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Abstract

The analysis of fish behavior in response to odor stimulation is a crucial component of
the general study of cross-modal sensory integration in vertebrates. In zebrafish, the
centrifugal pathway runs between the olfactory bulb and the neural retina, originating
at the terminalis neuron in the olfactory bulb. Any changes in the ambient odor of a
fish’s environment warrants a change in visual sensitivity and can trigger mating-like
behavior in males due to increased GnRH signaling in the terminalis neuron. Behavioral
experiments to study this phenomenon are commonly conducted in a controlled
environment where a video of the fish is recorded over time before and after the
application of chemicals to the water. Given the subtleties of behavioral change, trained
biologists are currently required to annotate such videos as part of a study. This process
of manually analyzing the videos is time-consuming, requires multiple experts to avoid
human error/bias and cannot be easily crowdsourced on the Internet. Machine learning
algorithms from computer vision, on the other hand, have proven to be effective for
video annotation tasks because they are fast, accurate, and, if designed properly, can be
less biased than humans. In this work, we propose to automate the entire process of
analyzing videos of behavior changes in zebrafish by using tools from computer vision,
relying on minimal expert supervision. The overall objective of this work is to create a
generalized tool to predict animal behaviors from videos using state-of-the-art deep
learning models, with the dual goal of advancing understanding in biology and
engineering a more robust and powerful artificial information processing system for
biologists.

Introduction

For many behavioral experiments in neuroscience, it is now a necessity to analyze large
collections of digital video data captured in controlled or semi-controlled circumstances,
where some degree of variation in the recorded scenes is expected. Examples include
experiments for different animal model systems like fish, rodents, primates, drosophila,
and worms [3, 8, 23,25,35,39,44], which study how these animals work together in
groups or alone in response to certain stimuli. The stimulus can be a naturally
occurring aspect of the environment (e.g., natural light), but is more often artificially
induced in a laboratory setting. For example, the addition of odorants into water to
understand the interplay between the olfactory and visual systems of a fish.
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When looking for a change in behavior, the first step in analyzing video data is
tracking the movement of individual animals across a sequence of recorded frames. This
can be done algorithmically through the use of target detection and tracking methods
from computer vision. Most of the tracking methods that are commonly deployed for
this purpose are fully automatic [2, 10,41,42,49], although there are some
exceptions [31] where tracking requires some form of human intervention. The second
step of the process is classifying a change in animal behavior. For this, automatic
approaches have been suggested in the literature [10,19,23,26,33,36,40,46], but there is
no generally applicable approach as there is with target detection and tracking, and
many scientists opt to perform this stage by hand. Thus even with partial automation,
the video annotation process still requires extensive labor and time. Here we propose a
new assistive vision tool that combines a novel generalized tracking algorithm based on
deep learning with a behavior-specific classifier to better automate the video annotation
process for behavioral experiments that look for distinct changes in animal behavior.

To develop and validate the proposed video analysis tool, we look at a specific case
study of how olfactory signals affect vision through the centrifugal pathway in fish. For
this study, we make use of videos of experimentation that behaviorally demonstrate this
interplay between the visual and olfactory systems. The zebrafish (Danio rerio) is a
common animal model system for studying multi-modal sensory integration. This is
because it shares a high evolutionary proximity to mammals [12]. Zebrafish possess a
prominent centrifugal pathway, running between the olfactory bulb and the neural
retina, referred to as the olfacto-retinal centrifugal pathway (the ORC pathway) [24, 30].
The ORC pathway originates from the terminalis neurons (TNs), embedded in the
olfactory bulb. Each olfactory bulb contains approximately 20-30 TNs. The TNs
project axons to large brain areas, and through the optic nerve, some of the TN axons
enter the retina where they extend in the interplexiform layer along the board of the
inner nuclear layer. While propagating in the retina, the TN axons are branched,
projecting to the inner nuclear layer and synapsing with dopaminergic amacrine cells.

The increased visual sensitivity in zebrafish due to odorants has been an active area
of study for many years. Insights from relatively recent research [24,30] have shown that
the function of the ORC pathway is regulated by the olfactory input. Huang et al. [24]
demonstrated how the visual sensitivity in zebrafish is increased in the presence of
olfactory signals whereas disrupting the ORC pathway impairs visual function. They
considered single-unit retinal ganglion cells for those experiments. Banerjee et al. [4]
modeled this phenomenon by assuming the importance of extreme cellular responses in
the modulation of sensory systems and applying the statistical extreme value theory.

Our experiments use a behavioral assay based on the visually-mediated escape
responses of zebrafish. The experimental setup consists of a rotating cylinder and a
stimulus, in the form of white paper marked with a black segment attached to the
surface of the rotating cylinder. The fish is allowed to swim freely in the cylinder before
and after the application of an odorant. It reacts to the stimulus when visible. The
entire setup is illuminated by a light source from above, whose light intensity can be
adjusted by changing neutral density filters. Additionally, the fish’s visual threshold is
recorded using light filters to find the minimum amount of light required to produce an
observable, visually mediated escape response. This swimming behavior is captured as a
video via an infrared camera, with biologists subsequently performing data analysis
from the video recordings by hand.

Typically, a fish swims slowly along the wall of the container in either clockwise or
counterclockwise direction. However, when challenged by the black segment rotating
outside the container, the fish displays a robust escape response, i.e., it turns and swims
in the opposite direction of the stimulus. This sudden change in behavior can be
attributed to the addition of an odorant in the water. As a result of its appearance, the
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fish becomes more aware of its surroundings due to the ORC pathway operating more
effectively at a lower light intensity. Before the development of the proposed tool,
collected videos had to be manually assessed by trained biologists to determine whether
or not this behavior change was present.

Recent advances in computer vision technologies have allowed us to build a tool that
immediately benefits this type of scientific experimentation. Our tool extracts
meaningful information such as a fish’s trajectory using state-of-the-art deep learning
and supervised classification methods to automate the prediction of behavioral changes
when the sensory integration system is instantiated. It requires no human supervision in
operation. Additionally, it can be generalized to a number of experiments that involve
studying motion-based animal behavior. To date, this is the only tool that is able to
automatically predict changes in behavior in zebrafish due to odor stimulation. In order
to study the utility of this tool for behavioral experiments, we compare its output with
human judgements from an attempt at crowdsourcing the video annotation. Based on
the user study, the tool has been found to be accurate by a large margin of 50%,
compared to humans.

To summarize, the contributions of this article are:

• A new fully automatic end-to-end tool for analyzing behavioral changes in fish
that drastically increases data analysis throughput, and minimizes errors due to
human bias and inattentiveness. The software is available as an open source
package on GitHub.

• A detailed evaluation of the effectiveness and usability of the tool based on
verified ground-truth annotations from experts, as well as a comparison to human
annotations produced via crowdsourcing.

Results

The proposed tool is a computational pipeline consisting of five stages, each of which is
discussed in detail in the Methods section. Raw video showing the movement of a fish
in the water after the application of chemicals is used as input to the tool. The tool
outputs a binary “yes” or “no” decision indicating whether or not the fish exhibited
behavioral change. Since the behavioral changes in fish are primarily studied by
biologists through their swimming patterns, we use automatic target detection and
tracking side-by-side to generate a specialized trajectory image from the raw video.
Fig. 1 shows the process used to generate a trajectory image from experimental data.
Compressed trajectory images are then used as input to a behavior classifier. Fig. 2
shows how the classification process follows the generation of trajectory images. In this
section we describe two evaluations to validate the trajectory image quality and
classification output.

With respect to the dataset used for the evaluations, we collected 46 escape response
videos from wet-bench experiments, as well as a single video representing zebrafish
mating behavior. Out of these we reserved four escape response videos that were
annotated by trained biologists and 300 frames from the mating video to create the fish
detection dataset. Combining the video frames from the escape videos with the frames
from the mating video, 1226 frames were available for training a zebrafish detector.
Since we are only interested in detecting a single class (the presence of a zebrafish), this
number of frames was sufficient. Out of the remaining 42 wet-bench videos, we utilized
31 videos to create a total of 160 short videos for training and testing behavior
classifiers by splitting each video into clips that were four seconds in length. The time
duration for each clip was suggested by biologists as being enough to notice changes in
behavior in fish. Each four second clip was annotated by biologists to note the time of
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Figure 1. Process used to generate a trajectory image from experimental
data. This figure illustrates the first two steps, fish detection and tracking, of the
software pipeline that forms the proposed tool. The process includes (a) Selection of
raw input video frames; (b) Automatic detection of a fish within each video frame;
(c) Tracking of the fish via optical flow; (d) Creation of a trajectory image combining
the optical flow output of the video frames, which is provided to an autoencoder for
compression. We use the latent representation from the autoencoder for classification.
That process is shown in Fig. 2. The numbers 1, 2, . . . , t just beneath the images stand
for different timestamps of the video frames. Since the optical flow algorithm operates
on two consecutive frames, the total number of frames after processing by the algorithm
is t− 1.Created with Adobe Illustrator CC Version 22.1.

the onset of behavioral changes after the application of odorants in the water. We
reserved 10 of the remaining videos for the human comparison study.

Trajectory Image Evaluation. To evaluate the target (i.e., fish) detection
performance in a quantitative manner, Mean Average Precision (mAP) at Intersection
over Union (IoU) in the intervals [0.5, 0.75, 0.9] is used. The mAP evaluation follows the
same protocol from the PASCAL VOC object detection evaluation regime [13], which is
a standard in computer vision, except for a single modification introduced in IoU. IoU is
the part of the evaluation that assesses the quality of the bounding boxes drawn around
a detected target. Unlike PASCAL VOC, we evaluate mAP at different IoU intervals to
account for different light intensity and experimental conditions. We consider predicted
output to be a “true match” when it shares the same label as the ground-truth and has
an IoU ≥ 0.5, 0.75, 0.90. The average precision (AP) for each class is calculated as the
area under the precision-recall curve. Since we are only interested in detecting fish, i.e.,
a single class, mAP is equivalent to AP. We achieve a mAP score of 72.17% at IoU 0.5,
meaning 72.17% of the time the fish was correctly detected with each predicted
bounding box overlapping with the ground-truth pixels of the target by at least 50%.
An example of a successful detection is shown in Supp. Fig. 1(A). For the comparatively
difficult IoU intervals of 0.75 and 0.90, the mAP scores were relatively low, 34.12% and
0.40% respectively, due to near dark or low light intensity and false positive detections
caused by reflections. Supp. Fig. 1(B) shows one such detection failure case due to a
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reflection on the surface of the tank. In that figure, one can see that there is a single
fish swimming, which is correctly shown by the bounding box on the left. The detector
fails though, as it identifies the reflection of the fish as a separate entity, making the
count of fish two instead of one. Mis-detections or false positives do not necessarily pose
a problem for the tool, as such mistakes tend to occur in unrelated frames amongst
hundreds of frames with correct detections in a single video. We use these mistakes to
our advantage when training the classifier portion of the tool, as they provide examples
of noise that must be tolerated for generalization purposes.

The trajectory images generated as a result of detection and optical flow are very
large feature-wise, in comparison to the number of videos we have from the biological
experiments. As a result, we compress the images to reduce dimensionality via
autoencoders (see the Methods section below for details of this process). Supp. Fig. 2
shows example reconstructed outputs from different autoencoder models. Higher
dimensionality always warrants better reconstruction. However, to balance feature
dimensionality with the number of available videos, we use 64 dimensions. Behavioral
Classification Evaluation. To quantitatively evaluate the behavior classification
performance of the proposed tool against human judgement, we use four metrics:
Accuracy, Precision, Recall, and F1 Score. The data for this experiment came from the
wet-bench experiment videos showing the escape response of zebrafish due to the
addition of odorants into the water. Accuracy simply measures the ratio of correctly
predicted observations to the total observations. Note that a higher accuracy does not
always signify a better model. Thus we also use precision, which is the ratio of correctly
predicted positive observations to the total predicted positive observations, and recall,
which is the ratio of correctly predicted positive observations to all observations in the
actual class. F1 score measures the weighted average of the precision and recall scores.
The results are summarized in Table 1. As can be seen from the table, none of the
classifiers achieve an accuracy greater than 65%. The non-expert human accuracy, on
the other hand, is very low (34%), meaning that the task is very hard and cannot be
outsourced to non-experts. The low accuracy score for classifier performance can be
attributed to the fact that we were operating with a small number of videos, just 160,
that could be used as training data for the system. While this is a sufficient number of
videos for the manual data analysis necessary to study the effect at hand, it is, by
current machine learning standards, rather limited. To address this, we turn to a data
augmentation strategy that uses the available videos as a basis for generative sampling.

Classifier Accuracy Precision Recall F1 Score
Support Vector Machines 0.612 (+/- 0.178) 0.640 (+/- 0.311) 0.529 (+/- 0.323) 0.560 (+/- 0.245)
Logistic Regression 0.631 (+/- 0.188) 0.634 (+/- 0.202) 0.580 (+/- 0.329) 0.597 (+/- 0.237)
Decision Tree 0.544 (+/- 0.210) 0.543 (+/- 0.284) 0.468 (+/- 0.386) 0.486 (+/- 0.284)
Random Forest 0.624 (+/- 0.212) 0.642 (+/- 0.270) 0.580 (+/- 0.342) 0.593 (+/- 0.254)
Naive Bayes 0.643 (+/- 0.121) 0.668 (+/- 0.202) 0.580 (+/- 0.266) 0.608 (+/- 0.148)
Non-Expert Human Performance 0.34 (+/- 0.177) 0.412 (+/- 0.164) 0.455 (+/- 0.249) 0.419 (+/- 0.197)

Table 1. Evaluation of the classification performance of the tool with original video
data from the wet-bench experiments. We used a cross-validation style test with 10
folds of classifications. This means that the classification experiment was run 10 times,
varying the training and validation data. Each run used 90% of the data (144 videos)
for training and 10% of the data (16 videos) for testing. Reported error is standard
deviation.

Using the original trajectory images created from the videos as a statistical basis, we
simulated an expansive trajectory feature space by fitting Gaussian distributions over
the original features via a Gaussian Mixture Model (GMM). The goal was to generate
as much evidence as possible for classifier inference. In this context, a GMM can be
used as a generative probabilistic model that describes the distribution of the data and
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finds a mixture of multi-dimensional Gaussian probability distributions that best
describe any input feature space. The appropriate parameters are subsequently fit to
the GMM model to generate n synthetic feature vectors for each class. The value
n = 10000 was selected via empirical observation. Results for different values of n can
be seen at Supp. Tables 1 and 2. Table 2 shows the result after augmenting the training
data via this simulation. As can be seen, the result of classification is drastically
improved when more data is used. The best achieved result of 86.7% from the decision
tree classifier is significantly higher than non-expert human performance, and brings the
tool to a point of functionality that is useful to the experimentalist in practice.

Classifier Accuracy Precision Recall F1-score
Support Vector Machines 0.840 (+/- 0.019) 0.842 (+/- 0.035) 0.837 (+/- 0.019) 0.839 (+/- 0.016)
Logistic Regression 0.764 (+/- 0.016) 0.772 (+/- 0.017) 0.751 (+/- 0.021) 0.761 (+/- 0.017)
Decision Tree 0.867 (+/- 0.011) 0.869 (+/- 0.008) 0.863 (+/- 0.022) 0.866 (+/- 0.013)
Random Forest 0.707 (+/- 0.023) 0.730 (+/- 0.030) 0.659 (+/- 0.046) 0.692 (+/- 0.029)
Naive Bayes 0.712 (+/- 0.020) 0.716 (+/- 0.022) 0.702 (+/- 0.028) 0.709 (+/- 0.021)

Table 2. Evaluation of tool with simulated data (number of synthetic data points
n = 10000) obtained after generative sampling using two different GMM models: one for
positive samples, and one for negative samples. We used cross-validation for classification
over 10 folds, meaning that for each fold 18000 samples are used for training and the
remaining 2000 are used for testing. Reported error is standard deviation.

Discussion

Prior research suggests that cross-modal sensory integration occurs in all vertebrate
species, including humans [7, 11,50]. Any defects in this operation can cause serious
neurological malfunctions, such as difficulties in positional awareness (proprioception),
movement (vestibular system), or response to stimulation in various sensory
systems [22,27]. Tools that assist in the study this phenomenon, such as the one
introduced in this paper, have the potential to accelerate clinical work in the future.

In almost all vertebrate species previously studied (e.g., teleost, reptiles, birds,
rodents, primates), the brain sends centrifugal signals to the neural retina. Depending
on the species, the centrifugal input may come from different regions of the brain. In
monkeys, cortex projections to the lateral geniculate nucleus (LGN) have been discussed
thoroughly by Briggs and Usrey [6]. That study revealed that the cortex signals
sharpen/refine the receptive fields of LGN neurons and amplify signal transmission
through the brain, thereby aiding directed attention. Further, the neural retinas receive
histamine input from the hypothalamus [16]. The presence of histamine has been found
to change membrane potentials of retinal bipolar cells and the firing patterns of retinal
ganglion cells [1, 17]. In humans, prior work [18,21] suggests sensory signaling
interactions between the olfactory and visual systems. Imaging and behavioral analyses
revealed the source of interactions to be in the forebrain, the exact location being
somewhere between the anterior hippocampus and rostromedial orbitofrontal cortex.
All of this research points to a common theory that suggests that measures of
performance or behavior in response to sensory stimulation are amplified, particularly
when a stimulus in one modality is ambiguous or under-determined. The molecular and
cellular pathways involved in such types of sensory integration, however, remain an
active area of investigation.

The zebrafish is a standard model system for vision studies because its retina is
strikingly similar to that of mammals [28,47]. Sensory integration in zebrafish is
mediated by the olfacto-retinal centrifugal pathway. The application of odors (e.g., by
administration of the amino acid methionine) activates the olfactory sensory neurons in
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the olfactory epithelia, thereby increasing the release of the neurotransmitter glutamate
in the olfactory bulb. The TN, located in the olfactory bulb, expresses glutamate
receptors, and is thus activated after odor stimulation. The TN synthesizes and releases
the hormone GnRH, and synapses with dopaminergic cells in the retina. The
neurotransmitter dopamine inhibits retinal ganglion cell activity. Activation of GnRH
inhibits dopamine release from dopaminergic cells in the retina. At the end, due to
olfactory stimulation, dopamine content in the retina is decreased, and the inhibition of
dopamine to retinal ganglion cells is lifted. Thus visual sensitivity will be increased. A
key to increasing understanding of this cross-modal sensory integration is the ability to
conduct experiments at scale, with computer-assisted analysis.

When it comes to building computational models for behavior analysis, Niu et
al. [38] provide a comprehensive survey of recent studies analyzing fish behavior through
computer vision. The fish behaviors described in this study include schooling,
swimming, stress response, feeding, taxis, reproduction and migration. Different
behaviors have different performance characteristics and implications. For example,
monitoring fish swimming behavior and stress helps scientists to uncover problems
related to overall climatic and environmental changes that affect all of us.

Most similar to our research are works that study how to detect and track multiple
zebrafish with frequent occlusion for behavior analysis [2, 41,42,49]. Bai et al. [2]
suggest the use of the histogram of oriented gradients (HOG) as a feature representation
for identifying individual fish, while Xu et al. [49] use a shallow convolutional neural
network. Qian et al. [41] use fish head detection via extremum detection and ellipse
fitting, along with Kalman filtering with feature matching, to detect and track
individual fish in complex motion. Their other work [42] uses a complex combination of
fish head detection and tracking via moving region segmentation, centerline extraction,
head direction estimation and global optimization association. Our work is different
from the existing research in the sense that our proposed tool does not end with
tracking, but shows how we can utilize the information we gain from the tracker for
automatic classification of behavioral changes. We develop a fully automatic end-to-end
pipeline utilizing state-of-the-art deep learning methods for detection and a
straightforward method for the tracking of fish. Occlusion does not affect our method as
much as the others since we utilize it to our advantage by treating it as a form of noise
for training to help the autoencoder, which produces the features for classification,
generalize. In comparison to other methods described above, our method does not rely
on elaborate calculation of head poses and only uses a fraction of the amount of labelled
data for training the detection and classification modules due to data augmentation via
the GMM. Hence, at test time, it is quite fast and accurate. Analyzing complex
behavior phenotypes, as reflected in responses to stimuli (external or internal) triggered
by signal transduction in sensory neurons, interneurons, and motor neurons in the
spinal cord as well as in the brain cortex, would be hard for our tool to differentiate.
However, if such videos and their corresponding labels are available beforehand, our
classifier module can be fine-tuned to reflect those fine-grained classes. The task of
differentiating behavioral changes in fish is difficult (as shown by our user study) and
hence, cannot be easily crowdsourced. Thus our tool can be used by biologists as-is or
as a pre-processing step to skim through videos to surface the most interesting ones for
more exhaustive manual analysis. By re-training the learning-based components (e.g.,
the detection module to identify animals other than fish), our tool can also be used to
study other motion-based animal behavior.
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Figure 2. An overview of the behavioral experiments and tool to analyze
them. (a) Experimental setup for recording behavioral visual sensitivity in zebrafish
in response to olfactory and TN stimulation. The drum rotation in the lower diagram
is clockwise, and the direction of the swimming fish is initially counterclockwise. The
fish displayed escape responses to the approach of the black segment. Upon the black
segment coming into view, a fish will immediately turn and swim away (in the clockwise
direction in this example). Abbreviations used in the lower diagram: C, camera; D,
rotating drum; L, light source; M, motor; P, post; TV, television monitor. (b) The
process for generating trajectory images for zebrafish from videos. This shows how the
first two steps of the overall pipeline (see Fig. 1) are combined to form a trajectory image.
We use automatically detected regions of interest to create a mask for the fish such that
only the pixels representing the fish in the tank are illuminated for dense optical flow
estimation. All the frames are combined thereafter to generate a single trajectory image
for the entire video. (c) Data compression using autoencoders, generative sampling and a
binary classifier for behavior analysis for fish. This shows how the remaining three steps
of the overall pipeline fit together. Since the raw features from the trajectory images can
be high-dimensional, we use compression via autoencoders to limit the dimensionality of
trajectory images. The encoded representations can be used as-is for classifier training
and testing, or as priors for generative sampling before training a classifier.Created with
Adobe Illustrator CC Version 22.1.
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Methods

Procedure for Behavioral Experiments

Previously, we developed a behavioral assay based on visually-mediated escape
responses to measure the behavioral visual sensitivity in zebrafish (Danio rerio) [29].
The animals used in this research were between 4-6 months old, both male and female.
The fish were maintained in 28C circulating water (ph 7.0) under 14/10 light/dark
cycles (ceiling light). They were fed two times a day with freshly hatched brine shrimp.
The test apparatus (see Fig. 2(A)) consisted of a transparent container surrounded by a
rotating drum. The drum was illuminated by a light source from above, and the light
intensity could be adjusted by changing neutral density filters. The drum could rotate
in either clockwise or counterclockwise directions. The inside of the drum was covered
by white paper marked with a black segment. The fish was allowed to freely swim in
the container, and a post was placed in the middle of the container to prevent the fish
from swimming through the center of it. The swimming behavior was viewed via a
monitor connected to an infrared video camera. Normally, the fish swam slowly along
the wall of the container in either a clockwise or counterclockwise direction. However,
when challenged by the black segment rotating outside the container, the fish displayed
robust escape responses, i.e., as soon as the black segment came into view, the fish
immediately turned and rapidly swam away. By measuring the minimum light
intensities required to evoke the escape responses, we evaluated the visual sensitivity of
zebrafish. The experiments were conducted as follows:

1. The fish was transferred to the test container, one fish per container.

2. The fish was dark adapted in complete darkness for 30 minutes.

3. The fish was tested for behavioral responses to the approach of the rotating
segment. Initially, the intensity of light that illuminated the rotating segment was
set at a near complete dark level (log I = −6.0; the maximum light intensity
measured at log 0 = 425µW/cm2), then gradually increased (by removing neutral
density filters) at 0.5 log unit steps until the fish showed escape responses to the
rotating segment. The minimum light required for eliciting escape responses was
noted as the threshold light sensitivity (the absolute visual sensitivity level).

4. Upon determining the light threshold, odor stimulation (1 microliter stock
solution of methionine, 3mM dissolved in water) was administrated to the test
container via a pipette.

5. Immediately after the administration of methionine, the visual sensitivity of the
fish was measured again.

6. Repeat steps 1 – 3.

A Tool to Analyze Behavior

Our tool builds on the flexibility and success of deep learning methods for detection and
optical flow for tracking. The entire pipeline consists of five main stages: (1) automatic
fish detection, (2) tracking of fish, (3) compression of trajectory images for further data
generation, (4) data augmentation through generative sampling and (5) binary
classification to determine if a behavioral change is present. The process begins with a
raw video showing the movement of fish in water after the application of chemicals and
ends with a binary “yes” or “no” prediction indicating whether the fish exhibited
behavioral change or not.

Since the behavioral change in fish is primarily learned through its swimming
pattern, we use automatic target detection and tracking in parallel to generate a
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trajectory image from a single video. Effectively, the trajectory images holds
information about the swimming pattern of a fish before and after the application of
odorants in water and is created by fusing images acquired as a result of detection and
tracking from videos. Since these trajectory images can be large, we use compression via
an autoencoder model to reduce the number of features before sending them to a
classifier. We then use the features acquired after compression of the trajectory images
to classify whether or not a fish shows any behavioral change. Most machine learning
methods are data hungry and cannot generate trustworthy results if sufficient amounts
of data are not available. With only a relatively small number of videos is available
from the wet-bench experiments, we simulate an expansive data space by sampling from
a GMM over the original data. The goal is to generate as much evidence as possible for
statistical inference. In the following subsections, we provide the details about each
stage.

1. Detection

A target detection algorithm is employed to locate the fish in each frame. The detector
is primarily employed to create a mask for fish and apply it on individual frames before
the optical flow operation, such that only the displacement of fish between frames is
captured by the optical flow algorithm, ignoring the motion of other pixels in the frame
representing the apparatus for the experiment. For automatic detection, we use
YOLOv3 [43], a deep convolutional neural network for real-time object detection at
various scales. Since YOLOv3 is primarily trained on the PASCAL VOC [13] and
MS-COCO [32] datasets, we re-trained it specifically on our fish dataset to identify fish
under very little light. This dataset is made available to researchers for further work on
this problem (see Data Availability Statement). Compared to its previous version
YOLOv2, YOLOv3 has a deeper architecture and contains residual connections and
upsampling layers. Some salient features of YOLOv3 that are improvements over the
previous versions are its ability to make detections at three different scales and to detect
smaller objects, both of which make it useful for detecting fish in tanks. The algorithm
outputs bounding box coordinates for a detected fish. The centroid of the bounding box
is then calculated to locate the middle of the fish, with a circle with a 10 pixel radius as
the point representing the location of fish in the tank. This point serves as a key point
for the optical flow algorithm. The motivation for using a point instead of a rectangular
bounding box came from the observation that it is easier to create a trajectory image
via points.

2. Tracking

For tracking we use a dense optical flow method [15] that shows the displacement of
each and every pixel between frames. The algorithm operates on two corresponding
frames as inputs to produce a single image that shows the displacement. We use
OpenCV’s implementation of Farnebäck dense optical flow [15] for tracking the fish
across video frames. The algorithm begins by approximating the windows of video
frames by quadratic polynomials through polynomial expansion transform. Then, by
observing how the polynomial transforms under motion, a method to estimate
displacement fields from polynomial expansion coefficients is defined. After a series of
refinements, dense optical flow is finally computed. For example, for a particular video
of x seconds with n+ 1 number of video frames, we use the detection algorithm for
n+ 1 frames and end up with masks for each frame, representing the location of the fish.
We then use these masks for tracking via optical flow, which results in n frames showing
the displacement of fish between frames. Next, we combine these n frames to generate a
single trajectory image for the entire video. The process of creating the trajectory
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image is illustrated in Fig. 2(B). Note that this optical flow method is highly dependent
on the success of the detection algorithm that is applied at the previous stage.

3. Trajectory Image Compression

Since the raw features of a trajectory image are large (256× 256× 3) in comparison to
the number of videos collected from the wet-bench experiments (160), we need to
compress them before generative sampling and classification. We use an autoencoder for
that purpose. The autoencoder [37] is a standard approach for learning compact object
representations and is widely used as a data compression algorithm where the
compression and decompression functions are data-specific, lossy, and learned
automatically from examples. It takes an input x ∈ [0, 1]d and first maps it with an
encoder to a hidden representation y ∈ [0, 1]d

′
through a deterministic mapping:

y = s(Wx+ b) where s can be a non-linearity like the sigmoid or RELU functions. The
latent representation is then mapped back into a reconstruction z of the same shape as
x, i.e., z = s(W ′y + b′). The reconstruction error can be measured through traditional
squared error. If the input is interpreted as either bit vectors or vectors of bit
probabilities, cross-entropy of the reconstruction can be used. For the purpose of our
task, we used the convolutional layers of VGG19 [45] and compressed the raw features
to a size of 64 dimensions. These features can then be directly used for classification
(see Fig. 2(C) for a diagram of the entire process) or can be used to generate synthetic
data for improving classification.

4. Data Augmentation Via Generative Sampling

Most supervised machine learning algorithms depend on large amounts of data for
training. Since we are operating on a relatively limited number of videos from
wet-bench experiments, we simulated an expansive dataset for training the classifier
stage of the tool using a GMM. A GMM is fundamentally a probabilistic model that
assumes all of the data points are generated from a mixture of a finite number of
Gaussian distributions with unknown parameters. The approach is often used for
classification and generative modeling, as well as for multimodal data. This is because it
provides a richer class of density models than a single Gaussian distribution. A
limitation of the GMM approach is that the loss function is non-convex and optimizing
it is non-trivial. The most popular algorithm that is used for optimizing GMMs is the
Expectation Maximization algorithm [34].

The GMM is parameterized by two types of values: the mixture component weights
and the component means and variances/covariances. For univariate data analysis, a
GMM is defined as a linear superposition of K components by:

p(x) =
K∑
i=1

φiN (x | µi, σi) (1)

where µi and σi represent the mean and variance of the ith component, φi represents
the mixture component weight for component Ci, with the constraint that

∑K
i=1 φi = 1

so that the total probability distribution normalizes to 1. N (x | µi, σi represents the
individual normal distribution for component Ci. Since the GMM is completely
determined by the parameters of its individual components, a trained GMM can give an
estimate of the probabilities of both in-sample and out-of-sample data. Moreover, since
we can numerically sample from individual Gaussian distributions, we can sample from
a GMM in a straightforward manner to create synthetic datasets.

For our task, we use a GMM to model the overall distribution of the input data. We
assumed that the entire trajectory space can be represented as a mixture of Gaussian
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distributions. Some of the motivating factors that led us to use GMMs in lieu of other
generative sampling methods such as GANs [20] were limited samples, dimensionality of
the trajectory images, and the simplicity of the calculation. In comparison to other
unsupervised density estimation methods, GMMs can operate with limited data. Since
there can be two outcomes of our task, i.e., the fish exhibits a behavioral change after
the application of the odorant into the water, or there is no change in behavior, we train
two separate GMM models from our training data, i.e., the features obtained after
compressing the original 160 videos from from the wet-bench experiments with the
autoencoder. From these two GMM models, 10000 feature vectors are generated from
each one for classifier training, which is discussed in the next section.

5. Binary Classification for Predicting Behavioral Changes

Here we ask the following question: given a set of features representing a trajectory
image after compression, is it possible to identify whether any changes in the movement
of a fish, as encoded by the features, has been triggered after an olfactory signal?
Mathematically, if D =(xi, yi) of size n represents the dataset of sampled generated
trajectory features after compression, xi being the trajectory features such that x ∈ Rn
and yi ∈ [0, 1] being the corresponding labels for behavior change (1) or otherwise (0),
the task of identifying the fish behavior from a new compressed trajectory feature, xnew,
can be expressed as a function fθ(xnew) parameterized by θ after being trained on D,
given by the following expression:

fθ (xnew) =

{
1, if fish exhibits behavioral changes

0, otherwise
(2)

In essence, this task can be formulated as a binary classification problem. Ideally, any
discrimitative supervised learning method can be employed to solve the problem. We
use Support Vector Machines, Decision Trees, Logistic Regression, Naive Bayes and
Random Forest as possible classification candidates, and find that Decision Trees yield
the best outcome (see Results Section).

Support Vector Machines. The Support Vector Machine (SVM) is a supervised
learning paradigm that is widely used in classification and regression tasks [9]. Since the
features obtained as a result of the compression of the trajectory images are numeric
and high-dimensional, we use a linear SVM formulation, which is suitable for such data.

An SVM classifier utilizes a subset of training points, commonly referred to as
“support vectors”, in the decision function to define the decision boundary between
classes. During training, it attempts to find the optimal hyperplane for classifying test
samples based on these support vectors and some constraints. Given a training dataset,
D = (xi, yi) of size p with xi = (xi,1, xi,2, ..., xi,q) and label yi = -1 or +1, formally
the SVM classifier can be defined as a quadratic optimization problem solving the
following equation:

min ‖w‖2 s.t. yi(w
Txi + b) ≥ 1 for all i (3)

where w = (w1, w2, ..., wq) represents the weight vector and b the bias. An important
point to be noted when training an SVM model is the parameter C that controls the
trade-off between having a wide margin and correctly classifying training data.

min ‖w‖2 + C
m∑
1

ξi s.t yi(w
Txi + b) ≥ (1− ξi), ξi ≥ 0 for all i (4)

A larger value of C indicates a smaller number of mis-classified training samples and is
susceptible to overfitting.

Gaussian Naive Bayes. Another common method that is often used for supervised
classification tasks is Naive Bayes [48]. Naive Bayes is a very simple probabilistic
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classification algorithm that makes strong assumptions about the independence of each
attribute of the data and is based on the classical Bayes’ theorem. Naive Bayes
calculates the posterior probability of an observation v belonging to a class Ck, p(Ck|v)
by combining the likelihood of observation v belonging to the class Ck, p(v|Ck) and
prior probabilities of Ck, p(Ck).

p(Ck|v) ∝ p(v|Ck)p(Ck) (5)

Gaussian Naive Bayes extends the concepts of simple naive Bayes to that of real-valued
continuous attributes. For example, if x represents a real-valued attribute, µk is the
mean and σ2

k the variance of x associated with the the class, Ck. Then, for Gaussian
Naive Bayes, the likelihood or probability of some observation v given the class Ck,
p(x = v|Ck) can be computed by inserting v into the equation for a Gaussian
distribution parameterized by µk and σ2

k:

p(x = v|Ck) =
1√

2πσ2
k

e
−(x−µk)2

2σ2
k (6)

Now if x = (x1,x2,..,xn) is a vector representing n independent features, the likelihood
would be given by

∏n
i=1 p(xi|Ck) and the Naive Bayes classifier for class ŷ = Ck for

some k is defined as:

ŷ = argmaxk∈{1,2,3...}p(Ck)
n∏
i=1

p(xi|Ck) (7)

In the present context, x stands for the features acquired after compressing the
trajectory image and the classes Ck, k = 0, 1 are binary (0 for no behavioral change and
1 for noticeable changes in behavior).

Logistic Regression. Logistic regression belongs to the family of generalized linear
models that are commonly used to model a binary categorical variable using numerical
and categorical predictors. It assigns weights to each input attribute or feature and
outputs a value between 0 and 1. This output can be viewed as a probability of success
relative to the target variable, with any probability ≥ p, p ≥ 0.5 being considered a
“success”.

Given a set of instance-label pairs (xi, yi), where x ∈ Rn, i = 1, 2, . . . l and
y ∈ {+1,−1}, logistic regression (L2- regularised) solves the following unconstrained
optimization problem with loss function, ξ(w;xi, yi) [14]:

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yiw
T xi) (8)

where C > 0 is a penalty parameter, and w represents the weight vector. Similar to
Naive Bayes, for our task, xi stands for the features acquired after compressing the
trajectory image and the class yi is binary (0 for no behavioral change and 1 for a
noticeable change in behavior).

Decision Tree. Decision trees are one of the most popular supervised and
computationally inexpensive machine learning tools for classification when the data is
continuously split into two or more homogeneous subsets according to a certain
parameter. It primarily consists of the following structures: a root node that has no
incoming edges and zero to multiple outgoing edges. internal nodes each of which has
exactly one incoming edge and multiple outgoing edges. edges or branches that
connect between nodes. leaf or terminal nodes each of which has exactly one
incoming edge and no outgoing edges. Typically, the leaves represent class labels and
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branches represent conjunctions of features that lead to those class labels. The
non-terminal nodes (root and internal nodes) contain attribute test conditions based on
which data are split or separated due to different characteristics. The criteria for
separation can be calculated through information gain or entropy calculation. It works
for both categorical and continuous input and output variables. Decision trees are
notorious for over-fitting their data. Methods to overcome this include carefully pruning
the tree, using early stopping, or ensemble methods.

Random Forest. A random forest [5] is a supervised ensemble method consisting of a
number of decision trees. It aggregates the votes from different decision trees to decide
the final class of the test object in order to improve the predictive accuracy and control
over-fitting. It is common to find that individual decision trees within the random forest
exhibit high variance and tend to overfit. To decrease variance and control over-fitting,
each tree is built from a sample drawn with replacement from the training set.
Moreover, when splitting each node during the construction of a tree, the best split is
found either from all input features or a random subset of maximum features. This
process of injecting randomness provides individual decision trees with decoupled
prediction errors, and by taking an average of the predictions, some errors cancel out,
yielding a better model.

Crowdsourced Data Annotation Study

To compare the effectiveness of our newly introduced tool against human performance
and to check whether the task can be crowdsourced to the untrained public or not, we
conducted a user study (see Supp. Fig. 3). The complete procedure for the study is as
follows. A participant is first presented with a video clip a positioned on the top of a
screen, labelled as the “Before” (pre-treatment) video and another video clip b right
below the first, labelled as the “After” (post-treatment) video. The observer is informed
that a and b represent the fish swimming in the experimental apparatus before and after
the application of chemicals (odorant) in water respectively. Below the video pair, three
options are provided and the observer is asked to select the option that most applies to
the question, “Do you think the fish reacts differently after being treated with
chemicals?”

To capture as much of the underlying complexities in human judgment as possible
and to aid in decision making, a list of common behavioral traits is provided to the
subjects. Examples of those traits include turn and follow response, i.e., the fish
changes swimming pattern in order to follow the stimulus, showing signs of interest in
the stimulus; escape response (the fish turns and swims in the opposite direction after
becoming aware of the presence of the stimulus); dodging response (the fish jumps or
swims away from the stimulus, towards the middle of the tank); flinches or jumps (the
fish jumps or flinches slightly away from the stimulus but doesn’t change swimming
pattern); changes in speed (the fish speeds up or slows down upon acknowledgement of
the stimulus, but does not change direction of swimming). Each subject is given
unlimited time and is informed that providing an accurate assessment is most important.

A total of 10 pairs of pre- and post-treatment videos were selected for the study. 11
subjects participated in the study, consisting of college students and professionals who
were completely unfamiliar with the process of behavioral studies in neuroscience.
Because of the lack of familiarity the subjects had for the task, we included a small
tutorial detailing the process within the study. The intention of using such novice
participants stemmed from the possibility of crowdsourcing these types of data analysis
tasks in neuroscience on platforms like Amazon’s Mechanical Turk service, where
participants at the level of competency of our test subjects are abundant and the cost of
annotation is very low.
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