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Abstract 9 

All pathogens are heterogeneous in space, yet little is known about the prevalence and scale 10 

of this spatial variation, particularly in wild animal systems. To address this question, we 11 

conducted a broad literature search to identify datasets involving diseases of wild mammals 12 

in spatially distributed contexts. Across 31 such final datasets featuring 89 replicates and 71 13 

host-parasite combinations, only 51% had previously been used to test spatial hypotheses. We 14 

analysed these datasets for spatial dependence within a standardised modelling framework 15 

using Bayesian linear models. We detected spatial autocorrelation in 44/89 model replicates 16 

(54%) across 21/31 datasets (68%), spread across parasites of all groups and transmission 17 

modes. Surprisingly, although larger sampling areas more easily detected spatial patterns, 18 

even some very small study areas (under 0.01km2) exhibited substantial spatial heterogeneity. 19 

Parasites of all transmission modes had easily detectable spatial patterns, implying that 20 

structured contact networks and susceptibility effects are likely as important in spatially 21 

structuring disease as are environmental drivers of transmission efficiency. Our findings 22 

imply that fine-scale spatial patterns of infection often manifest in wild animal systems, 23 

whether or not the aim of the study is to examine environmentally varying processes. Given 24 

the widespread nature of these findings, studies should more frequently record and analyse 25 

spatial data, facilitating development and testing of spatial hypotheses in disease ecology. 26 

 27 
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Introduction 28 

The maintenance and spread of pathogens are inherently spatially structured processes (Cross 29 

et al. 2005; Pullan et al. 2012; Kirby et al. 2017). Many pathogens are transmitted from one 30 

host individual to another via direct contact, which requires a degree of spatiotemporal 31 

overlap (Manlove et al. 2018), so that diseases are spatiotemporally staggered in waves of 32 

transmission across the population. Other pathogens transmit through persistence in the 33 

environment or depend upon arthropod vectors, so that exposure depends heavily on spatially 34 

varying abiotic conditions (Patz et al. 2000; Altizer et al. 2006; Jamison et al. 2015). 35 

Furthermore, host immunity and susceptibility can be affected by environmentally varying 36 

factors, with knock-on impacts on pathogen burden and transmission (Becker et al. 2018, 37 

2020). All these and other processes will create spatial patterns of infection, which hold 38 

important ramifications for epidemiological dynamics and disease control efforts (Cross et al. 39 

2005; Plowright et al. 2019; Becker et al. 2020). Yet, many epidemiological studies examine 40 

coarse spatial scales or assume that spatial patterns will be negligible compared to other 41 

hypothesized drivers. As such, it is unclear how often disease is spatially structured in wild 42 

systems, at what range this variation can manifest, and how host and parasite traits might 43 

alter the manifestation of spatial variation. 44 

 45 

For logistical reasons, many studies of infectious disease in wild systems focus on either 46 

single populations or address between-population differences. However, recent work suggests 47 

that spatial patterns of infection may manifest at surprisingly fine spatial scales, within 48 

kilometres or even metres (Brooker et al. 2006; Wood et al. 2007; Abolins et al. 2018; 49 

Albery et al. 2019). Because wildlife disease studies often use a limited number of discrete 50 

sampling locations rather than distributing their sampling locations continuously or randomly 51 

in space (Plowright et al. 2019), the lower bound for the range at which spatial effects can act 52 

has yet to be established. Identifying the range of spatial dependence in wildlife disease 53 

systems is important for many reasons, including designing sampling regimes (Nusser et al. 54 

2008; Vidal-Martínez et al. 2010; Plowright et al. 2019), building mechanistic models of 55 

pathogen evolution over space (Best et al. 2011; Débarre et al. 2014), examining how disease 56 

risk responds to anthropogenic activities such as urbanisation (Saito & Sonoda 2017), and 57 

directing public health and conservation schemes (Brooker et al. 2006; Gilbertson et al. 58 

2016). Perhaps most importantly, identifying the range of spatial dependence can help to 59 

examine how pathogens spread over landscapes and to determine transmission mechanisms 60 
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(Reynolds 1988). For example, spatial dependence in infection across large scales can 61 

suggest the influence of major climatic correlates, whereas spatial dependence only between 62 

nearby locations can suggest a highly localized infection process (Pullan et al. 2012). In 63 

human disease systems, such work has shown that neighbouring districts of Thailand have 64 

more similar human malaria incidence, suggesting local similarities in abiotic conditions or 65 

vector control programs that could limit mosquito survival (Zhou et al. 2005). Similar 66 

analyses of wildlife disease could help pinpoint transmission routes and guide disease control 67 

effort. Lastly, the scale of spatial dependence also has implications for more general 68 

theoretical understandings of infectious disease. Most notably, links between biodiversity and 69 

vector-borne diseases (i.e., “dilution effects”) are dependent on the spatial scale of sampling 70 

(Cohen et al. 2016; Rohr et al. 2020), and several rodent systems have also identified 71 

contrasting spatial trends for zoonotic diseases dependent on sampling scale (Luis et al. 2018; 72 

Morand et al. 2019).  73 

 74 

Because the range of spatial variation in infection depends on environmental gradients across 75 

the host population, traits of hosts and parasites are also likely to determine the contexts 76 

under which spatial dependence will occur. For example, parasites that persist for longer in 77 

the environment are likely to experience stronger influences of environmental gradients than 78 

directly transmitted counterparts (Satterfield et al. 2017). Similarly, large, mobile species, 79 

such as large carnivores or nomadic bats, may more efficiently disseminate pathogens 80 

through the environment, reducing their spatial autocorrelation (Peel et al. 2013; Gilbertson 81 

et al. 2016). However, the relative contribution of host and parasite traits to shaping spatial 82 

variation in infection remains unknown. The range of spatial dependence is most commonly 83 

identified using spatial autocorrelation models (e.g. (Brooker et al. 2006; Wood et al. 2007; 84 

Gilbertson et al. 2016; Albery et al. 2019; Becker et al. 2019) or analyses that quantify the 85 

spatial buffer regions in which environmental variables are best-correlated with disease (e.g. 86 

(Saito & Sonoda 2017). Unfortunately, these approaches are almost always reactive and 87 

occur on a case-by-case basis. To establish general factors influencing the scale of spatial 88 

dependence in wildlife disease, multiple host-parasite systems must be analysed using 89 

comparable techniques. As well as revealing fundamental drivers of spatial heterogeneity, 90 

identifying general rules could facilitate development of predictive models for spatial 91 

structuring in host-pathogen systems with relatively poorly understood epidemiology 92 

(Gilbertson et al. 2016). Researchers could then predict how within- and between-population 93 
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processes will differ a priori before using empirical methods such as long-term studies at 94 

multiple scales (e.g. (Luis et al. 2018; Morand et al. 2019). 95 

 96 

Prescriptive rules for examining geographic variation in wildlife disease are thin on the 97 

ground and hard to generalise. For example, where studies seek to quantify the impact of 98 

environmental drivers on parasitism, larger study extents may allow sampling the widest 99 

range of different environmental factors and thus increasing spatial variation (Cohen et al. 100 

2016; Becker et al. 2020). Part of this methodological vacuum emerges from analytical 101 

complexity. A recent systematic review of ecoimmunology uncovered a surprising lack of 102 

spatial methods, with most studies fitting discrete fixed or random effects to control for 103 

spatial autocorrelation rather than directly examining continuous patterns in space or using 104 

spatially explicit statistics (Becker et al. 2020). Although the statistical competence of 105 

ecologists is high and increasing, particularly with regards to areas like movement ecology 106 

and network analysis (Jacoby & Freeman 2016; Dougherty et al. 2018; Webber & Vander 107 

Wal 2019), little empirical framework exists for establishing the presence or range of spatial 108 

variation in wildlife disease. Establishing general factors shaping spatial variation across 109 

wildlife disease systems could substantially improve mechanistic understandings of pathogen 110 

transmission, spatial sampling designs, and control efforts. 111 

 112 

Here, we conducted a systematic synthesis of spatially distributed wildlife disease datasets 113 

across a range of different host and parasite taxa, geographic contexts, and sampling regimes. 114 

We analysed these datasets individually using a standardised modelling procedure, 115 

identifying how generalised host-, parasite-, and sampling-level factors affect the range and 116 

strength of spatial dependence. Specifically, we expected that studies would be most 117 

vulnerable to strong spatial effects in larger study areas, with greater sampling efforts, and 118 

when parasites exhibit indirect transmission mechanisms with extended environmental stages. 119 

We aimed to provide important general estimates for predicting the range of spatial 120 

autocorrelation from a wide range of different host-parasite systems, to inform sampling 121 

regimes, to be fitted in mechanistic models of movement and disease transmission, and to 122 

provide parameter estimates for host-pathogen systems with unknown spatial properties. 123 

 124 
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 125 

Figure 1: The outcomes of our literature search, expressed as proportions. Different outcomes 126 

have different (alphabetically assigned) fill colours. Numbers in brackets correspond to 127 

absolute numbers of results. The numbers at the top represent overall sample sizes for the 128 

studies deemed “suitable” and “unsuitable” based on their abstracts. 129 

Methods 130 

Data collection 131 

To collect data we carried out a systematic literature search, emailed authors to request data, 132 

and searched data repositories for publicly available datasets (Figure 1). Our literature search 133 

used Web of Science to identify potential datasets with the following terms: “(parasit* OR 134 

infect* OR disease) AND (wild OR natural) AND (mammal)”. We restricted the search to 135 

mammals to increase the generalisability of our findings within this group of animals, and 136 

because of their importance for human and livestock health (Han et al. 2016). Our search 137 

returned 1993 total studies. 138 

We first screened studies based on their abstracts (SIFig), excluding studies of captive 139 

animals, review papers, meta-analyses (N=1172); publications without parasite data (N=81); 140 
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studies without hosts (i.e., only sampling parasites in the environment; N=43) and studies of 141 

non-mammals (N=84). Because our downstream analyses relied upon a standard spatial 142 

modeling procedure, we also excluded studies with few samples (N<35), very low prevalence 143 

(<10%), or very high prevalence (>90%), owing to likely failure in model convergence 144 

(N=130). 145 

Of the remaining 442 studies, only three studies had suitable downloadable datasets, and 146 

another four included binary infection data in map figures, from which we derived 147 

approximate spatial locations and associated infection status (i.e., “heads up digitisation”, 148 

HUD). For all 442 studies, we contacted corresponding authors using a standardized email 149 

template in September-December 2019 to request data. For 55 studies, we could not access 150 

the paper or find the corresponding authors, 35 email addresses failed (i.e., the address was 151 

incorrectly listed or no longer valid), and 298 did not receive a response.  152 

We classified the remaining 157 studies for which we received a response into the following 153 

(Figure 1): System not suitable: the system was poorly suited to our questions (e.g., migratory 154 

host population; N=12). No parasitology: the system did not include disease measures (N=1). 155 

No spatial data collected: no sources of spatial data (grid references, GPS locations) were 156 

collected and associated with individuals or samples (N=22). Privacy concerns: 2 researchers 157 

were unable to share the data because they were collected on private land. 26 researchers 158 

kindly sent us their datasets. Data not suitable: once data were inspected, the genre of spatial 159 

data was found to be unsuitable (e.g. too few spatial replicates), or it was deemed unlikely 160 

that models would run (e.g., points very unevenly distributed, sample sizes too low; N=12). 161 

Data suitable (N=36). 162 

We also searched the Dryad data repository (dryad.org) using the same search terms, 163 

revealing 43 datasets. Only one dataset concerned disease in wild mammals and included 164 

bivariate coordinates in the archived data (Tasmanian Devils, Sarcophilus harrisii; Lazenby 165 

et al., 2018). Finally, we supplemented our search with three pre-owned datasets that were 166 

also present in the literature search. 167 

 168 

Within the datasets, each replicate was defined as a unique host-parasite-locality 169 

combination. Of the 36 wildlife disease datasets that we obtained, we excluded 10 spatial 170 

replicates with under 100 samples, to ensure convergence of our standardized spatial models 171 

(see below). 172 
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 173 

Figure 2: The geographic and taxonomic distribution of our spatial disease datasets. Our data 174 

were evenly spread across the earth, although with a notable cluster in Western Europe (see 175 

inset map in pink rectangle). Sampling areas greater than 5000 km2 are displayed as 176 

rectangles; smaller sample areas are represented by dots. Study system names correspond to 177 

the names in Table 1. The datasets also included a wide range of different mammal orders 178 

and families. The inset phylogeny represents order-level summaries for studies that were not 179 

carried out at the species level. Dots next to species’ names in the phylogenies denote that 180 

multiple datasets included samples from that species. Different colours correspond to 181 

different taxonomic groups used for meta-analysis: ungulates, carnivores, glires, elephants 182 

(Proboscidea), and carnivorous marsupials (Dasyuromorphia).  183 

 184 

We concluded data collection with 31 datasets, including 89 spatial replicates, 72 parasites, 185 

and 90 host species (Figure 2). 67 replicates were species-level; the rest were conducted on 186 

selections of species in the same order (e.g., rodent trapping). The datasets were distributed 187 
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across all four continents (Figure 2), and included 7 different mammalian orders (TreeFig). 188 

The parasites were similarly diverse, including viruses (N=6), bacteria (N=10), helminths 189 

(N=25), arthropods (N=14), and one transmissible cancer (N=8). Infection measures included 190 

counts of parasites or immune markers (N=30), binary assessment of infection status using 191 

observation or seropositivity (N=52), and one study used parasite-associated mortality as a 192 

proxy (Myanmar elephants, Elephas maximus (Lynsdale et al. 2017)). Study systems 193 

included, for example: rodent trapping studies examining flea burdens and their associated 194 

pathogens (e.g. rodents trapped in the Arizona hills (Kosoy et al. 2017) and chipmunks in 195 

Yosemite National Park (Hammond et al. 2019)); long-term studies with parasite data 196 

collected over the course of several decades (e.g. the Soay sheep of St Kilda, the Isle of Rum 197 

red deer, and the badgers of Wytham Wood); and studies examining seropositivity of 198 

mammals across a geographic range to identify endemic areas (e.g. British otters infected 199 

with Toxoplasma gondii (Smallbone et al. 2017)). See Table 1 for a description of each study 200 

system and the associated references and researchers that provided us with the data. The area 201 

of the study systems varied widely, from 0.02 to 106 km2 (Figure 3A). Generally, although 202 

we principally aimed to quantify fine-scale, within-population spatial effects, we also 203 

included several studies employing continuous or semi-continuous sampling at national and 204 

county levels, to investigate whether the methods we used would operate well at these scales 205 

and to establish an upper bound for sampling effects. 206 
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 207 

Study system Country Location Species Host order N Parasites Samples 
Sampling 
method 

Tested 
spatial? 

Contributors 
Example 

Reference 

AlpineIbex Italy 
Gran Paradiso 
National Park 

Capra ibex Ungulates 4 
Helminths; Nematodirus; 

Marshallagia; Coccidia 
145 Census N Alice Brambilla; 

(Brambilla 
et al. 2015) 

BerlinFoxes Germany Berlin Vulpes vulpes Carnivora 1 Canine distemper virus  762 Opportunistic Y Downloaded 
(Gras et al. 

2018) 

BrazilianBats Brazil  5+ Chiroptera 1 Bartonella 162 Noninvasive Y 
Keyla deSousa; 
Marcos Andre 

 

BritishOtters UK  Lutra lutra Carnivora 1 Toxoplasma gondii 583 Opportunistic Y Derived 
(Smallbone 
et al. 2017) 

ConnecticutMice USA Connecticut Peromyscus leucopus Glires 1 Ticks 105  Trapping N 
Danielle Tufts; 

Maria Diuk-
Wasser 

(Tufts & 
Diuk-Wasser 

2018) 

ChileTriatomines Chile  5+ Glires 4 Trypanosomes 230 Trapping Y 
Antonella 

Bacigalupo 
(Ihle-Soto et 

al. 2019) 

DakarRodents Senegal Dakar Mus musculus Glires 1 Toxoplasma gondii 424 Trapping N Lokman Galal 
(Galal et al. 

2019) 

ElDoRodents USA El Dorado 5+ Glires 2 Fleas; Bartonella 1612 Trapping Y Michael Kosoy 
(Kosoy et al. 

2017) 

FalkirkMice Scotland Callendar Park Apodemus sylvaticus Glires 8 
Heligmosomoides polygyrus; 

Eimeria; Capillaria; Ticks; 
Mites; Fleas 

596 Trapping N 
Amy Sweeny; 
Amy Pedersen 

(Sweeny et 
al. 2019) 

FoleyRodents 
United 
States 

California 5+ Glires 3 
Anaplasma; Borrelia; 

Ectoparasites 
948 Trapping N Janet Foley 

(Foley et al. 
2016) 

GermanRaccoons Germany  Procyon lotor Carnivora 1 Toxoplasma gondii 458 Opportunistic Y 
Mike 

Heddergott 
(Heddergott 
et al. 2017) 

GreekHares Greece  Lepus europaeus Glires 1 
European brown hare 

syndrome virus 
209 Hunted Y Derived 

(Sokos et al. 
2018) 

GrenadaMongooses Grenada  Herpestes javanicus Carnivora 2 Rabies; Salmonella 157 Trapping Y 
Ulrike Ziegler; 
Bruno Chomel; 

David Jaffe 

(Jaffe et al. 
2018) 

HendyRodents USA California 
Neotoma fuscipes; Peromyscus 

maniculatus; Tamias ochrogenys 
Glires 3 Ticks; Aphag; Borrelia 451 Trapping N Janet Foley Unpublished 

HighlandDeer Scotland Highlands Cervus elaphus Ungulates 1 Fasciola hepatica 103 Hunted Y Andrew French 
(French et 
al. 2019) 

KielderVoles England 
Kielder Woods, 

Liverpool 
Microtus agrestis Glires 9 

Cowpoxvirus; Anaplasma; 
Babesia 

3020 Trapping N 
Mike Begon; 
Sandra Telfer 

(Davis et al. 
2015) 

MultimammateMice Tanzania Morogoro Mastomys natalensis Glires 1 MORV 5547 Trapping Y 
Lucinda 

Kirkpatrick 
(Berkvens et 

al. 2019) 

MyanmarElephants Myanmar  Elephas maximus Proboscidea 1 Parasite-associated mortality 1626 Opportunistic N 
Carly Lynsdale; 
Virpi Lummaa 

(Lynsdale et 
al. 2017) 
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PantanalMammals Brazil 
Pantanal 
Wetlands 

Cerdocyon thous Carnivora 1 Hepatozoon 115 Trapping N 
Marcos Andre; 
Keyla de Sousa 

(de Sousa et 
al. 2017) 

PennsylvaniaBears USA Pennsylvania Ursus americanus Carnivora 1 Toxoplasma gondii 173 Hunted N 
Jitender Dubey; 

Justin Brown 
(Dubey et 
al. 2016) 

RomanianFoxes Romania  Vulpes vulpes Carnivora 1 Fleas 268 Opportunistic Y 
Janet Foley; 

Andrei Mihalca 
(Foley et al. 

2017) 

RumDeer Scotland Isle of Rum Cervus elaphus Ungulates 8 

Strongyles; Nematodirus; 
Capillaria; Coccidia; Moniezia; 

Fasciola hepatica; 
Dictyocaulus; Elaphostrongylus 

cervi 

2068 Census N 

Greg Albery; 
Josephine 

Pemberton; 
Daniel Nussey 

(Albery et 
al. 2019) 

SoaySheep Scotland Isle of St. Kilda Ovis aries Ungulates 6 
Strongyles; Strongyloides; 

Coccidia; Nematodirus; 
Capillaria; Keds 

7197 Census N 
Josephine 

Pemberton; 
Daniel Nussey 

(Hayward et 
al. 2014) 

SpanishIbex Spain Sierra Nevada Capra ibex Ungulates 1 Mange 746 Hunted Y 
Joao Carvalho; 
José Granados 

(Carvalho et 
al. 2015) 

StrasbourgPrimate France 
Strasbourg 

Primatology 
Centre 

5+ Carnivora 1 Taeniids 103 Noninvasive N 
Valentin 
Greigert 

(Greigert et 
al. 2019) 

SwedenVoles Sweden Revinge Myodes glareolus Glires 1 Borrelia 1999 Trapping N Lars Raberg 
(Råberg et 
al. 2017) 

TasmanianDevils Tasmania  Sarcophilus harrisii 
Dasyuro-
morphia 

7 Devil facial tumour disease 822 Trapping Y Downloaded 
(Lazenby et 

al. 2018) 

TurnerUngulates Namibia 
Etosha National 

Park 

Loxodonta africana; Oryx gazella; 
Connochaetes taurinus; Antidorcas 

marsupialis; Equus quagga 

Proboscidea; 
Ungulates; 

Artiodactyla; 
Proboscidea 

10 
Strongyles; Eimeria melis; 

Strongyloides sp. 
1132 Census Y 

Wendy Turner; 
Wayne Getz 

(Turner et 
al. 2010) 

WoodchesterBadgers England 
Woodchester 

Park, 
Gloucestershire 

Meles meles Carnivora 1 Bovine Tuberculosis 3319 Trapping N 
Matthew Silk; 

David Hodgson; 
Dez Delahay 

(Rozins et 
al. 2018) 

WythamBadgers England Wytham Wood Meles meles Carnivora 4 Fleas; Lice; Ticks; Eimeria melis 7220 Trapping Y 

Chris Newman; 
Christina 

Buesching; 
David 

MacDonald 

(Newman et 
al. 2001) 

YosemiteChipmunks USA 
Yosemite 

National Park, 
California 

Tamias speciosus Glires 1 Fleas 1126 Trapping Y Tali Hammond 
(Hammond 
et al. 2019) 

208 
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Table 1: Summary table depicting the study systems used in the meta-analysis, including 209 

names, locations, host species, and sampling traits. The column “Tested spatial” denotes 210 

whether or not one of the study’s stated aims was to investigate spatial or geographic 211 

variation, e.g. in environmental drivers. The column “N” refers to the number of spatial 212 

replicates and INLA models associated with the study system. For a similar table giving 213 

information on the INLA model replicates themselves, including host and parasite traits, see 214 

Table SI1. 215 

Statistical Analysis 216 

Data standardisation 217 

Data were manipulated and analysed using R version (R Development Core Team 2011). All 218 

code is available at github.com/gfalbery/libra. Our data cleaning procedure aimed to 219 

minimise the probability of false positives and to restrict the data pool to a continuous spatial 220 

distribution of samples. All spatial coordinates were converted to the scale of kilometres or 221 

metres to allow comparison across systems. We removed spatial outliers and parasite count 222 

outliers; if parasite counts were very overdispersed and/or highly zero-inflated they were 223 

analysed as binomial (0/1) infection data rather than negative binomial. Categories with low 224 

replication (generally <10 samples) were removed. We removed specific classes that 225 

exhibited very low prevalence: e.g., adult Soay sheep and red deer had a very low prevalence 226 

of Nematodirus sp., which is primarily a parasite of young ungulates (Hoberg et al. 2001); 227 

hence only lambs/calves were analysed. Individual identity was fitted as a random effect if 228 

the dataset involved repeat measurements of the same individuals. 229 

 230 

INLA Models 231 

We based our analysis on a framework previously used in a study of spatial patterns of 232 

disease in wild red deer (Albery et al. 2019). Integrated Nested Laplace Approximation 233 

(INLA) models were fitted to each spatial dataset using the `inla` package. INLA is a 234 

deterministic Bayesian algorithm that allows fitting of a Stochastic Partial Differentiation 235 

Equation (SPDE) random effect to quantify and control for patterns of the response variable 236 

in space. This relies on detection of spatial autocorrelation, where samples closer in space are 237 

more similar than those further apart (Tobler 1970; Kirby et al. 2017). The model estimates 238 

how much variance is accounted for by autocorrelation, and models with and without the 239 

parameter can be compared to assess how it affects the fit of the model (Lindgren & Rue 240 

2015; Zuur et al. 2017). The model also provides a “range” parameter, which estimates the 241 
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distance at which samples are autocorrelated. We took this parameter to represent a 242 

combination of sampling, transmission, and immune processes determining the scale of 243 

spatial variation in the focal population. 244 

 245 

We first fitted a “base” model with disease burden (Gaussian or negative binomial) or 246 

presence/absence (binary) as a response variable and with any fixed and random covariates 247 

(SITable). To simplify our analyses, covariates usually included only temporal variables 248 

(month, year, both as categorical variables), age category, and sex. We then fitted a model 249 

featuring an SPDE random effect, with a penalised complexity prior (Fuglstad et al. 2019). 250 

We compared the base model with the SPDE model, identifying whether the latter had a 251 

lower Deviance Information Criterion (DIC), indicating improved model fit. We took a 252 

change in DIC (ΔDIC) of 2 to distinguish between the two models and calculated the DIC 253 

weight for the base and SPDE model, giving a proportion (0-1) that can be conceptualised as 254 

the confidence that the spatial model was the best-fitting (Wagenmakers & Farrell 2004). We 255 

also extracted the INLA range parameters. In total, we fitted INLA models to 89 host-locale-256 

parasite combinations across 31 study systems. 257 

 258 

Meta-analysis of INLA models 259 

To identify factors driving general trends of spatial variation, we conducted a meta-analysis 260 

treating each unique parasite-system-site combination as a replicate, including parasite-, host-261 

, and sampling-level traits as fixed effects. We constructed hierarchical models using the 262 

`metafor` package. Generally, meta-analyses typically focus on synthesizing effect sizes and 263 

their variances across multiple systems (e.g. Sánchez et al. 2018). However, as generalised 264 

spatial variation does not have a directional effect, we instead analysed measures of model fit, 265 

predictive capacity, and the autocorrelation range, which is bounded at 0 and infinity. To give 266 

a coarse measure of model predictive capacity that was easily standardised across all models, 267 

we calculated the Spearman’s Rank correlation between the observed and predicted values 268 

for the model, using only the SPDE effect to predict (henceforth referred to as R2). The 269 

measures of model fit give an impression of the detectability and importance of spatial 270 

patterns, while comparisons of the range estimate across systems will inform whether 271 

different host and parasite traits cause spatial patterns to vary more sharply in space. We used 272 

the escalc function to derive logit-transformed proportions (R2) and sampling variances for 273 

DIC weight and the INLA range (using the point estimate and 95% confidence interval).  274 
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Our hierarchical models included each replicate nested within study as a random effect to 275 

account for within- and between-study heterogeneity (Konstantopoulos 2011). We also 276 

included a random effect for host family, for which the covariance structure used the 277 

phylogenetic correlation matrix (Nakagawa & Santos 2012); we obtained our phylogeny from 278 

the Open Tree of Life with the rotl and ape packages (Paradis et al. 2004; Michonneau et al. 279 

2016). All models used the `rma.mv` function and weighting by sampling variance. We first 280 

assessed heterogeneity in each of our three response variables by fitting a random-effects 281 

model (REM; intercept only). We used restricted maximum likelihood to obtain unbiased 282 

estimates of the variance components, from which we derived I2 to quantify the contribution 283 

of true heterogeneity to the total variance in each INLA model output (Senior et al. 2016). 284 

We used Cochran's Q to test if such heterogeneity was greater than expected by sampling 285 

error alone (Borenstein et al. 2009).  286 

We next used mixed-effects models (MEMs) to test how sampling-, host-, and parasite-level 287 

factors affected our INLA model outputs. Sampling variables included: Number of samples; 288 

Sampling area (total rectangular extent between the furthest points on the X- and Y-289 

coordinates, in km2); Sampling method (3 levels: trapping, censusing, and 290 

necropsy/convenience sampling); Spatial encoding method (4 levels: GPS; trapping grid; 291 

locality; Easting/Northing); Spatial hypothesis testing (binary – i.e., did the study aim to 292 

quantify spatial variation in some way?). We interpreted this latter variable as a combination 293 

of study design and publication bias, where studies that are intended to pick up spatial 294 

variation are both more likely to identify spatial patterns because of their sampling design, 295 

and then more likely to be published if they do. Parasite traits included Transmission mode (4 296 

levels: direct; faecal-oral; vector-borne; environmentally transmitted) and Taxon (8 levels: 297 

arthropod, nematode, trematode, cestode, protozoan, bacterium, virus, other). Host traits 298 

included: Home Range size (in km2; log-transformed); Body Mass (in grams; log-299 

transformed); Host order (5 levels: Carnivora, Chiroptera, Ungulates, Glires, Proboscidea). 300 

There was only one lagomorph, so rodents and lagomorphs were lumped together into the 301 

“glires” clade. The same was true of odd-toed ungulates (Perissodactyla), so they were 302 

lumped with Artiodactyla into an “ungulates” clade. For species for which a phenotypic 303 

measure (e.g. body mass) was unavailable, we used the value for the closest relative for 304 

which the data were available, according to a mammalian supertree (Fritz et al. 2009). 305 

To identify important drivers among these many correlated drivers, we conducted a model 306 

addition process using Akaike Information Criterion corrected for sample size (AICc) to 307 
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determine model fit. Each of our meta-analytical explanatory variables was added in turn, and 308 

the best-fitting variable (i.e., the one that most decreased AICc) was kept for the following 309 

round. This process was repeated with the remaining variables, until no variables decreased 310 

model fit by more than 2 AICc. We report the final model, with the minimal number of 311 

variables that improved model fit. 312 

Spatiotemporal INLA models 313 

Finally, we constructed spatiotemporal INLA models to assess the consistency of spatial 314 

hotspots from year to year, and to investigate evidence of ephemeral waves of transmission 315 

across the study systems. Of our 89 replicates, 44 replicates had more than one year of 316 

sampling, with more than 100 spatial points per year, facilitating fitting spatiotemporal 317 

models. For these replicates, we first reran the original models with the reduced dataset that 318 

only included years with more than 100 replicates. We then fitted a spatiotemporal model 319 

with a different field for each year, with no autocorrelation between the fields. Improved 320 

model fit for this model would imply that the spatial distribution of the parasite varied 321 

notably from year to year. Second, we fitted a similar spatiotemporal model with an 322 

“exchangeable” autocorrelation specification between years. This model format allows 323 

correlation between spatial fields, but without enforcing a time sequence: that is, all fields 324 

were correlated by the same parameter (“Rho”) regardless of how far apart in time they were. 325 

The Rho parameter, which is bounded between -1 and 1, was then interpreted to give an 326 

impression of the spatiotemporal consistency of the parasite distribution. Parasites with high 327 

rho coefficients had very similar hotspots from year to year, while those with low coefficients 328 

did not. 329 
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 330 

Figure 3: The spatial autocorrelation term (SPDE) improved models across host-parasite 331 

systems and sampling regimes. The Y axis displays the degree of confidence that the spatial 332 

autocorrelation term improved model fit (Deviance Information Criterion weight), where 333 

models at the top of the figure fitted better than those at the bottom. A: larger study areas 334 

more often revealed spatial patterns. B: most of our 31 study systems exhibited at least one 335 

spatially structured host-parasite combination. Study systems have been assigned arbitrary 336 

letters to anonymise them, and are arranged in order of increasing DIC weight. C: multiple 337 

mammalian host taxa exhibited spatial effects. D: multiple parasite taxa exhibited spatial 338 

effects. The points in panels C and D are sized according to the number of samples in the 339 

replicate. None of the terms displayed here had significant effects in our meta-analysis. 340 

 341 

 342 

 343 
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Results  344 

Our literature review revealed that very few studies take and archive continuous, within-345 

population spatial data. Only 3/496 studies (0.6%) had such data ready to download, and 4 346 

further studies had maps of samples from which we could easily digitise sufficient data. 347 

When we emailed the corresponding authors of the studies we identified, 22/157 responders 348 

(14.01%) indicated that they had not collected any within-population spatial data as part of 349 

their study (Figure 1). After navigating a number of other obstacles to data sharing, followed 350 

by initial data triage, 26 authors kindly offered to provide us with spatial data, resulting in 36 351 

total viable datasets when supplemented with 3 pre-owned datasets. Of these 36 datasets, 352 

only 31 had at least one replicate with >100 samples. 353 

 354 

Most authors that responded were happy to share data, and the vast majority of studies for 355 

which we did not receive data were due to a lack of response or secondary response (Figure 356 

1). 15 authors responded but declined to share data due to privacy concerns, ongoing data 357 

usage, or authorship concerns. Comparing this to the 22 responders that had not collected 358 

spatial data and the >300 that did not respond, it appears that the main reason researchers do 359 

not share spatial data, either in open data repositories or when requested, is that they did not 360 

collect it. Notably, studies that investigated spatial variation tended to be larger than those 361 

that did not (Figure SI1), implying that larger study areas motivate researchers to more often 362 

consider spatial variation in their analyses. 363 

 364 

Our INLA models applied across datasets consistently revealed strong spatial patterns of 365 

disease (Figure 3-4). The mean DIC change across all study systems was -14.5 (median -3.3), 366 

and the spatial model fit better than the base model for 65/89 models (73%; DIC weight>0.5). 367 

Using a conventional change of 2ΔDIC as a cutoff for improved model fit, 54% of models 368 

across 21 study systems displayed detectable spatial patterns (Figure 3). Although most study 369 

systems were spatially structured, our meta-analyses revealed that few host-, parasite-, or 370 

sampling factors were predictive of spatial effects. The best-fitting model for DIC weight 371 

included only the study duration (years), revealing that long-term studies were slightly more 372 

likely to uncover spatial effects (ΔAIC=3.38; for all other variables ΔAIC<1.56). The INLA 373 

range parameter increased with study area (ΔAIC=74.44) but was not affected by any other 374 

variables (ΔAIC<0.09). There was no variation accounted for by host or parasite taxon, or 375 
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host size or ranging behaviour. Most notably, there was no variation in spatial range across 376 

transmission ranges (Figure 4A-B). 377 

 378 

 379 

Figure 4: Parasites of diverse transmission modes exhibit spatial autocorrelation effects. We 380 

display A) spatial model DIC weight, with points representing the outcome of each replicate 381 

INLA model. Boxplots represent range, interquartile range, and median for parasites of each 382 

transmission mode. B) INLA autocorrelation ranges; each line represents the autocorrelation 383 

decay of a different replicate INLA model. C) Temporal autocorrelation (Rho) component 384 

demonstrating inter-annual correlations between spatial fields. Points represent a different 385 

replicate INLA model; black dots represent means, and error bars represent standard errors. 386 

D) Mosaic plot displaying the proportions of best-fitting models according to DIC changes, 387 

across our spatiotemporal replicates. 388 

 389 
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Spatiotemporal models examining a subset of multi-year studies consistently improved model 390 

fit over static equivalents. The best-fitting model for many examined replicates was a 391 

spatiotemporal model, but the findings did not differ notably across transmission modes 392 

(Figure 4D). Rho (temporal autocorrelation of the spatial field) estimates for these models 393 

were moderate, and did not vary notably across transmission modes (Figure 4C). Most 394 

(36/44, 82%) had 95% credibility intervals that overlapped with zero, and 8 (18%) were 395 

significantly positive. 396 

Discussion 397 

We uncovered strong, pervasive spatial variation across an expansive diversity of mammal-398 

parasite systems. By collating datasets covering many different hosts, parasites, and study 399 

systems, our results indicate that spatial variation manifests regularly and unpredictably in 400 

disease ecology, whether or not the study in question aims to quantify spatial variation or 401 

environmental drivers. Contrary to expectations, spatial heterogeneity was equally common 402 

and short-ranged for all transmission modes, implying that spatially structured contact 403 

networks are at least as important in driving spatial heterogeneity as are environmental 404 

drivers of susceptibility and transmission efficiency (Albery et al., in revision). We impress 405 

that our sample represents a vanishingly small proportion of spatially distributed disease 406 

studies, and is unlikely to be a random sample, being only 31 of over 1000 studies in our 407 

search alone. Our findings therefore best represent a proof-of-principle that disease ecology 408 

studies are commonly spatially structured, and that these cryptic patterns should be more 409 

commonly investigated, for all kinds of hosts and parasites. We recommend that wild animal 410 

studies in disease ecology more regularly collect and share data on spatial behaviours and 411 

sampling locations where possible, regardless of host, parasite, or sampling regime. 412 

 413 

Our methodology differed from that used in many other studies by investigating generalised 414 

spatial dependence rather than by quantifying specific environmental drivers which might 415 

drive this dependence. The only similar study that we know of (Gilbertson et al. 2016) used 416 

48 parasite-locality replicates of cougar (Puma concolor) and bobcat (Lynx rufus) populations 417 

and found little evidence of spatial autocorrelation in parasite infection. In contrast to their 418 

approach, we used a wide set of different hosts, and our replicates all had between 100 and 419 

10,000 samples (Table 1), whereas only a few of their replicates had >100 samples, and none 420 

had >200 (Gilbertson et al. 2016). Additionally, they used Mantel tests, which do not account 421 
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for fixed covariates, while the INLA analyses we employed are more suited to controlling for 422 

this variation. As such, we interpret our contrasting findings to represent a difference in the 423 

power of our analyses, and the absence of large carnivores from our dataset. Owing to its 424 

generality, similar methodology could be used in a range of ecological contexts as a useful 425 

hypothesis-generating exercise: after uncovering strong spatial structuring, researchers could 426 

follow up on this finding by investigating possible biotic or abiotic drivers. We hope that 427 

more disease ecology studies in wild animals will make use of similar methodology to bolster 428 

our understanding of disease dynamics in wild settings. 429 

 430 

Surprisingly, neither larger study systems nor those that had previously been used to study 431 

spatial hypotheses were more likely to exhibit detectable spatial patterns. Some very small 432 

spatial replicates exhibited strong spatial effects, and the smallest area demonstrating a strong 433 

spatial trend was 0.002km2 (Figure 3). Similarly, some very large, well-sampled areas 434 

showed no detectable spatial patterns: anti-Toxoplasma gondii antibodies in almost 200 435 

Pennsylvania black bears (Ursus americanus) did not (Dubey et al. 2016), while prevalence 436 

of T. gondii exhibited very strong spatial patterns in otters (Lutra lutra) across the United 437 

Kingdom (Smallbone et al. 2017), and in house mice (Mus musculus) within the Senegalese 438 

city of Dakar (Galal et al. 2019). However, larger study extents unsurprisingly exhibited 439 

more long-range spatial autocorrelation effects. These areas inevitably contain within them a 440 

multitude of smaller spatial effects and gradients, so that the findings of a specific study will 441 

depend critically on the spatial sampling scale it employs (Pullan et al. 2012; Cohen et al. 442 

2016; Luis et al. 2018; Morand et al. 2019). Notably, the studies that did attempt to quantify 443 

spatial variation tended to have substantially larger spatial extent than those that did not 444 

(Figure SI1); this may represent a perception bias, where researchers operating in larger study 445 

areas tend to anticipate spatial variation as being more important to account for – or, vice 446 

versa, researchers asking spatial questions tend to sample across a wider range to incorporate 447 

as much testable variation as possible (Becker et al. 2019). The finding that larger study 448 

systems do not tend to more commonly exhibit detectable spatial patterns in disease 449 

demonstrates that this perception bias is perhaps unwarranted, and researchers at all scales 450 

should be able to incorporate spatial components and hypotheses about infection processes. 451 

 452 

Despite the ubiquity and unpredictability of spatial effects, we discovered a very low 453 

frequency of spatial data collection and sharing. Across our extremely broad literature search 454 

which identified over 1000 potentially relevant studies, only 3 studies had suitable bivariate 455 
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spatial data readily available for download, 4 had them in published maps, and 26 had access 456 

to (and provided) within-population spatial data of some sort when we requested it (Figure 1). 457 

The responses that we received indicated that alongside concerns about privacy and the desire 458 

to control the data associated with one’s study system, the main reason for not sharing spatial 459 

data was that the data were not collected in the first place. 460 

 461 

Privacy is an issue of considerable ethical concern in epidemiology (Kirby et al. 2017). 462 

Sharing spatial data risks connecting individuals with their disease status, which is 463 

particularly unwelcome in the case of stigmatised diseases such as HIV/AIDS; indeed, 464 

although we did not examine human diseases, several of the researchers we contacted opted 465 

not to share data because they were concerned that their results could be traced to specific 466 

households or individuals. Researchers may overcome this issue by jittering points, or by 467 

masking the actual GPS locations, replacing them with relative locations which are the same 468 

distance away (Kirby et al. 2017). Unfortunately, the first option will reduce precision and 469 

the latter precludes investigation of specific geographic hypotheses, but this is a small price 470 

to pay in the cases where data are potentially sensitive.  471 

 472 

Location data may evade collection in some contexts where GPS signals are hard to receive, 473 

precluding spatial data collection and investigation of spatial questions. GPS instruments that 474 

function in remote environments can be expensive, and for studies that do not explicitly aim 475 

to identify spatial patterns this may seem an unnecessary expenditure. However, smartphones 476 

that can receive GPS data are now widely available and can be used in all but the most 477 

remote locations. As many researchers carry the means to collect spatial data in their pocket 478 

on a daily basis, it might take little alteration to collection protocols to include location data 479 

in many cases. Future studies should capitalise on the increasing availability of spatial 480 

telemetry and biologging technology, and associated analytical capacity (Long et al. 2014; 481 

Kays et al. 2015; Williams et al. 2020) to more frequently record, analyse, and share spatial 482 

data in disease ecology (Kirby et al. 2017; Albery et al. 2019). This practice and the 483 

associated calls to “let go of your data” (Noy & Noy 2020) will facilitate testing of related 484 

hypotheses. 485 

 486 

We foresee a range of potential uses for our curated dataset and others like it. Although we 487 

quantified some ecological and sampling-level drivers here, the dataset was still relatively 488 

small, and subject to covarying factors: for example, most analyses of nematode infection 489 
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were conducted on even-toed ungulates, so that it was difficult to disentangle their 490 

implications for spatial variation. Future data collection and kind contributions from 491 

researchers may allow us to bolster this dataset to include a greater number of replicates, 492 

increasing the power and diversity of our analyses, bringing predictive models of spatial 493 

variation within our grasp. Further analysis on this dataset could investigate a number of 494 

disease drivers such as population density or environmental heterogeneity, informing how 495 

they drive spatial patterns of infection within and across systems. Similar methodology could 496 

be applied to other animal groups such as birds and reptiles, whose nest and burrow locations 497 

offer ideal spatial context (e.g. Wood et al., 2007), or to marine mammals that are regularly 498 

subject to behavioural censuses and disease surveillance (e.g. (Leu et al. 2020). Finally, 499 

immunity is often quantified alongside parasite burden and prevalence, and it would be 500 

interesting to see whether spatial variation in immunity manifests on the same scale, and 501 

whether it predicts disease risk (Becker et al. 2020).  502 
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