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Abstract 

Neurons in the human medial temporal lobe (MTL) that are selective for the identity of specific 

people are classically thought to encode identity invariant to visual features. However, it remains 

largely unknown how visual information from higher visual cortex is translated into a semantic 

representation of an individual person. Here, we show that some MTL neurons are selective to 

multiple different face identities on the basis of shared features that form clusters in the 

representation of a deep neural network trained to recognize faces. Contrary to prevailing views, 

we find that these neurons represent an individual’s face with feature-based encoding, rather than 

through association with concepts. The response of feature neurons did not depend on face 

identity nor face familiarity, and the region of feature space to which they are tuned predicted 

their response to new face stimuli. Our results provide critical evidence bridging the perception-

driven representation of facial features in the higher visual cortex and the memory-driven 

representation of semantics in the MTL, which may form the basis for declarative memory. 

Keywords: Human single-neuron recordings, Medial temporal lobe, Face, Deep neural network, 

Identity neuron, Feature coding 
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Main Text 

How the brain encodes different face identities is one of the most fundamental and intriguing 

questions in neuroscience. There are two extreme hypotheses. The feature-based model posits 

that face representations are encoded over a broad and distributed population of neurons (1-4). 

Under this model, recognizing a particular individual requires access to many neurons, with each 

neuron responding to many different faces that share specific visual features such as shape and 

skin texture (e.g., (5) and (6)). Conclusive evidence for feature-based coding, in particular axis-

based feature coding (i.e., neurons parametrically correlate with facial features along specific 

axes in face space), has recently been revealed in the non-human primate inferotemporal cortex 

(IT) (7-10). In contrast, on the other extreme, the exemplar-based model posits that explicit facial 

representations in the brain are formed by highly selective (sparse) but at the same time highly 

visually invariant neurons (11-14). Identity neurons that selectively respond to many different 

images showing a specific person’s face embody the exemplar-based coding and are common in 

the human hippocampus and other parts of the medial temporal lobe (MTL) (13, 14). Recent 

studies have shown that the responses of identity neurons are clustered by high-level conceptual 

or semantic relatedness (e.g., Bill Clinton and Hillary Clinton) rather than by lower-level facial 

features (15, 16). Feature-based and exemplar-based models are not mutually exclusive given 

that both types of neurons have been observed in different brain regions; but there appears to be 

an abrupt transition from a distributed axis-coding model in the higher visual cortex to a sparse 

exemplar-based model in the MTL. The neural computations achieving this transformation 

remain little understood. Here, we ask the critical question of how the brain transitions from the 

representation of facial features processed in the higher visual cortex to the representation of 

identities in the MTL. We hypothesize that there are traces of feature-based encoding in the MTL 

and these remaining feature-based responses will enable the transformation from feature-based 

coding to exemplar-based coding.  

To test this hypothesis, we recorded from 578 neurons in the amygdala and hippocampus (MTL 

areas) of 5 neurosurgical patients (16 sessions in total; Table S1; Fig. S1) while they performed a 

one-back task (Fig. 1A; accuracy = 75.7±5.28% [mean±SD across sessions]). Participants 
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viewed 500 natural face images of 50 celebrities (Fig. 1; 10 faces per identity). 490 neurons had 

an overall firing rate greater than 0.15Hz and we restricted our analysis to this subset of neurons, 

which included 242 neurons from the amygdala, 186 neurons form the anterior hippocampus, 

and 62 neurons from the posterior hippocampus (Table S1). The responses of 46/490 neurons 

(9.39%) differed between different face identities in a window 250-1000ms following stimulus 

onset (i.e., identity neurons; Fig. 1B; Table S1), consistent with prior recordings from the human 

MTL (13, 15, 16). Of the 46 identity neurons, 17 neurons responded to a single identity (referred 

to here as single-identity [SI] neurons) and the remaining 29 neurons each responded to multiple 

identities (referred to here as multiple-identity [MI] neurons). On average, MI neurons encoded 

2.55±0.63 identities (Fig. 1F, J). We confirmed the results using an identity selective index (d′ 

between the most- and least-preferred identities; Fig. 1C) and ordered responses from the most- 

to the least-preferred identities (Fig. 1D). As expected, SI neurons had a sharp decrease of 

response from the most-preferred identity while MI neurons showed constantly steeper changes 

from the most- to the least-preferred identity compared to the non-identity neurons (Fig. 1D). We 

further confirmed the results using a depth of selectivity (DOS) index (Fig. S2A) and single-trial 

population decoding (Fig. S2B, C), which showed that it was possible to predict the identity of 

the face shown. 

It has been shown that some MI neurons encode conceptually related identities (e.g., Bill Clinton 

and Hillary Clinton) (15, 16) in a way that makes the response of MI neurons invariant to visual 

features (13, 14, 16). However, it is unknown whether MI neurons can also encode visually 

(rather than conceptually) similar identities. To answer this question, we extracted features from 

the images shown to the patients using a pre-trained deep neural network (DNN) VGG-16 

trained to recognize faces (see Fig. S3A, B for DNN architecture and feature visualization). We 

then constructed a two-dimensional stimulus feature space using t-distributed stochastic neighbor 

embedding (t-SNE) feature reduction for each DNN layer (Fig. 1G, K and Fig. S4; note that 

quantifications below are in this t-SNE space rather than full dimensional space of the DNN; also 

note the pairwise distance between face examples in the full dimensional space is preserved in 

the t-SNE space; Fig. S3D). This feature space was derived solely from the input images without 

knowledge of neural responses and/or tuning of neurons. The feature space demonstrated an 
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organized structure. For example, faces of the same identity were clustered in the first fully 

connected (FC) layer FC6 (which is towards the top of the feature hierarchy and demonstrates 

clustering of identities; Fig. S4), where Feature Dimension 2 represented a gender dichotomy, 

and darker skinned faces were clustered at the bottom left corner of the feature space (Fig. 1I, 

M). Note that the DNN had no access to semantic information about the faces (e.g., gender, 

ethnicity, social traits), and therefore, the representation of each face in the feature space was 

entirely driven by visual features. Thus, faces were distributed in the feature space purely based 

on their visual appearance, regardless of any semantic information or conceptual association with 

each other.  

We next projected the neuronal responses of a given neuron to each face onto this visual feature 

space (Fig. 1G, K). Strikingly, this revealed that some MI neurons were selective to different 

identities that were clustered in the visual feature space (Fig. 1F-M; see Fig. S5 for more 

examples). This suggests that these neurons responded to face identities that were in fact visually 

similar. To formally quantify the tuning of MI neurons, we estimated a continuous spike density 

map in the 2D feature space from our sparse sampling (Fig. 1H, L upper) and used a permutation 

test (1000 runs; Fig. 1H, L lower) to identify the region that had a significantly higher spike 

density above chance (red outline in Fig. 1I, M). This region shows the part of the visual feature 

space to which a neuron was tuned. At the population level, we found that 13 MI neurons 

(44.8%) encoded all of their selective identities that were clustered in the feature space (referred 

to here as feature MI neurons; Fig. 1B; the other MI neurons encoded identities distributed in the 

feature space and are referred to as non-feature MI neurons). Therefore, feature MI neurons 

encoded visually similar identities.  

In the DNN, the level of feature abstraction, and thus clustering of identities, increases from 

earlier layers to later layers (Fig. S3 and Fig. S4). We therefore expect feature MI neurons best 

reflect the features in later DNN layers. Indeed, we observed feature MI neurons in DNN layers 

Conv5_3 (4 neurons), Pool5 (9 neurons), FC6 (11 neurons), and FC7 (11 neurons; some neurons 

appeared in multiple layers given the distribution of identities across layers; Fig. S4). The tuning 

region of an individual feature MI neuron covered approximately 1-3% of the 2D feature space, 
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with increasing coverage in higher layers (Fig. 2A) . As expected, the distance in the face space 1

between encoded identities decreased in higher layers when identities became more clustered 

(Fig. 2B and Fig. S4). As a whole, the neuronal population that we sampled covered 

approximately 4-10% of the feature space (Fig. 2C; some areas were encoded by multiple 

neurons). In contrast, the response of an individual SI or non-feature MI neuron covered a 

significantly smaller region in the feature space (Fig. 2A; two-tailed unpaired t-test: P < 0.005 

for all comparisons) and this coverage did not increase as a function of abstraction level (Fig. 

2A). Also, the tuning regions of the population were more distributed (Fig. 2C). This result was 

as expected because the identities (and thus the tuning regions) encoded by non-feature MI 

neurons were not contiguous with each other and were further apart (Fig. 2B). The distribution of 

pairwise distance between face examples within each neuron’s tuning region(s) further supported 

this finding (Fig. 2D): feature MI neurons had a single large tuning region whereas non-feature 

MI neurons had smaller but more distributed tuning regions (shown by a bimodal distribution). 

We next investigated the factors that may influence feature-based coding in identity neurons. 

First, previous research primarily used well-known or familiar faces to study identity neurons 

(13, 15, 16). It is unknown whether feature-based coding also depends on familiarity. We found 

that feature MI neurons encoded both familiar (i.e., patients know the name of the celebrity) and 

unfamiliar faces (only 54.2% of all selected identities were familiar; feature MI neurons did not 

differentiate familiar vs. unfamiliar selected identities; Fig. S2D), suggesting that face familiarity 

did not play an essential role for feature-based coding in the MTL (we revisit this point later with 

datasets consisting of all unfamiliar faces and all model synthetic faces). Second, we used a web-

association metric (15) to assess whether visual similarity was distinct from conceptual similarity 

(Fig. S6A). We restricted our analysis to the faces each patient rated as familiar, but similar 

results were found when we included all faces in the analysis. We found that the web-association 

values between pairs of visually similar identities were not significantly greater than the other 

pairs (Fig. 1E left; two-tailed unpaired t-test: t(22) = 0.065, P = 0.95). This argues that the 

 Note that when we calculated the tuning region, we adjusted the kernel size to be proportional 1

to the feature dimensions such that the percentage of space coverage was not subject to the actual 
size of the feature space.
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vicinity in the feature space was not driven by conceptual association. This was also the case for 

non-feature MI neurons (Fig. 1E right; t(18) = 0.51, P = 0.62). In fact, none of the feature spaces 

were correlated with conceptual associations (P > 0.05 for all layers; Fig. S6B), suggesting that 

the organization of the feature space was independent of the association between concepts. 

Therefore, it is unlikely that our findings were driven by conceptual associations. Third, we 

found that feature MI neurons from the same patient encoded different parts of the feature space, 

covering different identities (e.g., Fig. 1J-M vs. Fig. S5A), whereas feature MI neurons from 

different patients could encode a similar region of the feature space, covering the same identities 

(e.g., Fig. 1F-I vs. Fig. S5B). Furthermore, feature MI neurons were distributed across areas of 

the MTL (6 in the amygdala and 7 in the hippocampus) and across patients. Fourth, SI neurons 

and MI neurons had a similar spike sorting isolation distance (Fig. S1H), suggesting that MI 

neurons were not more likely to be multi-units. Lastly, similar results were derived if we 

constructed a three-dimensional feature space or used different perplexity parameters. Similar 

results were also derived if constructed the feature space using manifold approximation and 

projection (UMAP; Fig. S7) or principal component analysis (PCA). This suggests that our 

findings were robust in regard to the construction of the feature space. 

Because different face examples of the same identity were not clustered in the feature space from 

earlier lower-level layers of the DNN (Fig. S3C and Fig. S4), we next asked whether there are 

neurons that code for similar visual features independent of identities. Using the same method to 

select identity neurons that responded to visually similar faces, we identified “feature neurons” 

that were tuned to a certain region of the feature space from each DNN layer (see Fig. 3A, B and 

Fig. S8 for examples and Fig. 3C for a summary), regardless whether the neuron was an identity 

neuron. First, we found that feature neurons mostly appeared in later DNN layers where face 

examples started to become clustered by identities. Therefore, feature neurons from the MTL 

primarily encode high-level visual information related to identification rather than low-level 

image characteristics. The layers Conv5_3, Pool5, FC6, and FC7 contained an above-chance 

number of feature neurons at the population level and we restricted our analysis to these feature 

neurons. The number of identities (Fig. 3D) and face examples (Fig. 3E) covered by the tuning 

region of feature neurons indicated the size of the “receptive field” (in feature space) of these 
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feature neurons. The tuning region of each feature neuron covered approximately 0.5-2.5% of the 

feature space (Fig. 3F) and the neuronal population covered approximately 8-22% of the feature 

space (Fig. 3G). With increasing level of abstraction, tuning regions in later layers FC6 and FC7 

were significantly larger (Fig. 3F; two-tailed unpaired t-test: P < 0.0001 for all comparisons), 

contained more face examples (Fig. 3E; P < 0.05), and had more distributed faces (Fig. 3H; 

Kolmogorov-Smirnov test: P < 0.0001), than earlier layers Conv5_3 and Pool5. Second, 

although an appreciable proportion of feature neurons were identity neurons, some feature 

neurons were not identity neurons (i.e., neither SI nor MI neurons; red bars in Fig. 3C; in 

particular in convolutional layer Conv5_3; see Fig. 3A for an example) because they covered a 

region in the face space containing face examples from different identities. Therefore, identity 

selectivity was not necessary for feature-based coding. In other words, feature neurons can 

respond to visually similar faces that were not from the same identity. Third, we investigated 

whether feature neurons were more likely to be identity neurons (i.e., either SI or MI neurons). 

Indeed, we found that feature neurons had a higher proportion (27/96; 28.1%) of identity neurons 

compared to the entire population (46/490; 9.39%; χ2-test: P = 2.04×10−5; Fig. 3I; note that here 

feature neurons included those from layer Conv5_3 even though identity neurons could in 

principle only emerge in layers with clustering of face examples), suggesting that region-based 

feature tuning is a key component in identity selectivity. 

The region-based feature coding we found is different from the feature coding shown in the IT of 

non-human primates (7-10, 17). Rather than encoding a linear combination of features, MTL 

neurons encoded a certain range of feature values in the face space. We previously found that 

some human amygdala neurons encode a linear change in facial emotions (18). Therefore, we 

wondered whether some MTL neurons encode a linear combination of facial features as shown 

in the primate IT (7, 9). To answer this question, we first used the same partial least squares 

(PLS) regression as in (9, 17) to identify neurons whose response could be predicted by a 

weighted sum of all features (i.e., feature maps; Fig. S3B) in the DNN (Fig. S9A, C, G). We also 

performed a linear regression of neural responses with the two dimensions of the feature space 

(Fig. S4 and Fig. S9B, D, H; similar results were derived using face models from (7) and (19)). 

Using both established approaches, we did not succeed at selecting a larger than expected by 
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chance number of neurons that encoded a linear combination of features (Fig. S9A, B; see also 

Fig. S9C-F for selection within identity neurons and Fig. S9G-J for selection within feature 

neurons). 

We conducted two additional experiments to validate region-based feature tuning using different 

stimuli and explored whether such feature coding could be generalized to unfamiliar faces. In the 

first new experiment, we recorded from 423 neurons in the same 5 patients (18 sessions; firing 

rate > 0.15Hz) using face stimuli from the FBI Twins dataset (Fig. 4A), which were all novel to 

our patients. We applied the same DNN to extract features and construct feature spaces. We again 

found region-based feature coding by single neurons in this experiment (see Fig. 4A and Fig. 

S10A for examples and Fig. 4B-E for group results). This suggests that feature coding by 

neurons in the MTL did not depend on the faces being familiar to the participants (feature coding 

was evident even if we restricted our analyses to the very first exposure of the faces, when they 

were novel). Consistent with the feature tuning derived using the above CelebA stimuli, feature 

neurons derived using the FBI stimuli had larger tuning regions (Fig. 4C; P < 0.001) and had 

more distributed faces (Fig. 4D; P < 0.0001) in layers FC6 and FC7 compared to layer Pool5. 

Notably, we also recorded the response of a subset of the same 330 neurons using the CelebA 

stimuli and we were thus able to directly investigate the generalizability of feature tuning 

between these two tasks. In the common feature space for the CelebA and FBI stimuli, the tuning 

region of 14 CelebA feature neurons overlapped with identities from the FBI stimuli (Fig. 4F, G 

and Fig. S10C-E). We found that FBI stimuli in the CelebA feature neurons’ tuning regions 

elicited a significantly greater response compared to the other FBI stimuli that were not inside 

the CelebA feature neurons’ tuning regions (paired t-test: t(13) = 2.39, P = 0.016; see Fig. 4F, G 

for examples and Fig. 4H for group results; see also Fig. S10F for a breakdown of each layer). 

This shows that region-based feature tuning generalized between different image sets as well as 

to novel stimuli never seen by the participant before. In the second new experiment, we recorded 

from a separate population of 287 neurons (13 sessions from 4 patients; firing rate > 0.15Hz) 

with FaceGen model faces (Fig. 4I-K) (19), which contained only feature information but no real 

identity information. Although the feature space was constructed using parameters (i.e., features) 

used to synthesize the faces rather than DNN features, again, we found region-based feature 

Page  of 9 17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.278283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


tuning (25 neurons; above-chance compared to our simulations; each neuron covered 1.43%

±0.41% [mean±SD] of the feature space; see Fig. 4I and Fig. S10B for examples and Fig. 4J, K 

for group results). Together, our additional experiments showed that region-based feature tuning 

could be generalized to new and unfamiliar face stimuli. 

In conclusion, our results reveal that the response of identity neurons in the human MTL can 

encode identities that are related visually rather than conceptually. We further identified feature 

neurons in the MTL that exhibited region-based feature coding. We showed that feature neurons 

were not dependent on identity selectivity nor face familiarity, and their tuning regions could be 

validated by new face stimuli. 

The MTL is a few synapses downstream of the face-selective regions in the higher visual cortex, 

where feature-based coding is evident (7-10, 17) . Notably, however, in the MTL so far only 2

exemplar-based coding has been demonstrated (13, 14). This raises the question of how the brain 

transitions from a perception-driven representation of features in the higher visual cortex to a 

memory-driven representation of semantics in the MTL. Our results provide a possible 

mechanism by showing that MTL neurons encode a region in the high-level feature space and are 

selective to identities that fall in this region. The existence of a perception-driven representation 

of features in the MTL, importantly transitioned from axis-based to region-based, will translate 

visual information into an exemplar-based code. This mechanism can provide direct input to 

representation of semantics in the MTL, which is the basis for declarative memory (20). 

Therefore, our findings bridge the two extreme hypotheses by illustrating region-based feature 

coding in the MTL, which may form the basis for feature-invariant exemplar-based coding and 

semantic memory. 

Neurons in the human MTL have been shown to demonstrate prominent categorical responses to 

visual objects (i.e., visual selectivity) (21) and facial expressions of emotions (i.e., emotion 

selectivity) (22, 23). Region-based feature coding may also provide an account for visual and 

emotion selectivity: objects or emotions falling within the coding region of a neuron may elicit 

 It is worth noting that feature-based coding is shown in the IT of non-human primates but not 2

yet in humans at the single-neuron level.
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an elevated response. A future direction will be to construct the feature space for objects in 

general (e.g., using the convolutional neural network AlexNet) and investigate region-based 

feature coding in this feature space. Furthermore, previous research on identity neurons primarily 

used familiar faces (13, 15, 16). In the present study, we also found that region-based feature 

coding of face identity was independent of face familiarity, similar to feature coding by primate 

IT neurons that even encode computer generated faces (7, 9). Future studies will be needed to 

understand the role of memory (13, 15, 16) and attention (24) in MTL’s feature coding. Lastly, it 

is worth noting that in contrast to the traditional axis-based face spaces where axes of the space 

and coordinates of face examples are fixed (7, 25), the feature space constructed by t-SNE in the 

present study varies as a function of the set of input stimuli because it models the similarity 

between all input stimuli. Therefore, our observed feature neurons in the human MTL may 

demonstrate a form of similarity-based or manifold-based coding (i.e., finding meaningful low-

dimensional structures hidden in the high-dimensional observations using nonlinear 

dimensionality reduction) (26, 27), which may in turn contribute to the MTL’s critical role in 

face recognition, classification, and memory. 

Rapid advances in computer vision and development of DNNs have provided an unprecedented 

opportunity to help us understand the functional architecture of the brain (8, 17, 28, 29). Our 

present study reiterates the advantages of using DNNs to study neural encoding for face identity: 

by extracting features from complex natural face images using DNNs and projecting them onto 

the feature space constructed by DNN feature reduction, we revealed a novel face code in the 

human MTL that neurons encode visually similar identities. 
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Figure Legends 

Fig. 1. Feature-based neuronal coding of face identities. (A) Task. We employed a one-back task, 

in which patients responded whenever an identical famous face was repeated. Each face was 

presented for 1s, followed by a jittered inter-stimulus-interval (ISI) of 0.5 to 0.75s. (B) 

Percentage of single-identity (SI) and multiple-identity (MI) neurons in the entire neuronal 

population. Stacked bar shows MI neurons that encoded visually similar identities (i.e., 

demonstrating feature-based coding; red) or not (blue). (C) Identity selectivity index. Both SI 

neurons and MI neurons had a significantly higher identity selectivity index than non-identity 

neurons. Error bars denote ±SEM across neurons. Asterisks indicate a significant difference 

using two-tailed unpaired t-test. ****: P < 0.0001. (D) Ordered average responses from the most- 

to the least-preferred identity. Non-identity neurons are shown for comparison purposes. 

Responses were normalized by the response to the most-preferred identity. Shaded areas denote 

±SEM across neurons. The top bars indicate significant differences between SI/MI and non-

identity neurons (two-tailed unpaired t-test, P < 0.05, corrected by FDR for Q < 0.05). (E) Web-

association score for MI neurons. For each neuron, we calculated a mean association score 

between the pairs of stimuli that the neuron was selective to (S-S), and between the pairs of 

stimuli where the neuron was selective to one of them but not selective (NS) to the other (S-NS). 

Error bars denote ±SEM across neurons. Left: MI neurons that encoded visually similar identities 

(i.e., with feature-based coding). Right: MI neurons that did not show feature-based coding. 

Neither feature MI neurons nor non-feature MI neurons encoded conceptually related identities. 

(F-M) Two example neurons that encoded visually similar identities. (F, J) Neuronal responses 

to 500 faces (50 identities). Trials are aligned to face stimulus onset (gray line) and are grouped 

by individual identity. (G, K) Projection of the firing rate onto the feature space. Each color 

represents a different identity (names shown in the legend). The size of the dot indicates the 

firing rate. (H, L) Estimate of the spike density in the feature space. By comparing observed 

(upper) vs. permuted (lower) responses, we could identify a region where the observed neuronal 

response was significantly higher in the feature space. This region was defined as the tuning 

region of a neuron. (I, M) The tuning region of the neuron in the feature space (delineated by the 

red outlines). 
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Fig. 2. Summary of feature tuning for identity neurons. (A) Percentage of feature space covered 

by tuning regions of identity neurons. Note that here we did not apply the threshold for minimal 

cluster size for SI and non-feature MI neurons in order to compare between identity neurons, but 

we still used FDR when we identified clusters. (B) Normalized distance between MI neuron’s 

selective identities in the feature space. To be comparable for different layers, Euclidean distance 

was normalized by the maximum distance (i.e., diagonal line) of the feature space. Error bars 

denote ±SEM across neurons. Asterisks indicate a significant difference between feature MI 

neurons and non-feature MI neurons using two-tailed unpaired t-test. *: P < 0.05, **: P < 0.01, 

and ***: P < 0.001. (C) The aggregated tuning regions of the neuronal population. Color bars 

show the counts of overlap between individual tuning regions. Numbers in the density map show 

the percentage of feature space covered by the tuning regions of the neuronal population. (D) 

Distribution of pairwise distance between face examples in each neuron’s tuning region(s). 

Euclidean distance was normalized by the maximum distance of the feature space. 

Fig. 3. Characterization of feature neurons. (A, B) Two example feature neurons that encoded 

visually similar faces. Legend conventions as in Fig. 1. (C) The number of feature neurons 

identified from each DNN layer. Blue: feature neurons that were also identity neurons. (D) The 

number of identities encoded by feature neurons. (E) The number of face examples encoded by 

feature neurons (i.e., the number of faces that fell within the tuning region of a feature neuron). 

Error bars denote ±SEM across neurons. (F-H) Population summary of feature tuning. Legend 

conventions as in Fig. 2. (I) The number of identity neurons in the whole population (left) and 

among feature neurons (right). Blue: the number of identity neurons. Red: the number of non-

identity feature neurons. Gray: the number of non-identity neurons.  

Fig. 4. Validation and generalization of feature tuning with unfamiliar and model faces. (A-H) 

Results from the FBI Twins dataset. (I-K) Results from the FaceGen dataset. (A) An example 
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neuron demonstrating region-based feature coding. In FBI face spaces, similar faces were also 

clustered and faces from different genders were organized in different areas of the feature space. 

The size of the dot indicates the firing rate. The red outline delineates the tuning region of the 

neuron in the feature space. (B) The number of identified feature neurons using FBI stimuli. 

Only DNN layers with an above-chance number of feature neurons are shown. (C-E) Population 

summary of feature tuning. Legend conventions as in Fig. 2. (F, G) Example CelebA feature 

neurons showing elevated responses for FBI stimuli falling in their tuning regions. Feature 

spaces were constructed for combined CelebA and FBI stimuli. The size of the dot indicates the 

firing rate. The red outline delineates the tuning region of the neuron (identified by the CelebA 

stimuli). Black: face examples from the CelebA stimuli. Gray: face examples from the FBI 

stimuli. Magenta: FBI stimuli falling in the tuning region of the neuron. (H) Population results 

comparing neuronal response to FBI stimuli falling in vs. out of the tuning region. Each dot 

represents a neuron. Error bars denote ±SEM across neurons. Asterisk indicates a significant 

difference between In vs. Out responses using paired t-test (P < 0.05). (I) An example neuron 

demonstrating region-based feature coding. The dimensions of the feature space are the first 

shape and texture principal components (PCs) used to generate the stimuli. Note that face shape 

varied along Feature Dimension 1 and skin color varied along Feature Dimension 2. (J, K) 

Population summary of feature tuning. Legend conventions as in Fig. 2. 
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