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ABSTRACT 19 

Background: Dengue is an endemic vector-borne disease influenced by environmental factors such as 20 

landscape and climate. Previous studies separately assessed the effects of landscape and climate factors 21 

on mosquito occurrence and dengue incidence. However, both factors interact in time and space to 22 

affect mosquito development and dengue disease transmission. For example, eggs laid in a suitable 23 

environment can hatch after being submerged in rain or flood water. 24 

Objectives: This study aimed to investigate the combined influences of landscape and climate factors on 25 

mosquito occurrence and dengue incidence. 26 

Methods: Entomological, epidemiological, and landscape data from the rainy season (July-December) 27 

were obtained from respective government agencies in Metro Manila, Philippines, from 2012 to 2014. 28 

Temperature, precipitation, and vegetation data were obtained through remote sensing. A random forest 29 

algorithm was used to select the landscape and climate variables. Afterwards, using the identified key 30 

variables, a model-based (MOB) recursive partitioning was implemented to test the combinatory 31 

influences of landscape and climate factors on the ovitrap index and dengue incidence. 32 

Results: The MOB recursive partitioning for the ovitrap index indicated that mosquito occurrence was 33 

higher in high residential density areas, where industrial areas also exist and are well connected with 34 

roads. Precipitation was another key covariate modulating the effects of landscape factors, possibly by 35 

expanding breeding sites and activating mosquito reproduction. Moreover, the MOB recursive 36 

partitioning indicated that precipitation was the main predictor of dengue incidence, with a stronger 37 

effect in high residential density and commercial areas. 38 

Discussion: Precipitation with floods has epidemiologically important implications by damaging shelters 39 

and causing population displacement, thus increasing exposure to dengue vectors. Our findings suggest 40 
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that the intensification of vector control during the rainy season can be prioritized in residential and 41 

commercial areas to better control dengue disease dynamics. 42 

 43 

INTRODUCTION 44 

Dengue is an endemic vector-borne disease influenced by environmental factors such as climate 45 

and landscape. Dengue-endemic countries such as the Philippines consider this arboviral disease an 46 

economic and health burden (Buczak, et al. 2014). Environmental factors, particularly climate and 47 

landscape, play a significant role in regulating the temporal variation and spatial distribution of dengue 48 

and the vectors Aedes aegypti and Ae. albopictus (Hayden, et al. 2010). These factors can mediate 49 

human-mosquito interactions by expanding the vector’s habitat and increasing its abundance, thus 50 

advancing dengue disease transmission (Thongsripong, et al. 2013). 51 

Previous studies demonstrated that climate factors such as precipitation and temperature 52 

significantly affect both mosquito abundance (Barrera, Amador and MacKay 2011, Naish, et al. 2014) and 53 

dengue incidence (Phanitchat, et al. 2019, Carvajal, Viacrusis, et al. 2018). For example, the high 54 

availability of breeding sites for mosquitoes during the rainy season in Southeast Asian countries (e.g., 55 

Philippines, Singapore, Thailand, and Indonesia) contributes to the increased number of annual dengue 56 

cases (Su 2008, Hashizume, et al. 2012). Many studies have reported that the increasing number of cases 57 

is associated with the high number of available mosquito breeding sites that can hold or contain 58 

rainwater, thereby facilitating high mosquito abundance (Seidahmed, et al. 2018, Arcari, Tapper and 59 

Pfueller 2007). Additionally, high temperatures are responsible for extending adult mosquito longevity, 60 

accelerating virus replication, and enhancing the mosquito biting rate (Kilpatrick, et al. 2008, Chan and 61 

Johansson 2012). 62 
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Recent studies have shown that different land use (LU) types (residential, industrial, and 63 

agricultural areas) may have different impacts on dengue incidence (Kesetyaningsih, et al. 2018, Sheela, 64 

et al. 2017, Sarfraz, et al. 2012, Vanwambeke, Lambin, et al. 2007, Cheong, Leitão and Lakes 2014) given 65 

the uneven spatial distribution of vectors in these terrestrial habitats (Piovezan, et al. 2019). Areas with 66 

human settlements contribute to a high incidence of dengue (Cheong, Leitão and Lakes 2014, Sarfraz, et 67 

al. 2012) due to the high availability of man-made water-holding containers that serve as breeding sites 68 

(Ngugi, et al. 2017) and humans as a host preference for blood meals (Higa 2011). 69 

Most previous studies investigated the effects of either dynamic climate factors (Carvajal, 70 

Viacrusis, et al. 2018, Zheng, et al. 2019, Arcari, Tapper and Pfueller 2007, Tovar-Zamora, et al. 2019, 71 

Bavia, et al. 2020) or static spatial distributions of landscape attributes (Seidahmed, et al. 2018, 72 

Vanwambeke, Lambin, et al. 2007, Vanwambeke, N.Bennett and Kapan 2011, Sarfraz, et al. 2012) on the 73 

temporal variations or spatial distributions of mosquito occurrence and dengue incidence. However, 74 

landscape and climate conditions can change concurrently in time and space, and their spatiotemporal 75 

interrelation may play a decisive role in determining the positive or negative effects on mosquitoes and 76 

dengue, such as interference during flood events. In small areas where rainfall is equally distributed, 77 

rainwaters flow from highlands to lowlands due to gravity, and patterns of water flow and retention can 78 

greatly differ in LU type due to surface roughness texture and permeability. Comparative studies reported 79 

high mosquito densities in flooded lowlands compared with non-flooded highlands (Nasir, et al. 2017, 80 

Rydzanicz, Kącki and Jawień 2011). One study reported that the high mosquito abundance in lowlands 81 

was influenced by floods that reach mosquito eggs that were previously laid in the environment 82 

(Hashizume, et al. 2012). Another study demonstrated that during the dry season, mosquito abundance 83 

was high in residential areas given the availability of permanent water-holding containers that served as 84 

breeding sites (Little, Bajwa and Shaman 2017); in the wet season, mosquito reproduction expanded to 85 

other non-residential areas. These studies found an uneven effect of precipitation on mosquito 86 
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abundance due to different ecological responses in different local landscapes (Nasir, et al. 2017, 87 

Rydzanicz, Kącki and Jawień 2011, Little, Bajwa and Shaman 2017). The characteristics of a local area’s 88 

landscape can also influence its microclimate (Chang, Li and Chang 2007, Lin, et al. 2018, Thani, 89 

Mohamad and Abdullah 2017, Shashua-Bar, Pearlmutter and Erell 2011), potentially thus affecting the 90 

ecology of the mosquito and dengue transmission. For example, areas with a high percentage of 91 

impervious surfaces (e.g., paved roads, built-up areas) with less vegetation coverage can absorb high 92 

amounts of solar radiation and produce more heat compared to areas with less impervious surfaces and 93 

extensive vegetation coverage (Koch-Nielsen 1999). Therefore, the combinatory influence of landscape 94 

and climate factors on mosquito and dengue incidence must be quantitatively assessed (Sallam, et al. 95 

2017). No studies have yet attempted to assess the combined influence of climate and landscape features 96 

on dengue disease dynamics.  97 

Previous studies that utilized environmental factors to develop dengue epidemiology models 98 

faced challenges when jointly considering climate and landscape attributes, preventing us from better 99 

understanding dengue disease distribution. One such challenge is the availability of secondary datasets 100 

(Sarfraz, et al. 2012, Vanwambeke, Lambin, et al. 2007). Climate data such as temperature and 101 

precipitation are typically obtained from ground weather stations. However, using such data is limited by 102 

the limited number of ground weather stations. Therefore, remotely sensed climatic variable data have 103 

been utilized in epidemiological studies to address the lack of routinely collected data from ground 104 

meteorological stations (Kapwata and Gebreslasie 2016, German, et al. 2018). With the introduction of 105 

platforms that integrate remote sensing and cloud computation such as Google Earth Engine (GEE) 106 

(Gorelick, et al. 2017), it is possible to freely access and process many types of satellite-derived products 107 

with notable flexibility, even in large areas (DeVries, et al. 2020). However, many studies that utilize LU 108 

based on satellite images contain certain limitations. In this type of map, built-up areas are often treated 109 

as a single category (Vanwambeke, et al. 2006, Ibarra, et al. 2014, German, et al. 2018), preventing the 110 
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ability to further distinguish the subcategories of land utilization such as residential, commercial, 111 

industrial, etc. These different categories of LU have different ecological responses to mosquito and 112 

dengue dynamics (Thammapalo, et al. 2007); hence, detailed maps might amplify the chances to capture 113 

fine scale variations of mosquito habitats and dengue incidence. Although labor intensive, detailed LU 114 

maps produced by local governmental agencies based on field observations can help uncover patterns of 115 

dengue disease at a fine scale by capturing the different categories of land utilization in urban areas 116 

(Nazri, et al. 2011). 117 

Another challenge is finding an appropriate method to model complex interactive mechanisms 118 

between multiple environmental factors (Little, Bajwa and Shaman 2017, Sarfraz, et al. 2012). In the 119 

recent decade, modeling techniques in machine learning methods such as random forests (RFs) (Breiman 120 

2001) have been adopted to analyze complex databases and handle anomalies found in datasets such as 121 

outliers and multi-collinearity among covariates. Data-intensive modeling has gained popularity in 122 

spatiotemporal ecological modeling at the landscape or larger scales to better explain ecological or 123 

epidemiological patterns by capturing nonlinear variable interactions (Ryo, Yoshimura and Iwasaki 2018, 124 

Ryo, Harvey, et al. 2017b, Ryo and Rilling 2017a). The results of this approach improved RF model 125 

accuracy (Leontjeva and Kuzovkin 2016) and better predictability of species’ habitat distribution with the 126 

inclusion of maximum entropy (Stanton, et al. 2012). 127 

This study aimed to examine the combinatory influence of landscape and climate features on 128 

mosquito occurrence and dengue incidence across Metropolitan Manila, the Philippines. We employed 129 

some advanced machine learning algorithms due to its growing utilization to explore the influence of 130 

landscape features or climate on dengue disease (Carvajal, Viacrusis, et al. 2018, Guo, et al. 2017, Ong, et 131 

al. 2017, Chen, et al. 2018, Baquero, Santana and Chiaravalloti-Neto 2018) and mosquito occurrence 132 

(Mwanga, et al. 2019, Jiménez, et al. 2019, Früh, et al. 2018, Zheng, et al. 2019). By selecting important 133 

environmental features for RFs, we further examined and described the optimal combination of 134 
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landscape and climate conditions that influence dengue disease and mosquito occurrence using model-135 

based (MOB) recursive partitioning. 136 

 137 

MATERIALS AND METHODS 138 

Study area 139 

Metropolitan Manila is the National Capital Region (NCR) of the Philippines, located at 140 

Southwestern Luzon (14°50’N Latitude, 121°E Longitude). With 100% urbanization (Asian Development 141 

Bank 2014), the NCR is the most densely populated area in the country (18,165.1 persons/km² spread 142 

over an administrative land area of 636 km²) (Asian Green City Index 2011). It comprises 16 cities and one 143 

municipality with a total population of 12,877,253 (Philippines Statistics Authority 2019). Each city or 144 

municipality is further subdivided into the smallest administrative division, a “Barangay,” commonly 145 

known as a village, with 1,706 total villages. A collection of villages can be merged into a “zone” 146 

depending on the city’s administrative boundaries. 147 

The majority of the target area is covered by residential (54.07%), industrial (9.41%), and 148 

commercial (7.45%) areas. The territorial development of Metro Manila occurred through a gradual 149 

replacement of agricultural LU by industrial, commercial, and a massive increase in residential areas. The 150 

constant spatial and population growth has led to LU pressure and instigated substandard housing in 151 

areas with a high risk of flooding (Zoleta-Nantes 200).  152 

The climate in Metro Manila is divided into two major seasons: the dry season (November to 153 

April) and the wet season (the rest of the year) (DOST 2014). The rainy season from June to September is 154 

characterized by strong monsoon rain and tropical storms (World Bank 2014). Heavy rain associated with 155 

a lack of drainage infrastructure leads to a high vulnerability for flooding (Zoleta-Nantes 200).  156 

Data Sources and Processing 157 
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Administrative boundaries 158 

The map of the administrative boundaries of Metropolitan Manila (Figure 1a) was obtained from 159 

the Philippine GIS Data clearinghouse (www.philgis.org). Metropolitan Manila includes 1,706 villages 160 

(barangays) with most within the City of Manila (n = 897; 53%). In this study, the villages of Manila, 161 

Caloocan, and Pasay were merged together into “zones” to facilitate consistency in village size because 162 

most villages are very small with an average area of 0.06 km. Additionally, 86% (n = 771) of the villages 163 

have a total area of <0.06 km2. The average total area of each village in Metropolitan Manila (excluding 164 

the City of Manila) is 0.41 km2. This study used the City of Manila, Caloocan, and Pasay’s designated zone 165 

names to merge villages. Overall, 464 villages or zones were subsequently analyzed in this study. The 166 

population statistics were obtained from the Philippine Statistics Authority agency (www.psa.gov.ph). 167 

Since the Philippine population census is conducted every five years, we obtained the 2010 (Philippines 168 

Statistics Authority 2012) and 2015 (Philippines Statistics Authority 2019) census data and used the 169 

compounded population growth rate to calculate the population for the years 2012 and 2013. The sum of 170 

the projected population of the merged villages (Manila, Caloocan, and Pasay) was also calculated. 171 

 Entomological surveillance 172 

In 2012, governmental institutions (Department of Science and Technology (DOST), Department 173 

of Education, Department of Health, Department of Interior, and local governments) implemented a 174 

nationwide surveillance program that installed DOST Orvicidal/Larvicidal traps (OL-traps) to monitor 175 

Aedes mosquitoes to help control dengue transmission and reduce dengue cases (DOST n.d., DOST 176 

Mosquito Ovicidal/Larvicidal (OL) Trap for Dengue Prevention 2013). Surveillance programs in many 177 

countries have utilized ovitraps as a routine surveillance tool because they are relatively low-cost and 178 

reliable in attracting gravid Aedes females for oviposition (Silver 2007, Ritchie, et al. 2003). In Metro 179 

Manila, ovitraps were installed in public places such as schools, institutes, and other education facilities. A 180 

total of 719 georeferenced surveillance locations containing reported Ovitrap indices (OIs) were extracted 181 
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from the reporting website (http://oltrap.pchrd.dost.gov.ph/) (DOST n.d.) from July 2012 to December 182 

2014. Afterwards, each georeferenced surveillance location was matched with its corresponding village, 183 

with only 268 of the 464 villages containing mosquito surveillance location(s). We aggregated the OIs into 184 

a monthly index by dividing the cumulative OI by the total number of sampling locations. Given the low 185 

numbers and inconsistent reporting during the months of January to June, the study only included the 186 

aggregated monthly OI from July to December of 2012, 2013, and 2014 (Additional file 3). 187 

Epidemiological data 188 

The total number of weekly reported dengue cases from January 2012 to December 2014 for all 189 

464 villages was obtained from the National Epidemiology Center, Department of Health, Philippines. We 190 

calculated the monthly dengue incidence by dividing the total number of dengue cases each month by 191 

the total population of the village multiplied by a population factor of 10,000. The dengue incidence was 192 

transformed by adding 1 to all values and obtaining its natural logarithm [loge (n + 1)]. 193 

Climatic factors 194 

Remote sensing (RS) is a promising tool in epidemiological studies (German, et al. 2018, Misslin 195 

and Daudé 2017, Buczak, et al. 2014, Araujo, et al. 2015). This study used the Tropical Rainfall 196 

Measurement Mission (TRMM) product 3B43 to obtain the monthly average rainfall. This gridded quasi-197 

global product consists of monthly average precipitation measured in hourly bases with 0.25° of spatial 198 

resolution (Huffman and Bolvin 2018). The Terra Moderate Resolution Image Spectroradiometer (MODIS) 199 

collected the average land surface temperature. The product MOD11A2 consists on the average 200 

temperature collected within an eight-day period for both daytime and nighttime temperatures with 1 201 

km spatial resolution (USGS n.d.). GEE (Gorelick, et al. 2017) was used to download the RS raster images, 202 

apply scaling factor (0.02), and convert temperature values from the default Kelvin (K) to degrees Celsius 203 

(ºC). This product suffers from missing data, particularly during the rainy season (August-October), given 204 
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the high cloud cover and other atmospheric disturbances. To overcome this limitation, a Kriging 205 

interpolation method was applied to complete monthly temperature records for each village using ArcGIS 206 

software version 10.2 (ESRI, Redlands, CA). This method weights the surrounding measured values to 207 

derive a surface of predicted values for an unmeasured location (ESRI 2016). Since each village can be 208 

covered by multiple pixels of the raster images of precipitation and temperature, the mean value of all 209 

pixels within each village (spatial) was calculated per month (temporal) and used for further analyses. 210 

A flood hazard map of Metro Manila was obtained from the LiDAR Portal for Archiving and 211 

Distribution (LiPAD) website (https://lipad.dream.upd.edu.ph) (LiPAD 2018). This flood map indicates the 212 

flood susceptibility level at a 10-m spatial resolution (NOAH 2015). There are three categories of flood 213 

susceptibility: (a) low (flood water height ranging from 0.1–0.5 m), b) moderate (0.5–1.5 m), and (c) high 214 

(above 1.5 m). Initially, the percentage of land covered by each flood risk category was calculated by 215 

village and multiplied by a weighing value from 1 (low) to 3 (high) according to the risk category. The 216 

average of these three values was calculated and utilized as the flood risk index per village. The degree of 217 

flood susceptibility was estimated based on a five-year period of heavy rain scenarios and thus is limited 218 

to spatial risk and does not consider the variation of risk throughout a year. 219 

 220 

Landscape factors 221 

The local LU map of Metropolitan Manila (2004) was obtained from the Philippine Geoportal 222 

website (www.geoportal.gov.ph) managed by the Bureau of National Mapping and Resource Authority 223 

and the Metropolitan Manila Development Authority (NAMRIA n.d.). This map contains 30 LU types 224 

(agricultural, grass, forest, water bodies, open spaces, parks and recreation, education and cultural, 225 

health and welfare, religious and cemetery, military, governmental institutions, industrial, commercial, 226 

transport, residential areas of very low, low, medium, high, and very high density, and informal 227 
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settlements). The largest portion (54.07%) was covered by residential areas (very low, low, medium, high, 228 

and very high densities) with multi-story dwelling places (1–2, 3–4, 5, or more stories). This study only 229 

considered the house density categories (very low, low, medium, high, and very high) given the very small 230 

proportion of multi-story categories of more than three stories (0.01%–0.07%). Non-residential areas 231 

such as industrial, commercial, and public facilities comprised 37% of Metropolitan Manila. A small 232 

portion was covered by natural landscape aspects such as water bodies and forests (10%). The 2004 LU 233 

map had a dengue incidence time gap (2012–2014); thus, we updated the map to the period covered by 234 

our study so that all input parameters in the model had the same time range. This map was subjected to 235 

updates based on open street maps (OSM), processed and distributed by Geofabrik GmbH 236 

(www.geofabrik.de). The OSM data contained modifications that occurred before December 2016 237 

(Geofabrik GmbH 2019). Prior knowledge of the study area was used to manually inspect and validate the 238 

map modifications. LU variables included the percentage of land covered by each LU class (i.e., agriculture, 239 

water bodies, commercial, residential) per village (Figure 1b–d). The percentage of each LU class was 240 

calculated as follows. Firstly, we calculated the area of each LU class per village. Then, the percentage of 241 

each class was determine over the total area of the villages. All edits and calculations of LU areas per 242 

village was performed in ArcGIS software, version 10.2. 243 

Road network density (RND) assesses the urbanization gradient (Suarez-Rubio and Krenn 2018), 244 

which influences mosquito abundance and dengue transmission (Bostan, et al. 2017). The road network 245 

map was obtained from the Philippine GIS Data Clearinghouse website (http://philgis.org/) and classifies 246 

roads as primary, secondary, tertiary, residential, and others (PhilGIS 2012). The RND for each category 247 

was calculated by dividing the total length of roads by the total village area. Since the RND of each 248 

category of primary, secondary, and tertiary roads was less than 0.001 m/m², we merged them into a 249 

single category, “main roads” (Figure 1e). Terra MODIS Normalized Difference of Vegetation Index (NDVI) 250 

was derived from the product MOD13Q1 version 6. The NDVI consists of measures of the reflected 251 
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photosynthetic activity on vegetation and is generated every 16 days at 250-m spatial resolution (USGS 252 

n.d.). All images were downloaded through GEE and processed using ArcGIS to obtain their monthly 253 

averages per village. 254 

Cross-correlation analysis 255 

A cross-correlation analysis was conducted on the temporal variations of environmental factors 256 

(precipitation, temperature, and vegetation) on the OI and dengue incidence. The mean value of 257 

Metropolitan Manila area per month for each variable was utilized. We identified the best-lag based on 258 

the highest Pearson correlation coefficient that was generated and its statistical significance (p < 0.05). 259 

These analyses were implemented in R software version 3.6.2 using “ggpubr” package version 0.2.4 260 

(Kassambara 2019). The best-lag timing for each variable was used for the latter analyses. 261 

Model development with variable selection 262 

RF is a bootstrap aggregation (bagging) ensemble method that generates a large number of 263 

independent bootstrapped trees from random small subsets of the dataset (Breiman 2001). RF is used to 264 

solve a variety of classification and regression problems due its ability to handle large numbers of 265 

predictor variables even in the presence of complex interactions (Garge, Bobashev and Eggleston 2013). 266 

Two regression models were implemented in this study. Dengue incidence was regressed with lagged 267 

climate factors, LU types, and OI, with 27 explanatory variables. Additionally, the OI was regressed with 268 

lagged climate factors and LU types, with 26 explanatory variables. RF models were estimated using the 269 

“ranger” package (Wright, Wager and Probst 2020) implemented in the R software version 3.6.2 (R Core 270 

Team 2017) with parameters set at ntree = 500 and mtry = 5. 271 

To identify the most important predictors of dengue incidence and mosquito occurrence, we 272 

assessed variable importance (VI), which was measured as the mean decrease in MSE in the RF models. VI 273 

is calculated based on the number of times the explanatory variable is used for splitting, weighted by the 274 
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improvement to the model as a result of each split, averaged over all trees (Elith, Leathwick and T.Hastie 275 

2008). For the VI and respective p-values, we applied the permutation importance method, which 276 

computes an unbiased VI measure (Zeileis, Hothorn and Hornik 2008). Positive importance values with p-277 

values less than 0.05 were selected for the subsequent MOB recursive partitioning analysis. 278 

To investigate the interactions of the selected explanatory variables, we used MOB recursive 279 

partitioning to build a decision tree hierarchy by recursively partitioning the data into several groups 280 

using the variable that provides the best split per node (Zeileis, Hothorn and Hornik 2008). Recursive 281 

partitioning was implemented via two steps. First, we utilized all selected explanatory variables to build a 282 

decision tree to see the overall distributions of the OI and dengue incidence. From this step, we can also 283 

identify the main predictors of the OI and dengue incidence. In the second step, we explicitly specified 284 

the most important predictor found in the earlier step as the main explanatory variable in the model and 285 

then explored covariates that modulate the associations between the main predictors and the response 286 

variables. Herewith, we inferred how the OI and dengue incidence were modulated by the interaction 287 

between the main predictor and other variables. We used the Linear Model Tree (lmtree) interface 288 

implemented in “partykit” package (Hothorn and Zeileis 2015) in R Software (R Core Team 2017). For 289 

each of the generated intermediate nodes, regression coefficients and p-values were computed to inform 290 

the relevance of the splitting variable in a particular node. We set p value < 0.05 and maximum depth = 4 291 

as the stopping criteria so that only the most important variables and intermediate nodes that were 292 

statistically significant were used for modeling. These hyperparameters have been suggested to avoid 293 

model overfitting (Zeileis, Hothorn and Hornik 2008, Pirkle, et al. 2018), and simplification of tree 294 

structure was performing by only including the most relevant predictors (Kopf, Augustin and Strobl 2010). 295 

The p-values were Bonferroni corrected to control a false positive rate. The slope coefficients, R-squared, 296 

and p-values were obtained using the “summary()” function.  297 
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 298 

Figure 1: Administrative boundaries of Metropolitan Manila showing: (a) Ovitrap locations; Landscape 299 

features: (b) Residential areas classified according to densities, (c) Non-residential areas, (d) Uninhabited 300 

areas, (e) Road networks, and (f) Flood risk. 301 

  302 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.01.278713doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278713
http://creativecommons.org/licenses/by-nc/4.0/


 

 

RESULTS 303 

Cross-correlation analysis 304 

Precipitation yield had the highest positive and significant correlation with dengue incidence (r 305 

= 0.69, p = 0.00) at a one-month lag, followed by OI (r = 0.52, p = 0.05) and temperature (r = 0.52, p = 306 

0.05), both at a three-month lag. Vegetation displayed a negative and significant correlation (r = −0.71, p 307 

= 0.00) at a one-month lag (Table 1). Vegetation showed the highest positive correlation with the OI (r = 308 

0.77, p = 0.00) at a three-month lag, followed by temperature (r = 0.73, p = 0.00) and precipitation (r = 309 

0.48, p = 0.04), both at a zero-month lag. 310 

Table 1: Cross-Correlation Analysis of Temporal Climate Factors in Dengue Incidence and Ovitrap Index 311 

Variables  
Dengue incidence  Ovitrap index 

Lag 
month 

r 
value 

p value  
Lag 

month 
r 

value 
p value 

Ovitrap Index 3 0.52 p = 0.05  - - - 

Precipitation 1 0.69 p = 0.00  0 0.48 p = 0.04 

Temperature 3 0.52 p = 0.05  0 0.73 p = 0.00 

Vegetation 1 −0.71 p = 0.00  3 0.77 p = 0.00 

 312 

Variable selection 313 

Figure 2 shows the variable importance of the selected variables in the two RF models. The OI 314 

was significantly associated with 11 variables (three climatic factors and eight landscape factors). High 315 

residential density areas were ranked first, followed by precipitation, residential RND, temperature, 316 

medium residential density areas, vegetation, health institution areas, very high residential density areas, 317 

flood risk, commercial areas, and industrial areas (Figure 2a). Dengue incidence was significantly 318 

associated with eight variables (three climatic factors, four landscape factors, and OI). Precipitation was 319 
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ranked first, followed by temperature, commercial areas, high residential density areas, vegetation, OI, 320 

flood risk, and residential RND (Figure 2b). These variables were used in the subsequent modeling. 321 

 322 

Figure 2: Variable importance measures of the variables with the most significant associations with (a) 323 

ovitrap index and (b) dengue incidence; (**) statistically significant at p < 0.05. 324 

 325 

Model-based recursive partitioning 326 

  Figure 3a displays the MOB tree of the environmental conditions explaining the distribution of 327 

the OI. The tree is composed of three partitioning levels and eight terminal nodes. Each terminal node 328 

shows the average OI of a subset of the entire dataset based on selected landscape and climatic features 329 

and labeled accordingly as terminal nodes OV-A1 to OV-A8. In the MOB tree, high residential density was 330 

identified as the first-level partitioning variable and thus considered the most important environmental 331 

feature. The succeeding levels were comprised of residential RND, precipitation, industrial areas, health 332 

institutional areas, and flood prone areas. The order of the variables was agreed with the estimated 333 

variable importance (Figure 2a). The average OI from node OV-A1 to OV-A8 ranged from 1.36 to 34.52%. 334 
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We employed further analyses to identify the interactive effects of the most important 335 

predictor (i.e., high residential density) with other environmental factors on OI (Figure 3b). Higher slopes 336 

and R-squared values were found in nodes OV-B4 and OV-B8 (0.30 (R² = 0.13, p = 0.00) and 0.25 (R² = 337 

0.05, p = 0.00), respectively), indicating that the effect of high residential density areas on OI is 338 

modulated by precipitation, residential roads, and industrial areas. Discordant associations of high 339 

residential density areas to OI were observed for flood risk. A negative slope of −0.18 (R² = 0.02, p = 0.00) 340 

was found when the flood risk was lower or equal to 0.36 (node OV-B5) whereas a positive slope of 0.07 341 

(R² = 0.01, p = 0.02) was found when the flood risk was greater than 0.36 (node OV-B6). 342 

 343 
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Figure 3: Recursive partitioning trees for identifying the (a) most influential variables on the ovitrap index 344 

and (b) interactive effects between environmental factors and the ovitrap index. 345 

Figure 4a shows the MOB tree of the influence of climatic and landscape factors on dengue 346 

incidence. This tree is composed of eight terminal nodes generated from three partitioning levels. Each 347 

terminal node shows the average dengue incidence of a subset of the entire dataset based on selected 348 

climatic and landscape factors and is labeled accordingly as terminal nodes DI-A1 to DI-A8. Precipitation 349 

was the partitioning variable in the first and second partitioning levels and thus considered the most 350 

important environmental feature, similar to the RF analysis (Figure 2b). The succeeding partitioning levels 351 

comprised commercial and high residential density areas. The average dengue incidence on the terminal 352 

nodes DI-A1 to DI-A8 ranged from 0.04 to 0.51. 353 

We employed further analyses to infer the interactive effect of the most important predictor 354 

(precipitation) with other environmental factors on dengue incidence (Figure 4b). We specified 355 

precipitation as the main predictor and the remaining variables as interacting factors. Higher slopes and 356 

R-squared values were found in relation to two different interaction patterns and were considered 357 

influential toward dengue incidence. The first pattern involved interactions between precipitation, 358 

commercial areas, and high residential density areas (nodes DI-B7 and DI-B4, with slopes of 0.44 (R² = 359 

0.24, p = 0.00) and 0.39 (R² = 0.17, p = 0.00), respectively). The second pattern involved interactions 360 

between precipitation, commercial areas, high residential density areas, and flood risk (nodes DI-B6 and 361 

DI-B2, with slopes of 0.41 (R² = 0.16, p = 0.00) and 0.39 (R² = 0.16, p = 0.00), respectively). 362 
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 363 

Figure 4: Recursive partitioning trees for identifying the (a) most influential variables on dengue incidence 364 

and (b) the interactive effects between environmental factors and dengue incidence. 365 

DISCUSSION 366 

The interactive effects between high residential density, precipitation, and other landscapes in 367 

modulating ovitrap index 368 

Ovitraps, in general, can detect the presence of both Ae. aegypti and Ae. albopictus. However, 369 

the OI data utilized in this study does not contain any information on the proportion of these two species. 370 
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Therefore, in this section, our discussion focuses solely on Ae. aegypti. This is because previous studies 371 

that surveyed selected areas of Metropolitan Manila indicated a high infestation rate of Ae. aegypti 372 

(>80%) (Mistica, et al. 2019, Carvajal, Ho, et al. 2019), thereby making it the primary vector for dengue 373 

transmission. 374 

Both the RF and MOB tree (Figures 2a and 3a) analyses clearly indicate the importance of high 375 

residential density areas on the overall distribution of the OI. This finding is consistent with previous 376 

studies reporting that high residential areas are potential sources of breeding sites and blood meals for 377 

Ae. aegypti (Ngugi, et al. 2017). These areas are highlighted as the foremost breeding sites for Ae. aegypti 378 

due to the permanent availability of breeding containers and humans, who serve as blood sources (Higa 379 

2011, Ngugi, et al. 2017, Little, Bajwa and Shaman 2017). Herewith, residential areas exhibited ecological 380 

requirements to serve as main mosquito habitats compared with other types of landscapes. 381 

To determine how high residential density areas interact with other environmental factors in 382 

modulating OI, we employed further analyses by specifying high residential density areas as the main 383 

predictor and the remaining variables as interacting factors (Figure 3b). The influence of high residential 384 

density areas on mosquito occurrence became clearer under certain environmental conditions. The two 385 

nodes OV-B4 and OV-B8 with the highest slopes (0.30 and 0.25, respectively) were formed in high 386 

industrial areas (>4.15 and >1.52%, respectively) and high residential road areas (>0.02 and >0.01 m/m², 387 

respectively), and node OV-B4 had a low precipitation condition (≤0.45 mm/hr). Since Ae. aegypti 388 

preferentially breeds in small water containers exposed to the outdoors (Carvajal, Ho, et al. 2019, Ngugi, 389 

et al. 2017), little rainfall might be sufficient to maintain optimal levels of water suitable for mosquito 390 

emergence. Conversely, enhanced rainfall might flush out mosquito eggs and larvae from breeding 391 

containers and reduce the sensitivity of the OI to changes in high residential density areas. The 392 

destructive effect of significant precipitation on mosquito development has been suggested in another 393 
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work (Dickin, Schuster-Wallace and Elliott 2013); however, the possible precipitation thresholds remain 394 

unclear. 395 

Residential RND was the partitioning variable on the second level of the MOB tree. 396 

Furthermore, nodes OV-B4 and OV-B8, which had the highest slopes, were partitioned with higher 397 

residential road densities (>0.02 and >0.01 m/m², respectively). These results suggest an enhanced 398 

vulnerability to mosquito occurrence in high residential density areas with a higher density of residential 399 

roads. Roads not only serve as transportation networks for people and goods but are also simultaneously 400 

accompanied by drainage components (e.g., roadside drains or canals, drain sumps), which collect surface 401 

water runoff for discharge in appropriate locations to avoid flooding. However, in many cases, efficient 402 

drainage in residential areas can be compromised by the encroachment of concrete structures or garbage 403 

clogging canals (Lagmay, et al. 2015). These interferences can inhibit complete water flow, resulting in 404 

spots of accumulated water, which can create favorable habitats for Ae. aegypti (Paploski, et al. 2016). 405 

Growing evidence has suggested a positive association between drainage and the occurrence of Ae. 406 

aegypti in Singapore (Seidahmed, et al. 2018), Brazil (Souza, et al. 2017)m and Australia (Montgomery, et 407 

al. 2004). 408 

 Notably, with increased precipitation (>0.45 mm/hr), high residential density areas showed an 409 

opposite association to OI depending on the flood risk (Figure 3b). Increased flood risk led to a positive 410 

association between high residential density areas and OI (node OV-B6) whereas reduced flood risk led to 411 

a negative association (node OV-B5). Breeding containers located in high residential density areas with a 412 

higher flood risk, despite being watered by rainwater or water for domestic usage, might have a higher 413 

chance to be reached by flood waters. However, flood waters can also extend the range of potential 414 

habitats for mosquitoes (Yee, et al. 2019). Even more unusual breeding sites such as underground septic 415 

tanks were reported as favorable for Ae. aegypti reproduction in residential areas in Puerto Rico (R. 416 

Barrera, et al. 2008). These conflicting potential effects of flood on mosquito habitats might explain the 417 
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higher vulnerability for mosquito occurrence in high residential density areas with higher flood risks (node 418 

OV-B6) compared with high residential density areas with lower flood risks (node OV-B5). 419 

Node OV-B1, which had less precipitation (≤0.45 mm/hr), residential roads (≤0.02 m/m²), and 420 

no health institution areas (≤0%), is an extreme situation of null sensitivity of the OI toward high 421 

residential density areas. This node’s slope (0.00, R² = 0.00, p = 0.84) might indicate that the mixture of 422 

other types of landscapes with residential areas is essential to enhance the sensitivity of the OI in high 423 

residential density areas. However, further work is necessary to test this hypothesis and explain potential 424 

mechanistic effects. 425 

The adaptation of Ae. aegypti closer to human settlements does not seem to be solely 426 

influenced by environmental factors; certain human practices (e.g., housing in flood prone areas, weak 427 

environmental sanitation, obstruction of drainage canals, water storage practices for domestic usage) 428 

might contribute to the occurrence of mosquitoes. Therefore, environmental improvement and 429 

integrated control measures at the community level to improve the environment surrounding households, 430 

careful domestic water storage, and other sanitation practices are the most promising solutions for 431 

reducing the occurrence of mosquitoes. 432 

The environmental conditions associated with mosquito occurrence must be carefully 433 

interpreted given the nature of the mosquito occurrence data (OI) utilized in this study. The OI is based 434 

on the percentage of positive ovitraps and can detect the presence or absence of vectors. However, it has 435 

limited capacity in displaying the precise range of mosquito density in the environment (Harburguer, et al. 436 

2016). Therefore, the environmental conditions inferred from this ovitrap MOB tree might only display 437 

the conditions for mosquito oviposition and not necessarily the conditions influencing mosquito 438 

abundance. 439 

Interactive effects between precipitation and landscapes in modulating dengue incidence 440 
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Both RF (Figure 2b) and MOB tree (Figure 4a) analyses showed a significant influence of 441 

precipitation with a combinatory influence of high residential density and commercial areas in increasing 442 

dengue incidence. The significant influence of precipitation agrees with previous studies in the Philippines 443 

(Carvajal, Viacrusis, et al. 2018, Su 2008) and Malaysia (Dickin, Schuster-Wallace and Elliott 2013), which 444 

reported precipitation as a main driver of the temporal variation of dengue incidence. These studies 445 

assumed that the high correlation between precipitation and dengue incidence is due to the increasing 446 

mosquito density during the rainy season. On the MOB tree (Figure 4a), precipitation was the partitioning 447 

variable on the first and second levels whereas high residential and commercial areas were selected as 448 

partitioning variables on level 3. Overall, dengue incidence MOB trees support the significant influence of 449 

precipitation on dengue incidence. 450 

Previous studies have discussed the impact of precipitation on the increased number of dengue 451 

cases because of its role in increasing the number of available breeding sites for mosquitoes (Carvajal, Ho, 452 

et al. 2019, Pasin, et al. 2018). However, the transference of viruses from mosquitoes to humans occurs 453 

when the dynamics between the vector, the virus, and hosts are favorable (de Melo, Scherrer and Eiras 454 

2012). These conditions include the ratio of infected mosquitoes, human behavior, human exposure, and 455 

the ability of mosquitoes to transfer pathogens to humans (Thi, et al. 2017). Human behavior and 456 

exposure can also be altered by meteorological conditions (Akter, et al. 2017). Precipitation combined 457 

with floods, for example, can generate changes in the physical environment such as damaging shelters, 458 

which can alter urban dynamics (e.g., population displacement, increase of human exposure to vectors), 459 

thus favoring dengue transmission (Few, et al. 2004). 460 

In the variable selection step, precipitation showed a very strong influence on dengue incidence 461 

compared with other environmental factors. We conducted further analyses to evaluate the combinatory 462 

influence of precipitation with other environmental factors in modulating dengue incidence (Figure 4b). 463 

The association between precipitation and dengue incidence was further notable in these analyses, 464 
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particularly in areas covered by high residential and commercial areas, suggesting a vulnerability of these 465 

landscapes in modulating dengue incidence. The highest slope (0.44, R² = 0.24, p = 0.00) was reported for 466 

node DI-B7 (Figure 4b), which incorporates interactions between precipitation, commercial areas 467 

(>4.41%), and high residential density areas (between 25.38 and 83.97%). Herewith, this nodal pathway 468 

was considered the most influential environmental condition for increasing dengue incidence with high 469 

precipitation. The second highest slope (0.39, R² = 0.17, p = 0.00) was reported for node DI-B4 and 470 

formed with environmental conditions of commercial areas (0.31 < commercial areas ≤ 4.41%) and high 471 

residential density areas (>10.90%). With these influential patterns observed in terminal nodes DI-B7 and 472 

DI-B4, we suggest that certain ecological factors in commercial and high residential areas can enhance 473 

dengue transmission with precipitation. Previous studies have shown that residential and commercial 474 

areas experience the most damaged houses during extreme rainfall and flood events in Metropolitan 475 

Manila (Porio 2014, a, Porio 2011, b). Damage to families’ shelters, followed by massive displacements, 476 

might subject many people to deteriorated conditions with limited capacity to observe disease 477 

prevention and vector control measures. The high human exposure to vectors in these areas might create 478 

an avenue for high dengue transmission. A highly sensitive influence of precipitation on increasing 479 

dengue incidence was observed under high flood risk conditions (DI-B6 and DI-B2). These terminal nodes 480 

showed higher slopes of 0.41 (R² = 0.16, p = 0.00) and 0.39 (R² = 0.16, p = 0.00), respectively. Conversely, 481 

terminal nodes with lower flood risk (nodes DI-B1 and DI-B5, with slopes of 0.28 (R² = 0.14, p = 0.00) and 482 

0.33 (R² = 0.12, p = 0.00), respectively) displayed less sensitivity in increasing dengue incidence. These 483 

examples illustrate that the vulnerability for dengue transmission in residential and commercial areas 484 

with high precipitation can be further enhanced by floods. Floods can contribute to increased mosquito 485 

density and force people to live confined in deteriorated conditions of habitability with high exposure to 486 

vectors. The combination of human presence and exposure to vectors has been linked to high dengue 487 

transmission in residential (Scott and Morrison 2010, de Moura Rodrigues, et al. 2015) and commercial 488 
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areas (Honório, et al. 2009, Thammapalo, et al. 2007). Due to the anthropophilic nature of Ae. Aegypti, 489 

high human presence and exposure in these areas may increase feeding opportunities for mosquitoes 490 

and increase the chances of dengue fever infections (Koyadun, Butraporn and Kittayapong 2012). 491 

Because many people are exposed in areas with high precipitation levels, it becomes easier for 492 

mosquitoes to bite and infect many people in a short time, thus increasing the incidence of dengue (Akter, 493 

et al. 2017). 494 

We expected that the resulting dengue incidence and ovitrap MOB trees (Figure 3a and 3b) 495 

would yield similar tree topology patterns. This expectation assumed that the high dengue incidence 496 

during the rainy season is a result of high mosquito abundance influenced by precipitation. However, our 497 

result was contrary to our assumption and could be explained by methodological limitations. The OI is 498 

based on the percentage of positive ovitraps with the presence or absence of vectors; however, it has a 499 

limited capacity in precisely displaying the range of mosquito density in the environment transmitting 500 

dengue. Although ovitraps are fast and cost-effective tools for monitoring the presence of mosquitoes, 501 

the OI has a low association with dengue incidence compared with adult mosquito abundance data (de 502 

Melo, Scherrer and Eiras 2012). Additional correlation analyses (data no shown) of the OI and dengue 503 

incidence from the terminal nodes of Figure 3a and 3b were not significantly correlated. Therefore, the 504 

mosquito occurrence data (OI) utilized in this study might be responsible for the dissimilarities in the 505 

ovitrap and dengue incidence MOB tree topology patterns. 506 

 507 

Accessibility of data, modeling approach, and limitations 508 

Most previous epidemiological studies faced limitations when integrating climatic and 509 

landscape data given the scarcity of data and modeling techniques. Although we consider landscape to be 510 

static in this study, the model development did not distinguish dynamic or static terms. Since the physical 511 
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characteristics of each village did not change significantly over the three years, we assumed that these 512 

characteristics remained the same for each month of the study period. Based on this assumption, we 513 

utilized a data structure from previous studies that repeated the values of the static variables for the 514 

monthly values of the climate variables in each village (Kaul, et al. 2018). This design allowed us to analyze 515 

dengue epidemiology as a function of the combinatory influences of climate dynamics over the static 516 

landscape. 517 

Many methods from conventional statistics and machine learning may, in principle, be used to 518 

handle datasets with temporal and spatial dimensions. Usually a statistical model suggests empirical 519 

relationships between variables to generate specific outcomes based on certain assumptions and a priori 520 

knowledge of the modeled dynamics (Bzdok, Altman and Krzywinski 2018, Kapwata and Gebreslasie 521 

2016). By contrast, machine learning does not require a specific model structure in advance. The 522 

algorithm itself can automatically utilize the original input data to identify hidden patterns in complex 523 

data structure (Richter and Khoshgoftaar 2018). Beforehand, statistics requires us to declare a formal 524 

model that incorporates our knowledge of the system. Thus, before implementing a model, careful 525 

inspection of the data is necessary (e.g., normal distribution) (Olden, Lawler and Poff 2008). Machine 526 

learning makes minimal assumptions about the data structure and can be effective even when the data 527 

are gathered without a carefully controlled experimental design (Bzdok, Altman and Krzywinski 2018). 528 

Additionally, machine learning is less sensitive to outliers and can efficiently address higher 529 

dimensionality variables even in the presence of complicated nonlinear interactions among covariates 530 

(Olden, Lawler and Poff 2008). The increase in data complexity may inherit some disadvantages to 531 

classical statistical methods. Instead, we utilized a machine learning approach such as RF for variable 532 

selection and recursive partitioning for subset selection because of their ability to handle complex 533 

datasets and evaluate nonlinear relationships in the data without having to satisfy the restrictive 534 

assumptions required by conventional approaches. 535 
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  Machine learning, specifically RF, is often the preferred modeling method in a wide variety of 536 

epidemiological studies due to its capability to handle large datasets and accurately identify the best 537 

predictors (Kapwata and Gebreslasie 2016). However, many studies only ranked the relative importance 538 

of individual variables in influencing mosquitoes and dengue. Ranking the importance of variables alone is 539 

not enough to infer the dynamics occurring in the environment and their influence on dengue 540 

epidemiology (Sallam, et al. 2017). As discussed previously, there are multiple interacting factors in the 541 

environment that could play important roles in influencing mosquito and dengue occurrence. RF was able 542 

to handle the initial dataset and screen the most relevant variables associated with the OI and dengue 543 

incidence. Although RF can identify the most important variables, it cannot explain the interactions 544 

among covariates. Therefore, a recent study recommends also applying a machine learning method that 545 

is relatively easy to interpret (Ryo, Angelov, et al. 2020). By utilizing the recursive partitioning method in 546 

this study, we demonstrated important mechanistic interplays between environmental factors and 547 

presented specific conditions influencing the OI and dengue incidence. Furthermore, the same variables 548 

were identified as most influential on dengue and mosquitoes in RF and recursive partitioning. This 549 

consistency of results indicates the appropriateness of the adopted study design in capturing 550 

combinatory influences among environmental factors. However, since the data utilized are limited (July-551 

December), subsequent studies should be conducted to infer whether complete data (January-552 

December) with a similar modeling approach leads to different or similar results. 553 

The utilization of RS in our study made it possible to access spatiotemporal temperature, 554 

precipitation, and vegetation data for each village. These types of data overcome the limited accessibility 555 

of such information at fine scales in areas where the spatial coverage of weather stations is coarse 556 

(German, et al. 2018). By using Google Earth Pro, we were able to use cloud computation to conduct all 557 

preliminary processing of the data, which significantly shortened the working time. Moreover, detailed LU 558 

maps can distinguish the risk of dengue and mosquito occurrence at a fine scale. Many studies that used 559 
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coarse LU classification, for example, reported that Ae. aegypti and dengue incidence are positively 560 

correlated with residential areas (Vanwambeke, Lambin, et al. 2007, Vanwambeke, N.Bennett and Kapan 561 

2011, Sarfraz, et al. 2012). In this study, we demonstrated that the distributions of mosquito and dengue 562 

can also vary depending on the type of density in these residential areas. 563 

Our study, however, has certain limitations. As mentioned in the methods, the entomological 564 

data used in this study are incomplete and only correspond to the months of July-December of 2012–565 

2014. This period covers the rainy season in Metro Manila. Therefore, the lack of dry season data 566 

(January-June) causes potential bias in our study. Furthermore, ovitraps were installed in only 298 of 464 567 

villages across Metro Manila. Complete data may better describe mechanistic understanding of 568 

associations between the dengue metrics and ambient environment factors. Nevertheless, our findings 569 

may still reflect the actual circumstances of LU and climatological characteristics of the study area. The 570 

results of the combinatory influences of landscape and climate may differ in other urban cities, 571 

particularly in rural areas in the Philippines and other dengue-endemic countries. Nonetheless, the 572 

methodology presented in this study can infer interplays between climate and landscape on mosquito 573 

occurrence and dengue incidence. 574 

Our study demonstrated notable combinatory effects between climate and landscape in 575 

relation to the occurrence of mosquitoes and dengue incidence. It suggests discordant patterns wherein 576 

the OI is primarily influenced by landscapes and modulated by the effects of precipitation. Dengue 577 

incidence is primarily influenced by precipitation and modulated by landscapes. Such understanding and 578 

knowledge can further strengthen the design and implementation of prevention and control measures 579 

against dengue vectors and disease. 580 

In recent years, vector control efforts in eliminating mosquito breeding sites have intensified in 581 

residential areas by identifying and destroying breeding sites. However, we demonstrated that the 582 
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existence of potential breeding sites in the landscape is not the only reason for dengue transmission. 583 

These efforts should be accompanied by effective improvements in urban settings by making them more 584 

resilient to mosquito-vectored diseases. 585 
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