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Abstract

Modern high-throughput sequencing technologies provide low-cost microbiome sur-
vey data across all habitats of life at unprecedented scale. At the most granular level,
the primary data consist of sparse counts of amplicon sequence variants or operational
taxonomic units that are associated with taxonomic and phylogenetic group informa-
tion. In this contribution, we leverage the hierarchical structure of amplicon data and
propose a data-driven, parameter-free, and scalable tree-guided aggregation framework
to associate microbial subcompositions with response variables of interest. The excess
number of zero or low count measurements at the read level forces traditional mi-
crobiome data analysis workflows to remove rare sequencing variants or group them
by a fixed taxonomic rank, such as genus or phylum, or by phylogenetic similarity.
By contrast, our framework, which we call trac (tree-aggregation of compositional
data), learns data-adaptive taxon aggregation levels for predictive modeling making
user-defined aggregation obsolete while simultaneously integrating seamlessly into the
compositional data analysis framework. We illustrate the versatility of our frame-
work in the context of large-scale regression problems in human-gut, soil, and marine
microbial ecosystems. We posit that the inferred aggregation levels provide highly in-
terpretable taxon groupings that can help microbial ecologists gain insights into the
structure and functioning of the underlying ecosystem of interest.

Introduction

Microbial communities populate all major environments on earth and significantly contribute
to the total planetary biomass. Current estimates suggest that a typical human-associated
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microbiome consists of ∼ 1013 bacteria (Sender et al., 2016) and that marine bacteria and
protists contribute to as much as 70% of the total marine biomass (Bar-On et al., 2018).
Recent advances in modern targeted amplicon and metagenomic sequencing technologies
provide a cost effective means to get a glimpse into the complexity of natural microbial
communities, ranging from marine and soil to host-associated ecosystems (Sunagawa et al.,
2015; Bahram et al., 2018; McDonald, 2018). However, relating these large-scale observa-
tional microbial sequencing surveys to the structure and functioning of microbial ecosystems
and the environments they inhabit has remained a formidable scientific challenge.

Microbiome amplicon surveys typically comprise sparse read counts of marker gene se-
quences, such as 16S rRNA, 18S rRNA, or internal transcribed spacer (ITS) regions. At
the most granular level, the data are summarized in count or relative abundance tables of
operational taxonomic units (OTUs) at a prescribed sequence similarity level or denoised
amplicon sequence variants (ASVs) (Callahan et al., 2017). The special nature of the marker
genes enables taxonomic classification (Wang et al., 2007; Chaudhary et al., 2015) and phylo-
genetic tree estimation (Schliep, 2011), thus allowing a natural hierarchical grouping of taxa.
This grouping information plays an essential role in standard microbiome analysis workflows.
For instance, due to the excess number of zero or low count measurements at the OTU or
ASV level, amplicon data pre-processing uses the grouping information for count aggregation
where sequencing variants are pooled together at a higher taxonomic rank, for example, at
the genus level, or according to phylogenetic similarity (Zhang et al., 2012; Chen et al., 2013;
Xia et al., 2013; Lin et al., 2014; Randolph et al., 2015). In addition, rare sequence variants
with incomplete taxonomic annotation are often simply removed from the sample.

This common practice of aggregating to a fixed taxonomic or phylogenetic level and then
removing rare variants comes with several statistical and epistemological drawbacks. A major
limitation of the fixed-level approach to aggregation is that it forces an awkward tradeoff
between, on the one hand, using low-level taxa that are too rare to be informative (requiring
throwing out many of them) and, on the other hand, aggregating to taxa that are at such
a high level in the tree that one has lost much of the rich granularity in the original data.
Aggregation to a fixed level attempts to impose an unrealistic “one-size-fits-all” mentality
onto a complex, highly diverse system with dynamics that likely vary appreciably across the
range of species represented. A fundamental premise of this work is that the decision of
how to aggregate should not be made globally across an entire microbiome in preprocessing
but should rather be integrated into the particular statistical analysis being performed.
Many factors contribute to the question of how one should aggregate: the dynamics of the
ecosystem under study, the abundance of different taxa, the goal of the statistical analysis,
and the available quality of the sequencing data, including sequencing technology, sample
sequencing depth, and sample size.

Another important factor when considering the practice of aggregating counts is that
standard amplicon counts only carry relative (or “compositional”) information about the
microbial abundances and thus require dedicated statistical treatment. When working with
relative abundance data, Aitchison (1982); Egozcue and Pawlowsky-Glahn (2005); Gloor
et al. (2017) show that counts should be combined with geometric averages rather than
arithmetic averages. The practice of performing arithmetic aggregation of read counts be-
fore switching over to the geometric-average-based compositional data analysis workflow is
incongruous.
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Data n p Kingdom Phylum Class Order Family Genus Species OTU

Gut (HIV): sCD14 152 539 1 1 0 0 2 1 0 0
Gut (AGP): BMI 6266 1387 1 1 1 6 16 17 6 84
Central Park Soil: pH 580 3379 1 2 2 1 0 0 0 0
Central Park Soil: Moisture 580 3379 1 5 2 3 1 0 0 0
Fram Strait (PA): Leucine 26 3320 0 1 0 0 1 0 0 0

Fram Strait (FL): Leucine 25 4510 0 0 2 0 1 0 0 0
Ocean (TARA): Salinity 136 8916 1 1 2 0 0 0 0 0

Figure 1: A common preprocessing step is to aggregate microbiome amplicon data to a
fixed level, such as genus, before performing subsequent analysis (upper left); trac instead
performs a flexible tree-based aggregation in which the choice of what level to aggregate can
vary across the tree (upper right) and is determined in a data-adaptive fashion with the goal
of optimizing to the particular prediction task. Applying trac to seven different prediction
tasks, which are characterized by differing environments, covariates of interest, number of
samples n, and number of OTUs/ASVs p, reveals that aggregating at a wide range of levels
can be useful for prediction (lower). In one case, we perform pH and moisture prediction
on the same dataset (Central Park Soil), demonstrating that for different prediction tasks,
different aggregations may be optimal.

To address these concerns, we propose a flexible, data-adaptive approach to tree-based ag-
gregation that fully integrates aggregation into a statistical predictive model rather than rel-
egating aggregation to preprocessing. Our method trac (tree-aggregation of compositional
data) learns dataset-specific taxon aggregation levels that are optimized for predictive re-
gression modeling, thus making user-defined aggregation obsolete (see top panel of Figure 1
for illustration). Our framework is designed to mesh seamlessly with the compositional data
analysis framework by combining log-contrast regression (Bacon-Shone and Aitchison, 1984)
with tree-guided regularization, recently put forward in Yan and Bien (2020). Thanks to
the convexity of the underlying penalized estimation problem, trac can deliver interpretable
aggregated solutions to large-scale microbiome regression problems in a fast and reproducible
manner.

We demonstrate the versatility of our framework by analyzing seven regression problems
on five datasets covering human-gut, soil, and marine microbial ecosystems. Figure 1 il-
lustrates our key idea and summarizes the properties of the analyzed microbial datasets,
highlighting the heterogeneity of trac-inferred taxonomic aggregation levels for the respec-
tive regression tasks. For instance, we found that in Central Park soil, the phylum to family
aggregation levels that were optimized for predicting soil pH were different from those for
predicting soil moisture. In contrast, primary productivity prediction in the Fram Strait
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of the North Atlantic revealed almost identical microbial aggregations, independent of size
class, namely log-contrasts of the Flavobacteriaceae family to the phylum Proteobacteria for
particle-associated (PA) microbiota and Flavobacteriaceae to the Alpha- and Gammapro-
teobacteria classes, for free-living (FL) microbes.

Our trac framework complements other statistical approaches that make use of the avail-
able taxonomic or phylogenetic structure in microbial data analysis. For example, Lozupone
and Knight (2005) use phylogenetic information in the popular unifrac metric to mea-
sure distances between microbial compositions. Washburne et al. (2017); Silverman et al.
(2017); Morton et al. (2017); Washburne et al. (2019) combine tree information with the idea
of “balances” from compositional data analysis (Egozcue and Pawlowsky-Glahn, 2005) to
perform phylogenetically-guided factorization of microbiome data. Zhai et al. (2018); Xiao
et al. (2018) include the tree structure in linear mixed models, Khabbazian et al. (2016)
uses phylogenetic-tree-based regression for detecting evolutionary shifts in trait evolution,
and Wang and Zhao (2017); Bradley et al. (2018) integrate tree-information into regression
models for microbiome data.

In addition to our novel statistical formulation, we also offer an easy-to-use and highly
scalable software framework for simultaneous taxon aggregation and regression. We be-
lieve that trac, available as an R package at https://github.com/jacobbien/trac, can
be a valuable tool to microbial ecologists, significantly speeding up exploratory data analy-
sis by delivering parsimonious and interpretable associations between microbiome data and
variables of interest. This, in turn, will help formulate ecological questions and testable hy-
potheses about microbial niche differentiation, host-microbiome interactions, and ecosystem
functioning.

Materials and methods

Modeling strategy

Let y ∈ Rn be n observations of a variable we wish to predict and let X ∈ Rn×p
+ be a

matrix with Xij giving the number of reads assigned to microbe j in sample i. The total
number of reads

∑
j Xij in sample i is a reflection of the sequencing process and therefore

should not be interpreted as providing meaningful information about the biological sample
itself. This observation has motivated the adoption of compositional data methods, which
ensure that analyses depend only on relative abundances. Following the foundational work
of Bacon-Shone and Aitchison (1984), one appropriate model for regression with relative
abundance data is the log-contrast model where the outcome of interest is modeled as linear
combinations of log-ratios (i.e., log-contrasts) of relative abundance features. For high-
dimensional microbiome data, Lin et al. (2014) propose solving an `1-penalized regression
estimator that includes a zero-sum constraint on the coefficients. Writing log(X) for the
matrix with ijth entry log(Xij), their estimator is of the form

minimizeβ∈Rp L (y − log(X)β) + λP(β) s.t. 1Tp β = 0. (1)

Here, L(r) = (2n)−1‖r‖2 is squared error loss and P(β) = ‖β‖1 is a lasso penalty (Tibshirani,
1996). The zero-sum constraint ensures that this model is equivalent to a log-contrast model
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(Combettes and Müller, 2020) and invariant to sample-specific scaling. To see this, observe
that replacing X by DX, where D is an arbitrary diagonal matrix, leaves Eq. (1) unchanged:

[log(DX)β]i =

p∑
j=1

log(DiiXij)βj =

p∑
j=1

[log(Dii)βj + log(Xij)βj] = 0 + [log(X)β]i.

Lin et al. (2014)’s choice of the `1 penalty was motivated by the high dimensionality of
microbiome data and the desire for parsimonious predictive models. However, for the reasons
discussed in Yan and Bien (2020), such a penalty is not well-suited to situations in which
large numbers of features are highly rare, a well-known feature of amplicon data. Thus,
Lin et al. (2014) adopt the common approach of preprocessing the data by aggregating read
counts to the genus level and then screening out all but the most abundant genera. The left
panel of Figure 1 depicts this standard practice: taxonomic (or phylogenetic) information in
the form of a tree T is used to aggregate data, usually by taking the arithmetic mean, to a
fixed level of the tree.

Our goal is to make aggregation more flexible (as shown in the right panel of Figure 1),
to allow the prediction task to inform the decision of how to aggregate, and to do so in a
manner that is consistent with the log-contrast framework introduced above. A key insight
is that aggregating features can be equivalently expressed as setting elements of β equal to
each other. For example, suppose we partition the p microbes into K groups G1, . . . , GK

and demand that β be constant within each group. Doing so yields K aggregated features.
If all of the βj in group Gk are equal to some common value γk, then

∑
j

βj log(Xij) =
K∑
k=1

γk

(∑
j∈Gk

log(Xij)

)
=

K∑
k=1

γk|Gk| · log

[
(
∏
j∈Gk

Xij)
1/Gk

]
.

Thus, we are left with a linear model with K aggregated features, each being proportional
to the log of the geometric mean of the microbe-level counts.

Associating the elements of β with the leaves of T , the above insight tells us that if
our estimate of β is constant within subtrees of T , then that corresponds to a regression
model with tree-aggregated features. In particular, each subtree with constant β-values will
correspond to a feature, which is the log of the geometric mean of the counts within that
subtree. The trac estimator uses a convex, tree-based penalty PT (β) for the penalty in
Eq. (1) that is specially designed to promote β to have this structure of being constant along
subtrees of T . The mathematical form of PT (β) is given in Appendix A. In that appendix,
we show that the trac estimator reduces to solving the following optimization problem:

minimizeα∈R|T |−1 L (y − log(geom(X; T ))α) + λ
∑

u∈T −{r}

wu|αu| s.t. 1|T |−1
Tα = 0, (2)

where geom(X; T ) ∈ Rn×(|T |−1) is a matrix where each column corresponds to a non-root
node of T and consists of the geometric mean of all the microbe counts within the subtree
rooted at u. Comparing this form of the trac optimization problem to Eq. (1) reveals an
alternate perspective: trac can be interpreted as being like a sparse log-contrast model but
instead of the features corresponding to microbes, they correspond instead to the geometric
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means of all non-root taxa in T (i.e., X is replaced by geom(X; T )). This also facilitates
model interpretability since we can directly combine positive and negative predictors into
pairs of log-ratio predictors. The particular choice of penalty is a weighted `1-norm. The
trac package allows the user to specify general choices of weights wu > 0; all results in this
paper take wu to be the inverse of the number of leaves in the subtree rooted at u.

The regularization parameter λ is a positive number determining the tradeoff between
prediction error on the training data and how much aggregation should occur. By varying
λ, we can trace out an entire solution path α̂(λ), from highly sparse solutions (large λ) to
more dense solutions involving many taxa (small λ). This “aggregation path” can itself be
a useful exploratory tool in that it provides an ordering of the taxa as they enter the model.

Computation, model selection, and model quality assessment

Using trac in practice requires the efficient and accurate numerical solution of the convex
optimization problem, specified in Eq. (2), across the full aggregation path. We experimented
with several numerical schemes and found the path algorithm of Gaines et al. (2018) particu-
larly well-suited for this task. The trac R package internally uses the path algorithm imple-
mentation from the classo Python module (https://github.com/Leo-Simpson/c-lasso),
enabling solving high-dimensional trac problems on a standard laptop. Other R packages
used in this paper include reticulate (Ushey et al., 2020), ggplot2 (Wickham, 2016), ape
(Paradis and Schliep, 2019), igraph (Csardi and Nepusz, 2006), and ggtree (Yu et al.,
2017).

To find a suitable aggregation level along the solution path, we use cross validation (CV)
with mean squared error to select the regularization parameter λ ∈ [λmin, λmax] for all the
results presented in this paper. In particular, we perform 5-fold CV with the “one-standard-
error rule” (1SE) (Hastie et al., 2009), which identifies the largest λ whose CV error is within
one standard error of the minimum CV error. This heuristic purposely favors models that
involve fewer taxa and are therefore easier to interpret. To assess how well a trac model
generalizes to “unseen” data, we randomly select 2/3 of the samples in each of the considered
datasets for model training and selection. On the remaining 1/3 of the samples, we compute
out-of-sample test mean squared error as well as the correlation between model predictions
and actual measurements on the test set.

Data collection

We consider a collection of five publicly available and previously analyzed datasets, spanning
human gut, soil, and marine ecosystems (see Figure 1 lower panel). All datasets consists
of 16S rRNA amplicon data of Bacteria and Archaea in form of OTU count tables, tax-
onomic classifications, and measured covariates, as provided in the original publications.
Prior to trac analysis, zero counts in the datasets were replaced by a pseudo-count of one.
No aggregation was performed on the data. For ease of interpretability, we leverage the
taxonomic tree information rather than phylogeny in our aggregation framework. To inves-
tigate potential human host-microbiome interactions, we re-analyze two human gut datasets,
one cohort of HIV patients (Gut (HIV)), available in (Rivera-Pinto et al., 2018), compris-
ing p = 539 OTUs and n = 152 samples, and the other a subset of the American Gut
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Project data (Gut (AGP)) (McDonald, 2018), provided in (Badri et al., 2020), comprising
p = 1387 OTUs present in at least 10% of the n = 6266 samples. To study niche partition-
ing in terrestrial ecosystems, we use the Central Park soil dataset (Ramirez et al., 2014),
as provided by Washburne et al. (2017), which consists of p = 3379 OTUs and n = 580
samples with a wide range of soil property measurements. For marine microbial ecosys-
tems, we consider a sample collection from the Fram Strait in the North Atlantic (Fadeev
et al., 2018), available at https://github.com/edfadeev/Bact-comm-PS85. The data set
consists of n = 26 samples for p = 3320 OTUs in the particle-associated size class, and
n = 25 samples for p = 4510 OTUs in the free-living size class. The second marine dataset
is the Tara global surface ocean water sample collection (Sunagawa et al., 2015), available
at http://ocean-microbiome.embl.de/companion.html. In Tara, each of the p = 8916
OTUs is present in at least 10% of the n = 136 samples. All data and analysis scripts used
here are available as fully reproducible R workflows in the Supplementary Material.

Results and Discussion

Immune marker prediction in HIV patients

Infection with HIV is often paired with additional acute or chronic inflammation events in
the epithelial barrier, leading to disruption of intestinal function and the microbiome. The
interplay between HIV infection and the gut microbiome has been posited to be a “two-
way street” (Dillon et al., 2016) since HIV-associated mucosal pathogenesis potentially leads
to perturbation of the gut microbiome and, in turn, altered microbial compositions could
result in ongoing disruption in intestinal homeostasis and secondary HIV-associated immune
activation and inflammation.

Here, we investigate one aspect of this complex relationship by learning predictive models
of immune markers from gut amplicon sequences. While Nowak et al. (2015) were among
the first to provide evidence that gut microbial diversity is a predictor of HIV immune status
(as measured by CD4+ cell counts), we consider soluble CD14 (sCD14) measurements in
HIV patients as the variable to predict and learn an interpretable regression model from
gut microbial amplicon data. sCD14 is a marker of microbial translocation and has been
shown to be an independent predictor of mortality in HIV infection (Sandler et al., 2011).
Following Rivera-Pinto et al. (2018), we analyze a HIV cohort of n = 151 patients where
sCD14 levels (in pg/ml units) and fecal 16S rRNA amplicon data were measured. Using
all available p = 539 bacterial and archaeal OTUs, we illustrate the typical trac prediction
and model selection outputs in Figure 2. In the top left panel of Figure 2, we visualize
the solution of the α coefficients associated with each aggregation along the regularization
path. The vertical lines indicate the aggregations that were selected via cross-validation
(CV) with the Minimum Mean Squared Error (MSE, dotted line) and one-standard-error
rule (1SE, dashed line) (see top right panel in Figure 2). On the test data, we highlight the
relationship between test prediction performance of the trac models versus the number of
inferred aggregations (Figure 2 middle right panel). Models between five and 28 aggregations
show excellent performance on the test set. trac with the 1SE rule identified a parsimonious
model with aggregation to five main taxa (Figure 2 bottom panel): the kingdom Bacteria,

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.277632doi: bioRxiv preprint 

https://github.com/edfadeev/Bact-comm-PS85
http://ocean-microbiome.embl.de/companion.html
https://doi.org/10.1101/2020.09.01.277632
http://creativecommons.org/licenses/by-nc-nd/4.0/


phylum Actinobacteria and the family Lachnospiraceae are negatively associated, and the
family Ruminococcaceae and the genus Bacteroides are positively associated with sCD14
counts, thus resulting in a trac model with three log-contrasts. To assess the stability of the
present results, we repeated the same analysis on one hundred randomized training and test
sample splits and recorded the selection frequency of taxon aggregations under the 1SE and
MSE rules. The aggregations reported here are indeed the most stable ones. In addition, we
found a genus with uncertain placement (Incertae Sedis) classified into the Lachnospiraceae
family to be frequently selected. This genus was also found to be a stable predictor of sCD14
in the genus-level analysis of Rivera-Pinto et al. (2018).
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Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 2221.75
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae -1644.86
Bacteria Actinobacteria -501.43
Bacteria -362.27
Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 286.80

Figure 2: Varying the trac regularization parameter λ produces an solution path (top left).
To select an interpretable aggregation, cross-validation (CV)is performed (top right) using
either the solution with minimum CV error (dotted vertical line) or the 1SE rule (dashed
vertical line). We hope to select a model along the solution path that is sparse and has small
test error (middle right). The actual vs. predicted values of sCD14 on a test set (middle
left) gives a closer look at the performance of the two models. In this case, the CV Best
solution attains better test set performance (test correlation: 0.37) than CV 1SE rule (test
correlation: 0.23) at the expense of a denser model. The trac model selected with the 1SE
rule comprises five taxa across four levels, listed in the bottom panel.
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Overall, our analysis suggests a strong role of the Ruminococcaceae/Lachnospiraceae fam-
ily ratio and, to a lesser extent, the Ruminococcaceae/Actinobacteria ratio in predicting mu-
cosal disruption (as measured by sCD14). The protective or disruptive roles of Ruminococci
or Lachnospiraceae in HIV patients is typically considered to be highly species-specific. More-
over, few consistent microbial patterns are known that generalize across studies (Dubourg,
2016). For instance, Monaco et al. (2016) report high variability and diverging patterns of
the differential abundances of individual OTUs belonging to the Ruminococcaceae and Lach-
nospiraceae family in HIV-negative and HIV-positive participants. Our model posits that,
on the family level, consistent effects of these two families are detectable in amplicon data.
This also suggests that, with the right aggregation level, a re-analysis of recent HIV-related
microbiome data may, indeed, reveal reproducible patterns of different taxon groups in HIV
infection.

BMI prediction from American Gut microbiome profiles

It has proven to be difficult to find consistent gut microbial signatures that are predictive of
a person’s body mass index (BMI). Several early studies argued that obesity is associated
with phylum-level changes in the microbiome (Turnbaugh et al., 2009), including increased
Firmicutes to Bacteroidetes phyla ratios (Ley et al., 2006), often referred to as a hallmark
predictor of obesity. On the COMBO dataset (Wu et al., 2011), Lin et al. (2014) and Shi
et al. (2016) were among the first to identify a small set of microbial genera that were
predictive of host BMI under a sparse log-contrast model.

Using trac, we revisit BMI prediction from microbial abundance data using a subset
of the American Gut Project (AGP) data comprising p = 1387 OTUs across n = 6266
participants in the lean to obese BMI range. The trac model with the 1SE rule identified
a model with 132 predictors, consisting of aggregations across all taxonomic levels. The
lower panel in Figure 3 summarizes the 15 strongest predictors which include the kingdom
Bacteria (vs. Archaea) as negative baseline, the phylum Bacteroidetes and several families
and genera in the class Clostridia (which belongs to the Firmicutes phylum) with positive
associations. The strongest positive OTU level predictor is an unknown species belonging to
the Ruminococcaceae family. The top panel of Figure 3 shows the corresponding trac model
BMI predictions (with 1SE rule) vs. measured BMI on the test set. The out-of-sample test
correlation is 0.33 and the BMI test error is 15.31. For reference, Lin et al. (2014) reported
on the COMBO data a BMI prediction test error (albeit with a different train/test split)
of about 30 using a genus-level log-contrast model, consisting of the four genera Alistipes,
Clostridium, Acidaminococcus, and Allisonella.

By contrast, our model contains considerably more predictive aggregations across all
taxonomic levels. For instance, on the genus level, trac selects Blautia, Dorea, and Ru-
minococcus as positive predictors. The strongest overall positive predictors are the Bac-
teroidetes phylum, and the Ruminococcaceae, Lachnospiraceae, and Clostridiales families.
The Lachnospiraceae/Bacteria ratio is also the first log-contrast to enter the trac aggre-
gation path on the AGP data. The Erysipelotrichaceae and the Mogibacteriaceae families
are the strongest negative predictors. Consistent with our model, Mogibacteriaceae were
shown to be more abundant in lean individuals (Oki et al., 2016), and Erysipelotrichaceae
were recently reported to be more abundant in normal compared to obese people or subjects
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Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria -11.95
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 2.86
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae 2.23
Bacteria Bacteroidetes 1.45
Bacteria Firmicutes Clostridia Clostridiales 1.18

Bacteria Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 0.90
Bacteria Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae -0.80
Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 0.73
Bacteria Firmicutes Bacilli Lactobacillales 0.72
Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae 0.71

Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 0.51
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 0.49
Bacteria Firmicutes Clostridia Clostridiales [Mogibacteriaceae] -0.36
Bacteria Bacteroidetes Bacteroidia Bacteroidales [Barnesiellaceae] 0.32
Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae - - 4356062 0.30

Figure 3: A scatter plot of measured BMI vs. trac model BMI predictions on a test set of
n = 2088 AGP participants (upper) shows that predicted BMIs largely cover the “normal”
BMI range between 20 and 28 with an overall test set correlation of 0.33. This model has
132 selected taxa, ranging from Kingdom to OTU levels (lower panel shows the top 15
aggregations with largest α-coefficients).

with metabolic disorder (Chávez-Carbajal et al., 2019). However, the fact that even our
trac model could not identify a simple sparse predictive aggregation model for BMI sug-
gests that more complex statistical models are required for predictive modeling, including
adjustment for available covariates such as diet, sex, and overall life style.

Predicting Central Park soil properties from microbial communities

Soil microbial compositions vary considerably across spatial scales and are shaped by myriads
of biotic and abiotic factors. Using univariate regression models, Fierer and Jackson (2006)
found that soil habitat properties, in particular pH and soil moisture deficit (SMD), can
predict overall microbial “phylotype” diversity. Using n = 88 soil samples from North
and South America, Lauber et al. (2009) showed that soil pH concentrations are strongly
associated with amplicon sequence compositions, as measured by pairwise unifrac distances.
Moreover, they found that soil pH correlated positively with the relative abundances of
Actinobacteria and Bacteroidetes phyla, negatively with Acidobacteria, and not at all with
Beta/Gammaproteobacteria ratios.
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Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria -0.74
Bacteria Acidobacteria Acidobacteria-6 0.58
Bacteria Bacteroidetes 0.45
Bacteria Proteobacteria Gammaproteobacteria -0.19
Bacteria Acidobacteria Acidobacteriia Acidobacteriales -0.13

Bacteria Verrucomicrobia 0.03

Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria -20.36
Bacteria Proteobacteria 19.53
Bacteria Proteobacteria Deltaproteobacteria 5.12
Bacteria Verrucomicrobia -2.78
Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae -2.48

Bacteria Acidobacteria 1.55
Bacteria Bacteroidetes 1.20
Bacteria Actinobacteria -1.05
Bacteria Acidobacteria Acidobacteriia Acidobacteriales -0.38
Bacteria Actinobacteria Actinobacteria Actinomycetales -0.33

Bacteria Proteobacteria Betaproteobacteria -0.26
Bacteria Acidobacteria DA052 Ellin6513 0.24

Figure 4: Top panel: Scatter plot between moisture and pH (left panel; correlation 0.13),
trac models show that the microbiome is predictive of both pH (middle panel; test set
correlation 0.65) and moisture (right panel; test set correlation 0.42). The 45◦ lines in the
middle and right panels are included for reference. Lower panel: List of selected aggregations
for pH (top) and moisture prediction (bottom).

Here, we used trac on the Central Park soil data collection comprising n = 580 samples
and p = 3379 bacterial and archaeal OTUs (Ramirez et al., 2014; Washburne et al., 2017) to
provide a refined analysis of the relationship between soil microbiome and habitat properties.
Rather than looking at the univariate correlative pattern between soil properties and phyla,
we build multivariate models that take soil pH and moisture as response variables of interest
and optimize taxa aggregations using our predictive framework.

For pH, trac found an interpretable model with six aggregated taxonomic groups: the
two phyla Bacteroidetes and Verrucomicrobia and the class Acidobacteria-6 were positively
associated, whereas the order Acidobacteriales, the class Gammaproteobacteria, and the
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overall kingdom of Bacteria (compared to Archaea) were negatively associated with pH (see
the table in the middle panel of Figure 4). We can thus associate a log-contrast model with
three log-ratios of aggregated taxonomic groups with soil pH in Central Park. The overall
correlation between the trac predictive model and the training data was 0.68. On the test
data, the model still maintained a high correlation of 0.65 (see also Figure 4 top panel).
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Selected Taxa
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Figure 5: Taxonomic aggregations (as highlighted by branch colors) inferred by trac, that
are predictive of Central Park soil pH and moisture, respectively. The color coding on the
outermost ring corresponds to the estimated leaf coefficients β (see also Appendix A).

With the standard caveat that regression coefficients do not have the same interpreta-
tion (or even necessarily have the same sign) as their univariate counterparts, our model

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.277632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277632
http://creativecommons.org/licenses/by-nc-nd/4.0/


also supports a positive relationship between the Bacteroidetes phylum and pH and gives
refined insights into the role of the Acidobacteria phylum. The model posits that the class
Acidobacteria-6 is positively related and the order Acidobacteriales (in the Acidobacteriia
class) is negatively related with pH. Washburne et al. (2017) observed similar groupings in
their phylofactorization of the Central Park data.

There, the classes Acidobacteria-6 and Acidobacteriia belonged to different “binned phy-
logenetic units” whose relative abundances increased and decreased along the pH gradient,
respectively. Finally, the phylum Verrucomicrobia and the class Gammaproteobacteria, in-
cluded in our model, have been reported to be highly affected by pH with several species of
Gammaproteobacteria particlarly abundant in low pH soil (Bartram et al., 2014).

We next investigate the relationship between soil microbiome and gravimetric moisture
(% water) measurements in Central Park. As shown in the left plot in the upper panel of
Figure 4, there is no apparent pattern between measured pH and moisture in the dataset.
Using trac, we inferred a predictive model of moisture consisting of twelve taxonomic ag-
gregations, including the phyla Verrucomicrobia and Actinobacteria, and the family Sphin-
gomonadaceae as strong negative predictors, and the phylum Proteobacteria and the class
Deltaproteobacteria as strong positive predictors (see lower table of Figure 4). Overall, there
are five positive and seven negative coefficients, leading to a log-contrast model with at least
seven log-ratios. On the test data, the correlation between model predictions and measure-
ments was 0.42 (Figure 4 right plot of upper panel). Our reduced predictive power is in
agreement with Fierer and Jackson (2006)’s observation about the smaller influence of SMD
compared to pH on microbial composition. Nonetheless, trac’s taxonomic groupings pro-
vide meaningful information about the taxonomic structure of soil microbiota along moisture
gradients. For example, the model supports the positive association between Proteobacteria
and moisture, as previously observed in a study along a vegetation gradient on the Loess
Plateau in China (Zeng et al., 2016), and the negative effect of moisture on the phylum
Verrucomicrobia and the positive effect on Deltaproteobacteria in the Giessen free-air CO2
enrichment (Gi-FACE) experiment (de Menezes et al., 2016). The Gi-FACE study, however,
also reported several relationships between the microbiome and the soil moisture that are
incongruent with our model, including the role of Acidobacteria.

Finally, Figure 5 compares the aggregations across the taxonomic tree that were found
by trac for soil pH and moisture prediction, respectively. We observe that only the phyla
Bacteroidetes and Verrucomicrobia, and the order Acidobacteriales are common in both
models, confirming that the relevant taxonomic aggregations depend on the response variable
being predicted.

Primary bacterial production in the Fram Strait

Current estimates suggest that the ocean microbiome could be responsible for about half of
all primary production occurring on Earth (Longhurst et al., 1995; Moran, 2015). While net
primary production is known to be highly influenced by a multitude of environmental drivers,
including light, nutrients, and temperature (Boyd et al., 2014), it is not yet established
whether amplicon sequencing data alone contain enough information to serve as a stable
predictor of (regional) marine primary production.

To investigate this relationship we use a recent dataset from Fadeev et al. (2018) covering
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the Fram Strait, the main gateway between the North Atlantic and Arctic Oceans, to tackle
this question with trac. The Fram Strait comprises two distinct oceanic regions, the north-
ward flowing West Spitsbergen Current (WSC), and the East Greenland Current (EGC)
flowing southward along the Greenland shelf. Recent ocean simulations, however, suggest
substantial horizontal mixing and exchange by eddies between the two regions. We thus
learn regression models from amplicon data across both regions and considered the available
leucine incorporation (as proxy to bacterial production) as the outcome (Fadeev et al., 2018).
We train separate models for the two different size fractions (p = 4530 free-living (FL) taxa
in the 0.22µm fraction and p = 3320 particle-associated (PA) taxa in 3µm fraction).

On the FL dataset, trac identifies a parsimonious model, comprising three aggregated
taxonomic groups, strongly associated with bacterial production. The two classes Gammapro-
teobacteria and Alphaproteobacteria are negatively associated, and the family Flavobacteri-
aceae is positively associated with bacterial production, leading to a two-factor log-contrast
model. The overall correlation between the trac prediction and the training data is 0.85.
On the test data, the model maintains a correlation of 0.57. On the PA dataset, trac infers
a single predictive log-contrast with the Flavobacteriaceae family being positively associated
and the entire phylum Proteobacteria negatively associated with primary production. On
the test data, the PA model predictions show a correlation of 0.90 with the measurements.
Figure 6 summarizes the scatter plots of leucine measurements vs. trac predictions for the
two size fractions, colored by region WSC and EGC, respectively.
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Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 27.90
Bacteria Proteobacteria Alphaproteobacteria -23.40
Bacteria Proteobacteria Gammaproteobacteria -4.49

Kingdom Phylum Class Order Family Genus Species OTU α

Bacteria Proteobacteria -13.93
Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 13.93

Figure 6: Top panel: trac models of primary production (leucine) from free living (FL)
and particle associated (PA) taxa. The correlation between predicted and measured leucine
(restricted to the test sets) is 0.57 for FL taxa and 0.90 and PA taxa, respectively. Lower
panel: List of selected FL (top) and PA taxa (bottom) and aggregation coefficients α.

We observe that the PA model appears to serve as an implicit region classifier since
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predicted leucine values of < 17 belong uniquely to samples in the low-productivity EGC
region (see top right panel in Figure 6). Our model suggests an important positive association
of the heterotrophic Flavobacteriaceae with primary production, independent of size class.
Flavobacteriaceae are known to strongly contribute to mineralization of primary-produced
organic matter (see Bowman and Nichols 2005 and references therein), thus suggesting an
indirect relationship between Flavobacteriaceae and primary production. However, previous
studies in South polar front and antarctic zone postulated a strong role of Flavobacteriaceae
for polar primary production (Abell and Bowman, 2005).

Global predictive model of ocean salinity from Tara data

Integrative marine data collection efforts such as Tara Oceans (Sunagawa et al., 2020) or the
Simons CMAP (https://simonscmap.com) provide the means to investigate ocean ecosys-
tems on a global scale. Using Tara’s environmental and microbial survey of ocean surface
water (Sunagawa et al., 2015), we next illustrate how trac can be used to globally con-
nect environmental covariates and the ocean microbiome. As an example, we learn a global
predictive model of ocean salinity from n = 136 samples and p = 8916 miTAG OTUs
(Logares et al., 2014). trac identifies four taxonomic aggregations, the kingdom Bacte-
ria and the phylum Bacteroidetes being negatively associated and the classes Alpha- and
Gammaproteobacteria being positively associated with marine salinity (see Figure 7 lower
panel). Figure 7 shows the scatter plot of salinity measurements vs. trac model predictions
(with correlation on the out-of-sample test set of 0.55).
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Figure 7: Top panel: Measured salinity (y-axis) vs. trac model prediction (x-axis) on the
Tara data. The correlation between prediction and actual salinity on the test set is 0.55.
Each sample is colored by one of the four Longhurst Biome definitions. Outliers to the
model are located in Coastal and Westerlies Biomes. Lower panel: List of selected taxa and
aggregation coefficients α.

Our model shows good global predictive capabilities with a few high salinity outliers
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located in the Red Sea (Coastal Biome) and the Mediterranean Sea (Westerlies Biome).
Despite the fact that salinity is known to be an important environmental factor in marine
microbial ecosystems, most studies thus far have investigated the connection between the
microbiome and salinity gradients on a local marine scale, in particular estuaries. For in-
stance, Bouvier and Del Giorgio (2002); Cottrell and Kirchman (2003) observed a marked
increase of Alphaproteobacteria with increasing salinity, consistent with the estimated pos-
itive relationship in the trac model. In a global marine microbiome meta-analysis, Yilmaz
et al. (2016) reported Spearman rank correlations between phyla relative abundances and
physicochemical water properties, including salinity. There, four out of five orders in the
Bacteroidetes phylum, and three out of four orders belonging to Gammaproteobacteria were
reported to be negatively correlated with salinity. This suggests that our aggregation model
does not universally agree with standard univariate assessments of the influence of environ-
mental factors. Nevertheless, we believe that our trac-derived two-factor log-ratio model of
ocean salinity can further contribute to the understanding of the large-scale biogeography in
global ocean surface water.

Conclusions

Finding predictive and interpretable relationships between microbial amplicon sequencing
data and ecological, environmental, or host-associated covariates of interest is a cornerstone
of exploratory data analysis in microbial biogeography and ecology. To this end, we have
introduced trac, a novel scalable tree-aggregation regression framework for compositional
amplicon data. The framework leverages the hierarchical nature of microbial sequencing
data to learn parsimonious log-ratios of aggregated microbial compositions that best predict
continuous environmental or host-associated response variables. trac seamlessly generalizes
prior approaches to sparse log-contrast modeling (Lin et al., 2014; Shi et al., 2016; Rivera-
Pinto et al., 2018) and shares similarities with ideas from tree-guided, balance modeling of
compositional data (Egozcue and Pawlowsky-Glahn, 2005; Silverman et al., 2017; Washburne
et al., 2017), albeit with a stronger focus on finding predictive relationships.

In the human gut microbiome context, the estimated trac model of immune marker
sCD14 concentrations in HIV patients asserted a particularly strong predictive role of the
Ruminococcaceae/Lachnospiraceae family ratio, thus delivering a testable hypothesis for
future HIV-microbiome studies. In contrast, trac prediction of Body Mass Indices (BMIs)
of participants in the American Gut Project revealed a dense model with more than one
hundred aggregations across all available taxonomic levels. Our analysis is consistent with
the complexity found in other recent large-scale approaches aiming at discovering taxonomic
signatures of obesity (Peters et al., 2018).

The trac analysis of environmental microbiomes in soil and marine habitats consistently
provided parsimonious taxonomic aggregations for predicting covariates of interest. Rather
than describing univariate relationships between single bacterial compositions or microbial
diversity and soil properties, we asked for microbial aggregations that best “predict” soil
pH and moisture measurements. This revealed distinct microbial taxa ratios that aligned
with the underlying environmental gradients. Similarly, we found predictive aggregated
taxa signatures in marine ecosystems. For example, Flavobacteriaceae/Proteobacteria ratios
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accurately predicted regional leucine incorporation (as proxy for primary production), and
Alpha- and Gammaproteobacteria/Bacteroidetes ratios well-aligned with sea surface water
salinity on a global scale, reminiscent of the ubiquitous Firmicutes/Bacteroidetes ratio in
the context of the gut microbiome and obesity.

The trac framework naturally lends itself to several methodological extensions that are
easy to implement and may prove valuable in microbial ecology. Firstly, as highlighted in the
gut microbiome context, inclusion of additional factors such as diet and life style would likely
improve prediction performance. This can be addressed by combining trac with standard
(sparse) linear regression to allow the incorporation of (non-compositional) covariates into the
statistical model. Secondly, while we focused on predictive regression modeling of continuous
outcomes, it is straightforward to adopt our framework to classification tasks when binary
outcomes, such as, e.g., case vs. control group, or healthy vs. sick participants, are to be
predicted. Thirdly, due to the compositional nature of current amplicon data, we presented
trac in the common framework of log-contrast modeling. However, alternative forms of tree
aggregations over compositions are possible, for instance, by directly modeling the relative
abundances as features rather than log-transformed quantities. Tree aggregations would
then amount to grouped relative abundance differences and not log-ratios, thus resulting in
a different interpretation of the estimated model features.

In summary, we believe that our methodology and its implementation in the R package
trac, together with the presented reproducible application workflows, provide a valuable
blueprint for future data-adaptive aggregation and regression modeling in microbial bio-
geography and ecology research. This, in turn, should contribute to the generation of new
interpretable and testable hypotheses about the factors that shape microbial ecosystems in
their natural habitats.
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Appendix

A Derivation of Optimization Problem

We design a convex tree-based penalty PT (β) that promotes β to be constant along branches
of T . We encode T through a binary matrix A ∈ {0, 1}p×(|T |−1) indicating whether feature
j is a leaf of each non-root node u ∈ T − {r}, that is Aju = 1{j ∈ L(u)} where L(u) is the
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set of leaves that descend from u. In particular, we take

PT (β) = min
γ∈R|T |−1

{‖γ‖1 s.t. β = Aγ} .
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Figure 8: Schematic of the tree aggregation process.

Figure 8 shows a schematic of the tree aggregation idea. The vector γ ∈ R|T |−1 can be
thought of as a latent parameter vector with an entry associated with each node of the tree
(see Figure 8). We associate a βj to each leaf of T , and the constraint β = Aγ expresses a
particular relationship between these, namely that each coefficient βj is the sum of the γu for
which j ∈ L(u) (i.e., each βj is the sum of its ancestor γ-values in the tree). This relationship
implies that when all the γ-values in a subtree are zero (denoted by crossed out nodes in the
figure), then all the β coefficients within the subtree are equal. Thus, the sparsity inducing
`1-norm on γ in PT (β) induces β to tend to be constant within subtrees of T . Using this
penalty in Eq. (1) leads to the trac method, which is computed by solving,

minimizeβ∈Rp,γ∈R|T |−1 L (y − log(X)β) + λ‖γ‖1 s.t. 1Tp β = 0, β = Aγ. (3)

This estimator is built on the tree-based aggregation penalty of Yan and Bien (2020), de-
veloped for general situations in which features are rare and a tree relating the features is
available. In their setting, features are not compositional, so they do not introduce a sum-
to-zero constraint or take the log of the features. The trac problem can be written more
simply, entirely in terms of γ, as

minimizeγ∈R|T |−1 L (y − log(X)Aγ) + λ‖γ‖1 s.t. 1TpAγ = 0.

The n×(|T |−1) matrix log(X)A has the sum of the log counts of each of the |T |−1 subtrees
of T (excluding T itself). Changing variables to αu = γu · |L(u)| and using properties of
logarithms establishes the equivalence with problem Eq. (2) in the main paper.
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Alto, S., Garćıa-Mena, J., and Hernández-Guerrero, C. (2019). Gut microbiota and pre-
dicted metabolic pathways in a sample of Mexican women affected by obesity and obesity
plus metabolic syndrome. International Journal of Molecular Sciences, 20(2):1–18.

Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2013). Structure-constrained
sparse canonical correlation analysis with an application to microbiome data analysis.
Biostatistics, 14(2):244–258.

Combettes, P. L. and Müller, C. L. (2020). Regression models for compositional data: Gen-
eral log-contrast formulations, proximal optimization, and microbiome data applications.
Statistics in Biosciences, pages 1–26.

Cottrell, M. T. and Kirchman, D. L. (2003). Contribution of major bacterial groups to bac-
terial biomass production (thymidine and leucine incorporation) in the Delaware estuary.
Limnology and Oceanography, 48(1 I):168–178.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems:1695.

de Menezes, A. B., Müller, C., Clipson, N., and Doyle, E. (2016). The soil microbiome at
the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment.
Microbiology (United Kingdom), 162(9):1572–1582.

Dillon, S. M., Frank, D. N., and Wilson, C. C. (2016). The gut microbiome and HIV-1
pathogenesis: A two-way street. Aids, 30(18):2737–2751.

Dubourg, G. (2016). Impact of HIV on the human gut microbiota : Challenges and perspec-
tives. Human Microbiome Journal, 2:3–9.

Egozcue, J. J. and Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in
compositional data analysis. Mathematical Geology, 37(7):795–828.

Fadeev, E., Salter, I., Schourup-Kristensen, V., Nöthig, E. M., Metfies, K., Engel, A., Pio-
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