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Abstract 17 

Humans are remarkably efficent at recognizing objects. Understanding how the brain performs object 18 

recognition has been challenging. Our understanding has been advanced substantially in recent years 19 

with the development of multivariate decoding methods. Most start-of-the-art decoding procedures, 20 

make use of the ‘mean’ neural activation to extract object category information, which overlooks 21 

temporal variability in the signals. Here, we studied category-related information in 30 mathematically 22 

distinct features from electroencephalography (EEG) across three independent and highly-varied 23 

datasets using multivariate decoding. While the event-related potential (ERP) components of N1 and 24 

P2a were among the most informative features, the informative original signal samples and Wavelet 25 

coefficients, selected through principal component analysis, outperformed them. The four mentioned 26 

informative features showed more pronounced decoding in the Theta frequency band, which has been 27 

suggested to support feed-forward processing of visual information in the brain. Correlational analyses 28 

showed that the features, which were most informative about object categories, could predict 29 

participants’ behavioral performance (reaction time) more accurately than the less informative features. 30 

These results suggest a new approach for studying how the human brain encodes object category 31 

information and how we can read them out more optimally to investigate the temporal dynamics of the 32 

neural code. The codes are available online at https://osf.io/wbvpn/. 33 
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Introduction 37 

How does the brain encode information about visual object categories? This question has been studied 38 

for many years using different neural recording techniques including invasive neurophysiology (Hung et 39 

al., 2005) and electrocorticography (ECoG; Majima et al., 2014; Watrous et al., 2015; Rupp et al., 2017; 40 

Lie et al., 2009; Miyakawa et al., 2018; Liu et al., 2009), as well as non-invasive methods such as 41 

functional Magnetic Resonance Imaging (fMRI; Haxby et al., 2001), magnetoencephalography (MEG; 42 

Contini et al., 2017; Carlson et al., 2013) and electroencephalography (EEG; Kaneshiro et al., 2016; 43 

Simanova et al., 2010) or a combination of them (Cichy et al., 2014). Despite the recent successes in 44 

neuroimaging in “reading-out” or “decoding” neural representations of semantic object categories, it is 45 

unclear whether conventional decoding analyses leverage the main feature in which the recorded neural 46 

activity reflects object category information. Majority of these studies, rely on the signal’s ‘mean’ 47 

amplitude (i.e. average voltage across EEG electrodes), which although informative, but might be a sub-48 

optimal feature for decoding the object category information from neural activations as it ignores many 49 

subtle fluctuations that can be informative. The use of this potentially sub-optimal feature might thus 50 

hide the true temporal dynamics of object category encoding in the brain, which is still debated in 51 

cognitive neuroscience (Grootswagers et al., 2019; Majima et al., 2014; Karimi-Rouzbahani et al., 2017a; 52 

Behroozi et al. 2016; Isik et al., 2013; Cichy et al., 2014). Here, we quantitatively compare the 53 

information content of a large set of relevant features extracted from EEG activity, which have 54 

successfully provided object category information in previous studies, and evaluate their neural 55 

relevance by measuring how well each feature explains behavioral object recognition performance. 56 

 57 

Multivariate pattern analysis (MVPA), especially multivariate decoding, has become a central method for 58 

the analysis of neuroimaging data (i.e. fMRI, M/EEG), especially in studying neural coding of object 59 

categories (Norman et al., 2006; Tong and Pratte, 2012; Haynes et al., 2015; Grootswagers et al., 2017; 60 

Hebart and Baker, 2018). MVPA incorporates activations across multiple recording sites (i.e. 61 

sensors/electrodes in M/EEG or brain voxels in fMRI) to detect subtle but widespread differences 62 

between patterns of activity across conditions (e.g. object categories). These differences might not be 63 

detectable when comparing univariate brain activations (Norman et al., 2006; Grootswagers et al., 64 

2017), such as when comparing conventional single-electrode event-related potentials (ERPs) in EEG 65 

(Ambrus et al., 2019). While fMRI provides millimeter-scale spatial resolution allowing us to localize the 66 

brain areas involved in object category processing (Haxby et al., 2001), the recorded activations are 67 

usually modelled using generalized linear regression techniques for both univariate and multivariate 68 

analyses. This statistical modelling approach, which is a prerequisite step when analyzing evoked 69 

activations in fMRI, removes many critical/relevant temporal variabilities (i.e. potential codes) which 70 

have been shown to provide information about visual stimuli when adopting methods with high 71 

temporal resolution such as ECoG, EEG or single cell recording (Eckhorn et al., 1988; Celebrini et al., 72 

1993; Gollisch and Meister, 2008; Majima et al., 2014; Karimi-Rouzbahani et al., 2017a). 73 

 74 
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The temporal resolution of M/EEG allows us to analyze the temporal neural variabilities with millisecond 75 

resolution. Utilizing this property along with the sensitivity of multivariate decoding, the communities of 76 

neuroscience and brain-computer interface (BCI) have gained deeper insights into how we can decode 77 

information about object categories from recorded neural activity. Earlier decoding studies have shown 78 

that individual mean-based ERP components such as N1, P1, P2a and P2b, which refer to arbitrary time 79 

windows in neural time series extracted from 100 to 300 ms post-stimulus onset, could reliably 80 

differentiate visual object categories (Chan et al., 2011). Later studies used Linear Discriminant Analysis 81 

(LDA) classifiers to discriminate up to four object categories utilizing the information content of those 82 

ERP components (Wang et al., 2012), which were later fused (combined) to improve previous decoding 83 

accuracies (Qin et al., 2016). However, these studies and others (Taghizadeh-Sarabi et al., 2015; Torabi 84 

et al., 2017; Wang et al., 2018) overlooked the temporal dynamics of object category encoding which is 85 

determined by within-trial dynamics of neural category processing. To address this issue, researchers 86 

repeated the decoding procedure in short (e.g. 4~50 ms) sliding time windows within trials and revealed 87 

the dynamical profile of category information within trials, which significantly varied by factors such as 88 

task, image presentation time, etc. (Cichy et al., 2014; Kaneshiro et al., 2015; Karimi-Rouzbahani et al., 89 

2017a; Karimi-Rouzbahani et al., 2017b; Karimi-Rouzbahani et al., 2018; Karimi-Rouzbahani et al., 2019; 90 

Grootswagers et al., 2017; Grootswagers et al., 2019). While providing a temporal account for the neural 91 

object category processing, these time-resolved decoding studies overlooked other possible features of 92 

neural activations that could provide additive object category information. More importantly, these 93 

potentially different temporal profiles might help explaining the behavioral performance more 94 

accurately (Williams et al., 2007; Grootswagers et al., 2018; Woolgar et al., 2019). 95 

 96 

To address this issue, studies have investigated other features of brain activations such as the phase of 97 

the signal (Behroozi et al., 2016; Watrous et al., 2015; Torabi et al., 2017; Wang et al., 2018; Voloh et al., 98 

2020), signal power across frequency bands (Rupp et al., 2017; Miyakawa et al., 2018; Behroozi et al., 99 

2016; Majima et al., 2014; Miyakawa et al., 2018, with band-specific contents), time-frequency features 100 

such as Wavelet coefficients (Hatamimajoumerd and Talebpour, 2019; Taghizadeh-Sarabi et al., 2015), 101 

inter-electrode correlations (Majima et al., 2014; Karimi-Rouzbahani et al., 2017a), nonlinear statistical 102 

features (Joshi et al., 2018; Torabi et al., 2017; Stam, 2005). Behroozi et al., (2016) also decoded object 103 

categories using phase patterns in the Delta frequency band (i.e. 1-4 Hz). This finding was later 104 

investigated by another group using Hilbert transform, but found the information in the Theta frequency 105 

band (4-8 Hz; Wang et al., 2018). Other studies found that signal power contained significant category-106 

related information (Rupp et al., 2017; Majima et al., 2014; Miyakawa et al., 2018). An ECoG 107 

investigation found the information in the synchronization of low- (~2.5 Hz) and high-frequency (~84 Hz) 108 

oscillations (Watrous et al., 2015). Other research showed that, nonlinear statistical features, such as 109 

fractal dimensions, Hjorth complexity, and entropy, which measure the nonlinear structures 110 

(complexity) of signals as an indicator of its information richness, could discriminate object categories 111 

(Torabi et al., 2017; Joshi et al., 2018). These feature-based studies, however, were done on whole-trial 112 

time windows, thus they provided no insight into temporal dynamics.  113 

 114 

Together, these extant literature leaves three unanswered questions about the neural decoding of 115 

object categories. First, which features of the recorded signals are most informative about object 116 
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categories? Specifically, while several of the above studies have compared multiple features (Chan et al., 117 

2011; Taghizadeh-Sarabi et al., 2015; Torabi et al., 2016), they focused on specific classes of features 118 

(e.g. ERPs, nonlinear features, etc.), limiting our understanding of how different feature classes compare 119 

to one another. Moreover, some features (e.g. signal power (Behroozi et al., 2016 vs. Wang et al., 2018), 120 

or inter-electrode correlation (Majima et al., 2014 vs. Karimi-Rouzbahani et al., 2017a) have shown 121 

discrepancy across datasets. This suggest that their results might have been driven by category-122 

irrelevant task features such as attentional load or task demands, which can modulate the neural 123 

activity to a greater level than that evoked by a stimulus (Karimi-Rouzbahani et al., 2019; Karimi-124 

Rouzbahani et al., 2020b). Therefore, a wider set of features and datasets should be evaluated to 125 

provide more generalizable conclusions. Our prediction is that, as the processing of object categories in 126 

the brain is both spatially and temporally specific to regions and time windows (Cichy et al., 2014), the 127 

information should be detected by features which are spatially and/or temporally specific (e.g. ERP 128 

components and multi-valued features). Our second prediction is that, as the visual object category 129 

processing is dominantly supported by the feed-forward visual streams (Dicarlo et al., 2012; Vaziri-130 

Pashkam and Xu, 2017), the information should be mainly reflected in the Theta frequency band which 131 

has been previously suggested to support feed-forward flow of visual information in the brain (Bastos et 132 

al., 2015). 133 

 134 

Second, what is the temporal dynamics of object category decoding when using distinct features of 135 

brain activations? Very few studies have investigated the role of features, other than the mean of 136 

activations, in time-resolved decoding procedures (Majima et al., 2014; Stewart et al., 2014; Karimi-137 

Rouzbahani et al., 2017a). An ECoG study by Majima et al., 2014 showed that inter-electrode correlation 138 

of time samples carried more categorical information than signal power and phase features in 100 and 139 

300-ms wide sliding time windows. We have recently found that inter-electrode correlation of time 140 

samples carried categorical object information, but it was much weaker than the signal variance within 141 

50 ms sliding time windows (Karimi-Rouzbahani et al., 2017a). In time-resolved decoding, we predict 142 

that we can obtain more information using the features which detect informative samples or extract 143 

information from those samples compared to when time-averaging samples as in the conventional 144 

mean-based time-resolved decoding procedures (Grootswagers et al., 2017). The reason for this 145 

prediction is that, although time-averaging of consecutive samples in (short or long) time series 146 

increases the signal-to-noise ratio at the expense of temporal specificity, it will treat all the samples 147 

contained in the window similarly; informative or not. Therefore, informative signal samples and 148 

features can average out (when averaging) or get ignored (when down-sampling) if combined with no-149 

informative samples. Potential improvement in decoding can allow us to observe and interpret the sub-150 

threshold neural information, which were ignored because of failing to reach the threshold of 151 

significance for inference. 152 

 153 

Third, which features of brain activations explain behavioral recognition performance? A major open 154 

question in neuroimaging is whether the information that is extracted from neural activity is relevant or 155 

is just epiphenomenal to the target condition. To answer this question, recent efforts have tried to 156 

explain behavioral performance using multivariate decoding accuracies (Williams et al., 2007; 157 

Grootswagers et al., 2018; Woolgar et al., 2019). These studies found that the decoding accuracy 158 
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obtained by analyzing mean signal activations can predict the behavioral performance in object 159 

recognition (Ritchie, et al., 2015). However, it has remained unknown how (if at all) the decoding 160 

accuracies obtained from other features can explain more variance of the behavioral performance. Our 161 

prediction is that as the more informative features access more of the subtle and overlooked aspects of 162 

neural activation, as reflected in their improved decoding, they should explain the behavioral 163 

performance more accurately. 164 

 165 

To address these questions, we re-implemented a set of 30 features from the literature and 166 

quantitatively evaluated their information about object categories from neural activity on the whole trial 167 

data as well as sliding time windows. We evaluated the features across three independent datasets, 168 

which varied in many parameters including the image set, task, and paradigm. This allowed us to obtain 169 

more generalizable results about the role of each feature in category decoding and explaining behavioral 170 

object recognition performance. 171 

 172 

Methods 173 

Overview of datasets 174 

We chose three previously published EEG datasets for this study, which differed across a wide range of 175 

parameters including the recording set-up (e.g. amplifier, number of electrodes, preprocessing steps, 176 

etc.), characteristics of the image-set (e.g. number of categories and exemplars within each category, 177 

colorfulness of images, etc.), paradigm and task (e.g. presentation length, order and the participants’ task; 178 

Table 1). All three datasets previously successfully provided object category information from electrical 179 

brain activity using multivariate decoding methods. 180 

 181 

Dataset 1. We have previously collected Dataset 1 while participants were briefly (i.e. 50 ms) 182 

presented with gray-scale images from four synthetically-generated 3D object categories (Karimi-183 

Rouzbahani et al., 2017a). The objects underwent systematic variations in scale, positional periphery, in-184 

depth rotation and lighting conditions, which made their perception difficult, especially in extreme 185 

variation conditions. Randomly ordered stimuli were presented in consecutive pairs (Figure 1, top row). 186 

The participants’ task was unrelated to object categorization- they pressed one of two pre-determined 187 

buttons to indicate if the fixation dots, superimposed on the first and second stimuli, were the 188 

same/different color (2-alternative forced-choice). 189 

 190 

Dataset 2. We have collected Dataset 2 in an active experiment, in which participants pressed a 191 

button if the presented object image was from a target category (go/no-go), which was cued at the 192 

beginning of each block of 12 stimuli (Karimi-Rouzbahani et al., 2019; Figure 1, middle row). The object 193 

images, which were cropped from real photographs, were part of the well-stablished benchmark image 194 

set for object recognition developed by Kiani et al., (2007), which has been previously used to extract 195 

object category information from both human and monkey brain using MEG (Cichy et al., 2014), fMRI 196 
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(Cichy et al., 2014; Kriegeskorte et al., 2008) and single-cell electrophysiology (Kriegeskorte et al., 2008; 197 

Kiani et al., 2007). 198 

 199 

Dataset 3. We also adopted another dataset (Dataset 3) which was not collected in our lab. This 200 

dataset was collected by Kaneshiro et al., (2015) on 6 sessions for each participant, from which we used 201 

the first session only, as it could represent the whole dataset- other sessions were repetitions of the first 202 

session and aimed at increasing the signal to noise ratio by repeating the presentation of the same stimuli. 203 

The EEG data was collected during passive viewing (participants had no task; Figure 1, bottom row) of 6 204 

categories of objects with stimuli chosen from Kiani et al. (2007) as explained above. We used a pre-205 

processed (i.e. band-pass-filtered in the range 0.03 to 50 Hz) version of the dataset which was available 206 

online1. 207 

 208 

All three datasets were collected at a sampling rate of 1000 Hz. For Datasets 1 and 2, only the trials which 209 

led to correct responses by participants, were used in the analyses. Each dataset consisted of data from 210 

                                                           
1 https://purl.stanford.edu/tc919dd5388 

 

Figure 1. Paradigms of the datasets used in this study. Dataset 1 (top row) presented two consecutive object images 
with a fixation dot. Participants’ task was to indicate if the fixation dot was the same or different colors across the 

object images (passive task). Dataset 2 (middle row) presented objects from the target and non-target categories in 
sequences of 12 images. Participant’s task was to indicate, for each image, if it was from the target/non-target category 

(active task). Dataset 3 (bottom row), presented sequences of object images from 6 different categories. Participants 
did not have any specific task, except for looking at the center of object images (no overt task). Please see the details of 

the datasets in the relevant references cited in Table 1. 
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10 participants. Each object category in each dataset included 12 exemplars. To make the three datasets 211 

as consistent as possible, we pre-processed them differently from their original papers. Specifically, the 212 

band-pass filtering range of Dataset 3 was 0.03 to 50 Hz, and we did not have access to the raw data to 213 

increase the upper bound to 200 Hz. Datasets 1 and 2 were band-pass-filtered in the range from 0.03 to 214 

200 Hz before the data was split into trials. We used finite-impulse-response filters with 12 dB roll-off per 215 

octave for band-pass filtering of Datasets 1 and 2 and when evaluating the sub-bands of the three 216 

datasets. We did not remove artifacts (e.g. eye-related and movement-related) from the signals, as we 217 

and others have shown that sporadic artifacts have minimal effect in multivariate decoding (Grootswagers 218 

et al., 2017). To increase signal to noise ratios in the analyses, each unique stimulus had been presented 219 

to the participants 3, 6 and 12 times in Datasets 1, 2, 3, respectively. Trials were defined in the time 220 

window from 200 ms before to 1000 ms after the stimulus onset to cover most of the range of event-221 

related neural activations. The average pre-stimulus (-200 to 0 ms relative to the stimulus onset) signal 222 

amplitude was removed from each trial of the data. For more information about each dataset see Table 223 

1 and the references to their original publications. 224 

 225 

Table 1. Details of the three datasets used in the study. 226 

Dataset 
# 

electrodes 

Band-
pass 

filtering 

Notch 
filtering 

# 
object 

categories 

# stimulus 
repetition 

Stimulus 
presentation 

time 

Stimulus 
size 

(periphery) 
Task 

Participants’ 
accuracy 

1 
Karimi-

Rouzbahani 
et al., 2017a 

31 
0.03-200 

Hz 
50 Hz 4 3 50 ms 

2~13.5° 
(0.7~8.8°) 

Color matching 
(passive) 

%94.68 

2 
Karimi-

Rouzbahani 
et al., 2019 

31 
0.03-200 

Hz 
50 Hz 4 6 900 ms 8° × 8° (0) 

Object category 
detection 
(active) 

%94.65 

3 
Kaneshiro et 

al., 2017 
124 

0.03-50 
Hz 

No 6 12 500 ms 
7.0° × 6.5° 

(0) 
No task 

(fixation) 
N/A 

 227 

Features 228 

EEG signals are generated by inhibitory and excitatory post-synaptic potentials of the cortical neurons. 229 

These potentials extend to the scalp surface and are recorded through electrodes as amplitudes of 230 

voltage in units of microvolts. Researchers have been using different aspects of these voltage recordings 231 

to obtain meaningful information about human brain processes. Below we explain the mathematical 232 

formulation of each individual feature used in this study. We also provide brief information about 233 

underlying neural mechanisms which lead to the information content provided by those EEG features. 234 

We classified the features into five arbitrary classes based on their mathematical similarity to simplify 235 

the presentation of the results and their interpretations. The five classes consist of Moment, 236 

Complexity, ERP, Frequency-domain and Multi-valued features. However, the classification of the 237 

features is not strict and the features might be classified based on other criteria and definitions. For 238 

example, complexity itself has different definitions (Tononi et al., 1998), such as degree of randomness, 239 

or degrees of freedom in a large system of interacting elements. Therefore, each definition may exclude 240 

or include some of our features in the class. It is of note that, we only used the features which were 241 

previously used to decode categories of evoked potentials from EEG signals mainly through multivariate 242 
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decoding methods. Nonetheless, there are definitely other features, especially, those extracted from 243 

EEG time series collected during long-term monitoring of human neural representations in health and 244 

disorder. In presenting the features’ formulations, we avoided repeating the terms repeatedly from the 245 

first feature to the last one. Therefore, the reader might need to go back a few steps to find the 246 

definitions of terms. 247 

 248 

Moment features 249 

These features are the most straightforward and intuitive features from which we might be able to 250 

extract information about neural processes. Mean, Variance, Skewness and Kurtosis are the 1st to the 4th 251 

moments of EEG time series and can provide information about the shape of the signals and their 252 

deviation from stationarity which is the case in evoked potentials (Rasoulzadeh et al., 2016; Wong et al., 253 

2006). These moments have been shown to be able to differentiate visually evoked responses 254 

(Pouryzdian and Erfaninan, 2010; Alimardani et al., 2018). 255 

Mean 256 

Mean amplitude of an EEG signal changes in proportion to the neural activation of the brain. It is by far 257 

the most common feature of the recorded neural activations used in analyzing brain states and cognitive 258 

processes either in univariate and multivariate analysis (Vidal et al., 2010; Hebart and Baker, 2017; 259 

Grootswagers et al., 2017; Karimi-Rouzbahani et al., 2019). In EEG, the brain activation is reflected as the 260 

amplitude of the recorded voltage across each electrode and the reference electrode at specific time 261 

points. To calculate the Mean feature, which is the first moment in statistics, the sample mean is 262 

calculated for recorded EEG time series as: 263 

𝑥̅ =
1

𝑁
∑ 𝑥𝑡

𝑁
𝑡=1              (1) 264 

where 𝑥̅ is the mean of the 𝑁 time samples contained in the time series and 𝑥𝑡 refers to the amplitude of 265 

the recorded sample at time point 𝑡. 𝑁 can be as small as unity as in the case of time-resolved EEG analysis 266 

(Grootswagers et al., 2017) or as large as required by the analysis. In this study, we set 𝑁 = 50 and 𝑁 =267 

1000 for the time-resolved and whole-trial decoding analyses, respectively. 268 

 269 

Median 270 

Compared to the Mean feature, Median is less susceptible to outliers (e.g. spikes) in the time series, which 271 

might not come from neural activations but rather from artifacts caused by the recording hardware, 272 

preprocessing, eye-blinks, etc. Provided that the signal probability distribution is 𝑃, signal median 𝑚, is 273 

calculated so that it meets the following conditions: 274 

𝑃(𝑥 > 𝑚) ≥
1

2
 and 𝑃(𝑥 ≤ 𝑚) ≥

1

2
           (2) 275 

 276 

Variance 277 

Variance of an EEG signal is one of the best indicators showing how much the signal is deviated from 278 

stationarity i.e. deviated from its original baseline statistical properties (Wong et al., 2006). It is a measure 279 

of signal variability, has been shown to squeeze upon the stimulus onset as a result of neural co-activation 280 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Churchland et al., 2010) and has provided information about object categories in a recent EEG decoding 281 

study (Karimi-Rouzbahani et al., 2017a). Variance is calculated as: 282 

𝜎2 =
1

𝑁
∑ (𝑥𝑡 − 𝑥̅)2𝑁

𝑡=1           (3) 283 

 284 

Skewness 285 

While Variance is silent about the direction of the deviation, Skewness, which is the third signal moment, 286 

measures the degree of asymmetry in the signal’s probability distribution. In symmetric distribution (i.e. 287 

when samples are symmetrically around the mean) skewness is zero. Positive and negative skewness 288 

indicates right- and left-ward tailed distribution, respectively. As the visually evoked ERP responses usually 289 

tend to be asymmetrically deviated in either positive or negative direction, even after baseline correction 290 

(Mazaheri and Jensen, 2008), we assume that Skewness should provide information about the visual 291 

stimulus if each category modulates the deviation of the samples differentially. Skewness is calculated as: 292 

𝛾1 =
1

𝑁
∑ (

𝑥𝑡−𝑥̅

𝜎
)3𝑁

𝑡=1           (4) 293 

 294 

Kurtosis 295 

Kurtosis reflects the degree of ‘tailedness’ or ‘flattedness’ of the signal’s probability distribution.  296 

Accordingly, the more heaviness in the tails, the less value of the Kurtosis and vice versa. Based on 297 

previous studies, Kurtosis has provided distinct representations corresponding to different classes of 298 

visually evoked potentials (Alimardani et al., 2018; Pouryzdian and Erfaninan, 2010). We test to see if 299 

Kurtosis plays a more generalized role in information coding e.g. coding of semantic aspects of visual 300 

information as well. It is the fourth standardized moment of the signal defined as: 301 

𝐾𝑢𝑟𝑡 =
1

𝑁
∑ (

𝑥𝑡−𝑥̅

𝜎
)4𝑁

𝑡=1            (5) 302 

 303 

Complexity features 304 

There can potentially be many cases in which simple moment statistics such as Mean, Median, Variance, 305 

Skewness and Kurtosis provide equal values for distinct time series (e.g. A: 10, 20, 10, 20, 10, 20, 10, 20 306 

vs. B: 20, 20, 20, 10, 20, 10, 10, 10) for both of which the five above-mentioned features provide equal 307 

results. Therefore, we need more complex and possibly nonlinear measures which can capture subtle 308 

but significant differential patterns across distinct time series. The analysis of nonlinear signal features 309 

has recently been growing, following the findings showing that EEG reflects weak but significant 310 

nonlinear structures (Stam, 2005; Stepien, 2002). Importantly, many studies have shown that the 311 

complexity of EEG time series can significantly alter during cognitive tasks such as visual (Bizas et al., 312 

1999) and working memory tasks (Sammer et al., 1999; Stam, 2000). Therefore, it was necessary to 313 

evaluate the information content of nonlinear features for our multivariate decoding of object 314 

categories. As mentioned above, the grouping of these nonlinear features as “complexity” here is not 315 

strict and the features included in this class are those which capture complex and nonlinear patterns 316 

across time series. Although the accurate detection of complex and nonlinear patterns generally need 317 

more time samples compared to linear patterns (Procaccia, 1988), it has been shown that nonlinear 318 
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structures can be detected from short EEG time series (i.e. through fractal dimensions; Preißl et al., 319 

1997). Moreover, to ensure that we do not miss the detection of nonlinear structures as a result of the 320 

short time series, we extracted the nonlinear features from the time-resolved (50 samples) and the 321 

whole-trial data (1000 samples). 322 

 323 

Lempel-Ziv complexity (LZ Cmplx) 324 

Lempel-Ziv complexity measures the complexity of a time series (Lempel et al., 1976). Basically, the 325 

algorithm counts the number of unique sub-sequences within a larger binary sequence. Accordingly, a 326 

sequence of samples with a certain regularity does not lead to a large LZ complexity. However, the 327 

complexity generally grows with the length of the sequence and its irregularity. In other words, it 328 

measures the generation rate of new patterns along a digital sequence. In a comparative work, it has 329 

been shown that, compared to many other frequency metrics of time series (e.g. noise power, 330 

stochastic variability, etc.), LZ complexity has the unique feature of providing a scalar estimate of the 331 

bandwidth of a time series and the harmonic variability in quasi-periodic signals (Aboy et al., 2006). It is 332 

widely used in biomedical signal processing and has provided successful results in the decoding of visual 333 

stimuli from neural responses in primary visual cortices (Szczepański et al., 2003). We used the code by 334 

Quang Thai2 implemented based on “exhaustive complexity” which is considered to provide the lower 335 

limit of the complexity as explained by Lempel et al. (1976). We compared the results obtained from this 336 

implementation to two other implementations, which provided identical results. We used the signal 337 

median as a threshold to convert the signals into binary sequences for the calculation of LZ complexity. 338 

The LZ complexity provided a single value for each signal time series. 339 

 340 

Fractal dimension 341 

In signal processing, fractal is an indexing technique which provides statistical information determining 342 

the complexity of the time series. A higher fractal value indicates more complexity for a sequence as 343 

reflected in more nesting of repetitive sub-sequences at all scales. Fractal dimensions are widely used to 344 

measure two important attributes: self-similarity and the shape of irregularity. A growing set of studies  345 

have been using fractal analyses for the extraction of information about semantic object categories (such 346 

as living and non-living categories of visual objects; Ahmadi-Pajouh et al., 2018; Torabi et al., 2017) as well 347 

as simple checkerboard patterns (Namazi et al., 2018) from visually evoked potentials. These results 348 

support the coding of visual information in EEG signal patterns through the modulation of their nonlinear 349 

structure. In this study, we implemented two of the common methods for the calculation of fractal 350 

dimensions of EEG time series, which have been previously used to extract information about object 351 

categories as explained below. We used the implementations by Jesús Monge Álvarez3 after verifying it 352 

against other implementations. 353 

 Higuchi’s fractal dimension (Higuchi FD) 354 

                                                           
2 https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_complexity 

 
3 https://ww2.mathworks.cn/matlabcentral/fileexchange/50290-higuchi-and-katz-fractal-dimension-measures 
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In this method (Higuchi et al., 1988), a set of sub-sequences 𝑥𝑘
𝑚 is generated in which 𝑘 and 𝑚 refer to 355 

the step size and initial value, respectively. Then, the length of this fractal dimension is calculated as: 356 

𝐿𝑘
𝑚 =

{[∑ |𝑥(𝑚+𝑖𝑘)−𝑥(𝑚+(𝑖−1).𝑘)|
[
𝑁−𝑚

𝑘
]

𝑖=1 ]
𝑁−1

[
𝑁−𝑚

𝑘
].𝑘

}

𝑘
        (6) 357 

where 
𝑁−1

[
𝑁−𝑚

𝑘
].𝑘

 is the normalization factor. The length of the fractal curve at step size of 𝑘 is 358 

calculated by averaging 𝑘 sets of 𝐿𝑘
𝑚

. Finally, the resultant average will be proportional to 𝑘−𝐷 where 359 
𝐷 is the fractal dimension. We set the free parameter of 𝑘 equal to half the length of signal time series in 360 
the current study. 361 

 Katz’s fractal dimension (Katz FD) 362 

We also calculated fractal dimension using the Katz’s method (Katz, 1988) as it showed a significant 363 

amount of information about object categories in a previous study (Torabi et al., 2017). The fractal 364 

dimension (𝐷) is calculated as: 365 

𝐷 =
𝑙𝑜𝑔10(

𝐿

𝑎
)

𝑙𝑜𝑔10(
𝑑

𝑎
)

=
𝑙𝑜𝑔10𝑟

𝑙𝑜𝑔10(
𝑑

𝐿
)+𝑙𝑜𝑔10𝑟

         (7) 366 

where 𝐿 and 𝑎  refer to the sum and average of the consecutive signal samples, respectively. Also 𝑑 refers 367 

to the maximum distance between first sample of the signal and 𝑖𝑡ℎ sample of the signal which has the 368 

maximum distance from first sample as: 369 

𝐿 =  ∑ |𝑥𝑖 − 𝑥𝑖−1|𝑁
𝑖=2           (8) 370 

𝑑 = 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1, 𝑖))         (9) 371 

𝑟 = 𝐿/𝑎           (10) 372 

 373 

Hurst exponent (Hurst Exp) 374 

Hurst exponent is widely used to measure the long-term memory in a time-dependent random variable 375 

such as biological time series (Racine, 2011). In other words, it measures the degree of interdependence 376 

across samples in the time series and operates like an autocorrelation function over time. Hurst values 377 

between 0.5 and 1 suggest consecutive appearance of high signal values on large time scales while values 378 

between 0 and 0.5 suggest frequent switching between high and low signal values. Values around 0.5 379 

suggest no specific patterns among samples of a time series. It is defined as an asymptotic behavior of a 380 

rescaled range as a function of the time span of the time series defined as:  381 

𝐸 [
max(𝑧1,𝑧2,…,𝑧𝑁)−min (𝑧1,𝑧2,…,𝑧𝑁)

√
1

𝑁
∑ (𝑥𝑡−𝑥̅)2𝑁

𝑡=1

] = 𝐶. 𝑁𝐻 𝑎𝑠 𝑁→∞      (11) 382 

          383 

𝑧𝑡 = ∑ 𝑦𝑖
𝑡
𝑖=1  ; 𝑡 = 1, … , 𝑁         (12) 384 

𝑦𝑡 = 𝑥𝑡 − 𝑥̅           (13) 385 
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where 𝐸 is the expected value, 𝐶 is a constant and 𝐻 is the Hurst exponent (Racine, 2011). We used the 386 

open-source implementation of the algorithm4, which has also been used previously for the decoding of 387 

object category information in EEG (Torabi et al., 2017). We compared two more implementations all of 388 

which provided identical results. 389 

 390 

Entropy 391 

Entropy can measure the perturbation in time series. A higher value for entropy suggests a higher 392 

irregularity in the given time series. Precise calculation of entropy usually requires considerable number 393 

of samples and is also sensitive to noise. Here we used two methods for the calculation of entropy, each 394 

of which has its advantages over the other. 395 

 Approximate entropy (Apprx Ent) 396 

Approximate entropy was initially developed to be used for medical data analysis (Pincus and Huang, 397 

1992), such as heart rate, and then was extended to other areas such as brain data analysis. It has the 398 

advantage of requiring a low computational power which makes it perfect for real-time applications on 399 

low sample sizes (N<50). However, the quality of this entropy method is impaired on lower length of the 400 

data. This metric detects changes in episodic behavior which are not represented by peak occurrences or 401 

amplitudes (Pincus and Huang, 1992). We used an open-source code 5  for calculating approximate 402 

entropy. We compared the results obtained from this implementation to one other implementation, 403 

which provided identical results. We set the embedded dimension and the tolerance parameters to 2 and 404 

20% of the standard deviation of the data respectively, to roughly follow a previous study (Shourie et al., 405 

2014) which compared approximate entropy in visually evoked potentials and found differential effects 406 

across artist vs. non-artist participants when looking at paintings.  407 

 Sample entropy (Sample Ent) 408 

Sample entropy, which is a refinement of the approximate entropy, is frequently used to calculate 409 

regularity of biological signals (Richman et al., 2000). Basically, it is the negative natural logarithm of the 410 

conditional probability that two sequences (subset of samples), which are similar for 𝑚 points remain 411 

similar at the next point. A lower sample entropy also reflects a higher self-similarity in the time series. It 412 

has two main advantages to the approximate entropy: it is less sensitive to the length of the data and is 413 

simpler to implement. However, it does not focus on self-similar patterns in the data. We used the Matlab 414 

‘entropy’ function for the implementation of this feature, which has already provided category 415 

information in a previous study (Torabi et al., 2017). See (Richman et al., 2000; Subha et al., 2010) for the 416 

details of the algorithm. 417 

 418 

Autocorrelation (Autocorr) 419 

Autocorrelation determines the degree of similarity between the samples of a given time series and a 420 

time-lagged version of the same series. It detect periodic patterns in signal time series, which is an integral 421 

                                                           
4 https://www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent  

 
5 https://www.mathworks.com/matlabcentral/fileexchange/32427-fast-approximate-entropy  
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part of EEG time series. Therefore, following recent successful attempts in decoding neural information 422 

using the autocorrelation function from EEG signals (Wairagkar et al., 2016), we evaluated the information 423 

content of the autocorrelation function in decoding visual object categories. As neural activations reflect 424 

many repetitive patterns across time, the autocorrelation function can quantify the informationcontents 425 

of those repetitive patterns. Autocorrelation is calculated as: 426 

𝑅(𝜏) =
1

(𝑁−𝜏)𝜎2
∑ (𝑥𝑡 − 𝑥̅)(𝑥𝑡+𝜏 − 𝑥̅)𝑁−𝜏

𝑡=1         (14) 427 

 428 

where 𝜏 indicates the number of lags in samples of the shifted signal. A positive value for autocorrelation 429 

indicates a strong relationship between the original time series and its shifted version, whereas a negative 430 

autocorrelation refers to an opposite pattern between them. Zero autocorrelation indicates no 431 

relationship between the original time series and its shifted version. In this study, we extracted 432 

autocorrelations for 30 consecutive lags ([𝜏=1, 2, . . ., 30]) used their average in classification. Please note 433 

that each lag refers to 1 ms as the data was sampled at 1000 Hz. 434 

 435 

Hjorth parameters 436 

Hjorth parameters are descriptors of statistical properties of signals introduced by Hjorth (1970). These 437 

parameters are widely used in EEG signal analysis for feature extraction across a wide set of applications 438 

including visual recognition (Joshi et al., 2018; Torabi et al., 2017). These features consist of Activity, 439 

Mobility and Complexity as defined below. As the Activity parameter is equivalent to signal Variance, 440 

which we already had in the analyses, we did not repeat it. 441 

 Hjorth complexity (Hjorth Cmp) 442 

It determines the variation in time series’ frequency by quantifying the similarity between the signal and 443 

a pure sine wave leading to a value of 1 in case of perfect match. In other words, values around 1 suggest 444 

lower complexity for a signal. It is calculated as: 445 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑥𝑡
𝑑𝑡

)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥𝑡)
         (15) 446 

 Hjorth mobility (Hjorth Mob) 447 

It determines the proportion of standard deviation of the power spectrum as is calculated below, where 448 

𝑣𝑎𝑟 refers to the signal variance. 449 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(

𝑑𝑥𝑡
𝑑𝑡

)

𝑣𝑎𝑟(𝑥𝑡)
          (16) 450 

 451 

ERP components (N1, P1, P2a and P2b) 452 

An ERP is a measured brain response to a specific cognitive, sensory or motor event that provides an 453 

approach to study the correlation between the event and neural processing. According to the latency and 454 

amplitude, ERP is split into specific sub-windows called components. Here, we extracted ERP components 455 
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by calculating mean of signals in specific time windows to obtain the P1 (80 to 120 ms), N1 (120 to 200 456 

ms), P2a (150 to 220 ms) and P2b (200 to 275 ms) components, which were shown previously to provide 457 

significant amounts of information about visual object and face processing in univariate (Rossion et al., 458 

2000; Rousselett et al., 2007) and multivariate analyses (Chan et al., 2011; Jadidi et al., 2016; Wang et al., 459 

2012). 460 

 461 

Frequency-domain features 462 

Frequency-domain analysis, which is the conventional and yet one of the most powerful approaches in 463 

EEG data analysis, generally inform us of the distribution of signal power over frequency bands through 464 

the use of variety of frequency-domain features such as Fourier coefficients, etc. Therefore, motivated 465 

by previous studies showing signatures of object categories in the frequency domain (Behroozi et al., 466 

2016; Rupp et al., 2017; Iranmanesh and Rodriguez-Villegas, 2017; Joshi et al., 2018; Jadidi et al., 2016) 467 

and the reflection of temporal coding of visual information in the frequency domain (Eckhorn et al., 468 

1988), we also extracted frequency-domain features to see if they provide additional category-related 469 

information to time-domain features. There are limitations to our frequency analysis as follow. While 470 

the whole-trial analysis can provide results that we can compare with previous studies, the evoked EEG 471 

potentials are likely nonstationary (i.e. their statistical properties change across time), potentially 472 

biasing the frequency features towards the most dominant frequency components and hiding the subtle 473 

(i.e. high-frequency) fluctuations of the signal. On the other hand, while the time-resolved analysis, 474 

which is done in 50ms sliding time windows, enable us to detect the time-varying characteristics in the 475 

frequency domain, it will only incorporate frequencies lower than 25 Hz according to the Nyquist 476 

theorem. Despite these limitations, we still extracted and analyzed the frequency-domain features as 477 

below. 478 

 479 

Signal power (Signal Pw) 480 

Power spectrum density (PSD) represents the intensity or the distribution of the signal power into its 481 

constituent frequency components. This feature was motivated by previous studies showing associations 482 

between aspects of visual perception and certain frequency bands (Rupp et al., 2017; Behroozi et al., 483 

2016; Majima et al., 2014). According to the Fourier analysis, signals can be broken into its constituent 484 

frequency components or a spectrum of frequencies in a specific frequency range. Here, we calculated 485 

signal power using the PSD as (17). 486 

𝑆̃𝑥𝑥(𝑤) =
(𝑡)2

𝑇
|∑ 𝑥𝑛𝑒−𝑖𝑤𝑛𝑡𝑁

𝑛=1 |
2
        (17) 487 

where 𝑥𝑛 = 𝑥𝑛𝑡 is signal sampled at a rate of 𝑇 =
1

𝑡
 and 𝑤 is the frequency at which the signal power 488 

is calculated. As signal power is a relatively broad term, including the whole power spectrum of the signal, 489 

we also extracted a few more parameters from the signal frequency representation, to see what specific 490 

features in the frequency domain (if any) can provide information about object categories. 491 

 492 
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Mean frequency (Mean Freq) 493 

Motivated by the successful application of mean and median frequencies in the analysis of EEG signals 494 

and their relationship to signal components in the time domain (Intrilligator and Polich, 1995; 495 

Abootalebi et al., 2009), we extracted these two features from the signal power spectrum to obtain a 496 

more detailed insight into the neural dynamics of category representations. Mean frequency is the 497 

average of the frequency components available in a signal. Assume a signal consisting of two frequency 498 

components of 𝑓1 and 𝑓2. The mean frequency of this signal is 𝑓𝑚𝑒𝑎𝑛 =
𝑓1+𝑓2

2
. Generally, the mean 499 

normalized (by the intensity) frequency is calculated using the following formula: 500 

𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑙𝑖𝑓𝑖

𝑛
𝑖=0

∑ 𝑙𝑖
𝑛
𝑖=0

           (18) 501 

where 𝑛 is the number of splits of the PSD, 𝑓𝑖 and 𝑙𝑖 are the frequency and the intensity of the PSD in its 502 

𝑖𝑡ℎ slot, respectively. It was calculated using Matlab ‘meanfreq’ function. 503 

 504 

Median frequency (Med Freq) 505 

Median frequency is the median normalized frequency of the power spectrum of a time-domain signal. 506 

It is calculated similarly to the signal median in the time domain, however, here the values are the 507 

power intensity in different frequency slots of the PSD. This feature was calculated using Matlab 508 

‘medfreq’ function.  509 

 510 

Power and Phase at median frequency (Pw MdFrq and Phs MdFrq) 511 

Interestingly, apart from the median frequency itself, which reflects the frequency aspect of the power 512 

spectrum, the power and phase of the signal at the median frequency have been shown to be 513 

informative about aspects of human perception (Joshi et al., 2018; Jadidi et al., 2016). Therefore, we 514 

also calculated the power and phase of the frequency-domain signals at the median frequency as 515 

features. 516 

 517 

Average frequency (Avg Freq) 518 

As the evoked potentials show a few number of positive and negative peaks after the stimulus onset, 519 

and the observation that they might show deviation in the positive or negative direction depending on 520 

the information content (Mazaheri and Jensen, 2008), we also evaluated the zero-crossing frequency of 521 

the ERPs. Basically, for measuring the Average Frequency, we measured the number of times the signal 522 

swapped signs during the trial. Note that each trial is baselined according to the average of the same 523 

trial in the last 200 ms immediately before the stimulus onset. We calculated the zero crossing rate on 524 

the post-stimulus time span from the time point of 0 to 1000 ms. 525 

 526 

Spectral edge frequency (SEF 95%) 527 

SEF is a common feature used in monitoring the depth of anesthesia and stages of sleep using EEG 528 

(Iranmanesh and Rodriguez-Villegas, 2017). It measures the frequency which covers X percent of the PSD. 529 
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X is usually set between 75% to 95%. Here we set X to 95%. Therefore, this reflects the maximum 530 

frequency observed in a signal which covers 95% of a signal power spectrum.  531 

 532 

Multi-valued features 533 

The main hypothesis of the present study is that, we can potentially obtain more information about 534 

object categories as well as behavior if we take into account the temporal variability of signal samples 535 

within the analysis window rather than just averaging them as in the conventional decoding studies. 536 

Therefore, we extracted other features, which provide more than one value per analysis window (i.e. 50 537 

ms for the time-resolved analysis or 1000 ms for the whole-trial analysis), so that we can select the most 538 

informative one for decoding. The reason for selecting only one feature per time window is to be able to 539 

directly compare the results with those obtained with single-valued features explained above. We also 540 

included the original signal samples as the last feature, so that we know how much (if at all) our feature 541 

extraction and selection helps. 542 

 543 

Inter-electrode correlation (Cros Cor) 544 

Following up on recent studies, which have successfully used this feature in decoding object category 545 

information from brain activations (Majima et al., 2014; Karimi-Rouzbahani et al., 2017a), we extracted 546 

inter-electrode correlation to measure the similarity between pairs of signals, here, from coming from 547 

pairs of electrodes. Through the concept of correlation, this feature can detect any subtle co-activation 548 

or co-deactivation of neural populations from district pairs of electrodes. Although closer electrodes 549 

tend to provide more similar (and therefore correlated) activation, compared to further electrodes, the 550 

inter-electrode correlation can capture correlations which are functionally relevant and are not 551 

explained by the distance (Karimi-Rouzbahani et al., 2017a). Please note that as correlation is an 552 

amplitude-independent variable, this feature detects the similarities across pairs of signals, which 553 

cannot be determined by the mean-based features from individual signals. It is calculated as: 554 

𝑅𝑥𝑦 =
1

𝑁𝜎𝑥𝜎𝑦
∑ (𝑥𝑡 − 𝑥̅)(𝑦𝑡 − 𝑦̅)𝑁

𝑡=1         (19) 555 

where 𝑥 and 𝑦 refer to the signals obtained from electrodes 𝑥 and 𝑦, respectively. We calculated the 556 

cross-correlation between every given electrode and all the other electrodes before finally averaging 557 

them to obtain a single value per electrode. Therefore, for the datasets with 31 (i.e. Datasets 1 and 2) 558 

and 128 (i.e. Dataset 3) electrodes, we obtained 30 and 127 inter-electrode correlations per electrode. 559 

 560 

Wavelet transform (Wavelet)  561 

Recent studies have shown remarkable success in decoding of object categories using the Wavelet 562 

transformation of the EEG time series (Taghizadeh-Sarabi et al., 2015; Torabi et al., 2017). Considering the 563 

time-dependent nature of ERP signals, Wavelet transform seems to be a very reasonable choice as it 564 

provides a time-frequency representation of signal components determining the primary frequency 565 

components of a specific signal and their temporal location in the time series. To do that, the 566 

transformation passes the signal time series through digital filters (Guo et al., 2009; equation (20)), using 567 
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the convolution operator, each of which are adjusted to extract a specific frequency (scale) at a specific 568 

time as in (20): 569 

𝑦𝑛 = (𝑥 ∗ 𝑔) = ∑ 𝑥𝑘𝑔𝑛−𝑘
+∞
𝑘=−∞          (20) 570 

 571 

where 𝑔 is the digital filter and ∗ is the convolution operator. This filtering procedure is repeated for 572 

several rounds (levels) filtering low- (approximations) and high-frequency (details) components of the 573 

signal to provide more fine-grained information into the constituent components of the signal. This can 574 

lead to coefficients which can potentially discriminate signals evoked by different conditions. As in a 575 

previous study (Taghizadeh-Sarabi et al., 2015), and to make the number of Wavelet features comparable 576 

in number to the signal samples (which were 1000 after the stimulus onset), we used detail coefficients 577 

at five levels 𝐷1, … , 𝐷5 as well as the approximate coefficients at level 5, 𝐴5. This led to 1015 features in 578 

the whole-trial and 57 in the 50 ms sliding time windows, respectively. We used the ‘Symlet2’ basis 579 

function for our Wavelet transformations as implemented in Matlab. 580 

 581 

Hilbert transform (Hilb Amp and Hilb Phs) 582 

There were two motivations for using Hilbert transform in the current study. First, this transformation 583 

technique, which provides amplitude and phase information of the signal upon the transformation, has 584 

recently shown success in decoding visual letter information from ERP signals (Wang et al., 2018). Second, 585 

although previous systematic comparison of Hilbert and Wavelet transforms has shown very minor 586 

differences in evaluating neuronal synchrony (Le Van Quyen et al., 2001), it is still unclear which method 587 

can detect category-relevant information from the nonstationary ERP components more effectively. 588 

Specifically, the phase component of the Hilbert transform can qualitatively provide the spatial 589 

information which you obtain from the Wavelet transformation. In signal processing, Hilbert transform is 590 

described as a mapping function that takes a function 𝑥(𝑡) of a real variable, and using convolution with 591 

the function, 
1

𝜋𝑡
, produces another function of a real variable 𝐻(𝑢)(𝑡) as: 592 

𝐻(𝑢)(𝑡) =
1

𝑛
∫

𝑢(𝜏)

𝑡−𝜏

+∞

−∞
𝑑𝜏         (21) 593 

 594 

where 𝐻(𝑢)(𝑡)  is a frequency-domain representation of the signal, which has simply shifted all the 595 

components of the input signal by 
𝜋

2
. In the current study, Hilbert transform was applied on every trial 596 

(1000 samples) or 50 ms sliding time windows, which produced one amplitude and one phase component 597 

per sample, so 1000 and 50 for the whole-trial and 50 ms sliding time windows, respectively. We used the 598 

amplitude and phase components separately to discriminate object categories in the decoding analyses.  599 

 600 

Signal samples (Samples) 601 

We also used the post-stimulus signal samples (i.e. 1000 or 50 samples for the whole-trial and sliding 602 

time windows, respectively) to decode object category information without any feature extraction. This 603 

allowed us to compare the information content of the extracted features with the original signal 604 

samples to see if the former provided any extra information.  605 
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 606 

Multivariate decoding 607 

We used multivariate decoding to extract information about object categories from the EEG datasets. 608 

Basically, multivariate decoding, which has been dominating neuroimaging studies recently (Haynes et 609 

al., 2015; Grootswagers et al., 2017; Hebart and Baker, 2018), utilizes within- and cross-condition 610 

similarity/distance to determine the amount of neural information when contrasting those conditions. 611 

We used linear discriminant analysis (LDA) classifiers to measure the information content across all 612 

possible pairs of object categories in each dataset throughout our multivariate decoding. Specifically, we 613 

trained and tested the classifier on e.g. animal vs. car, animal vs. face, animal vs. plane, car vs. plane, 614 

face vs. car and plane vs. face categories, then averaged the 6 decoding results and reported them for 615 

each participant. The decoding for each of the categories, is reported in the original references of the 616 

datasets. The LDA classifier has been shown to be robust when decoding object categories from M/EEG 617 

(Grootswagers et al., 2017; Grootswagers et al., 2019), has provided higher decoding accuracies than 618 

Euclidean distance and Correlation based decoding methods (Carlson et al., 2013) and was around 30 619 

times faster to train in our initial analyses compared to the more complex classifier of support-vector 620 

machine (SVM). We ran our initial analysis and found similar results for the LDA and SVM, so used LDA 621 

to save the time. We used a 10-fold cross-validation procedure in which we trained the classifier on 90% 622 

of the data and tested it on the left-out 10% of the data, repeating the procedure 10 times until all trials 623 

from the pair of categories participate once in the training and once in the testing of the classifiers. We 624 

repeated the decoding across all possible pairs of categories within each dataset, which were 6, 6 and 15 625 

pairs for Datasets 1, 2 and 3, which consisted of 4, 4 and 6 object categories, respectively. Finally, we 626 

averaged the results across all combinations and reported them as the average decoding for each 627 

participant. 628 

 629 

In the whole-trial analyses, we extracted the above-mentioned features from the 1000 data samples 630 

after the stimulus onset (i.e. from 1 to 1000 ms). In the time-resolved analyses, we extracted the 631 

features from 50 ms sliding time windows in steps of 5 ms across the time course of the trial (-200 to 632 

1000 ms relative to the stimulus onset time). Therefore, in time-resolved analyses, the decoding results 633 

at each time point reflect the data for the 50 ms window around the time point, from -25 to +24 ms 634 

relative to the time point. Time-resolved analyses allowed us to evaluate the evolution of object 635 

category information across time as captured by different features.  636 

 637 

Dimensionality reduction 638 

The multi-valued features explained above resulted in more than a single feature value per trial per 639 

sliding time window (e.g. inter-electrode correlation, wavelet, Hilbert amplitude and phase and signal 640 

samples), which could provide higher decoding values compared to the decoding values obtained from 641 

single-valued features merely because of including a higher number of features. Moreover, when the 642 

features outnumber the observations (i.e. trials here), the classification algorithm can over-fit to the 643 

data (Duda et al., 2012). Therefore, to obtain comparable decoding accuracies across single-valued and 644 

multi-valued features and to avoid potential over-fitting of classifier to the data we used principle 645 

component analysis (PCA) to reduce the dimension of the data for multi-valued features. Accordingly, 646 
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we reduced the number of the values in the multi-valued features to one per electrode per time window 647 

per trial, which equaled the number of values for the single-valued features. Specifically, the data matrix 648 

before dimension reduction, had a dimension of 𝑛  rows by 𝑒 × 𝑓 columns where 𝑛, 𝑒 and 𝑓 were the 649 

number of trials (from all categories), the number of electrodes and the number of values obtained from 650 

any given feature (concatenated in columns), respectively. As 𝑓 = 1 for the single-valued features, for 651 

the multi-valued features, we only retained the 𝑒 most informative columns that corresponded to the 652 

𝑒 eigen values with highest variance and removed the other columns using PCA. Therefore, we reduced 653 

the dimension of the data matrix to 𝑛 × 𝑒 which was equal between single- and multi-valued features 654 

and used the resulting data matrix for multivariate decoding. For example, before the dimension 655 

reduction, the data matrix for Dataset 3, and the inter-electrode correlation (Cros Cor) feature had a 656 

dimension of 864 rows (corresponding to all correct trials) by 16256 columns (i.e. 128 electrodes by 127 657 

inter-electrode correlation values). However, after the dimension reduction procedure, it had a 658 

dimension of 864 rows (corresponding to all correct trials) by 128 columns (i.e. a combination of 659 

electrodes and correlation values with maximum variance across the four categories). This means that, 660 

for the multi-valued features, we only retained the most informative value of the extracted values from 661 

each feature and electrode. In other words, we sub-sampled in both the space (across electrodes) and 662 

time (across time window). To avoid potential leakage of information from testing to training (Pulini et 663 

al., 2019), we applied the PCA algorithm on the training data (folds) only and used the training PCA 664 

parameters (i.e. eigen vectors and means) for both training and testing sets for dimension reduction in 665 

each cross-validation run separately. We only applied the dimension-reduction procedure on the multi-666 

valued features. Note that, we did not reduce the dimension of the neural space (columns in the 667 

dimension-reduced data matrix) to below the number of electrodes “𝑒” (as was done in 668 

Hatamimajoumerd et al., 2019) as we were interested in qualitatively comparing our results with the 669 

vast literature currently using multivariate decoding with all sensors (Grootswagers et al., 2017; Karimi-670 

Rouzbahani et al., 2017a; Hebart and Baker 2017). Also, we did not aim at finding more than one feature 671 

per trial, as we wanted to compare the results of multi-valued features with those of single-valued 672 

features, which only had a single value per trial. 673 

 674 

Statistical analyses 675 

Bayes factor analysis 676 

As in our previous studies (Grootswagers et al., 2019; Robinson et al., 2019), to determine the evidence 677 

for the null and the alternative hypotheses, we used Bayes analyses as implemented by Bart Krekelberg  678 

based on Rouder et al. (2012). We used standard rules of thumb for interpreting levels of evidence (Lee 679 

and Wagenmakers, 2014; Dienes, 2014): Bayes factors of >10 and <1/10 were interpreted as strong 680 

evidence for the alternative and null hypotheses, respectively, and >3 and <1/3 were interpreted as 681 

moderate evidence for the alternative and null hypotheses, respectively. We considered the Bayes 682 

factors which fell between 3 and 1/3 as suggesting insufficient evidence either way. 683 

 684 

In the whole-trial decoding analyses, we asked whether there was a difference between the decoding 685 

values obtained from all possible pairs of features and also across frequency bands within every feature. 686 

Accordingly, we performed the Bayes factor analysis and calculated the Bayes factors as the probability 687 

of the data under alternative (i.e. difference) relative to the null (i.e. no difference) hypothesis between 688 
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all possible pairs of features and also across frequency bands within every feature and dataset 689 

separately. The same procedure was used to evaluate evidence for difference (i.e. alternative 690 

hypothesis) or no difference (i.e. null hypothesis) in the maximum and average decoding accuracies, the 691 

time of maximum and above-chance decoding accuracies across features for each dataset separately. 692 

 693 

We also evaluated evidence for the alternative of above-chance decoding accuracy vs. the null 694 

hypothesis of no difference from chance. For that purpose, we performed Bayes factor analysis between 695 

the distribution of actual accuracies obtained and a set of 1000 accuracies obtained from random 696 

permutation of class labels across the same pair of conditions (null distribution) on every time point (or 697 

only once for the whole-trial analysis), for each feature and dataset separately. No correction for 698 

multiple comparisons have been performed when using Bayes factors as they are much more 699 

conservative than frequentist analysis in providing false claims with confidence (Gelman and Tuerlinckx, 700 

2000; Gelman et al., 2012). 701 

 702 

The priors for all Bayes factor analyses were determined based on Jeffrey-Zellner-Siow priors (Jeffreys, 703 

1961; Zellner and Siow, 1980) which are from the Cauchy distribution based on the effect size that is 704 

initially calculated in the algorithm (Rouder et al., 2012). The priors are data-driven and have been 705 

shown to be invariant with respect to linear transformations of measurement units (Rouder et al., 2012), 706 

which reduces the chance of being biased towards the null or alternative hypotheses. 707 

Random permutation testing  708 

To evaluate the significance of correlations between decoding accuracies and behavioral reaction times, 709 

we calculated the percentage of the actual correlations that were higher (if positive) or lower (if 710 

negative) than a set of 1000 randomly generated correlations. These random correlations were obtained 711 

by randomizing the order of participants’ data in the behavioral reaction time vector (null distribution) 712 

on every time point, for each feature separately. The correlation was considered significant if surpassed 713 

95% of the randomly generated correlations in the null distribution in either positive or negative 714 

directions (p < 0.05) and the p-values were corrected for multiple comparisons across time using Matlab 715 

mafdr function which works based on fix rejection region (Storey, 2002). 716 

 717 

Results 718 

Which features of the recorded signals are most informative about object categories? 719 

To answer the first question of this study, we compared decoding accuracies in the whole-trial time span 720 

across all features and for each dataset separately (Figure 2, black bars). This is a more conventional 721 

pass on the data, which incorporates the whole trial time span, and gives insight about the information 722 

content of the recorded signals for decoding object category information (Kaneshiro et al., 2015). For 723 

direct comparison of the decoding accuracies across features and frequency bands, see the bar plots in 724 

Figure 2 and check their corresponding evidence for difference (the alternative hypothesis) and/or no 725 

difference (the null hypothesis) in Supplementary Figure 1A and Supplementary Figure 1B. 726 
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Not all features could provide strong (BF>10) evidence for above-chance decoding (Figure 2). There was 727 

strong evidence (BF>10) that the four ERP components (i.e. P1, N1, P2a and P2b), and a few multi-728 

valued features consisting of Wavelet, Hilb Phs and Samples provided above-chance decoding. In 729 

addition, consistently across the three datasets, there was moderate or strong evidence (BF>3; 730 

Supplementary Figure 1A; black boxes) that most of the ERP components (i.e. N1, P2a and P2b) and 731 

multi-valued features (i.e. Wavelet, Hilb Phs and Samples) provided higher decoding accuracies 732 

compared to the rest of the features. This result is consistent with our prediction that features which are 733 

spatially and/or temporally specific (and targeted) can potentially detect more information about object 734 

categories as category processing is a spatially and temporally specific neural process generally observed 735 

in the window from 50 to 300 ms post-stimulus onset (Karimi-Rouzbahani et al., 2017b; which overlap 736 

with the ERP features) and mainly in around the occipito-temporal, occipito-parietal and frontal areas 737 

(Vaziri-Pashkam and Xu, 2017; Karimi-Rouzbahani 2018; these electrodes were probably selected 738 

through the PCA procedure for the multi-valued features). As explained in the methods, for keeping the 739 

dimension of the data identical to the single-valued features, the multi-valued features underwent a 740 

PCA-based sample selection process, which selected the most informative samples/features from across 741 

electrodes (space) and samples (time) in the analysis window. Accordingly, the reason for comparable 742 

decoding accuracies obtained for the Samples feature and the ERP components across the three 743 

datasets, might be that, the signal samples used in the Samples may have come roughly from nearby 744 

time windows of the trial as the ERP components, through the PCA procedure. The higher decoding 745 

values for Dataset 2 compared to the other datasets can be potentially explained by the active object 746 

detection task and longer image presentation time. In summary, the spatial and/or temporally specific 747 

ERP components (i.e. N1, P2a and P2b) and the multi-valued features (i.e. Wavelet, Hilb Phs and 748 

Samples) were most informative about object categories as predicted. 749 

 750 

Following evidence from previous studies reporting pronounced information in specific frequency sub-751 

bands such as Theta (Behroozi et al., 2016; Bastos et al., 2015), we also compared the decoding 752 

accuracies across different frequency sub-bands to see what frequency band(s) provided the most 753 

information. Specifically, we evaluated the information contents of features in the well-known EEG 754 

frequency bands of Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-16 Hz) and Gamma (>25 755 

Hz) against the broad-band signals, which covered the whole available spectrum after pre-processing 756 

(>0.03Hz, Figure 2). We did not perform the decoding for the frequency-domain features (except Signal 757 

pw), as they would be meaningless in limited frequency bands by definition. For Signal Pw, however, as 758 

in previous studies (Rupp et al., 2017; Miyakawa et al., 2018; Behroozi et al., 2016) we calculated it in 759 

the time domain and performed the decoding. Showing comparable patterns of decoding to the broad-760 

band results, the decoding across features especially in the mid-frequency bands of Theta, Alpha and 761 

Beta (Figure 2) showed moderate to strong evidence (BF>3; Supplementary Figure 1B; red boxes) that 762 

ERP components and multi-valued features were the most informative about object categories. 763 

 764 

 765 
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 766 

  

Figure 2. Whole-trial decoding of object categories from the three datasets using 30 features on different 
frequency bands (for Bayesian evidence analyses see Supplementary Figure 1). Decoding of category 

information using the 30 features in the 6 frequency bands. The black horizontal dashed lines on the top panel 
refer to chance-level decoding. Thick bars show the average decoding across participants (error bars Standard 

Error across participants). Bayes Factors are shown in the bottom panel of each graph: Filled circles show 
moderate/strong evidence for either hypothesis and empty circles indicate insufficient evidence. They show 

the results of Bayes factor analysis when evaluating the difference from chance-level decoding. 
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In Datasets 1 and 2, where the upper cut-off frequency of filtering was 200 Hz rather than 50 Hz as in 767 

Dataset 3, the broad-band decoding accuracies were on average higher for many of complexity features 768 

(consisting of Hurst Exp, Apprx Ent, Autocorr, Hjorth Cmp and Mob). The reason is likely that the 769 

inclusion of more frequency components (i.e. higher frequency fluctuations) leads to the survival of 770 

meaningful repetitive (e.g. higher frequency harmonics) and complex patterns in the time series, which 771 

are detected by the features which are sensitive to repetitive sinusoidal (i.e. Hurst Exp, Autocorr, Hjorth 772 

Cmp and Mob) and complex (i.e. Apprx Ent) patterns.  773 

 774 

Interestingly, however, the most informative features in the datasets (i.e. ERP and multi-valued 775 

features) showed pronounced information in the Theta band over other sub-bands, with strong 776 

evidence BF>10 for the advantage of Theta over broad-band decoding for P1 and P2b in both datasets. 777 

There was also moderate (3<BF<10) or strong (BF>10) evidence that the Gamma band accuracies were 778 

lowest among other frequency bands for many features including ERP components and multi-valued 779 

features (Supplementary Figure 1B; red boxes). 780 

Together, frequency-resolved results showed that broad-band signals can provide more information 781 

than its sub-bands when using features sensitive to repetitive and complex patterns. Importantly, 782 

however, ERP components and multi-valued features, which showed the highest information about 783 

object categories in the feature set, showed the greatest information in the Theta band, even more than 784 

which could be achieved using broad-band signals. The coding of category information in the Theta band 785 

for the informative features suggests that this information is dominantly processed by the feed-forward 786 

visual mechanisms of the brain as suggested previously to reflect in the Theta band (Bastos et al., 2015). 787 

 788 

What is the temporal dynamics of object category decoding when using distinct features 789 

of brain activations? 790 

To answer the second question, we adopted a time-resolved decoding procedure for each feature and 791 

dataset separately (Grootswagers et al., 2017; see Methods). In this method, we repeated the decoding 792 

of category information in 50 ms sliding time windows, using a 5 ms step size (45 ms overlap between 793 

consecutive time windows) across the time course of the trials (Figure 3). For a justification of choosing 794 

the 50ms time window see Supplementary Text 2 and Supplementary Figure 2A. This analysis provided 795 

the temporal profile of information encoding as revealed by different features. Note that, by definition, 796 

we do not have the time-resolved decoding results of the time-specific features of ERP components (i.e. 797 

P1, N2, P2a and P2b). 798 

 799 

The advantage of the Theta-band to broad-band frequency range, observed for the whole-trial time 800 

window (Figure 2), was also observed for the time-resolved decoding when using the Wavelet feature 801 

(especially for Dataset 2 which showed the effect across many time points; moderate to strong (BF>3) 802 

evidence starting to appear after 50 ms post-stimulus onset), but not the Mean feature (Supplementary 803 

Figure 1A). However, we used broad-band signals for the time-resolved decoding analyses, because we 804 

not only aimed at comparing the information content of the features, but we were also interested in 805 

comparing our results with the previous category decoding studies which used the broad-band 806 
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frequency range. Note that we do not aim to maximize the decoding values in this study, but rather aim 807 

to compare the decoding dynamics and their correlations to behavior across a wide range of relevant 808 

features. 809 

 810 

While no pairs of features provided identical patterns of decoding in any of the three datasets, for all 811 

features there was moderate (3<BF<10) or strong (BF>10) evidence for difference from chance-level 812 

decoding at some time points/windows in the three datasets (Figure 3). This means that, all features, 813 

including the complexity and frequency-domain features, which have been respectively suggested to 814 

need longer time windows (Procaccia, 2000) and stationary signals, could be successfully used to decode 815 

object category information from evoked ERP signals. We did not plot the variance of decoding 816 

accuracies across participants, as it would make the figures cluttered (see Supplementary Figure 2 for 817 

decoding results using Mean and Wavelet features along with their variance across participants to get a 818 

feeling of the variance for other features). Interestingly, while the Mean and Median features generally 819 

showed lower decoding accuracies in the whole-trial analyses (Figure 2), they provided comparable or 820 

even higher decoding accuracies than several of the multi-valued features in the time-resolved analysis 821 

(Figure 3). This is because Mean and Median of the signals lost most of their information (as a result of 822 

baseline removal in preprocessing) when averaged across a whole-trial time span (i.e. 1000 samples; 823 

Figure 2). While the decoding curves in Dataset 1 showed two comparable early peaks at around 180 824 

and 300 ms for several features such as Mean and Median, most other highly informative features (e.g. 825 

Variance, Wavelet and Samples) showed only one peak at around 180 ms. There was only one peak for 826 

Mean, Median and frequency-domain and multi-valued features in Datasets 2 and 3 and two dominant 827 

peaks for the other features including the complexity and moment features. This discrepancy across 828 

datasets can be explained by many parameters which differ across them. For example, image 829 

presentation onset and offset can lead to bumps in decoding patterns (Carlson et al., 2013) which was 830 

the case for Dataset 1 (50 ms) happening in close temporal succession, but further apart for the other 831 

datasets. Consistently across the three datasets, for all features, there was moderate (3<BF<10) or 832 

strong (BF>10) evidence for above-chance decoding starting to appear from around 80 ms. The decoding 833 

curves returned back to the chance-level around than 500 ms, particularly for the most informative 834 

features such as Mean, Median and multi-valued features in Dataset 1. The same features remained 835 

above chance (BF>3) up until 550 ms (Dataset 2) or even later than 800 ms (Dataset 3). This difference 836 

can be potentially because of the longer stimulus presentation time in Datasets 2 and 3, which provided 837 

stronger sensory input for processing of category information (Grootswagers et al., 2019). 838 

 839 

To quantitatively compare the decoding patterns across features, we calculated several time and 840 

amplitude-related parameters from the decoding curves (Figure 4). These parameters consist of 841 

maximum and average decoding accuracies, the time to the first above-chance (BF>3) and maximum 842 

decoding. All parameters were calculated in the post-stimulus window (0 to 1000 ms), and have 843 

previously provided important implications for studying the dynamics of object recognition in the 844 

human brain (Isik et al., 2014). There was strong evidence that all features from all three datasets had 845 

above-chance maximum decoding accuracy (Figure 4A; colored dots in the bottom Bayes Factors’ 846 

panels). The features of Mean, Median, Wavelet and Samples obtained the highest maximum and 847 

average decoding accuracies among other features (Figure 4A; black boxes). 848 
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 849 

 

Figure 3. Time-resolved decoding of object categories from the three datasets using 26 features and Bayesian 
evidence analyses. Each row shows the results of one type of feature (i.e. moment, complexity, frequency-

domain and multi-valued features from top to bottom, respectively). Curves show the average decoding 
across participants. Each column shows the results for one dataset. Top section in each panel shows the 

decoding accuracies across time and the bottom section shows the Bayes factor evidence for the difference 
of the decoding accuracy compared to chance-level decoding. The horizontal dashed lines on the top panel 
refer to chance-level decoding. Filled circles in the Bayes Factors show moderate/strong evidence for either 
difference or no difference from chance-level decoding and empty circles indicate insufficient evidence for 

either hypotheses. 
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There was strong (BF>10) evidence that Wavelet had the highest maximum decoding accuracy 850 

compared to all other features (except Samples in all three datasets and Mean and Median in Dataset 851 

2). Although there was strong (BF>10) evidence that Mean, Median, Wavelet and Samples provided 852 

above-chance average accuracy across the three datasets, there was insufficient (0.3<BF<1) evidence for 853 

above-chance average accuracy for several other features (e.g. Katz FD). 854 

  855 

The temporal dynamics of different features seem to reflect a similar decoding pattern in the sense that 856 

the most informative features can lead to both a higher maximum decoding and a more sustained 857 

decoding pattern along the trial and vice versa. This can suggest a general advantage for the more vs. 858 

less informative features which is reflected both in their maxima as well as their sustained decoding 859 

patterns. Alternatively, it can be the case that features with higher maxima have lower average 860 

decoding across the trial or vice versa. This, on the other hand, suggests that different features detect 861 

an equal amount of information but represent it either in their maximum or average decoding accuracy. 862 

A second alternative can be that there is no relationship between the peaks and the average decoding 863 

across features, reflecting potentially different pieces of neural code that each feature is sensitive to. To 864 

test this question, we calculated the correlation between the average and maximum decoding values for 865 

all features, which showed highly correlated results (r > 0.9; p < 0.01; Supplementary Text 3 and 866 

Supplementary Figure 3A). This suggests that, all features followed a generally similar pattern of 867 

decoding with more informative features providing higher decoding maxima and a more sustained level 868 

of information decoding. 869 

 870 

In terms of the temporal pattern, the time to the maximum decoding was quite constrained as many of 871 

the features showed a maximum decoding between 150 to 220 ms post-stimulus onset, and there was 872 

no clear trend towards any classes of features (Figure 4C). This is consistent with many decoding studies 873 

showing the temporal dynamics of category processing in the brain (Isik et al., 2013; Cichy et al., 2014). 874 

There was moderate (3<BF<10) or strong (BF>10) evidence that Wavelet, Hilb Phs and Samples were 875 

among the earliest features to reach their peaks in Datasets 2 and 3. The time of first above-chance 876 

(BF>3) decoding did not show the priority of any specific class of features relative to others (Figure 4D). 877 

There was moderate (3<BF<10) or strong (BF>10) evidence that Mean, Median, Wavelet and Samples 878 

showed an earlier appearance of above-chance decoding compared to Sample Ent, Avg Freq, Med Freq, 879 

SEF 95%, Cros Cor and Katz FD in Dataset 1. There was moderate (3<BF<10) evidence that Hjorth Cmp 880 

and Mob, were among the earliest features to show decoding in Dataset 2. 881 

 882 

There has been no consensus yet about whether the time of the maximum or the first above-chance 883 

decoding reflects the speed of category processing in the brain (Grootswagers et al., 2017; Ritchie et al., 884 

2015). Hence, we calculated the correlation of these temporal parameters across features to see if they 885 

both possibly reflect the dynamics of the same processing mechanism in the brain. The time of first 886 

above-chance and maximum decoding correlated in Datasets 2 and 3 but not Dataset 1 (r=0.67, r=0.51 887 

and r=0.02 respectively for Datasets 1, 2 and 3; Supplementary Text 3 and Supplementary Figure 3A). 888 

Lack of significant correlation for Dataset 1 can be explained by the lower decoding values in Dataset 1 889 

compared to the other datasets making the correlations noisier.  890 
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Figure 4. Timing and amplitude parameters extracted from the time-resolved accuracies of each feature and each 
dataset and their Bayesian evidence analyses. (A-D) Left: the maximum and average decoding accuracies, the 
time of maximum and the first above-chance decoding. Thick bars show the average across participants (error 

bars Standard Error across participants). Bottom section on A and B show the Bayes factor evidence for the 
difference of the decoding accuracy compared to chance-level decoding; Right: matrices compare the right 
parameters obtained from different features. Different levels of evidence for existing difference (moderate 

3<BF<10, Orange; strong BF>10, Yellow), no difference (moderate 0.1<BF<0.3, light blue; strong BF<0.1, dark 
blue) or insufficient evidence (1<BF<3 green; 0.3<BF<1 Cyan) for either hypotheses. Black and red boxes show 

moderate or strong evidence for higher decoding values for specific features compared other sets of features as 
explained in the text. The horizontal dashed lines on the left panels of (A) and (B) refer to chance-level decoding. 

Filled circles in the Bayes Factors show moderate/strong evidence for either hypothesis and empty circles indicate 
insufficient evidence. 
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Therefore, features that reached their above-chance decoding earlier also reached their maximum 892 

decoding earlier leading to the suggestion that they both reflect the temporal dynamics of the same 893 

cognitive processes with some delay. 894 

 895 

In conclusion, the features of Mean, Wavelet and Samples, not only provided the maximum and average 896 

amount of category-related information in the brain, but they also were among the earliest features 897 

that provided signatures of object category information in the brain at around 100 ms post stimulus 898 

onset. Results suggest that our prediction that reliance on temporally and spatially specific features 899 

improves the accuracy in reading out the dynamics of object category processing in the brain. Moreover, 900 

it shows that object category information peaked at around 180 ms after the stimulus onset, 901 

irrespective of the feature used for decoding of information, which further constrains the temporal 902 

window of category processing in the object processing literature to the span of 100 to 200 ms.  903 

 904 

Which features of brain activations explain behavioral recognition performance? 905 

Although the results above showed the advantage of specific features to others in providing the highest 906 

and the earliest signatures of object category processing, this can all be a by-product of the actual neural 907 

processing that underlies human object recognition behavior (Vidaurre et al., 2019). Therefore, to see if 908 

the decoding patterns provided by these features can explain behavioral performance, we calculated 909 

the correlation between the decoding accuracies obtained from each feature and the reaction times of 910 

participants at every time point around the stimulus onset (Ritchie et al., 2015; Karimi-Rouzbahani et al., 911 

2020a). Participants’ reaction time in object recognition has been previously shown to be predictable 912 

from decoding accuracy (Ritchie et al., 2015). We expected to observe negative correlation values 913 

between decoding accuracies and participants’ reaction time in the post-stimulus span, meaning that 914 

greater separability across neural representations of object categories would lead to/correlate with 915 

faster recognition of the corresponding categories. For this analysis, we only used Dataset 2 as it was the 916 

only dataset with an active object detection task; therefore relevant reaction times were available. To 917 

calculate the correlations, we generated a 10-dimensional vector of neural decoding accuracies at every 918 

time point and a 10-dimensional vector for behavioral reaction times obtained from the group of 10 919 

participants and correlated the two vectors across the time course of trials using Spearman’s rank-order 920 

correlation (Cichy et al., 2014). This resulted in a single correlation value for each time point for the 921 

group of 10 participants. 922 

 923 

All features, except Katz FD, showed negative trends after the stimulus onset (Figure 5A). The negative 924 

correlations did not remain significant for long windows of the time, except for multi-valued features, 925 

which showed more pronounced negative correlations that remained significant for larger spans of time. 926 

Correlations also showed larger negative peaks (generally < -0.5) for multi-valued features especially 927 

Wavelet, compared to other features (generally > -0.5). Specifically, while higher-order moment features 928 

(i.e. Variance, Skewness and Kurtosis) as well as many complexity features showed earlier peaks of 929 

negative correlations at around 150 ms, Mean, Median, frequency-domain features and multi-valued 930 

features showed later negative peaks after 300 ms.  931 
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Figure 5. Correlation between the decoding accuracies and behavioral reaction time for Dataset 2 (other 
datasets did not have an object recognition/detection task). (A) Top section in each panel shows the 

(Spearman’s) correlation coefficient obtained from correlating the decoding values and the reaction times for 
each feature separately. Correlation curves were obtained from the data of all participants. Bottom section 

shows positively or negatively significant (P<0.05; filled circles) or non-significant (p>0.05; empty circles) 
correlations as evaluated by random permutation of the variables in correlation. (B) Correlation between each 

of the amplitude and timing parameters of time-resolved decoding (i.e. maximum and average decoding 
accuracy and time of first and maximum decoding) with the average time-resolved correlations calculated from 

(A) for the set of N=26 features. The slant line shows the best linear fit to the distribution of the data. 
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The multi-valued features (especially Wavelet), Mean, Median, which dominated other features in terms 933 

of decoding accuracy (Figures 2-4), showed also the largest window of negative correlations to behavior. 934 

 935 

Together, it seems that features with the highest decoding accuracy were also better at explaining 936 

behavioral performance. This was reflected in their longer time windows and larger negative peaks of 937 

correlations. To quantitatively assess this hypothesis, we calculated the correlation between different 938 

parameters of the decoding accuracy curves (Figure 4) and the average correlation-to-behavior obtained 939 

from the same features (Figure 5A). For the decoding accuracy parameters, we used the average and 940 

maximum decoding accuracies which are relevant for our hypothesis; and the time to the first above-941 

chance and maximum decoding accuracies which were irrelevant to our hypothesis, and were used as 942 

control for comparison. To obtain the average correlation-to-behavior, we simply averaged the 943 

‘correlation to behavior’ in the post-stimulus time span (from Figure 5A). Results showed that (Figure 944 

5B), while the temporal parameters of ‘time of first above-chance’ and ‘maximum’ decoding (which 945 

were our control irrelevant parameters) failed to predict the level of correlation to behavior (r=0.27, 946 

p=0.27, and r=0.18, p=0.37, respectively), the amplitude parameters of ‘maximum’ and ‘average’ 947 

decoding accuracies of features significantly (r=-0.71 and r=-0.72 respectively, with p<0.0001; Pearson’s 948 

correlation) predicted the average correlation between the features’ decoding accuracies and the 949 

behavioral performance.  950 

 951 

This result showed that features which provided more information about object categories (i.e. provided 952 

higher decoding accuracy), also predicted behavioral performance better. Therefore, the extraction of 953 

temporally and spatially specific information from brain activations, which has been achieved through 954 

features such as PCA-based Wavelet transform, can lead to more accurate prediction of behavioral 955 

performance in object recognition. This suggests that, finding the category-related informative samples 956 

and features can not only provide us with a more accurate view of the dynamics of neural processing in 957 

the brain, but it will also improve our ability in predicting the object recognition performance. This is not 958 

a trivial result, which might incorrectly be expected to be obtained by a higher decoding value for the 959 

more informative features leading to a higher correlation to behavior. This is because, the mathematical 960 

calculation of the ‘correlation coefficient’ standardizes the variables, so that the changes in 961 

scale/amplitude will not affect its value. 962 

 963 

Discussion 964 

None of the methods or algorithms discussed in this paper are new; the novel contribution of this work 965 

is an empirical and quantitative comparison of a large set of statistical and mathematical EEG features 966 

which have been suggested to provide object category information in multivariate decoding. In the 967 

whole-trial analyses, we showed that the features, which were temporally and spatially specific (ERP 968 

components and multi-valued features), could provide more information about object categories than 969 

non-specific features. Results also showed that, the Theta frequency band provided more information 970 

about object categories than the conventionally used broad-band activity, whether decoding the whole 971 

trial or the time-resolved data. We showed that multi-valued features such as Samples and Wavelet 972 
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coefficients can provided information up and above the generally-used feature of Mean brain activity, 973 

which overlooks the temporal codes within the sliding time windows across the signal time series. We 974 

also showed that the Wavelet feature, not only provided the highest decoding accuracy, but it also 975 

explained the behavioral object recognition performance better than all the other features. As the 976 

mentioned results were generally consistent across three datasets, which had been collected across a 977 

wide range of variations, the generalizability of the results are far more than previous studies. Our 978 

results suggest that improving the performance in decoding could be a path for improving the 979 

behavioral explanatory power in multivariate decoding, which can help filling the gap between 980 

neuroimaging and behavior. 981 

 982 

This study provides new insights for the fields of cognitive neuroscience and BCI at the same time. In the 983 

past two decades, many neuroimaging studies in cognitive neuroscience have tried to provide insights 984 

into the spatiotemporal dynamics of object category processing in the human brain (Haxby et al., 2001; 985 

Contini et al., 2017; Carlson et al., 2013). This study does not provide any information about the spatial 986 

location of object category information processing in the brain. From the temporal viewpoint, however, 987 

it suggests that to access more variance in the neural code, we need to take the temporal and spatial 988 

information of the neural activations into account when running multivariate decoding. This aligns with 989 

the recent shift towards taking into account the temporal variability of trials when decoding visual 990 

information from high-temporal resolution methods such as MEG (Vidaurre et al., 2019). Importantly, 991 

our results showed that, multi-valued features such as original signal Samples and Wavelet coefficients, 992 

could provide information up and above which could be achieved using the conventional Mean-based 993 

decoding analyses (Grootswagers et al., 2017). This is because, with (i.e. Wavelet) or without any 994 

transformation (i.e. Samples), these features extracted the most informative samples across electrodes 995 

within each sliding time window. Therefore, through the use of PCA, the selection of samples from 996 

different electrodes were directed towards the most informative samples/features (i.e. wavelet 997 

coefficients which even provided more information). This supports previous studies which show that the 998 

temporal patterns of activity could provide information regarding the co-occurrences of visual edges 999 

(Eckhorn et al., 1988) and orientation in primary visual cortex (Celebrini et al., 1993) as well as light 1000 

intensity in the retina (Gollisch and Meister, 2008). This is also consistent with more recent findings in 1001 

object recognition suggesting a role for the temporal phase (Behroozi et al., 2016) or within-trial 1002 

correlation in the temporal cortex (Majima et al., 2014). However, none of the mentioned studies have 1003 

validated their results across multiple datasets to provide a more generalizable view on object category 1004 

encoding in the human brain. Moreover, the advantage of the Theta band, to all the other frequency 1005 

bands evaluated in this study, is consistent with the observation of Theta band being involved in the 1006 

processing of feed-forward visual information (Bastos et al., 2015), which is dominant in the evaluated 1007 

object recognition datasets used here. 1008 

 1009 

Importantly, even the complexity features which have been suggested to suffer when analyzing short 1010 

sequences of the data (50 samples here; Procaccia, 1988) provided information about object categories 1011 

showing above-chance decoding in the 100 ms to 300 ms time window at some point, with more 1012 

pronounced results for Dataset 2. This supports previous suggestions (Preißl et al., 1997; Ahmadi-Pajouh 1013 

et al., 2018; Torabi et al., 2017; Namazi et al., 2018) that even short EEG time series can show highly 1014 
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complex and nonlinear but meaningful structures, which if read appropriately (e.g. through LZ 1015 

complexity) can provide significant amounts of information about sensory processes. Another 1016 

interesting observation was the information content provided by the frequency-domain features (e.g. 1017 

phase at median frequency). These features have been suggested to be more suitable for the extraction 1018 

of information from stationary time series and not EEG evoked potentials. Comparing the whole-trial 1019 

and time-resolved results suggest that splitting the signal into its sub-sequences can lead to a more 1020 

stationary time series allowing frequency features to become more informative. 1021 

 1022 

Another important question in cognitive neuroscience has been whether (if at all) neuroimaging data 1023 

can explain behavior (Williams et al., 2007; Ritchie et al., 2015; Woolgar et al., 2019). Although many 1024 

recent studies have found correlations between the neural decoding and behavioral performance in 1025 

object and face recognition (Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani et al., 2020a; Dobs et al., 1026 

2019), as we also did in the current study, one question that had remained unanswered was whether a 1027 

more optimal decoding of object category processing, which is searched for here using feature 1028 

extraction, could explain the behavioral performance more accurately. Here, we showed that, this can 1029 

be the case. The reason for this observation seems to be that, if there is any explanatory power in the 1030 

conventional Mean-based decoding analyses, it should improve if we can detect and utilize the 1031 

additional neural codes which have been ignored as a result of down-sampling/temporal averaging. 1032 

Interestingly, here we observed that there seems to be a linear relationship between the decoding 1033 

accuracy that we can obtain and the explanatory power of the features suggesting that in order to bring 1034 

the neuroimaging closer to behavior, we might need to work on how we can read out the neural code 1035 

more optimally.  1036 

 1037 

As for the field of visual-representation-based BCI, in which the aim is to improve the decoding 1038 

performance for improved brain-computer interaction (Wang et al., 2012; Van Gerven et al., 2009), this 1039 

study provides new suggestions. Specifically, we showed that, when considering the whole-trail data, 1040 

which is often the case in BCI, the ERP components and the multi-valued features provided the highest 1041 

amount of information about object categories, and it is most pronounced in the Theta band. None of 1042 

the previous studies, which used the ERP components (Wang et al., 2012; Qin et al., 2016; Jadidi et al., 1043 

2016) or the Wavelet transformation (Taghizadeh-Sarabi et al., 2015; Torabi et al., 2017), limited their 1044 

frequency band to the Theta band, which here showed higher decoding accuracy in both the whole-trial 1045 

ERP components (Figure 2) as well as sliding-window Wavelet component (Supplementary 1046 

Supplementary Figure 1A). Therefore, the suggestion that this work can have for BCI might be to 1047 

concentrate at specific frequency sub-bands relevant to the cognitive or sensory processing undergoing 1048 

in the brain; i.e. looking at the Theta band which has been suggested to reflect feed-forward visual 1049 

information processing in the brain (Bastos et al., 2015) when doing visual-representation-based BCI.  1050 

 1051 

While many studies have used supervised computational algorithms such as Common Spatial Patterns 1052 

(Murphy et al., 2011), Voltage Topographies (Tzovara et al., 2011), Independent Component Analysis 1053 

(Stewart et al., 2014) and Convolutional Neural Networks (Seeliger et al., 2017), the focus of the current 1054 

study was to compare the inherent codes already available in brain representations through statistical 1055 
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and computational feature extraction. In other words, we made no supervised adjustments to these 1056 

features to improve category-separable representations and extracted them directly from the time 1057 

series data. This is because, rather than trying to maximize the separability/decodeability of 1058 

representations across object categories, we mainly aimed at gaining insight into how the brain encodes 1059 

this information by determining which of the available statistical features could capture/detect these 1060 

codes. Accordingly, there might be supervised algorithms, particularly in the area of BCI, which can 1061 

provide higher decoding accuracies than those obtained from individual features of this study. 1062 

Moreover, if we had not reduced the dimensionality of the data for the multi-valued features for the 1063 

sake of comparison with single-valued features, the decoding performance would likely increase as it 1064 

has been the case in previous studies (Taghizadeh-Sarabi et al., 2015; Torabi et al., 2017).  1065 

 1066 

There are several future directions for this research. One main question is how the results of this study 1067 

generalize to other cognitive processes such as attention, memory, decision making, etc. In other words, 1068 

it is interesting to know what the most informative features would be when decoding different 1069 

conditions in memory and attention tasks. Another interesting observation that we had in the current 1070 

study was that shorter time windows of signals (i.e. 5 ms) tended to provide larger initial (0 ms<t<200 1071 

ms) peaks in decoding compared to longer ones (i.e. 100 ms), while the latter provided higher decoding 1072 

values in later stages of the trial (t > 200; Supplementary Figure 2A). This was more pronounced for 1073 

Dataset 2, which had an active task and a longer presentation time. It suggests that, it could be the case 1074 

that initial stages of object category processing (e.g. extraction of visual features) takes a shorter time 1075 

spans, while later stages (e.g. association of visual information to categories or recurrence/feedback 1076 

processing) take longer time spans. Therefore, we might need a time-variable sliding window for 1077 

different stages of object recognition or any other cognitive processes to truly capture the temporal 1078 

dynamics of cognition. Another interesting extension to this work can be studying how (if at all) a 1079 

combination of the features used in this study could provide added information about object categories 1080 

and/or behavior. In other words, although all of the individual features evaluated here covered some 1081 

variance of category object information, to obtain the full variance of the actual neural code, we might 1082 

need to combine multiple features. To that end, we can combine the extracted features using a variety 1083 

of supervised and un-supervised methods as have previously provided additional information (Karimi 1084 

Rouzbahani et al., 2011; Qin et al., 2016). Finally, although explored to some extent (Hatamimajoumerd 1085 

et al., 2019), it can be interesting to look at specific time points and electrodes selected in our PCA-1086 

based dimension reduction to see when and where in the brain the optimal neural codes were extracted 1087 

from. 1088 

 1089 

The cross-dataset, large-scale analysis methods implemented in this study aligns with the growing trend 1090 

towards meta-analyses in cognitive neuroscience. Recent studies have also adopted and compared 1091 

several datasets to facilitate forming more rigorous conclusions about how the brain performs different 1092 

cognitive processes such as sustained attention (Langner et al., 2013) or working memory (Adam et al., 1093 

2020). Our exploratory analysis presented here, has also the advantage that it was not biased towards 1094 

any of the findings. We simply compared sets of features from the EEG signals to see which one provides 1095 

more information about object categories and which one best explain behavior. The findings of this 1096 
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study provide generalizable insights into the most informative features of EEG signals in object category 1097 

processing. 1098 

Acknowledgements 1099 

This research was funded by UK Royal Society’s Newton International Fellowship SUAI/059/G101116 to 1100 

H.K.R. 1101 

 1102 

References 1103 

Abootalebi, V., Moradi, M.H. and Khalilzadeh, M.A., 2009. A new approach for EEG feature extraction in 1104 
P300-based lie detection. Computer methods and programs in biomedicine, 94(1), pp.48-57.  1105 

Aboy, M., Hornero, R., Abásolo, D. and Álvarez, D., 2006. Interpretation of the Lempel-Ziv complexity 1106 
measure in the context of biomedical signal analysis. IEEE transactions on biomedical engineering, 1107 
53(11), pp.2282-2288. 1108 

Adam, K.C., Vogel, E.K. and Awh, E., 2020. Multivariate analysis reveals a generalizable human 1109 
electrophysiological signature of working memory load. bioRxiv. 1110 

Ahmadi-Pajouh, M.A., Ala, T.S., Zamanian, F., Namazi, H. and Jafari, S., 2018. Fractal-based 1111 
classification of human brain response to living and non-living visual stimuli. Fractals, 26(05), p.1850069. 1112 

Alimardani, F., Cho, J.H., Boostani, R. and Hwang, H.J., 2018. Classification of bipolar disorder and 1113 
schizophrenia using steady-state visual evoked potential based features. IEEE Access, 6, pp.40379-1114 
40388. 1115 

Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.M., Oostenveld, R., Dowdall, J.R., De Weerd, P., 1116 
Kennedy, H. and Fries, P., 2015. Visual areas exert feedforward and feedback influences through distinct 1117 
frequency channels. Neuron, 85(2), pp.390-401. 1118 

Behroozi, M., Daliri, M.R. and Shekarchi, B., 2016. EEG phase patterns reflect the representation of 1119 
semantic categories of objects. Medical & biological engineering & computing, 54(1), pp.205-221. 1120 

Bizas, E., Simos, P.G., Stam, C.J., Arvanitis, S., Terzakis, D. and Micheloyannis, S., 1999. EEG 1121 
correlates of cerebral engagement in reading tasks. Brain Topography, 12(2), pp.99-105. 1122 

Carlson, T., Tovar, D.A., Alink, A. and Kriegeskorte, N., 2013. Representational dynamics of object vision: 1123 
the first 1000 ms. Journal of vision, 13(10), pp.1-1. 1124 

Celebrini, S., Thorpe, S., Trotter, Y. and Imbert, M., 1993. Dynamics of orientation coding in area V1 of 1125 
the awake primate. Visual neuroscience, 10(5), pp.811-825. 1126 

Chan, A.M., Halgren, E., Marinkovic, K. and Cash, S.S., 2011. Decoding word and category-specific 1127 
spatiotemporal representations from MEG and EEG. Neuroimage, 54(4), pp.3028-3039. 1128 

Churchland, M.M., Byron, M.Y., Cunningham, J.P., Sugrue, L.P., Cohen, M.R., Corrado, G.S., Newsome, 1129 
W.T., Clark, A.M., Hosseini, P., Scott, B.B. and Bradley, D.C., 2010. Stimulus onset quenches neural 1130 
variability: a widespread cortical phenomenon. Nature neuroscience, 13(3), pp.369-378. 1131 

Cichy, R.M., Pantazis, D. and Oliva, A., 2014. Resolving human object recognition in space and 1132 
time. Nature neuroscience, 17(3), p.455. 1133 

Contini, E.W., Wardle, S.G. and Carlson, T.A., 2017. Decoding the time-course of object recognition in 1134 
the human brain: From visual features to categorical decisions. Neuropsychologia, 105, pp.165-176. 1135 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


DiCarlo, J.J., Zoccolan, D. and Rust, N.C., 2012. How does the brain solve visual object recognition?. 1136 
Neuron, 73(3), pp.415-434. 1137 

Dienes, Z., 2014. Using Bayes to get the most out of non-significant results. Frontiers in psychology, 5, 1138 
p.781. 1139 

Dobs, K., Isik, L., Pantazis, D. and Kanwisher, N., 2019. How face perception unfolds over time. Nature 1140 
communications, 10(1), pp.1-10. 1141 

Duda, R.O., Hart, P.E. and Stork, D.G., 2012. Pattern classification. John Wiley & Sons. 1142 

Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H.J., 1988. Coherent 1143 
oscillations: A mechanism of feature linking in the visual cortex?. Biological cybernetics, 60(2), pp.121-1144 
130. 1145 

Gelman, A. and Tuerlinckx, F., 2000. Type S error rates for classical and Bayesian single and multiple 1146 
comparison procedures. Computational Statistics, 15(3), pp.373-390. 1147 

Gelman, A., Hill, J. and Yajima, M., 2012. Why we (usually) don't have to worry about multiple 1148 
comparisons. Journal of Research on Educational Effectiveness, 5(2), pp.189-211. 1149 

Gollisch, T. and Meister, M., 2008. Rapid neural coding in the retina with relative spike 1150 
latencies. Science, 319(5866), pp.1108-1111. 1151 

Grootswagers, T., Cichy, R.M. and Carlson, T.A., 2018. Finding decodable information that can be read 1152 
out in behaviour. NeuroImage, 179, pp.252-262. 1153 

Grootswagers, T., Robinson, A.K. and Carlson, T.A., 2019. The representational dynamics of visual 1154 
objects in rapid serial visual processing streams. NeuroImage, 188, pp.668-679. 1155 

Grootswagers, T., Wardle, S.G. and Carlson, T.A., 2017. Decoding dynamic brain patterns from evoked 1156 
responses: A tutorial on multivariate pattern analysis applied to time series neuroimaging data. Journal of 1157 
cognitive neuroscience, 29(4), pp.677-697. 1158 

Guo, L., Rivero, D., Seoane, J.A. and Pazos, A., 2009. Classification of EEG signals using relative 1159 
wavelet energy and artificial neural networks. In Proceedings of the first ACM/SIGEVO Summit on 1160 
Genetic and Evolutionary Computation (pp. 177-184).  1161 

Hatamimajoumerd, E. and Talebpour, A., 2019. A Temporal neural trace of wavelet coefficients in human 1162 
object vision: an MEG study. Frontiers in neural circuits, 13, p.20. 1163 

Hatamimajoumerd, E., Talebpour, A. and Mohsenzadeh, Y., 2019. Enhancing multivariate pattern 1164 
analysis for magnetoencephalography through relevant sensor selection. International Journal of Imaging 1165 
Systems and Technology. 1166 

Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L. and Pietrini, P., 2001. Distributed and 1167 
overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), pp.2425-1168 
2430. 1169 

Haynes, J.D. and Rees, G., 2006. Decoding mental states from brain activity in humans. Nature Reviews 1170 
Neuroscience, 7(7), pp.523-534. 1171 

Hebart, M.N. and Baker, C.I., 2018. Deconstructing multivariate decoding for the study of brain function. 1172 
Neuroimage, 180, pp.4-18. 1173 

Higuchi, T., 1988. Approach to an irregular time series on the basis of the fractal theory. Physica D: 1174 
Nonlinear Phenomena, 31(2), pp.277-283. 1175 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hjorth, B., 1970. EEG analysis based on time domain properties. Electroencephalography and clinical 1176 
neurophysiology, 29(3), pp.306-310. 1177 

Hung, C.P., Kreiman, G., Poggio, T. and DiCarlo, J.J., 2005. Fast readout of object identity from macaque 1178 

inferior temporal cortex. Science, 310(5749), pp.863-866. 1179 

Intriligator, J. and Polich, J., 1995. On the relationship between EEG and ERP variability. International 1180 
Journal of Psychophysiology, 20(1), pp.59-74. 1181 

Iranmanesh, S. and Rodriguez-Villegas, E., 2017. An ultralow-power sleep spindle detection system on 1182 
chip. IEEE transactions on biomedical circuits and systems, 11(4), pp.858-866.  1183 

Isik, L., Meyers, E.M., Leibo, J.Z. and Poggio, T., 2014. The dynamics of invariant object recognition in 1184 
the human visual system. Journal of neurophysiology, 111(1), pp.91-102. 1185 

Jadidi, A.F., Zargar, B.S. and Moradi, M.H., 2016, November. Categorizing visual objects; using ERP 1186 
components. In 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International 1187 
Iranian Conference on Biomedical Engineering (ICBME) (pp. 159-164). IEEE.  1188 

Jeffreys, H., 1998. The theory of probability. OUP Oxford. 1189 

Joshi, D., Panigrahi, B.K., Anand, S. and Santhosh, J., 2018. Classification of Targets and Distractors 1190 
Present in Visual Hemifields Using Time-Frequency Domain EEG Features. Journal of healthcare 1191 
engineering, 2018. 1192 

Kaneshiro, B., Guimaraes, M.P., Kim, H.S., Norcia, A.M. and Suppes, P., 2015. A representational 1193 
similarity analysis of the dynamics of object processing using single-trial EEG classification. Plos 1194 
one, 10(8). 1195 

Karimi Rouzbahani, H. and Daliri, M.R., 2011. Diagnosis of Parkinson’s disease in human using voice 1196 
signals. Basic and Clinical Neuroscience, 2(3), pp.12-20. 1197 

Karimi-Rouzbahani, H., 2018. Three-stage processing of category and variation information by entangled 1198 
interactive mechanisms of peri-occipital and peri-frontal cortices. Scientific reports, 8(1), pp.1-22. 1199 

Karimi-Rouzbahani, H., Bagheri, N. and Ebrahimpour, R., 2017a. Average activity, but not variability, is 1200 
the dominant factor in the representation of object categories in the brain. Neuroscience, 346, pp.14-28. 1201 

Karimi-Rouzbahani, H., Bagheri, N. and Ebrahimpour, R., 2017b. Hard-wired feed-forward visual 1202 
mechanisms of the brain compensate for affine variations in object recognition. Neuroscience, 349, 1203 
pp.48-63. 1204 

Karimi-Rouzbahani, H., Bagheri, N. and Ebrahimpour, R., 2017c. Invariant object recognition is a 1205 
personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward 1206 
vision models. Scientific reports, 7(1), pp.1-24. 1207 

Karimi-Rouzbahani, H., Ramezani, F., Woolgar, A., Rich, A.N., Ghodrati, M., 2020a. Perceptual difficulty 1208 
modulates the direction of information flow in familiar face recognition.  1209 

Karimi-Rouzbahani, H., Vahab, E., Ebrahimpour, R. and Menhaj, M.B., 2019. Spatiotemporal analysis of 1210 
category and target-related information processing in the brain during object detection. Behavioural brain 1211 
research, 362, pp.224-239. 1212 

Karimi-Rouzbahani, H., Woolgar, A. and Rich, A.N., 2020b. Neural signatures of vigilance decrements 1213 
predict behavioural errors before they occur. bioRxiv. 1214 

Katz, M.J., 1988. Fractals and the analysis of waveforms. Computers in biology and medicine, 18(3), 1215 
pp.145-156. 1216 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kiani, R., Esteky, H., Mirpour, K. and Tanaka, K., 2007. Object category structure in response patterns of 1217 
neuronal population in monkey inferior temporal cortex. Journal of neurophysiology, 97(6), pp.4296-4309. 1218 

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K. and Bandettini, P.A., 1219 
2008. Matching categorical object representations in inferior temporal cortex of man and 1220 
monkey. Neuron, 60(6), pp.1126-1141. 1221 

Langner, R. and Eickhoff, S.B., 2013. Sustaining attention to simple tasks: a meta-analytic review of the 1222 
neural mechanisms of vigilant attention. Psychological bulletin, 139(4), p.870. 1223 

Le Van Quyen, M., Foucher, J., Lachaux, J.P., Rodriguez, E., Lutz, A., Martinerie, J. and Varela, F.J., 1224 
2001. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. 1225 
Journal of neuroscience methods, 111(2), pp.83-98. 1226 

Lee, M.D. and Wagenmakers, E.J., 2005. Bayesian statistical inference in psychology: Comment on 1227 
Trafimow (2003). 1228 

Lempel, A. and Ziv, J., 1976. On the complexity of finite sequences. IEEE Transactions on information 1229 
theory, 22(1), pp.75-81. 1230 

Liu, H., Agam, Y., Madsen, J.R. and Kreiman, G., 2009. Timing, timing, timing: fast decoding of object 1231 
information from intracranial field potentials in human visual cortex. Neuron, 62(2), pp.281-290. 1232 

Majima, K., Matsuo, T., Kawasaki, K., Kawai, K., Saito, N., Hasegawa, I. and Kamitani, Y., 2014. 1233 
Decoding visual object categories from temporal correlations of ECoG signals. Neuroimage, 90, pp.74-83. 1234 

Mazaheri, A. and Jensen, O., 2008. Asymmetric amplitude modulations of brain oscillations generate 1235 
slow evoked responses. Journal of Neuroscience, 28(31), pp.7781-7787. 1236 

Miyakawa, N., Majima, K., Sawahata, H., Kawasaki, K., Matsuo, T., Kotake, N., Suzuki, T., Kamitani, Y. 1237 
and Hasegawa, I., 2018. Heterogeneous Redistribution of Facial Subcategory Information Within and 1238 
Outside the Face-Selective Domain in Primate Inferior Temporal Cortex. Cerebral Cortex, 28(4), pp.1416-1239 
1431. 1240 

Murphy, B., Poesio, M., Bovolo, F., Bruzzone, L., Dalponte, M. and Lakany, H., 2011. EEG decoding of 1241 
semantic category reveals distributed representations for single concepts. Brain and language, 117(1), 1242 
pp.12-22. 1243 

Namazi, H., Ala, T.S. and Bakardjian, H., 2018. Decoding of steady-state visual evoked potentials by 1244 
fractal analysis of the electroencephalographic (EEG) signal. Fractals, 26(06), p.1850092. 1245 

Norman, K.A., Polyn, S.M., Detre, G.J. and Haxby, J.V., 2006. Beyond mind-reading: multi-voxel pattern 1246 
analysis of fMRI data. Trends in cognitive sciences, 10(9), pp.424-430. 1247 

Pincus, S.M. and Huang, W.M., 1992. Approximate entropy: statistical properties and 1248 
applications. Communications in Statistics-Theory and Methods, 21(11), pp.3061-3077. 1249 

Pouryazdian, S. and Erfanian, A., 2009. Detection of steady-state visual evoked potentials for brain-1250 
computer interfaces using PCA and high-order statistics. In World Congress on Medical Physics and 1251 
Biomedical Engineering, September 7-12, 2009, Munich, Germany (pp. 480-483). Springer, Berlin, 1252 
Heidelberg. 1253 

Preißl, H., Lutzenberger, W., Pulvermüller, F. and Birbaumer, N., 1997. Fractal dimensions of short EEG 1254 
time series in humans. Neuroscience letters, 225(2), pp.77-80. 1255 

Procaccia, I., 1988. Universal properties of dynamically complex systems: the organization of chaos. 1256 
Nature, 333(6174), pp.618-623.  1257 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pulini, A.A., Kerr, W.T., Loo, S.K. and Lenartowicz, A., 2019. Classification accuracy of neuroimaging 1258 

biomarkers in attention-deficit/hyperactivity disorder: Effects of sample size and circular analysis. 1259 

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(2), pp.108-120. 1260 

Qin, Y., Zhan, Y., Wang, C., Zhang, J., Yao, L., Guo, X., Wu, X. and Hu, B., 2016. Classifying four-1261 
category visual objects using multiple ERP components in single-trial ERP. Cognitive 1262 
neurodynamics, 10(4), pp.275-285. 1263 

Racine, R., 2011. Estimating the Hurst exponent. Zurich: Mosaic Group. 1264 

Rasoulzadeh, V.E.S.A.L., Erkus, E.C., Yogurt, T.A., Ulusoy, I. and Zergeroğlu, S.A., 2017. A comparative 1265 
stationarity analysis of EEG signals. Annals of Operations Research, 258(1), pp.133-157. 1266 

Richman, J.S. and Moorman, J.R., 2000. Physiological time-series analysis using approximate entropy 1267 
and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), 1268 
pp.H2039-H2049. 1269 

Ritchie, J.B., Tovar, D.A. and Carlson, T.A., 2015. Emerging object representations in the visual system 1270 
predict reaction times for categorization. PLoS computational biology, 11(6). 1271 

Rossion, B., Gauthier, I., Tarr, M.J., Despland, P., Bruyer, R., Linotte, S. and Crommelinck, M., 2000. The 1272 
N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: 1273 
an electrophysiological account of face-specific processes in the human brain. Neuroreport, 11(1), pp.69-1274 
72. 1275 

Rouder, J.N., Morey, R.D., Speckman, P.L. and Province, J.M., 2012. Default Bayes factors for ANOVA 1276 
designs. Journal of Mathematical Psychology, 56(5), pp.356-374. 1277 

Rousselet, G.A., Husk, J.S., Bennett, P.J. and Sekuler, A.B., 2007. Single-trial EEG dynamics of object 1278 
and face visual processing. Neuroimage, 36(3), pp.843-862. 1279 

Rupp, K., Roos, M., Milsap, G., Caceres, C., Ratto, C., Chevillet, M., Crone, N.E. and Wolmetz, M., 2017. 1280 
Semantic attributes are encoded in human electrocorticographic signals during visual object 1281 
recognition. NeuroImage, 148, pp.318-329. 1282 

Sammer, G., 1999. Working memory load and EEG-dynamics as revealed by point correlation dimension 1283 
analysis. International journal of psychophysiology, 34(1), pp.89-102. 1284 

Seeliger, K., Fritsche, M., Güçlü, U., Schoenmakers, S., Schoffelen, J.M., Bosch, S.E. and Van Gerven, 1285 
M.A.J., 2018. Convolutional neural network-based encoding and decoding of visual object recognition in 1286 
space and time. NeuroImage, 180, pp.253-266. 1287 

Shourie, N., Firoozabadi, M. and Badie, K., 2014. Analysis of EEG signals related to artists and nonartists 1288 
during visual perception, mental imagery, and rest using approximate entropy. BioMed research 1289 
international, 2014. 1290 

Simanova, I., Van Gerven, M., Oostenveld, R. and Hagoort, P., 2010. Identifying object categories from 1291 

event-related EEG: toward decoding of conceptual representations. PloS one, 5(12). 1292 

Stam, C.J., 2000. Brain dynamics in theta and alpha frequency bands and working memory performance 1293 
in humans. Neuroscience letters, 286(2), pp.115-118. 1294 

Stam, C.J., 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical 1295 
neurophysiology, 116(10), pp.2266-2301. 1296 

Stepien, R.A., 2002. Testing for non-linearity in EEG signal of healthy subjects. Acta neurobiologiae 1297 
experimentalis, 62(4), pp.277-282. 1298 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stewart, A.X., Nuthmann, A. and Sanguinetti, G., 2014. Single-trial classification of EEG in a visual object 1299 
task using ICA and machine learning. Journal of neuroscience methods, 228, pp.1-14. 1300 

Storey, J.D., 2002. A direct approach to false discovery rates. Journal of the Royal Statistical Society: 1301 
Series B (Statistical Methodology), 64(3), pp.479-498. 1302 

Subha, D.P., Joseph, P.K., Acharya, R. and Lim, C.M., 2010. EEG signal analysis: a survey. Journal of 1303 
medical systems, 34(2), pp.195-212. 1304 

Szczepański, J., Amigó, J.M., Wajnryb, E. and Sanchez-Vives, M.V., 2003. Application of Lempel–Ziv 1305 
complexity to the analysis of neural discharges. Network: Computation in Neural Systems, 14(2), pp.335-1306 
350. 1307 

Taghizadeh-Sarabi, M., Daliri, M.R. and Niksirat, K.S., 2015. Decoding objects of basic categories from 1308 
electroencephalographic signals using wavelet transform and support vector machines. Brain 1309 
topography, 28(1), pp.33-46. 1310 

Tong, F. and Pratte, M.S., 2012. Decoding patterns of human brain activity. Annual review of psychology, 1311 
63, pp.483-509. 1312 

Tononi, G. and Edelman, G.M., 1998. Consciousness and complexity. Science, 282(5395), pp.1846-1313 
1851. 1314 

Torabi, A., Jahromy, F.Z. and Daliri, M.R., 2017. Semantic category-based classification using nonlinear 1315 
features and wavelet coefficients of brain signals. Cognitive Computation, 9(5), pp.702-711. 1316 

Tzovara, A., Murray, M.M., Plomp, G., Herzog, M.H., Michel, C.M. and De Lucia, M., 2012. Decoding 1317 
stimulus-related information from single-trial EEG responses based on voltage topographies. Pattern 1318 
Recognition, 45(6), pp.2109-2122. 1319 

Van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., Ramsey, N., Haselager, P., 1320 
Vuurpijl, L., Gielen, S. and Desain, P., 2009. The brain–computer interface cycle. Journal of neural 1321 
engineering, 6(4), p.041001.  1322 

Vaziri-Pashkam, M. and Xu, Y., 2017. Goal-directed visual processing differentially impacts human 1323 
ventral and dorsal visual representations. Journal of Neuroscience, 37(36), pp.8767-8782. 1324 

Vidal, J.R., Ossandón, T., Jerbi, K., Dalal, S.S., Minotti, L., Ryvlin, P., Kahane, P. and Lachaux, J.P., 1325 
2010. Category-specific visual responses: an intracranial study comparing gamma, beta, alpha, and ERP 1326 
response selectivity. Frontiers in human neuroscience, 4, p.195. 1327 

Vidaurre, D., Myers, N.E., Stokes, M., Nobre, A.C. and Woolrich, M.W., 2019. Temporally unconstrained 1328 
decoding reveals consistent but time-varying stages of stimulus processing. Cerebral Cortex, 29(2), 1329 
pp.863-874. 1330 

Voloh, B., Oemisch, M. and Womelsdorf, T., 2020. Phase of firing coding of learning variables across the 1331 
fronto-striatal network during feature-based learning. Nature communications, 11(1), pp.1-16. 1332 

Wairagkar, M., Zoulias, I., Oguntosin, V., Hayashi, Y. and Nasuto, S., 2016, June. Movement intention 1333 
based Brain Computer Interface for Virtual Reality and Soft Robotics rehabilitation using novel 1334 
autocorrelation analysis of EEG. In 2016 6th IEEE International Conference on Biomedical Robotics and 1335 
Biomechatronics (BioRob) (pp. 685-685). IEEE. 1336 

Wang, C., Xiong, S., Hu, X., Yao, L. and Zhang, J., 2012. Combining features from ERP components in 1337 
single-trial EEG for discriminating four-category visual objects. Journal of neural engineering, 9(5), 1338 
p.056013. 1339 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wang, Y., Wang, P. and Yu, Y., 2018. Decoding English alphaAlphabet letters using EEG phase 1340 
information. Frontiers in neuroscience, 12, p.62. 1341 

Watrous, A.J., Deuker, L., Fell, J. and Axmacher, N., 2015. Phase-amplitude coupling supports phase 1342 

coding in human ECoG. Elife, 4, p.e07886. 1343 

Williams, M.A., Dang, S. and Kanwisher, N.G., 2007. Only some spatial patterns of fMRI response are 1344 
read out in task performance. Nature neuroscience, 10(6), pp.685-686. 1345 

Wong, K.F.K., Galka, A., Yamashita, O. and Ozaki, T., 2006. Modelling non-stationary variance in EEG 1346 
time series by state space GARCH model. Computers in biology and medicine, 36(12), pp.1327-1335. 1347 

Woolgar, A., Dermody, N., Afshar, S., Williams, M.A. and Rich, A.N., 2019. Meaningful patterns of 1348 
information in the brain revealed through analysis of errors. bioRxiv, p.673681. 1349 

Zellner, A. and Siow, A., 1980. Posterior odds ratios for selected regression hypotheses. Trabajos de 1350 
estadística y de investigación operativa, 31(1), pp.585-603. 1351 

 1352 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures:
Hamid Karimi-Rouzbahani et al., “Temporal codes provide 
additional category-related information in object 
category decoding: a systematic comparison between 
informative EEG features”.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

Response: 
fixation color 

changed?

200 ms 50 ms 1200 ms 50 ms

5000 ms 900 ms 900 ms800 ms 800 ms

Target 
category:

Animal

Response:
Target/Non-target

500 ms 750 ms

++

Response:
Target/Non-target

500 ms 750 ms

++

No overt
response required

Time

Dataset 1: paradigm

Dataset 2: paradigm

Dataset 3: paradigm

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dataset 1

Moment
features

Complexity
features

Frequency-domain
features

Multi-valued
features

BF > 10
3 < BF < 10
1 < BF < 3

0.3 < BF < 1
0.1 < BF < 0.3

BF < 0.1

Evidence for 
difference

Evidence 
for no 

difference

Dataset 2

Dataset 3

BF > 10
3 < BF < 10
1 < BF < 3

0.3 < BF < 1
0.1 < BF < 0.3

BF < 0.1

Evidence for 
difference

Evidence 
for no 

difference

BF > 10
3 < BF < 10
1 < BF < 3

0.3 < BF < 1
0.1 < BF < 0.3

BF < 0.1

Evidence for 
difference

Evidence 
for no 

difference

ERP
features

Figure 2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dataset 1 Dataset 2 Dataset 3

St
im

u
lu

s 
o

n
se

t

B
a

y
e

s
 f
a

c
to

rs
B

a
y
e

s
 f
a

c
to

rs
B

a
y
e

s
 f
a

c
to

rs
B

a
y
e

s
 f
a

c
to

rs

St
im

u
lu

s 
o

n
se

t

St
im

u
lu

s 
o

n
se

t

BF > 10
3 < BF < 10
1 < BF < 3

0.3 < BF < 1
0.1 < BF < 0.3

BF < 0.1

Evidence for difference

Evidence for no difference

Figure 3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


BF>10
3<BF<10

1<BF<3
0.3<BF<1
0.1<BF<0.3
BF<0.1

B
ay

es
 f

ac
to

rs

Dataset 1                                                     Dataset 2                                                      Dataset 3

C

D

Dataset 1                                                     Dataset 2                                                      Dataset 3

A

BF > 10
3 < BF < 10

1 < BF < 3
0.3 < BF < 1
0.1 < BF < 0.3

BF < 0.1

Evidence for difference

Evidence for no difference

Dataset 1                                                     Dataset 2                                                      Dataset 3

Dataset 1                                                     Dataset 2                                                      Dataset 3

D

B

Figure 4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

S
ig

n
if
ic

a
n

c
e

Significant positive correlation

Significant negative correlation

Non-significant correlation

S
ig

n
if
ic

a
n

c
e

St
im

u
lu

s 
o

n
se

t

St
im

u
lu

s 
o

n
se

t

St
im

u
lu

s 
o

n
se

t

St
im

u
lu

s 
o

n
se

t

Figure 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.02.279042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279042
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Materials:
Hamid Karimi-Rouzbahani et al., “Temporal codes provide additional category-related information in object category 
decoding: a systematic comparison between informative EEG features”.
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Supplementary Figure 1
(A) Bayes factor matrices comparing the whole-trial decoding results across different features for
each frequency band and dataset separately. Matrices show different levels of evidence for existing
difference (moderate 3<BF<10, Orange; strong BF>10, Yellow), no difference (moderate 0.1<BF<0.3,
light blue; strong BF<0.1, dark blue) or insufficient evidence (1<BF<3 green; 0.3<BF<1 Cyan) for either
hypotheses. Black and red boxes show moderate or strong evidence for higher decoding values for
specific features compared as explained in the text. For example, for Dataset 1, there is insufficient
evidence for difference between decoding values of most features in the Gamma band as indicated
by the light blue color in most cells. However, there is moderate to strong evidence that Mean and
Median features are different from N1 and P1 as indicated by yellow color and the decoding
accuracies in Figure 2. (B) Bayes factor matrices comparing the whole-trial decoding results across
different frequency bands for each feature and dataset separately. Black and red boxes show
moderate or strong evidence for higher decoding values for specific features compared as explained
in the text.
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We selected the window length of 50 ms for our time-
resolved analyses because it was neither too long to
hide the true temporal dynamics of information
processing in the brain, nor too short to avoid the
accurate calculation of sample-dependent (e.g.
complexity and multi-valued) features. To assure that
we did not miss the true obtainable dynamic range
(amplitude) of accuracies, we compared category
decoding obtained from time windows of 5 (i.e. which
was the case in most previous studies all of which
relied on signals’ mean (Grootswagers et al., 2017;
Karimi-Rouzbahani et al., 2017b) and 100 ms with that
used here from 50 ms time windows. Consistently
across the three datasets, results showed that the
highest decoding accuracies were obtained for the 50
ms time windows, both in terms of maximum and
average decoding accuracy after the stimulus onset.
Interestingly, lengthening the time windows decreased
the maximum decoding but increased the decoding
accuracies in the later stages of the processing (i.e.
from 200 ms onwards; probably after initial hard-wired
processing of visual stimuli). This may suggest that
later stages of category processing (probably involving
feedback/recurrent processing; which are activated by
the longer presentation time in datasets 2 and 3), take
longer processing times, therefore captured better
using longer time windows.

Supplementary Text 2 
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Supplementary Figure 2
(A) Comparison of decoding accuracies using different
length for the sliding time window. The bottom
section shows the Bayes factor evidence for the
difference between the 50 ms window and the other
two window lengths. (B) Comparison of decoding
accuracies using different frequency bands for the
Mean (top) and Wavelet (bottom) features. Each
column shows the results for one dataset. Top section
in each panel shows the decoding accuracies across
time and the horizontal dashed lines on the top panel
refer to chance-level decoding. Filled circles in the
Bayes Factors show moderate/strong evidence for
either difference or no difference between the
decoding curves and empty circles indicate
insufficient evidence for either hypotheses. Thick
lines show the average decoding accuracy across
participants (error bars Standard Error across
participants).
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The amplitude parameters of maximum and average decoding showed
relatively similar patterns across features. This seemed to be the case for the
timing parameters of the time of maximum and the time of first above-chance
decoding values too. To quantitatively see if there was any correlation within
the amplitude and timing parameters, we calculated their correlations across
features and for each dataset separately. Results showed significant
correlation (Pearson’s r>0.9, p<0.01) between maximum and average
decoding values across the features and for all three datasets. There was also
significant (Pearson’s r>0.5, p<0.05) correlation between the time of first
above-chance and maximum decoding for datasets 2 and 3, but not for
dataset 1 (r=0.02, p=0.93), which might have been because of the lower
decoding values in dataset 1 compared to the other datasets making the
correlations noisier.

Supplementary Text 3

Supplementary Figure 3

Correlation between the pairs of amplitude (A) and timing (B) parameters of
the time-resolved decoding (i.e. maximum and average decoding accuracy
and time of first and maximum decoding) for the set of N=26 individual
features. The slant line shows the best linear fit to the distribution of the
correlation data.
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