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Abstract 

Neurons in the human amygdala and hippocampus that are selective for the identity of specific 

people are classically thought to encode a person’s identity invariant to visual features (e.g., skin 

tone, eye shape). However, it remains largely unknown how visual information from higher visual 

cortical areas is translated into such a semantic representation of an individual person. Here, we 

show that some amygdala and hippocampal neurons are selective to multiple different unrelated 

face identities based on shared visual features. The encoded identities form clusters in the 

representation of a deep neural network trained to recognize faces. Contrary to prevailing views, 

these neurons thus represent an individual’s face with a visual feature-based code rather than one 

based on association with known concepts. Feature neurons encoded faces regardless of their 

identity, race, gender, familiarity, or pixel-level visual features; and the region of feature space to 

which feature neurons are tuned predicted their response to new face stimuli. Our results reveal a 

new class of neurons that bridge the perception-driven representation of facial features in the 

higher visual cortex with mnemonic semantic representations in the MTL, which may form the 

basis for declarative memory.  

 

Keywords: Human single-neuron recordings, Amygdala, Hippocampus, Face, Deep neural 

network, Identity neuron, Feature coding 
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Main Text 

How the human brain encodes and stores in memory different face identities is one of the most 

fundamental and intriguing questions in neuroscience. There are two extreme hypotheses. The 

feature-based model posits that face representations are encoded over a broad and distributed 

population of neurons 1-4. Under this model, recognizing a particular individual requires access to 

many neurons, with each neuron responding to many different faces that share specific visual 

features such as shape and skin tone 5,6. Evidence for a specific type of feature-based coding, axis-

based feature coding, has been demonstrated in the non-human primate inferotemporal (IT) cortex 

7-10 and in humans using fMRI 11-13. That is, neurons/voxels parametrically correlate with facial 

features along specific axes in face space. On the other extreme, the exemplar-based model posits 

that explicit facial representations in the brain are formed by highly selective (sparse) but at the 

same time highly visually invariant neurons 14-17. Identity neurons that selectively respond to many 

different images of a specific person’s face embody exemplar-based coding. Such neurons exist in 

the human amygdala and hippocampus 16,17 and are thought to constitute the building blocks for 

episodic memories 17. The responses of identity neurons are clustered by high-level conceptual or 

semantic relatedness (e.g., Bill Clinton and Hillary Clinton) rather than by facial features 18-20.  

Feature-based and exemplar-based models of face processing are not mutually exclusive, with the 

former thought to give rise to the latter. However, the neural computations bridging these two 

mechanisms remain little understood. Here, we identify a key missing link between the 

representation of specific facial features (feature-based coding) and the representation of specific 

people (exemplar-based coding) in the amygdala and hippocampus. We show that a subset of 

neurons in the human amygdala and hippocampus carry a novel region-based feature code for face 

identity that forms an intermediate code linking between feature-based coding and exemplar-based 

coding.  

 

Results  

Identity neurons 
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We recorded from 2082 neurons in the amygdala and hippocampus (together referred to as Medial 

Temporal lobe [MTL]) of 12 neurosurgical patients (4 male; 38 sessions in total; Extended Data 

Table 1; Extended Data Fig. 1) while they performed a one-back task (Extended Data Fig. 2a; 

accuracy = 75.2%±20.0% [mean±SD across sessions]). Participants viewed 500 natural face 

pictures of 50 celebrities (Extended Data Fig. 2b; 10 different pictures per celebrity/identity). 

1577 neurons had an overall firing rate greater than 0.15 Hz and we restricted our analysis to this 

subset of neurons, which included 753 neurons from the amygdala, 505 neurons form the anterior 

hippocampus, and 319 neurons from the posterior hippocampus (Extended Data Table 1). Below, 

we first delineate the response characteristics of neurons that encode face identities 16,18,21. Then 

we show a broader class of feature neurons and validate and generalize feature coding using new 

stimuli. Lastly, we compare feature coding models with further recordings from a monkey. 

To select identity neurons, we first used a one-way ANOVA to identify neurons with a 

significantly unequal response to different identities (P < 0.05) in a window 250-1250 ms 

following stimulus onset. We next imposed an additional criterion to identify which identities a 

neuron was selectively responding to (selected identities): the neural response to such an identity 

was required to be at least 2 standard deviations (SD) above the mean of neural responses from all 

identities. We found 155 identity neurons (9.83%, binomial P = 1.67×10−15; Fig. 1a, d; Extended 

Data Fig. 2c; Extended Data Table 1), consistent with prior recordings from the human MTL 

16,18,21. Of the 155 identity neurons, 53 neurons responded to a single identity (referred to here as 

single-identity [S-ID] neurons 16,21) and the remaining 102 neurons each responded to multiple 

identities (referred to here as multiple-identity [M-ID] neurons 18,19).  

On average, M-ID neurons encoded 2.48±0.61 identities. We confirmed the results using an 

identity selective index (d′ between the most- and least-preferred identities; Extended Data Fig. 

2d) and ordered responses from the most- to the least-preferred identities (Extended Data Fig. 

2e). As expected, S-ID neurons had a sharp decrease of response from the most-preferred identity 

while M-ID neurons showed constantly steeper changes from the most- to the least-preferred 

identity compared to the non-identity neurons (Extended Data Fig. 2e). This was also captured 

by the larger decrease of firing rate between the most-preferred and the second most-preferred 

stimuli in S-ID neurons compared to M-ID neurons (Extended Data Fig. 2f; two-tailed unpaired 

t-test: t(153) = 4.64, P = 0.0007). We further confirmed the results using a depth of selectivity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2020.09.01.278283doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278283
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Page 5 of 28 

(DOS) index (Extended Data Fig. 2g) and single-trial population decoding (Extended Data Fig. 

2h, i), which showed that it was possible to predict the identity of the face shown (see also 

Supplementary Information and Extended Data Fig. 2j for separate analysis for familiar vs. 

unfamiliar faces as judged by participants). 

 

Feature-based coding of face identities: feature identity neurons 

It has been shown that some M-ID neurons encode conceptually related identities (e.g., Bill Clinton 

and Hillary Clinton) 18-20 in a way that makes the response of M-ID neurons invariant to visual 

features 16,17,21. However, it is unknown whether M-ID neurons can also encode visually (rather 

than conceptually) similar identities (i.e., identities sharing a similar visual appearance, e.g., a 

similar face and eye shape, skin or hair color). To answer this question, we extracted facial features 

from the pictures shown to the patients using a pre-trained deep neural network (DNN) VGG-16 

trained to recognize faces (see Extended Data Fig. 3a, b for DNN architecture and visualization 

of DNN features). Facial features were coded by the weights and activation of thousands of DNN 

units (i.e., the DNN features), and we therefore used the DNN features to represent facial features. 

We further reduced the dimensionality of the DNN features and constructed a two-dimensional 

face feature space using t-distributed stochastic neighbor embedding (t-SNE) for each DNN layer 

(Fig. 1b, e, g and Extended Data Fig. 4; note that quantifications are in this t-SNE space but we 

replicated our results in the full dimensional space of the DNN; also note that the pairwise distance 

between faces in the full dimensional space is preserved in the t-SNE space as shown in Extended 

Data Fig. 3d). The dimensions (or axes) of the face feature space represented the major variations 

in faces that led to successful recognition of the identities by the DNN. Note that this face feature 

space was derived solely from the input pictures without knowledge of the patients’ neural 

responses and/or tuning of neurons (the aspect of a stimulus to which a neuron responds).  

The feature space demonstrated an organized structure. For example, faces of the same identity 

were clustered in the first fully connected (FC) layer FC6 (which is towards the top of the DNN 

hierarchy and demonstrates clustering of identities; Extended Data Fig. 3 and Extended Data 

Fig. 4), where Feature Dimension 2 represented a gender dichotomy, and darker skinned faces 

were clustered at the bottom left corner of the feature space (Fig. 1g). Note that the DNN had no 
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access to semantic information about the faces (e.g., gender, ethnicity, social traits), and therefore, 

the representation of each face in the feature space was entirely driven by its visual appearance. 

Thus, faces were distributed in the DNN-derived feature space purely based on their visual 

appearance, regardless of any semantic information or conceptual association with each other.  

We next projected the neuronal responses of a given neuron to each face onto this DNN-derived 

face feature space (i.e., multiplying the firing rate of each face to its corresponding location in the 

feature space to derive a response-weighted 2D feature map; Fig. 1b, e). Strikingly, this revealed 

that some M-ID neurons were selective to different identities that were clustered together in the 

face feature space (Fig. 1b, e; see Extended Data Fig. 5 for more examples). This suggests that 

these M-ID neurons responded to face identities that were visually similar (e.g., similar in face 

shape or skin tone). To formally quantify the tuning of M-ID neurons, we estimated a continuous 

spike density map in the VGG-derived 2D feature space from our sparse sampling (Fig. 1c, f upper) 

and used a permutation test (1000 runs; Fig. 1c, f lower) to identify the region that had a 

significantly higher spike density above chance (red/cyan outlines in Fig. 1b, e, g; significant 

pixels were selected with permutation P < 0.01 and cluster size thresholds; see Methods and 

Extended Data Fig. 6 for illustration of the selection procedure). This region shows the part of 

the feature space to which a neuron was tuned; and the significant neurons demonstrated region-

based feature coding because they coded a certain region in the feature space. At the population 

level, we found that for 42/102 M-ID neurons (41.2%), all their selected identities were clustered 

in the feature space (referred to here as feature M-ID neurons; Extended Data Fig. 2c; the other 

M-ID neurons encoded identities distributed in the feature space and are referred to as non-feature 

M-ID neurons). Therefore, feature M-ID neurons encoded identities sharing similar facial features 

and thus looking visually similar.  

In the DNN, the level of feature abstraction, and thus clustering of identities, increases from earlier 

layers to later layers (Extended Data Fig. 3 and Extended Data Fig. 4). We therefore expect 

feature M-ID neurons best reflect the face features represented in later DNN layers. Indeed, we 

observed feature M-ID neurons in DNN layers Pool5 (25 neurons), FC6 (27 neurons), FC7 (30 

neurons), and FC8 (30 neurons; some neurons appeared in multiple layers given the distribution 

of identities across layers; Extended Data Fig. 4; see Extended Data Fig. 7a, d for a breakdown 

of amygdala and hippocampal neurons). The tuning region of an individual feature M-ID neuron 
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covered approximately 1.82-9.82% of the 2D feature space, with a similar mean coverage across 

layers (Fig. 2a; note that when we calculated the tuning region, we adjusted the kernel size to be 

proportional to the feature dimensions such that the percentage of space coverage was independent 

of the actual size of the feature space). In contrast, the response of an individual S-ID or non-

feature M-ID neuron covered a significantly smaller region in the feature space (Fig. 2a; two-tailed 

unpaired t-test: P < 0.001 for all comparisons). This result was as expected because the identities 

(and thus the tuning regions) encoded by non-feature M-ID neurons were not contiguous with each 

other and were further apart (Fig. 2b). As a whole, the neuronal population that we sampled 

covered approximately 46-52% of the feature space (Fig. 2c; some areas were encoded by multiple 

neurons), and the tuning regions of the non-feature M-ID neurons were more distributed compared 

with feature M-ID neurons (Fig. 2c). The distribution of pairwise distance between faces within 

each neuron’s tuning region(s) further showed that feature M-ID neurons had a single large tuning 

region whereas non-feature M-ID neurons had smaller tuning regions that were more widely 

distributed across the feature space (Fig. 2d). 

 

Factors that may influence feature-based identity coding 

We next investigated the factors that may influence feature-based coding in identity neurons. First, 

previous research primarily used well-known or familiar faces to study identity neurons 16,18,21. It 

is unknown whether feature-based coding also depends on familiarity. We found that feature M-

ID neurons encoded both familiar (i.e., patients recognized the celebrity’s face) and unfamiliar 

faces (only 41.3%±33.4% [mean±SD across patients] of all selected identities were familiar; 

feature M-ID neurons did not differentiate familiar vs. unfamiliar selected identities; Fig. 2e; two-

tailed unpaired t-test: t(52) = 0.87, P = 0.39). This data suggests that face familiarity did not play 

an essential role for feature-based coding in the amygdala and hippocampus (we revisit this point 

later with datasets consisting of all unfamiliar faces and all model synthetic faces).  

Second, we found that feature M-ID neurons from the same patient encoded different parts of the 

feature space, covering different identities (e.g., Fig. 1a-c vs. Extended Data Fig. 5a), whereas 

feature M-ID neurons from different patients could encode a similar region of the feature space, 

covering the same identities (e.g., Fig. 1a-c vs. Extended Data Fig. 5c). Furthermore, feature M-
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ID neurons were distributed across areas of the MTL (20 in the amygdala and 22 in the 

hippocampus) and across patients.  

Third, S-ID neurons and M-ID neurons had a similar spike sorting isolation distance (Extended 

Data Fig. 1h; t(53) = 0.99, P = 0.32), suggesting that M-ID neurons were not more likely to be 

multi-units consisting of several neurons. 

Fourth, we found that the response of feature M-ID neurons could not be explained by cross-race, 

cross-gender, or cross-age effects (i.e., a concept of other races/gender/age resulted from the 

tendency to have more accurate recognition/representation for same-race/gender/age faces could 

not explain results; Supplementary Information). 

Fifth, we found that low-level (i.e., pixel-level) features such as saliency, luminance, contrast, and 

wavelength could not explain feature-based identity coding (Supplementary Information; 

Extended Data Fig. 8a-d). We also found that pixels critical for identity recognition could not 

explain the response of feature M-ID neurons (Supplementary Information; Extended Data Fig. 

8e-g). To further understand what drove the neural response of feature M-ID neurons, we sorted 

individual images by the amount of activity they evoked regardless of identity. We presented the 

top, middle, and bottom 5 images for 4 example feature M-ID neurons (Extended Data Fig. 8h-

k). Qualitatively, we did not observe a systematic change as a function of firing rate, indicating 

that the response of feature M-ID neurons was driven by more abstract features. 

Sixth, non-feature M-ID neurons encoded identities that were distributed in the feature space, but 

this was not likely due to our feature spaces: they did not turn into feature neurons using other 

feature spaces (Supplementary Information; Extended Data Fig. 9a-d). We also confirmed that 

the selected identities were judged as more similar compared to the unselected identities in feature 

M-ID neurons, and that the identities encoded by the feature M-ID neurons were judged as more 

similar compared to those encoded by the non-feature M-ID neurons (Supplementary 

Information; Extended Data Fig. 9e, f). 

Lastly, to further study the impact of face selectivity on our results and the specificity of our results 

to faces, we conducted two additional analyses (Supplementary Information). (1) We repeated 

our experiments with object stimuli and our results with 603 neurons from the amygdala and 

hippocampus demonstrated region-based feature coding in the object space (Extended Data Fig. 
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10a, b). (2) We found region-based coding when we projected simulated neural responses from an 

artificial neural network to our feature space (Extended Data Fig. 10c-e). Together, our results 

suggest that region-based feature coding could be a general mechanism to encode visual 

categories. 

 

Visual similarity vs. conceptual association 

We conducted the following analyses to assess the relationship between visual similarity of the 

faces and their conceptual associations (i.e., association between identities through concepts).  

First, 5 patients we recorded from rated how related each pair of identities was using a well-

established paradigm to probe conceptual associations 18,19 (Extended Data Fig. 11a). They 

subsequently rated how visually similar each pair of identities was (Extended Data Fig. 11b). We 

found that conceptual association was highly correlated with visual similarity (Pearson’s 

correlation: P < 0.001 for all patients; two-tailed paired t-test of r against 0 for the group: r = 

0.40±0.18 [mean ± SD], t(4) = 4.93, P = 0.008; Fig. 2f), suggesting that conceptual associations 

could be explained by a more objective measure of visual similarity (note that conceptual 

associations were always rated first to prevent patients from using visual similarity as a strategy to 

judge conceptual associations). This was also the case with patients’ familiar faces, suggesting that 

visual similarity could explain conceptual associations. To further confirm our results, we repeated 

our analyses with data from 40 control participants from the general population. Again, we found 

that participants’ conceptual association rating was highly correlated with the rating of visual 

similarity (r = 0.52±0.19, t(39) = 17.6, P < 10−19; Fig. 2f; correlation of mean rating for each face 

pair: r(1225) = 0.96, P < 10−20; Fig. 2g). However, we found separate populations of neurons 

encoding conceptual association and visual similarity (Fig. 2h). We confirmed that neurons 

encoding visual similarity had a smaller feature distance (Fig. 2i; two-tailed paired t-test: t(13) = 

7.18, P = 7.15×10−6) and neurons encoding conceptual associations had a greater conceptual 

association ratings (Fig. 2j; t(7) = 2.85, P = 0.025) for the pairs of encoded/selected identities 

compared to the other pairs. Interestingly, we found that neurons encoding visual similarity had 

even lower conceptual associations for the pairs of encoded identities (Fig. 2j; t(13) = 5.43, P = 

1.15×10−4) whereas neurons encoding conceptual associations had even larger feature distance 
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(Fig. 2i; t(7) = 5.14, P = 0.0013). We obtained a consistent result in neurons encoding both visual 

similarity and conceptual associations (Fig. 2i, j) and in neurons encoding neither visual similarity 

nor conceptual associations (Fig. 2i, j). Furthermore, we replicated our results using the average 

(i.e., consensus) ratings acquired from the general controls (Extended Data Fig. 11c-e). 

Second, we used a web-association metric 18 in which the names of celebrities were paired in 

internet searches to determine the degree to which they were associated in the search results 

(Extended Data Fig. 12a; see Methods for details). We restricted our analysis to the identities 

each patient rated as familiar, but similar results were found when we included all identities (both 

familiar and unfamiliar) in the analysis. We found that the web-association scores between pairs 

of visually similar identities were not significantly greater than between the other pairs (Fig. 2k 

left; two-tailed paired t-test: t(37) = 0.80, P = 0.43). This was also the case for non-feature M-ID 

neurons (Fig. 2k right; t(53) = 0.76, P = 0.45). Notably, we confirmed that the web-association 

scores were correlated with conceptual association ratings from both patients (Extended Data Fig. 

11f; P < 0.05 for all patients; t(4) = 5.53, P = 0.0052) and general controls (Extended Data Fig. 

11f; t(39) = 14.8, P < 10−13; Extended Data Fig. 11g; mean rating: r(1255) = 0.16, P = 4.5×10−8). 

We derived similar results using the search engine Google and the search engine Bing. Therefore, 

encoding of visually similar identities was not likely explained by conceptual associations 

measured by the web-association scores. 

Third, we confirmed that visual similarity ratings from both patients and general controls were 

correlated with the DNN feature similarity (i.e., the negative of the DNN feature distance; Fig. 2l 

and Extended Data Fig. 11h), especially in the later layers. We also found that the DNN feature 

similarity (the negative of the full feature distance) was largely uncorrelated with the web-

association scores (Fig. 2m; especially in the layers where we analyzed feature M-ID neurons) and 

the pairwise distance in the t-SNE feature space was not correlated with the web-association scores 

(P > 0.05 for all layers; Extended Data Fig. 12b), suggesting that the organization of the feature 

space could not be explained by conceptual associations measured by the web-association scores. 

Fourth, six of our recorded patients provided social trait judgments of the stimuli using a 

comprehensive set of social traits 22 (see Methods). We found that the pairs of identities encoded 

by the feature M-ID neurons were not more similar in social trait judgments than the other pairs 

(Fig. 2n; all Ps > 0.05 except for feminine because the feature space was organized by gender [Fig. 
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1g], but feature M-ID neurons did not encode gender per se as shown above). Furthermore, we 

found that the absolute difference in social trait judgments between identity pairs was largely 

uncorrelated with visual similarity (Extended Data Fig. 11i) and conceptual association 

(Extended Data Fig. 11j), suggesting that our results could not be simply explained by the concept 

of social traits (i.e., relatedness in social traits). Notably, we confirmed that our patients’ social 

judgment ratings were consistent with the consensus ratings derived from a large sample (n = 500) 

of participants from the general population (Extended Data Fig. 11k). 

Together, our results suggest that visual similarity can be dissociated from conceptual associations 

and our results cannot be simply accounted for by conceptual associations. We also show that both 

neurons encoding visual features and neurons encoding conceptual associations are present in the 

MTL. 

 

Results are robust to an independent dataset and different feature metrics 

To consolidate our findings, we further analyzed data from a publicly available dataset that 

contains well-characterized identity neurons recorded using famous and/or familiar faces 19. In line 

with our present findings, the identity neurons from this dataset also indicated that feature-based 

coding is present in the MTL (Supplementary Information; Extended Data Fig. 13 and 

Extended Data Fig. 14). In sum, we not only replicated our feature-based coding using an 

independent dataset with well-characterized identity neurons, but also demonstrated that feature-

based coding could not simply be attributed to a cross-race or cross-gender effect. In addition, our 

results showed that feature-based coding was complementary to the coding of conceptual 

associations: we found different subsets of neurons that encoded visual facial features only, 

conceptual associations only, and both visual features and conceptual associations. 

Lastly, similar results were derived if we constructed a three-dimensional feature space or used 

different perplexity parameters for t-SNE (balance between local and global aspects of the data) 

or kernel/cluster size parameters to detect a tuning region (balance between sensitivity and 

specificity of detecting a tuning region). Similar results were also derived if we constructed the 

feature space using other common methods, such as uniform manifold approximation and 

projection (UMAP; Extended Data Fig. 15) or principal component analysis (PCA). We could 
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also replicate our findings using full DNN features, where the Euclidian distance between encoded 

identities was significantly smaller than that of non-encoded identities (Extended Data Fig. 2k). 

This suggests that our findings were robust to the construction of the feature space. 

 

A broader category of feature neurons 

Because different faces of the same identity were not clustered in the feature space from earlier 

lower-level layers of the DNN (Extended Data Fig. 3c and Extended Data Fig. 4), we next asked 

whether there are neurons that code for similar visual features independent of face identity. Using 

the same method to select identity neurons that responded to visually similar faces, we identified 

a broader category of feature neurons that were tuned to a certain region of the feature space from 

each DNN layer (see Fig. 3a, b and Extended Data Fig. 16 for examples and Fig. 3c for a 

summary; see Extended Data Fig. 7b, e for a breakdown of amygdala and hippocampal neurons), 

regardless whether the neuron was an identity neuron.  

First, we found that feature neurons mostly appeared in later DNN layers where faces started to 

become clustered by identities. Therefore, feature neurons from the MTL primarily encode higher-

level visual information related to identification rather than lower-level image characteristics. Six 

of the later DNN layers (Conv5_2, Conv5_3, Pool5, FC6, FC7, and FC8) contained an above-

chance number of feature neurons at the population level and we restricted our analysis to these 

feature neurons. The number of identities (Fig. 3d) and faces (Fig. 3e) covered by the tuning region 

of feature neurons indicated the size of the “receptive field” (in feature space) of these feature 

neurons. The tuning region of each feature neuron covered approximately 2.5-11% of the feature 

space (Fig. 3f) and the total observed neuronal population covered approximately 61-87% of the 

feature space (Fig. 3g). With increasing levels of abstraction, tuning regions in later layers Pool5, 

FC6, FC7, and FC8 contained fewer identities (Fig. 3d; two-tailed unpaired t-test: P < 0.001 for 

all comparisons) but more faces (Fig. 3e; P < 0.001) compared to the preceding convolutional 

layers. Faces were also more widely distributed in the FC layers than the preceding layers (Fig. 

3h; two-tailed unpaired t-test on feature distance: P < 0.0001). 

Second, although an appreciable proportion of feature neurons were identity neurons, some feature 

neurons were not identity neurons (i.e., neither S-ID nor M-ID neurons; red bars in Fig. 3c; in 
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particular in convolutional layers; see Fig. 3a for an example) because they covered a region in 

the face space containing faces from different identities. Therefore, identity selectivity was not 

necessary for feature-based coding. In other words, feature neurons can respond to faces that were 

adjacent in the feature space but were not from the same identity.  

Third, we investigated whether feature neurons were more likely to be identity neurons (i.e., either 

S-ID or M-ID neurons). Indeed, we found that feature neurons had a higher proportion (104/417; 

24.94%) of identity neurons compared to the entire neuron population (155/1577; 9.83%; χ2-test: 

P = 3.33×10−16; Fig. 3i; note that here feature neurons included those from layer Conv5_2 and 

Conv5_3 even though identity neurons could in principle only emerge in layers with clustering of 

faces; see Extended Data Fig. 7c, f for a breakdown of amygdala and hippocampal neurons), 

suggesting that region-based feature tuning is a key component in identity selectivity. 

Lastly, we tested the specificity of the feature space and stimuli in identifying feature neurons 

(Supplementary Information). Although to some extent region-based feature coding could still 

be observed in feature spaces constructed using DNNs trained for object recognition (e.g., AlexNet 

[Extended Data Fig. 17a, b] and ResNet [Extended Data Fig. 17e-h]), there were fewer feature 

neurons (Supplementary Information), suggesting that MTL neurons were sensitive to the 

organization of the feature space and thus the organization of the feature space played a critical 

role in identifying feature neurons. In addition, by projecting non-face stimuli onto the AlexNet 

(Extended Data Fig. 17c, d), ResNet (Extended Data Fig. 17i-l), or the original VGG-Face 

(Extended Data Fig. 17m-p) feature spaces, we found that faces had unique visual features and 

feature neurons encoded higher-level visual features related to faces rather than lower-level visual 

features that might be in common between face and non-face stimuli. 

 

Validation of region-based feature coding by two additional experiments 

We conducted two additional experiments to validate region-based feature tuning using different 

stimuli (especially out-of-set stimuli for generalization) and explored whether such feature coding 

could be generalized to unfamiliar faces (note that patients should have little conceptual knowledge 

about these unfamiliar faces, in particular the FaceGen model faces). In the first additional 

experiment, we recorded from 837 neurons in the same 10 patients (27 sessions; firing rate > 0.15 
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Hz; accuracy = 75.7%±23.0% [mean±SD across sessions]) using face stimuli from the FBI Twins 

dataset (Fig. 4a), which were all novel to our patients. We applied the same DNN to extract face 

features and construct face feature spaces. We again found region-based feature coding by single 

neurons in this experiment (see Fig. 4a and Extended Data Fig. 18a, b for examples and Fig. 4b-

e for group results). This suggests that feature coding by neurons in the MTL did not depend on 

the faces being familiar to the participants. Feature coding was evident even if we restricted our 

analyses to the very first exposure of the faces, when they were novel.  

Notably, we also recorded the response of a subset of the same 699 neurons using the CelebA 

stimuli and we were thus able to directly investigate the generalizability of feature tuning between 

these two tasks. In the common feature space for the CelebA and FBI stimuli, the tuning region of 

38 CelebA feature neurons overlapped with identities from the FBI stimuli (Fig. 4f, g and 

Extended Data Fig. 18c-e). We found that FBI stimuli in the CelebA feature neurons’ tuning 

regions elicited a significantly greater response compared to the other FBI stimuli that were not 

inside the CelebA feature neurons’ tuning regions (paired t-test: t(25) = 2.61, P = 0.00076; see Fig. 

4f, g for examples and Fig. 4h for group results). This shows that region-based feature tuning 

generalized between different image sets as well as to novel stimuli never seen by the participant 

before. Because the faces from the two datasets were in different styles, the distributions of the 

two datasets were separated to some extent. We repeated our analysis while restricting our 

comparison to images of the FBI dataset that showed overlap with the CelebA stimuli in the feature 

space (we applied a mask that defined the vicinity of the CelebA stimuli), so that the “Out” 

condition only contained faces that were inside the subregion occupied by the CelebA stimuli 

(Extended Data Fig. 18f-h). We confirmed our results and still found a greater response for FBI 

stimuli that were in the CelebA feature neurons’ tuning regions (Extended Data Fig. 18i; one-

tailed paired t-test: t(26) = 2.69, P = 0.0062). 

In the second additional experiment, we recorded from a separate population of 658 neurons (25 

sessions from 6 patients; firing rate > 0.15 Hz) while patients performed a trustworthiness or 

dominance judgment task using the FaceGen model faces (Fig. 4i-m) 23, which contained only 

feature information but no real identity information. Behaviorally, the ratings from our patients 

were consistent with the consensus ratings 23 (Pearson correlation: r = 0.23±0.14 [mean±SD across 

sessions] for trustworthiness and r = 0.39±0.18 for dominance; two-tailed t-test against 0: both Ps 
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< 0.001). Again, we found region-based feature coding (61 neurons; above-chance compared to 

our simulations; each neuron covered 2.50%±0.66% [mean±SD] of the feature space; see Fig. 4i-

k for examples and Fig. 4l, m for group results). It is worth noting that FaceGen model faces did 

not convey information about concepts of the face identities, therefore, region-based feature 

coding could not be explained by conceptual associations between face identities.  

Together, these additional experiments showed that region-based feature tuning could be 

generalized to new and unfamiliar face stimuli and was independent of conceptual associations. 

 

Axis-based vs. region-based feature coding 

The region-based feature coding we found is different from the face feature coding shown in the 

IT cortex of non-human primates where neurons parametrically correlate with facial features along 

specific axes in face space (which corresponds to a linear combination of DNN features) 7-10,24. 

Rather than such axis code, MTL neurons encoded a certain range of feature values in the face 

space. We previously found that some human amygdala neurons encode a linear change in facial 

emotions 25. Therefore, we wondered whether some MTL neurons encode a linear combination of 

facial features as shown in the primate IT cortex 7,9. To answer this question, we used established 

approaches (see Methods) and identified a small subset of neurons that encoded a linear 

combination of DNN features (Fig. 5a and Extended Data Fig. 19c, d; similar results were derived 

using other models; Extended Data Fig. 19a), although this response was primarily driven by 

region-based feature coding because an elevated response in one part of the feature space could 

drive the regression (see Extended Data Fig. 19e, f for examples; see Fig. 5c-f for a comparison). 

Therefore, feature-based coding in the human MTL is primarily region-based rather than axis-

based. 

Do neurons exhibit axis-based coding elsewhere in the brain? To confirm that IT neurons form an 

axis code for our stimuli, we conducted recordings from the IT cortex of a monkey using the same 

stimuli as in our main experiment (see Methods; 53 multi-unit activity [MUA] channels; Fig. 5b). 

First, we found that in contrast to MTL neurons (Fig. 5a; see Extended Data Fig. 19g, h for a 

comparison), many IT MUA channels demonstrated axis-based coding of face features (see Fig. 

5c-f for examples and Fig. 5g for group summary; see Extended Data Fig. 19b, h for results 
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derived using other models). Second, to assess the validity of comparing coding between the 

human MTL and macaque IT cortex, we used representational similarity analysis (RSA) 26 and 

found that the neuronal populations in the MTL and IT cortex had a similar representational 

structure (Fig. 5h, i; permutation P = 0.001). Furthermore, the identities encoded by MTL feature 

M-ID neurons also had a more similar neural encoding by IT neurons relative to the pairs not 

encoded by the same feature M-ID neuron (Fig. 5j; feature M-ID neurons: paired two-tailed t-test: 

t(41) = 4.61, P = 3.86×10−5; non-feature M-ID neurons: t(59) = 0.22, P = 0.82). Third, using a 

pairwise distance metric (see Methods) 27, we found that IT neurons primarily corresponded to 

the intermediate DNN layers (Fig. 5k, l), whereas MTL neurons primarily corresponded to the 

top/output DNN layers (Fig. 5m), consistent with their different processing stages along the ventral 

processing pathway. Lastly, we found that identity selectivity was significantly stronger in MTL 

neurons compared to IT neurons (Fig. 5n, o; DOS: two-tailed unpaired t-test: t(201) = 12.8, P = 

7.70×10−28), supporting the abstraction towards coding specific people in the MTL. As a control, 

we derived similar results when we used only the first presentation of the stimuli in the monkey 

IT data to align with the single presentation in human recordings (Extended Data Fig. 20a-e). We 

also derived similar results using MUA rather than single-unit activity in the human MTL data to 

be more similar to the monkey recordings (Extended Data Fig. 20f-m). 

Together, we show that in contrast to MTL neurons, IT neurons encoded the axes of the feature 

space and thus demonstrated axis-based coding for our stimulus set. Our results are in line with 

the flow of information along the ventral visual processing stream. 

 

Discussion 

Our results reveal that the response of identity neurons in the human amygdala and hippocampus 

can encode identities that are related visually (i.e., faces sharing similar features) rather than 

conceptually (e.g., Bill and Hillary Clinton). We further show a broader category of feature 

neurons exhibiting region-based feature coding, a novel type of cell in the human MTL. The 

response of feature neurons does not depend on identity selectivity nor face familiarity, gender, 

race, or low-level image features, and their tuning regions can be validated using new face stimuli. 
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Lastly, we show that in contrast to the macaque IT cortex, feature-based coding in the human MTL 

is primarily region-based rather than axis-based. 

The amygdala and hippocampus are downstream of the face-selective regions in the higher visual 

cortex, where feature-based coding for faces is first evident 11-13. Despite being downstream from 

face-selective areas, in the human MTL no feature-based encoding of faces has been found. 

Instead, only exemplar-based coding has been demonstrated so far 16,17. This indicates that the 

format of the neural representation is fundamentally differently in the MTL compared to the higher 

visual cortex. It remains unknown how this transformation from a perception-driven to the 

memory-based semantic representation in the MTL is achieved. The novel type of cells we 

describe here encode an intermediate type of representation between these two formats. These 

previously unknown neurons encode a region in the high-level feature space such that they become 

selective to all the identities that fall into this region, thereby providing a bridge between these two 

coding mechanisms. We hypothesize that this form of representation serves as a basis for semantic 

representations in the MTL, which in turn are the basis for declarative memory 28. Therefore, our 

findings bridge the two extreme hypotheses by revealing an intermediate region-based feature code 

in the MTL. 

To contrast our findings with prior work in macaques, we have established that for our stimuli 

macaque IT neurons exhibit an axis-based code as expected 7-10,24 (note that feature-based coding 

at the single cell level has only been shown in the macaque IT cortex, so we did this work with 

macaques to link to this literature). While macaque IT and human MTL representations were 

similar as assessed by representational similarity, responses in these two brain areas were best 

explained by different processing stages in our DNN and identity coding was significantly more 

prominent in the MTL, supporting our conclusion that region-based encoding is a feature of the 

human MTL but not macaque IT cortex (it remains an open question whether region-based 

encoding exists in the human IT cortex).  

Although it may not be possible to entirely discount any sort of conceptual association in 

explaining our results, our various control analyses have suggested that visual similarity is 

dissociable from conceptual association and our results could not be simply attributed to 

conceptual associations of identities. First, feature neurons encode unfamiliar identities (shown by 

both CelebA and FBI stimuli; all identities from the FBI stimuli were unfamiliar to the patients), 
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for which patients cannot have formed much conceptual knowledge; and feature coding could not 

be explained by simple conceptual knowledge of race, gender, or age (i.e., cross-race, cross-

gender, or cross-age effects could not explain our results), nor social trait judgments. Feature-

based coding of identities was even observed with synthetic model faces, of which patients had 

little conceptual knowledge. Second, when patients had a considerable knowledge of the identities 

(Extended Data Fig. 13 and Extended Data Fig. 14), we observed a double dissociation of coding 

visually similar identities and coding of conceptually associated identities, consistent with our 

results using the CelebA stimuli (Fig. 2). Furthermore, conceptual association measured using 

web-association scores could neither explain feature-based coding or correlate with DNN features. 

On the other hand, the novel mechanism of coding visual features in the human MTL is not 

mutually exclusive but may complement the well-known coding of conceptual associations 18,19 

(given the high correlation between conceptual association and visual similarity ratings [Fig. 2f, 

g], many prior findings in conceptual associations may in fact be explained by the objective 

measure of visual similarity). Indeed, we found separate subsets of neurons that only encoded 

visual features or conceptual associations, but also neurons that encoded both (Fig. 2h); and we 

found feature-based coding when we analyzed an independent dataset with well-characterized 

identity neurons 19 (Extended Data Fig. 13 and Extended Data Fig. 14), an under-appreciated 

role of MTL neurons in these prior studies 18,19. Therefore, MTL neurons embody two forms of 

coding of face identities that may well complement each other. Notably, concept neurons and 

encoding of conceptual associations have also been found to be prominent in non-face stimuli 17-

19; and thus a future study will be needed to investigate feature-based coding in a broader object 

space (e.g., 10). Our data has found compelling evidence that region-based feature-coding can be 

extended to non-face object stimuli (Extended Data Fig. 10). 

Neurons in the human MTL have been shown to demonstrate prominent categorical responses to 

visual objects (i.e., visual selectivity) 29 and facial expressions of emotions (i.e., emotion 

selectivity) 30,31. Region-based feature coding may also provide an account for visual and emotion 

selectivity: objects or emotions falling within the coding region of a neuron may elicit an elevated 

response. A future direction will be to construct the feature space for objects in general (e.g., using 

the convolutional neural network AlexNet) and investigate region-based feature coding in this 

feature space. A face feature space in the MTL also supports the hypothesis that cognitive maps in 

the hippocampus 32 may generalize to all relevant dimensions in life experiences 33. 
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Previous research on identity neurons primarily used familiar faces 16,18,21. In the present study, we 

found that region-based feature coding of face identity was independent of face familiarity, similar 

to feature coding by primate IT cortex neurons that even encode computer generated faces 7,9. It is 

also worth noting that in contrast to the traditional axis-based face spaces where axes of the space 

and coordinates of faces are fixed 7,34, the feature space constructed by t-SNE in the present study 

varies as a function of the set of input stimuli because it models the similarity between all input 

stimuli (but note that our results were robust to the construction of the feature space and could be 

replicated using Euclidian distance of full DNN features). Therefore, our observed feature neurons 

in the human MTL may demonstrate a form of similarity-based or manifold-based coding (i.e., 

finding meaningful low-dimensional structures hidden in the high-dimensional observations using 

nonlinear dimensionality reduction) 35,36, which may in turn contribute to the MTL’s critical role 

in face recognition, classification, and memory. 

Rapid advances in computer vision and development of DNNs have provided an unprecedented 

opportunity to help us understand the functional architecture of the brain 8,24,27,37. Our present study 

reiterates the advantages of using DNNs to study neural encoding for face identity: by extracting 

facial features from complex natural face images using DNNs and projecting them onto the feature 

space constructed by DNN feature reduction, we revealed a novel face code in the human MTL 

whereby neurons encode visually similar identities. 
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Figure Legends 

Fig. 1. Feature-based neuronal coding of face identities. (a-f) Two example neurons that encoded 

visually similar identities (i.e., feature M-ID neurons). (a, d) Neuronal responses to 500 faces (50 

identities). Trials are aligned to face stimulus onset (gray line) and are grouped by individual 

identity. Error bars denote ±SEM across faces. (b, e) Projection of the firing rate onto the FC6 

feature space. Each color represents a different identity. The size of the dot indicates the firing 

rate. (c, f) Estimate of the spike density in the feature space. By comparing observed (upper) vs. 

permuted (lower) responses, we could identify a region where the observed neuronal response was 

significantly higher in the feature space. This region was defined as the tuning region of a neuron 

(delineated by the red/cyan outlines; also shown in (g)). (g) The face feature space constructed by 

t-distributed stochastic neighbor embedding (t-SNE) for the DNN layer FC6. All stimuli are shown 

in this space. 

 

Fig. 2. Summary of feature tuning for identity neurons and comparison between visual similarity 

and conceptual association. (a) Percentage of feature space covered by tuning regions of identity 

neurons. Note that here we did not apply the threshold for minimum cluster size for S-ID and non-

feature M-ID neurons in order to compare across different categories of identity neurons. (b) 

Normalized distance between M-ID neurons’ selected identities in the feature space. To be 

comparable for different layers, Euclidean distance was normalized by the maximum distance (i.e., 

diagonal line) of the feature space per layer. Error bars denote ±SEM across neurons. Asterisks 

indicate a significant difference between feature M-ID neurons and non-feature M-ID neurons 

using two-tailed unpaired t-test. *: P < 0.05, **: P < 0.01, and ***: P < 0.001. (c) The aggregated 

tuning regions of the neuronal population. Color bars show the counts of overlap between 

individual tuning regions. Numbers in the density map show the percentage of feature space 

covered by the tuning regions of the total observed neuronal population. (d) Distribution of 

pairwise distance between faces in each neuron’s tuning region(s). Euclidean distance was 

normalized by the maximum distance of the feature space. S-ID: n = 53 for all layers. Feature M-

ID: n = 25 for Pool5, n = 27 for FC6, n = 30 for FC7, and n = 30 for FC8. Non-feature M-ID: n = 

77 for Pool5, n = 75 for FC6, n = 72 for FC7, and n = 72 for FC8. (e) Feature M-ID neurons did 

not differentiate familiar vs. unfamiliar selected identities (two-tailed paired t-test, P > 0.05). Each 
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dot represents a neuron. Error bars denote ±SEM across neurons. (f) Correlation between 

conceptual association ratings and visual similarity ratings. Error bars denote ±SEM across 

participants (n = 5 for patients and n = 40 for general controls). (g) Correlation between conceptual 

association ratings and visual similarity ratings across pairs of face identities. Ratings from the 

general controls were averaged across participants to derive consensus ratings. Each dot represents 

a pair of face identities (n = 1225) and the gray line denotes the linear fit. (h) Separate populations 

of M-ID neurons encoding visual features (i.e., visual similarity) and concepts (i.e., conceptual 

association). By selecting conceptual association neurons from M-ID neurons (i.e., comparing 

conceptual association ratings between encoded vs. unselected identities) from patients who 

provided ratings (n = 62), we found a subset of neurons that only encoded visual features (n = 14; 

note that to be comparable with the selection of conceptual association neurons, we here selected 

visual feature neurons by comparing feature distance between encoded vs. unselected identities, 

but the selected visual feature neurons highly overlapped with the feature M-ID neurons as we 

described above), a subset of neurons that only encoded conceptual associations (n = 8), a subset 

of neurons that encoded both visual features and conceptual associations (n = 23), and a subset of 

neurons that encoded neither visual features nor conceptual associations (n = 17). (i) DNN feature 

distance for each subpopulation of M-ID neurons. (j) Conceptual association ratings for each 

subpopulation of M-ID neurons. S-S: pairs of identities that a neuron was selective to. S-NS: pairs 

of identities where a neuron was selective to one of them but not selective (NS) to the other. Error 

bars denote ±SEM across neurons. Asterisks indicate a significant difference using two-tailed two-

sample t-test: *: P < 0.05, ***: P < 0.001, and ****: P < 0.0001. (k) Web-association score for M-

ID neurons. For each neuron, we calculated a mean association score between the pairs of identities 

that the neuron was selective to (S-S), and between the pairs of identities where the neuron was 

selective to one of them but not selective (NS) to the other (S-NS). Error bars denote ±SEM across 

neurons. Left: feature M-ID neurons (n = 38; note that here we only included neurons encoding 

more than one familiar identities). Right: non-feature M-ID neurons (n = 54). Neither feature M-

ID neurons nor non-feature M-ID neurons had a significantly greater web-association score for the 

pairs of encoded identities. n.s.: not significant. (l) Correlation between patients’ visual similarity 

ratings and DNN feature similarity (i.e., the negative of the DNN feature distance) for each DNN 

layer. (m) Correlation between DNN feature similarity and web-association scores. Pearson 

correlation was performed across pairs of identities (n = 1225). Solid circles represent a significant 
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correlation (permutation test: P < 0.05; Bonferroni correction for multiple comparisons across 

DNN layers) and open circles represent a non-significant correlation. Shaded area denotes ±SD 

across permutation runs. (n) The absolute difference in social trait judgments between identity 

pairs. S-S: pairs of identities that a neuron was selective to. All-NS: all other pairs (i.e., all 

excluding S-S pairs). Error bars denote ±SEM across neurons. 

 

Fig. 3. Characterization of feature neurons. (a, b) Two example feature neurons that encoded 

visually similar faces. Legend conventions as in Fig. 1. (c) The number of feature neurons 

identified from each DNN layer. Blue: feature neurons that were also identity neurons. (d) The 

number of identities encoded by feature neurons. (e) The number of faces encoded by feature 

neurons (i.e., the number of faces that fell within the tuning region of a feature neuron). Error bars 

denote ±SEM across neurons. (f-h) Population summary of feature tuning. Legend conventions as 

in Fig. 2. (i) The number of identity neurons in the whole population (left) and among feature 

neurons (right). Blue: the number of identity neurons (n = 155 for whole population and n = 104 

for feature neurons). Red: the number of non-identity feature neurons (n = 312). Gray: the number 

of non-identity neurons (n = 1422).  

 

Fig. 4. Validation and generalization of feature tuning with unfamiliar and model faces. (a-h) 

Results from the FBI Twins dataset. (i-m) Results from the FaceGen dataset. (a) An example 

neuron demonstrating region-based feature coding. In FBI face spaces, similar faces were also 

clustered and faces from different genders were organized in different areas of the feature space. 

The size of the dot indicates the firing rate. The red outline delineates the tuning region of the 

neuron in the feature space. (b) The number of identified feature neurons using FBI stimuli. Only 

DNN layers with an above-chance number of feature neurons (based on our simulations) are 

shown. (c-e) Population summary of feature tuning. Legend conventions as in Fig. 2. (f, g) 

Example CelebA feature neurons showing elevated responses for FBI stimuli falling in their tuning 

regions. Feature spaces were constructed for combined CelebA and FBI stimuli. The size of the 

dot indicates the firing rate. The red outline delineates the tuning region of the neuron (identified 

by the CelebA stimuli). Black: faces from the CelebA stimuli. Gray: faces from the FBI stimuli. 
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Magenta: FBI stimuli falling in the tuning region of the neuron. Note that in the face feature space 

combining the CelebA and FBI stimuli, the clustering based on gender and skin color was retained 

and similar to the feature spaces using the CelebA stimuli only. (h) Population results comparing 

neuronal response to FBI stimuli falling in vs. out of the tuning region (n = 26). Each dot represents 

a neuron. Error bars denote ±SEM across neurons. Asterisks indicate a significant difference 

between In vs. Out responses using one-tailed paired t-test (P < 0.01). (i-k) Two example neurons 

demonstrating region-based feature coding. Note that the feature space was constructed using 

parameters (i.e., features) used to synthesize the faces rather than DNN features. The dimensions 

of the feature space are the first shape and tone/texture principal components (PCs) used to 

generate the stimuli. Note that face shape varied along Feature Dimension 1 and skin color varied 

along Feature Dimension 2. (l, m) Population summary of feature tuning (n = 61). Legend 

conventions as in Fig. 2. 

 

Fig. 5. Comparison of coding in the inferotemporal (IT) cortex and medial temporal lobe (MTL). 

(a) A small proportion of MTL neurons demonstrated axis-based coding of facial features. 

Selection of neurons was performed using partial least squares (PLS) regression with deep neural 

network (DNN) feature maps. Dashed line denotes the chance level. (b) Task used to acquire 

neural responses from a monkey. In each trial, 8 faces (CelebA stimuli) were presented for 100 ms 

each, followed by a fixed inter-stimulus-interval (ISI) of 100 ms. There was a central fixation point 

of 300 ms at the beginning of each trial and there was an inter-trial-interval (ITI) of at least 500 

ms following each trial. The central fixation point persisted through the trial. (c-f) Two example 

monkey IT multi-unit activity (MUA) channels showing axis-based feature coding. (c, e) MUA to 

50 identities, shown in 10 ms time bins. Time 0 denotes the stimulus onset. Firing rate was 

normalized to the average of the gray images (i.e., control stimuli). (d, f) Correlation between the 

firing rate and the first principal component (PC1) of the feature map. Each dot represents a face 

pair, and the gray line denotes the linear fit. Note that both channels had a significant relationship 

with the feature map (PLS regression, permutation P < 0.001), and we show the correlation with 

PC1 for illustration purposes. (g) The proportion of IT MUA channels demonstrating axis-based 

feature coding. Selection of channels was performed using PLS regression with DNN feature 

maps. (h) Correlation between dissimilarity matrices (DMs). The MTL DM (left matrix) was 
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correlated with the IT DM (right matrix). Color coding shows dissimilarity values (1−r). (i) 

Observed vs. permuted correlation coefficient between DMs. The correspondence between DMs 

was assessed using permutation tests with 1000 runs. The magenta line indicates the observed 

correlation coefficient between DMs. The null distribution of correlation coefficients (shown in 

gray histogram) was calculated by permutation tests of shuffling the face identities. (j) Neural 

distance (1−Pearson’s r) calculated using all IT channels. For each MTL neuron, we calculated the 

IT neural distance between the pairs of stimuli that the MTL neuron was selective to (S-S; solid 

bars), and between the pairs of stimuli where the MTL neuron was selective to one of them but not 

selective (NS) to the other (S-NS; open bars). Error bars denote ±SEM across neurons. Left: feature 

M-ID neurons (n = 42; red). Right: non-feature M-ID neurons (n = 60; blue). Only feature M-ID 

neurons but not non-feature M-ID neurons had a shorter IT neural distance. Asterisks indicate a 

significant difference using two-tailed paired t-test. ****: P < 0.0001. (k) An example IT channel 

showing correlation between MUA pairwise distance and DNN layer Pool4 feature pairwise 

distance (see Methods). Each dot represents a face pair, and the gray line denotes the linear fit. (l) 

Correlation between pairwise distance in the IT neuronal face space and pairwise distance in the 

DNN face space (see Methods). (m) Correlation between pairwise distance in the MTL neuronal 

face space and pairwise distance in the DNN face space. Solid circles represent a significant 

correlation (permutation test: P < 0.05, Bonferroni correction across layers) and open circles 

represent a non-significant correlation. (n) Depth of selectivity (DOS) index (see Methods). MTL 

identity neurons had a significantly higher DOS index than IT identity channels. For IT channels, 

mean response to the control stimulus (gray blank screen) was subtracted from the response to 

each face image. Error bars denote ±SEM across neurons/channels. Asterisks indicate a significant 

difference using two-tailed unpaired t-test. ****: P < 0.0001. (o) Ordered average responses from 

the most- to the least-preferred identity. Responses were normalized by the response to the most-

preferred identity. Shaded areas denote ±SEM across neurons/channels. The top bar indicates a 

significant difference between MTL and IT identity channels (two-tailed unpaired t-test, P < 0.05, 

corrected by FDR for Q < 0.05). MTL neurons showed a steeper change from the most- to the 

least-preferred identity compared to IT channels. 
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