function because for a measured p(larger), the ∆ 
Stimulus was in fact smaller than the experimenter had planned (due to the cue conflict).  
 
 
Given the derivations above, we can work out the consequences this has for measuring the 
relative reliability of cues, which is the key variable needed for testing MWF. Let’s say we have 
two cues 𝑆" and 𝑆# with standard deviations of 𝜎" and 𝜎# signalling a property of interest, 𝑆. 
We measure “single cue” sensitivity functions for each cue whilst holding the other cue 
constant (Murphy et al., 2013; Svarverud et al., 2010). Recognising that 1/𝜎"$ + 1/𝜎#$ is a 
constant, 𝑐, we can rewrite Equations (3) and (4) as  
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𝑤" =
1

𝑐 ∗ 𝜎"$
 

(33) 
 
and 
 

𝑤# =
1

𝑐 ∗ 𝜎#$
 

(34) 
 
Given Equation 32, we can write  
 

𝜎r" = 𝑐 ∗ 𝜎"9 
(35) 

 
and 
 

𝜎r# = 𝑐 ∗ 𝜎#9 
(36) 

 
These represent our experimental estimates of the true underlying standard deviations. They 
are each larger than the true underlying values as they have been measured in the presence 
of a cue signally no change (Figure 24). The ratio of these estimates is given by 
 

𝜎r"
𝜎r#

=
𝜎"9

𝜎#9
 

(37) 
 
The ratio of the true underlying sigma’s, which is the property we wish to estimate, is given 
by 
 

𝜎"
𝜎#

= 2
𝜎r"
𝜎r#

$
 

(38) 
 
Therefore, if we infer from our experiment that  𝜎"/𝜎# = 1/27  the true sigma ratio is in fact 
1/3. That is, we experimentally misestimate 𝜎"/𝜎# by a factor of ∼ 9. Studies which have 
measured the reliability of cues in the presence of a secondarily constant conflicting cue, (e.g. 
Murphy et al. (2013) and Svarverud et al. (2010)), are therefore likely to have significantly 
overestimated the true cue relative reliabilities. As such, the data in these studies cannot be 
used to accurately test MWF, without some form of correction (Equation 38). This analysis 
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shows the critical importance of being able to (1) isolate singles cues satisfactorily, or if one 
is not able to, (2) correct for their influence on one another when inferring relative cue 
reliabilities.  
 

Conclusion 
 
The simplicity of the MWF equations for cue integration is deceptive, as a model’s simplicity 
is generally directly correlated with the number of assumptions it makes about the underlying 
phenomena. With more assumptions and a simpler model, there is a greater chance that the 
assumptions of the model will not be met, and this will impact an experimenter’s ability to 
accurately test the predictions of the model. For example, even the comparatively “simple” 
task of fitting a Cumulative Gaussian function to experimental data, that is one of the initial 
steps of a cue integration experiment, has many inbuilt assumptions which are rarely 
acknowledged or considered (Kingdom & Prins, 2016). Certainly, for the author (who has 
conducted cue integration experiments (Scarfe & Hibbard, 2011, 2013)) this was an 
illuminating experience.  
 
Even if one can be satisfied that the assumptions of MWF hold in a given experimental 
situation, problematically, MWF provides correlated predictions with many other cue 
integration models (Arnold et al., 2019; Beierholm et al., 2009; Jones, 2016). Here we 
considered two such models; choose the cue with minimum sigma and probabilistic cue 
switching. It was shown that even when adopting published criteria describing how to best 
test the predictions of MWF (Rohde et al., 2016), it was very difficult to experimentally 
disambiguate between MWF and these alternative models. The analysis presented is only 
scratching the surface, as there are many other ways in which sensory cues could be 
integrated (Jones, 2016), some of which may be even more difficult to disambiguate from 
MWF.  
 
Unfortunately, some of the most widely cited studies supporting MWF fail to consider 
alternative models satisfactorily, sample areas of the parameter space which poorly 
distinguish between competing models, and provide no statistical analysis related to the fit 
of the MWF to the data, or the relative fit of other models to the data. This questions the 
ability of these studies to conclude that sensory cues are integrated in an optimal fashion in 
accordance with MWF. Whilst one could interpret the results presented here in a pessimistic 
fashion, the opposite is true. The results presented show clear, simple and computationally 
attainable ways in which experimenters can correctly measure the variables needed to test 
models of cue integration and determine the probability with which a given experiment can 
distinguish between alternative models of the underlying phenomena. 
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Appendix A: Recording data from Ernst and Banks (2002) 
 
Single cues sensitivities used for the simulations reported were estimated from Figure 3d of 
Ernst and Banks (2002). In order to gain estimates of the single cue sensitivities we viewed 
Figure 3d (as a pdf file) on a 4K computer monitor, so that the graph filled the majority of the 
screen. We then took the pixel coordinates of (1) the data points, (2) the minimum and 
maximum error bar position for each data-point and (3) the minimum and maximum values 
on the x- and y-axes. We were then able to compute the relative position of each data point 
(and error bar) in pixel coordinates on the x- and y-axis and covert these to the units shown 
in the graph by using the measured correspondence between pixel coordinates and axis units. 
Visual comparison of Figure 3 of the present paper and Figure 3d of Ernst and Banks shows 
that close correspondence achieved.  
 
There was some inconsistently in Ernst and Banks (2002) as to how a “threshold” or 
“discrimination threshold” was defined. On page 430 the authors state, “The discrimination 
threshold is defined as the difference between the  point  of  subjective  equality  (PSE)  and  
the  height  of  the comparison  stimulus  when  it  is  judged  taller  than  the  standard stimulus 
84% of the time”. However, on page 431 the authors state “… 𝑇: and 𝑇;  are the haptic and 
visual thresholds (84% points in Fig. 3a)”. It is the first definition which is consistent with the 
mathematics i.e. the difference between the PSE and 84% point of the function being equal 
to the sigma of the fitted Cumulative Gaussian function.  
 
Therefore, we cross checked our thresholds estimated from Figure 3d, with the thresholds 
calculated from the integrated cues functions in Figure 3b. Thresholds from Figure 3b were 
taken to be the difference between the point  of  subjective  equality  (PSE)  and  the 84% 
point on the function. When compared to the thresholds estimated from Figure 3d the 
difference in estimates was very small (average across data points of 0.23). We were 
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therefore happy that definition of threshold was that of page 430 and that we had accurately 
estimated the thresholds and understood their relationship to the properties of the 
psychometric functions reported in the paper. Note: that for the purposes of the present 
paper all that was needed is an approximation of the exact values.   
 

Appendix B: Example functions and goodness of fit 
 
Figure A1a shows the true underlying functions for the minimum, maximum and base 
(middle) sigma values used in the current study as well as the stimulus levels at which the 
functions were sampled. As can be seen, consistent with Ernst and Banks (2002) Figure 3a, all 
functions straddle high and low performance levels needed for well fit functions (Wichmann 
& Hill, 2001a, 2001b). Figures A1b-e show examples of how these functions were sampled 
with our four sampling regimes (10, 25, 40 and 55 trials per stimulus level), with the maximum 
likelihood best fit functions and goodness of fit (see below) values shown in the legend. We 
have only shown these for just the ∆	= 0 case, as for all delta values used the sampling range 
was shifted so as to be centred on the true mean of the underlying function. As is clear, for 
all sampling regimes the data are well fit by the Cumulative Gaussian functions.  
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Figure A1: (a) shows the underlying “true” psychometric functions for the minimum, maximum 
and base (middle) sigma values used in the paper. The dashed vertical grey lines show the nine 
stimulus values at which these functions were sampled. (b) through (e) show examples of how 
the functions were sampled through simulation and fit with psychometric functions for the 
four data collection regimes used throughout the paper (10, 25, 40, and 55 repetitions per 
stimulus level). Inset in each graph is the goodness of fit value, pDev. This represents the 
probability with which the experimental data produced a higher likelihood ratio than that of 
the stimulated experiments based upon the target model. If this is greater than 0.05, the 
function is considered to fit the data well. See accompanying text for details. 
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Within the cue integration literature, the goodness of fit of a function and the criteria upon 
which a fit is considered unacceptable is rarely if ever stated (for example Ernst & Banks, 
2002; Helbig & Ernst, 2007; Hillis et al., 2002). Thus, it is impossible to tell if a goodness of fit 
test was performed, and if one was, which test which was used, and the criteria adopted for 
rejecting a fitted function. Given that the fit of data to the MWF model is normally assessed 
by eye, it is likely that this is also the case for the fit of individual psychometric functions 
(Kingdom & Prins, 2016). The Palamedes toolbox (Prins & Kingdom, 2009) used in the present 
study implements a bootstrapped likelihood ratio test to assess the goodness of fit of a 
psychometric function. The logic of the test is as follows (Kingdom & Prins, 2016).  
 
As detailed in the main text, when fitting a psychometric function to some data the 
experimenter assumes: (1) the observer does not improve or degrade at the task they are 
performing over time, (2) each perceptual judgement an observer makes is statistically 
independent of all others, and (3) performance of the observer can be well characterised by 
the psychometric function that the experimenter is choosing to fit to the data. These 
assumptions combined can be referred to as the “target model”. The validity of the target 
model can be assessed by comparing it to a “saturated model” which only assumes (1) and 
(2). Thus, in the saturated model, the probability of response for one stimulus level is 
completely independent on the probability of response for any other stimulus level i.e. no 
psychometric function is assumed.  
 
The target model is “nested” under the saturated model, as it is a single specific case of the 
saturated model. Thus, the likelihood associated with the fit of the target model can never 
produce a better fit than that of the less restrictive saturated model. For a given set of data 
one can calculate the likelihood ratio (likelihood of the target model / likelihood of the 
saturated model) which will, by definition, be less than or equal to 1. It will only be equal to 
one if the target and saturated models provide as good a fit as one another. The likelihood 
ratio test simulates a set of experiments through a bootstrap procedure and for each 
calculates the likelihood ratio. The probability with which the experimental data produces a 
higher likelihood ratio than that of the stimulated experiments is calculated (pDev in Figure 
A1). If this probability is less than 0.05% the goodness of fit is deemed poor. As with any p-
value, the 0.05% cut-off is a completely arbitrary convention (Kingdom & Prins, 2016). Thus, 
some experimenters may adopt this and others not. This mirrors the open discussion about 
the use of p-values for general statistical analysis.  
 
For the present study, it was computationally unfeasible to run a bootstrapped likelihood 
ratio test for each of the ~15.3 million simulated functions (even when using MATLAB’s 
Parallel processing toolbox to spread the computational load over the 8-Core Intel Core i9 
available to the author this would have taken ~1-2 months of constant processing). 
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Nevertheless, we wanted to assess the extent to which the maximum likelihood fit functions 
would in general be considered well fit. Therefore, for the maximum and minimum cue sigma 
value used in the paper (i.e. shallowest and steepest psychometric functions), we simulated 
data for 1000 observers, fit Cumulative Gaussian psychometric functions to the data (as 
described in the main text) and assessed the goodness of fit using the bootstrapped likelihood 
ratio test (1000 bootstraps). We did this for our four sampling regimes: 10, 25, 40 and 55 trials 
per stimulus level.  
 
Based upon the 0.05% criteria for a cut-off between well and poorly fit function (pDev in 
Figure A1), virtually all functions would have been classed as well fit, regardless of data 
collection regime of the slope of the underlying function (Table A1; overall average 94.95%). 
As would be expected, this was true for all Delta levels. This is because the sampling range 
was always centred on the true mean of the function, so the values for Delta 0, 3 and 6 in 
Table A1 are effectively replications of one another. This confirms across 24000 fitted 
functions what can be seen in the example functions of Figure A1 i.e. that the data are well 
fit by the psychometric functions. We can therefore be satisfied that the around 94.95% of all 
functions reported in the paper would have been classed as well fit based on this criteria. See 
also the criteria adopted for rejecting psychometric functions discussed in the main body of 
the text. 
 
 

Sigma / Trials Delta 0 Delta 3 Delta 6 
Min 10 93.8% 95.5% 95.4% 
Max 10 95.5% 95.2% 95.5% 
Min 25 96.2% 94.5% 94.6% 
Max 25 95.6% 96.7% 95.4% 
Min 40 95.7% 95.5% 94.1% 
Max 40 94.7% 95% 95.2% 
Min 55 95.5% 94.1% 94.4% 
Max 55 94.7% 93.7% 94.7% 
Mean Value 94.91% 95.03% 94.91% 

 
Table A1: Shows the percentage of psychometric functions which would be classified as well 
fit based upon the bootstrapped likelihood ratio test described in the main text. The 
percentage of well fit functions is shown for the minimum and maximum sigma used in the 
simulations of the paper, and for each combination of trials per stimulus value on the 
psychometric function and cue conflict level (cue delta in mm). 
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