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Abstract 
 
 

 

Population structure (PS) has been shown to cause false positive signals in genome-wide 

association studies (GWAS). Since PS correction is routinely used in human GWAS, it was 

assumed that it should be utilized for murine GWAS. Nevertheless, there are fundamental 

differences between murine and human GWAS, and the impact of PS on murine GWAS results 

has not been thoroughly investigated. We examined 8223 datasets characterizing biomedical 

responses in panels of inbred mouse strains to assess the impact of PS on murine GWAS. 

Surprisingly, we found that PS had a minimal impact on datasets characterizing responses in 

<20 strains; and relatively little impact on the majority of datasets characterizing >20 strains. 

Moreover, there were examples where association signals within known causative genes could 

be rejected if PS correction methods were utilized. PS assessment should be carefully used, 

and considered in conjunction with other criteria, for assessing the candidate genes that are 

identified in murine GWAS. 

 

 

 

 

 

 

 

Abbreviations: GWAS, genome-wide association study; HBCGM, haplotype-based 

computational genetic mapping; PCA, principal component analysis; PS, population structure. 
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Introduction 
 
Because of ancestral relatedness among the individuals within an analyzed population, a 

GWAS will identify a true causative genetic variant along with multiple other false positive 

associations, which arise because of genetic regions that were commonly inherited within a sub-

population. This property, which is referred to as ‘population structure’ (PS) has been shown to 

exist in populations ranging from plants  to humans ; and it inflates the number of false positive 

results obtained in a GWAS. Since PS was identified as a significant confounding factor for 

human GWAS, methods were developed to distinguish the false positive PS-based associations 

from the true causative genetic factors for a studied trait. Yu et al  proposed a unified mixed 

model method to control the PS by a matrix (Pritchard, et al. 2000), where Bayesian clustering 

is used to infer the number of subpopulations and to estimate the effect of population structure. 

Improved methods were subsequently developed over the next decade. Zhao et al  replaced the 

matrix with the use of principal components that summarized the genome-wide patterns of 

relatedness . Principal components analysis (PCA) has two advantages over the population 

structure matrix: (i) the subpopulations do not have to be specified prior to the analysis, which 

can be an arbitrary process that introduces errors; and (ii) it is far more computationally efficient, 

which is important when a large number of individuals with many SNPs are evaluated. 

 

Although the methodology has improved, we do not know whether PS has a significant impact 

on GWAS results using inbred mouse strains. Mouse is the premier model organism for 

biomedical discovery, and many therapies were initially discovered using mice. Since the inbred 

laboratory strains are derived from what is estimated to be four ancestral founders that diverged 

~1 million years ago (Guenet and Bonhomme 2003; Reuveni, et al. 2010), PS could certainly 

impact murine GWAS results. Others have advocated that PS correction should be used in 

murine GWAS . However, since murine and human GWAS differ in several fundamental ways, 

PS correction methods that are helpful for analyzing human GWAS results may not be as useful 

for murine GWAS studies. In murine GWAS, the inbred strains are homozygous and do not 

inter-breed; the number of inbred strains characterized are orders of magnitude lower than the 

many thousands of human subjects that are now routinely evaluated in a human GWAS; and 

genetic effect sizes are often much larger in a murine GWAS due to the fact that environmental 

and other variables are tightly controlled. Therefore, we used a large database of phenotypic 

responses that were measured in panels of inbred strains to examine the impact of PS on 

GWAS outcome. Haplotype-based computational genetic mapping (HBCGM) is a method for 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.01.278762doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278762


performing GWAS in mice, but it has important differences from conventional SNP-based 

studies . In an HBCGM experiment, a property of interest is measured in available mouse 

strains whose genomes have been sequenced; and genetic factors are computationally 

predicted by identifying genomic regions (haplotype blocks) where the pattern of within-block 

genetic variation correlates with the distribution of phenotypic responses among the 

strains (Liao, Wang, Guo, Allard, Chang, et al. 2004; Wang, et al. 2005; Zheng, et al. 2012). 

HBCGM analyses use a SNP database that now has 25M SNPs with alleles covering 49 inbred 

mouse strains, which was generated from analysis of whole genome sequence data . HBCGM 

has successfully identified genetic factors for >22 biomedical traits in mice , a; Zheng, et al. 

2012). However, as with other GWAS methods, HBCGM analyses identify many genomic 

regions with allelic patterns that correlate with a phenotypic response pattern; but only one (or a 

few) contains a causative genetic factor. Therefore, we investigated the effect of PS on murine 

GWAS results, and the utility of applying a PS association test for eliminating false positives 

from the list of candidate genes identified by HBCGM. 

  

Results 
 
The Mouse Phenome Database (MPD) (https://phenome.jax.org) (Grubb, et al. 2014) has 8223 

datasets that characterize basal, age-related, and experimentally-induced responses in panels 

of inbred mouse strains. A total of 1.52M different measured responses were within this 

database. We previously demonstrated that MPD datasets have utility for genetic discovery; a 

genetic susceptibility factor for a drug-induced CNS toxicity was identified by HBCGM analysis 

of one MPD dataset (Zheng, Zhang, Dill, Clark, Tu, Yablonovitch, Tan, Zhang, Rujescu, Wu, 

Tessarollo, Vieira, Gottesman, Deng, Eberlin, Zare, Billard, Gillet, L, et al. 2015). Therefore, we 

initially selected all MPD datasets that measured a response in 10 or more strains whose 

genomic sequence was available (2435 datasets) For each of these datasets, haplotype blocks 

with allelic patterns that correlated with the measured strain response pattern were identified by 

HBCGM. The average number of correlated blocks (𝑝"#$%& < 0.01) for each dataset was 3966. 

We then used a multi-variate association test (MANOVA) to determine whether the haplotypic 

strain groupings within the correlated blocks were related to PS among the analyzed strains. To 

do this, the number of PCs has to be specified in advance to perform the PS association test. 

Therefore, we first examined the percentage of the variance that was explained when a variable 

number of principal components (PCs), which ranged from 1 to 33 because <33 inbred strains 

were analyzed in any dataset, were used for the principal component analysis (PCA). The 
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results indicated that four PCs, each of which explained >5% of the variance, were optimal for 

PS assessment (Fig. S1). 

 

A pairwise IBS matrix divided the 49 sequenced inbred strains into four sub-populations (Table 
1, Fig. 1). Sub-populations 2 and 3 contain the majority of the inbred strains, which are closely 

related. Sub-population 1 strains are derived from a C57BL ancestor; and the five strains in sub-

population 4 are genetically distinct from the other groups. The spatial relationship of the 49 

strains (plotted using the first two PCs for each strain) is concordant with the hierarchical 

clustering (Fig 1). Populations 2 and 3 are quite similar and can be merged if the small amount 

of genetic variation is ignored. The number of inbred strains analyzed in each of the 2435 MPD 

datasets are summarized in Table S1. Our analyses indicated that we could not assess 

population structure in MPD datasets that analyzed < 20 strains because: the sub-population 

structure was extremely variable, the strain groupings within these datasets often contained 

strains from different global sub-groups, and the sub-structure could be significantly altered by 

the addition or deletion of even a single strain (Fig. S2). 

 

Therefore, we examined population sub-structure in 1750 MPD datasets that examined 

responses in > 20 inbred strains. During our analysis, we noted that many different MPD 

datasets used the same panel of inbred strains, which is probably because multiple phenotypes 

were evaluated by the same investigator and certain strains are commonly used by different 

laboratories. To illustrate the general properties that emerged from our analyses, we show 967 

MPD datasets that repeatedly analyzed responses in the same sets of (n=23-32) inbred strains. 

The strains used in 432 of these datasets clearly lack population sub-structure (Fig. S3). PS 

was present in 535 other MPD datasets (Fig. S4), where the group 1 strains (C57BL related) 

are clearly separated from the other strains. However, the global group 2 and group 3 strains 

are broadly distributed in the graphs of these datasets, without an explicit boundary that 

separated them from the other strains; and the groups 2 and 3 strains are intermixed with group 

1 strains in many of these graphs. Hence, even in datasets that examine responses in strains 

that appear to have PS, population structure would only have an effect if phenotypic response 

pattern completely mirrored that of the global strain sub-populations. If this response pattern 

does not occur, which appears to be the case for the majority of the measured responses (see 

below), PS would have a limited effect on genetic analysis results.  
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To more directly assess PS impact on the haplotype blocks generated by HBCGM analysis of 

the 2435 MPD datasets, a population structure association test was performed on each 

correlated haplotype block. An adjusted p-value for the PS association test for each block was 

generated using MANOVA. Blocks with a 𝑝+,- ≤ 0.05 have a significant association with 

population structure (i.e. PS+), and could be removed from further consideration, while those 

with a 𝑝+,- ≥ 0.05 are viewed as viable candidate genes for further evaluation (PS-). For 68% of 

the datasets (1,660 of 2435 analyzed), >50% of the correlated blocks were not associated with 

population structure (PS-); and 39% of the datasets (949 of 2435) had 75 to 100% PS- blocks 

(Fig. 2). Only 32% of the datasets (n=775) had >50% PS+ correlated blocks; and most of these 

(23%, 565 datasets) have between 25 and 49% PS- blocks. Only 9% of the MPD datasets (n= 

210) have >75% PS+ blocks. Overall, our results indicate that for most MPD datasets, the vast 

majority of the haplotype blocks identified by HBCGM are not affected by PS. We also 

investigated whether the magnitude of the PS impact is affected by the number of strains 

analyzed (i.e. the sample size). As the strain number increased, the number of correlated 

candidate blocks identified by HBCGM analysis increased (Fig. 3A). This result is consistent 

with prior studies indicating that genetic analyses, which are performed on large populations, 

will identify additional genetic variants with a small effect size (Visscher, et al. 2017). However, 

while the number of PS- blocks plateaued after 15 strains were analyzed, the number of PS+ 

blocks increased as the number of analyzed strains increased (Figs. 3B-C). These results 

indicate that when an increased number of inbred strains are analyzed, the number of 

correlated haplotype blocks increases, as does percentage of PS+ blocks. The results are 

completely consistent with the sample size effects that were previously noted in human-case 

control studies . 

 

When considering whether PS correction should be utilized for assessing mouse genetic 

association results, it is important to determine whether this could lead to rejection of a true 

causative association. Therefore, we investigated whether PS was present in haplotype blocks 

within genes whose allelic patterns are known to be causal for phenotypic response differences 

in 6 MPD datasets (Table 2). We first examined the haplotype blocks identified by HBCGM from 

analysis of data on strain susceptibility to anthrax toxin (MPD 1501), which is known to be 

caused by allelic variation within the Nalp1a and Nalp1b genes (Boyden and Dietrich 2006). 

Both of the correlated haplotype blocks within these genes were PS-.  Similarly, the identified 

haplotype block within an experimentally validated causative gene (Abcb5) (Zheng, Zhang, Dill, 

Clark, Tu, Yablonovitch, Tan, Zhang, Rujescu, Wu, Tessarollo, Vieira, Gottesman, Deng, 
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Eberlin, Zare, Billard, Gillet, L, et al. 2015) affecting susceptibility to a drug (haloperidol)-induced 

CNS toxicity (MPD 39410) also was PS-. The albino skin type (MPD 22001) that appears in 

some inbred strains is determined by a Cys103Ser SNP within the tyrosinase (Tyr) gene 

(Yokoyama, et al. 1990), and the correlated haplotype block identified by HBCGM analysis 

within Tyr was also PS-.  

 

However, the results of PS analyses for three other MPD datasets raised concerns. Apoa2 

encodes the second most abundant protein within high density lipoprotein (HDL) particles, and it 

is involved in lipoprotein metabolism. Apoa2 alleles were previously associated with differences 

in plasma HDL cholesterol levels in mice (Doolittle, et al. 1990); and HDL levels were 70% 

decreased in Apoa2 knockout mice (Weng, et al. 1999). HBCGM analysis of two datasets 

measuring HDL cholesterol levels (MPD 9904 and 9907) indicated that 3 of 4 correlated 

haplotype blocks within Apoa2 are PS+ blocks (MANOVA  𝑝+,- < 0.05). Retinal degeneration in 

inbred strains is known to be caused by a stop codon (Tyr347X) within phosphodiesterase 6b 

(Pde6b) (Pittler, et al. 1993). One MPD dataset (MPD 26721) examined the retinas of 29 inbred 

strains: 21 strains had normal retinas, and 8 strains had retinal degeneration. HBCGM analysis 

identified two Pde6b haplotype blocks that completely correlated with retinal degeneration in 

male and female mice (𝑝"#$%& = 0). However, the strain groupings within these blocks had PS; 

the PS association test p-values for these blocks were 0.02 (𝑝+,- = 0.049) (Table 2). The blocks 

had PS because all 8 strains with retinal degeneration were from population group 3, and all 

population group 1 and 2 strains had normal retinas. However, several group 3 strains had 

normal retinas and Pde6b Try347 alleles (Fig. 4). These examples demonstrate that some true 

positives, if the usual FDR control rate (𝑞 = 0.05) was applied, could have been falsely rejected 

based upon their association with PS.  

 
Discussion 
 
PS correction is commonly performed when analyzing GWAS results involving human or other 

species (cattle, maize, etc.), and PS correction has also been advocated for use in murine 

GWAS (Sul, et al. 2018). While PS correction helps to eliminate false positives, our analyses 

indicate that PS makes a smaller than expected contribution to most murine GWAS studies. 

Moreover, we found that PS correction can even generate a false negative result, i.e. it can lead 

to rejection of an experimentally confirmed true causative genetic factor. Why is the utility of PS 

correction in murine HBCGM analyses different from that of association studies performed using 
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different methods or involving other species? We identify four factors that account for this 

difference. (i) A very limited number of inbred strains are examined in a murine GWAS, which 

usually analyze <20 (and never >40 inbred strains). This is orders of magnitude less than the 

number of subjects in human GWAS (now ranging from thousands to hundreds of thousands). 

Since the PS effect increases as the number of inbred strains analyzed are increased, PS has a 

more limited effect on most murine GWAS. (ii) We found that the vast majority of murine GWAS 

studies utilize strains with limited PS. Most (37 of 49 or 75%) of the commonly used inbred 

strains are derived from closely related populations, which have limited or no population 

structure. Among 25M SNPs that were analyzed, pairwise comparisons revealed that the level 

of allelic similarity among the classical inbred strains is >70%. The limited amount of genetic 

variation among these strains precludes their separation into distinct sub-populations. (iii) 

Human (and other species) GWAS identify trait associations using SNP markers, and the 

association signals depend upon the existence of linkage disequilibrium (LD) between SNP 

markers and causal genetic variants. The dependence upon LD, which extends over a region of 

indeterminate size, increases the effect that regional PS could have on an outcome. In contrast, 

HBCGM does not rely on LD between marker and causative SNPs. HBCGM uses a 

combination of adjacent SNPs to produce haplotype blocks, which are the composite genetic 

variants that are analyzed. Since haplotype blocks are assembled from analysis of whole 

genome sequence, the block boundaries are precisely determined, and the analyzed variants 

contain the causative genetic factors. (iv) The impact of a false negative result (excluding a true 

positive due to PS) is much greater for a murine GWAS. Genetic association studies involving 

large populations usually identify many genetic variants, with each having a small genetic effect 

size. In those situations, the loss of a few true positive associations does not create a large 

problem since many others remain. However, murine GWAS analyze a small number of inbred 

strains; and the heritability and genetic effect size of the identified candidate genes is relatively 

large (usually >0.3); since the mouse genome is homozygous and environmental and other 

confounding factors are minimized. Thus, unlike its small effect on human GWAS results, the 

elimination of a true positive by PS correction can be disastrous for a murine GWAS. Of note, 

only one factor is specific to HBCGM, the other three factors are relevant to all forms of murine 

GWAS. 

 

We have shown in several situations that a true causative factor could be associated with strain 

phylogenetic background. In two examples, Apoa2 (MPD 9904) and Pde6b (MPD 1501), PS 

correction could have removed true causative blocks from further consideration. However, in 
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one case (retinal degeneration and Pde6b), the identified haplotype block was much more 

strongly associated with the phenotypic response pattern (genetic association p-value=0) than 

with population sub-structure (p-value=0.49). In another case (HDL levels and ApoA2), the p-

values for the genetic and the population structure association tests for the causative haplotype 

block were of a similar magnitude, but published information indicated that the gene candidate 

was very strongly associated with the analyzed phenotype. As suggested by others after 

examining GWAS results for multiple traits in plants , it is not easy to distinguish between a true 

and a spurious association due to genetic background, even after correcting for PS. However, 

when GWAS are performed under conditions with true genome wide coverage, a true 

association is expected to exhibit the strongest association . Allele sharing within a localized 

candidate genomic region should be greater than one based upon genome wide allelic 

correlations. Thus, examining the ratio of the p-values obtained from the GWAS and PS 

association tests could provide a more informative way to eliminate spurious positives while 

retaining the true positive associations. Nevertheless, as was previously observed in plants , 

there are situations (as with HDL and ApoA2) where a shared stain background can be 

responsible for trait response differences. In these situations, the strength of the functional 

evidence that a candidate gene could be responsible for a trait difference could override PS 

considerations. 

 

Lastly, other methods can be used to eliminate false positive associations in GWAS. We have 

shown that true positives can be identified by the use of orthogonal criteria for analyzing 

HBCGM output. Causative genetic factors were selected from among the many genes with 

correlated genetic patterns using gene expression and metabolomic data (Liu, et al. 2010), 

curated biologic information (Zhang, et al. 2011), or the genomic regions delimited by prior QTL 

analyses (Smith, et al. 2008; LaCroix-Fralish, et al. 2009). This integrated approach evaluates 

genetic candidates using multiple criteria, and it can produce results that are superior to that of 

using a single highly stringent genetic criterion to identify gene candidates. Recent efforts to 

utilize transcriptome wide association studies  or functional information  to select causative loci 

from among the many SNP sites identified in a human GWAS, or to identify SNPs near a priori 

identified gene candidates in plant GWAS  resemble our methods for analyzing HBCGM output.  

In summary, PS assessment may be one factor that should be used along with multiple other 

factors to assess a candidate gene, which include the relative strength of the GWAS and PS 

association results, tissue-specific gene expression criteria, and gene-phenotype relationship 

based upon information contained within the published literature. 
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Methods 
 

Selection of Mouse Phenome Database datasets. MPD datasets (n=8223) were downloaded on 

March 24, 2020. We analyzed MPD datasets where the mean phenotypic measurement of each 

strain was obtained from > 5 mice of each strain. An ANOVA test was also performed to 

determine if the inter-strain variance was significantly greater than intra-strain variances; and a 

p-value < 1x10-10 was used as the cutoff for dataset selection. Datasets with categorical 

measurements were excluded from bulk analysis of MPD datasets.  

 

Haplotype block construction and genetic mapping in mice. The sequence of 49 inbred mouse 

strains were analyzed as previously described (Zheng, Zhang, Dill, Clark, Tu, Yablonovitch, 

Tan, Zhang, Rujescu, Wu, Tessarollo, Vieira, Gottesman, Deng, Eberlin, Zare, Billard, Gillet, Li, 

et al. 2015). SNPs were dynamically organized into haplotype blocks for each dataset, which 

only used alleles for the strains contained within the dataset, according to the “maximal” block 

construction method (Peltz, et al. 2011b). In brief, this method produces haplotype blocks with a 

minimum of 3 SNPs; and each block is only allowed to a predetermined number of haplotypes, 

which ranges from 2 to 5. Since the “maximal” method enables blocks to overlap, blocks are 

assembled that cover all possible allelic combinations within a specific genomic region. If a 

smaller block was nested inside of a larger block and it contained the same haplotypes, it was 

removed and the larger block was used to cover that region (Peltz, et al. 2011b). This ensures 

that additional SNPs are only included within a block if additional haplotypes are added to the 

block. The relationship between the phenotypic response pattern and haplotype blocks was 

evaluated by HBCGM as described (Liao, Wang, et al. 2004b). Genes with correlated haplotype 

blocks were sorted based upon the ANOVA p-value. A cut-off of 𝑝 = 0.01 was used to select 

haplotype blocks with a correlated allelic pattern. If a gene had multiple correlated blocks, the 

haplotype block with the smallest p-value was used. 

 

Population structure association test. We use principal component analysis (PCA) to determine 

whether a haplotypic strain grouping was associated with PS. Principal components (PC) has 

been used assess population stratification (Price, et al. 2006b; Zhao, et al. 2007a); it is a major 

component of the linear mixed model (LMM) that is used to control PS-induced spurious 

associations in GWAS results. In the LMM, PS is treated as a covariate that influences the 

phenotypic values in addition to the effect of the genetic markers. However, we treat PS as a 
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dependent variable, which is determined by a comprehensive analysis of genome-wide allelic 

similarity. For this analysis, the PS of the inbred strains (𝑦) is determined by the equation 

𝑦 = 𝜇 + 𝑋𝛽 + 𝑒	

where 𝑦 is an 𝑛 × 𝑝 matrix that is derived from a PCA of sample size of n with 𝑝 principal 

components; 𝜇 is an 𝑛 × 1 vector that contains the grand mean for each of the 𝑝 variables (𝜇 =
?
@
∑ 𝑦B@
BC? ); 𝑋 is an 𝑛 × 1 vector of haplotype indicators for 𝑛 strains; 𝛽 is the effect of the 

haplotype, and 𝑒 is an 𝑛 × 1 vector of the residual error. 𝑝 is a hyperparameter to determine the 

number of PCs used in analysis, where it guarantees each PC can explain certain amount 

(say >5%) of the variance of the original genetic relationship. Alternatively, 𝑝 can be arbitrarily 

selected based upon analysis on a Scree plot (to find the “elbow”), which ranks PCs based on 

the percentage of variance explained by each PC. If the elbow is observed at p-th PC; most of 

the true signals are captured in the first p PCs. By using PC to represent population structure, 

pre-determination of the number of sub-populations is not required. A multivariate analysis of 

variance (MANOVA) can be then used to assess the association between strain groupings 

within a haplotype block and PS, since the strain grouping within a block becomes a single 

variable that affects the first p PCs. 

 

Generation of genetic relationship and identity-by-state similarity matrices. The genetic 

relationship matrix (GRM) for inbred mouse strains was generated using genome-wide SNP 

alleles and GCTA software (Yang, et al. 2011). The GRM is also known as the variance-

covariance standardized relationship matrix, and the eigenvectors of this matrix were used as 

PC. The GRM eigenvalues for the inbred strains of each PC were used to estimate the amount 

of GRM variance that PC explains. Since we analyze 49 inbred strains and mice are 

homozygous, SNPs were not filtered based upon a minor allele frequency threshold. To verify 

that the PCs effectively represent the PS among the strains, we clustered individual strains 

using a pairwise identity-by-state (IBS) similarity matrix, which was also derived using whole 

genome SNP data. The IBS similarity matrix is a square, symmetric matrix that reflects the IBS 

distance between all pairs of inbred mouse strains. PLINK (Purcell, et al. 2007) was used to 

calculate the IBS similarity matrix, and it contains values that range from 0 to 1. The hierarchical 

clustering of 𝑛 strains was determined using the hcut() function within the factoextra/R package. 

 

Multiple test correction for the PS association test. Since the population structure association 

test was performed on 2435 datasets, the MANOVA test p-value for each block generated by 

the HBCGM program is adjusted by controlling for the false discovery rate (FDR at 𝑞 = 0.05) 
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using Benjamini-Hochberg method (Benjamini and Hochberg 1995). The adjusted p-value for i-

th block is 𝑝+,- = 𝑝B × 𝑚/𝑖, where 𝑝B is the MANOVA test p-value, m is the number of blocks 

(multiple tests), and 𝑖 is the order of 𝑝B in a series of p-values that satisfies 𝑝(?) ≤ 𝑝(H) ≤ ⋯ ≤

𝑝(J). If a block has 𝑝+,- ≥ 0.05, it is not considered as having a significant amount of PS (i.e. 

the null hypothesis, which is that the tested block does not have population structure, cannot be 

rejected). 

 

Data availability: The data sets within the Mouse Phenome Database (MPD) analyzed in this 

study are available at (https://phenome.jax.org). All data generated or analyzed during this study 

are included in this published article [and its supplementary information files]. 
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Table 1. The 49 inbred strains can be divided into the four groups shown in this table based on 
their pattern of genome-wide allelic sharing.   
 
 

Group Number of 
Strains 

Strain List 

1 7 C57BL/6J, B10, C57BL10J, C57BL6NJ, C57BRcd, C57LJ, C58 
2 14 BTBR, CEJ, KK, NZB, NZW, 129P2, 129S1, 129S5, ILNJ, LPJ, 

NZO, PJ, SMJ, WSB 
3 23 BUB, DBA1J, FVB, NON, NUJ, RFJ, RHJ, RIIIS, SJL, A/J, AKR, 

BALB, C3H, CBA, DBA, LGJ, MAMy, MRL, NOD, PLJ, SEA, 
ST, SWR 

4 5 CAST, MOLF, PWD, PWK, SPRET 
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Table 2. Results of population structure analysis performed on haplotype blocks within the 
known causative genes for 6 MPD datasets. The MPD dataset number, the sex of the mice, and 
a description of the measured response are shown. The gene symbol for the causative gene, 
the chromosome and position of the identified haplotype block, and the p-value and adjusted p-
value for the population structure association test for that block are shown. 
 

MPD Dataset Gene Block position HBCGM p-val PS p-val PS  
adj p val 

1501 F susceptibility to 
Bacillus anthracis 

Nlrp1a Chr11: 71110959-71111942 0 0.9537 0.9702 

1501 M susceptibility to 
Bacillus anthracis 

Nlrp1b Chr11: 71159763-71159873 0 0.5785 0.6782 

26721 F retinal 
degeneration 

Pde6b Chr5: 108399551-108400383 0 0.0244 0.0491 

26721 M retinal 
degeneration 

Pde6b Chr5: 108399551-108400383 0 0.0244 0.0491 

9904 F HDL cholesterol 
baseline 

Apoa2 Chr1: 171225795-171225890 5.5e-6 0.0005 0.0010 

9904 M HDL cholesterol 
baseline 

Apoa2 Chr1: 171225644-171225697 3.14e-5 0.1537 0.2448 

9907 F HDL cholesterol 
after 17 wks on diet 

Apoa2 Chr1: 171227457-171227593 0.0066 0.0039 0.0106 

9907 M HDL cholesterol 
after 17 wks on diet 

Apoa2 Chr1: 171227457-171227593 0.0008 0.0020 0.0044 

22001 F coat color Tyr Chr7: 87446687-87446831 3.68e-6 0.1071 1 

22001 M coat color Tyr Chr7: 87446687-87446831 3.68e-6 0.1071 1 

39410 M Haloperidol 
induced latency day 30 

Abcb5 Chr12: 118885164-
118916966 

4.19e-10 0.1507 0.8047 
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Figure 1. An analysis of population structure among 49 inbred mouse strains, which is based 

upon whole genome sequence analysis, identifies four sub-populations. The relatedness of the 

49 inbred strains based upon hierarchical clustering using an identity-by-state similarity matrix 

(Left); or a scatter plot generated by PCA using the first two PCs for each strain are shown 

(Right). The sub-populations identified by the two methods are completely concordant. Sub-

populations 1 and 4 are distinct from the majority of the inbred strains that contained in two 

closely related sub-populations (2 and 3).  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.01.278762doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.278762


 
Figure 2. A scatter plot showing the number of candidate haplotype blocks associated with 

population structure (PS+) relative to PS- candidate blocks. After 2435 MPD datasets were 

analyzed by HBCGM, candidate blocks (𝑝"#$%& < 0.01) were analyzed by an association test to 

determine whether they were related to population structure among the inbred strains that were 

analyzed. Each datapoint (+) indicates the number of PS+ (y-axis) and PS- (x-axis) blocks 

identified for one MPD dataset. MPD datasets where 75% to 100% of the blocs are PS- are 

shown in red; orange datasets have 51-74% PS- blocks; blue datasets have 25-49% PS- 

haplotype blocks; and those with 0-24% PS- blocks are shown in green. 
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Figure 3. The effect of population structure increases with the number of analyzed strains. 

Analysis of the total number of candidate haplotype blocks, the number of blocks with 

population structure (PS+), and the number of PS-independent (PS-) blocks are shown as a 

function of the number of analyzed strains. After 2435 MPD datasets were analyzed by 

HBCGM, the correlated blocks (𝑝"#$%& < 0.01) were analyzed by an association test to 

determine whether population structure had a significant influence on the strain groupings within 

the blocks. (A) The results were then graphed as a function of the number of mouse strains 

within each dataset (range 10 – 33). A blue circle represents the average of the total number of 

candidate blocks, and the mean number of PS- (red) and PS+ blocks (green) are also shown in 

this graph. (B, C) The percentage of (B) PS- and (C) PS+ blocks was then assessed for each 
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dataset. The box plots indicate the 25th and 75th percentile, and the black bar indicates the 

median value. While the number of PS- blocks plateaued after 15 strains were analyzed, the 

number of PS+ blocks increased in the datasets that analyzed an increased number strains. 
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Figure 4. The haplotype block with a causative mutation is associated with population structure. 

MPD 26721 examined the retinas of 29 inbred strains: 21 strains had normal retinas and 8 

strains had retinal degeneration. A haplotype block within Pde6b contained the causative SNP 

(Tyr347X) for this type of retinal degeneration. All strains with retinal degeneration had the 

Pde6b 347X allele, while those with normal retinas had the Tyr347 allele. The haplotype block 

had PS, because all group 1 and 2 strains (based upon hierarchical clustering of whole genome 

sequence data from 49 inbred strains (Table 1)) had normal retinas; while all strains with retinal 

degeneration were group 3 strains. However, several group 3 strains (AKR, A/J, BALB, DBA, 

MaMy, NOD, SEA) had normal retinas and the Tyr347 allele. Thus, while the strain groupings 

within the block have PS based upon their global allele sharing pattern, the allelic pattern within 

the haplotype block had a stronger association with retinal degeneration. 
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