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Abstract 
Previous genetic and public health research in the Pakistani population has focused on the 
role of consanguinity in increasing recessive disease risk, but little is known about its recent 
population history or the effects of endogamy. Here, we investigate fine-scale population 
structure, history and consanguinity patterns using genetic and questionnaire data from 
>4,000 British Pakistani individuals, mostly with roots in Azad Kashmir and Punjab. We reveal 
strong recent population structure driven by the biraderi social stratification system. We find 
that all subgroups have had low effective population sizes (Ne) over the last 50 generations, 
with some showing a decrease in Ne 15-20 generations ago that has resulted in extensive 
identity-by-descent sharing and increased homozygosity. Using new theory, we show that 
the footprint of regions of homozygosity in the two largest subgroups is about twice that 
expected naively based on the self-reported consanguinity rates and the inferred historical 
Ne trajectory. These results demonstrate the impact of the cultural practices of endogamy 
and consanguinity on population structure and genomic diversity in British Pakistanis, and 
have important implications for medical genetic studies. 
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Introduction  
Estimates suggest that around 10% of the world’s population are offspring of closely related 
parents, mostly in north and sub-Saharan Africa, the Middle East, and west, central, and 
south Asia 1. In these regions, endogamy frequently co-occurs 2. Exploring the impact of 
consanguinity, endogamy, and population structure on genetic variation within these 
populations is important for quantifying their relative effects on risks of genetic diseases. 
Here, we investigate fine-scale population structure, history and consanguinity patterns in 
the British Pakistani population, one of the largest ethnic minorities in the United Kingdom, 
with a population size of 1.17 million in the 2011 census 3. The most substantial wave of 
immigration from Pakistan to the UK occurred in the 1950s/60s, after the partition of British 
India, with many Pakistanis coming to work in the steel, textile, and engineering industries, 
or as doctors, followed later by family members 4,5. British Pakistanis (i.e. individuals with 
Pakistani ancestry born either in Pakistan or in the UK) are one of the most socioeconomically 
disadvantaged ethnic groups in Britain 6. They have rates of type 2 diabetes and heart 
disease that are 2-4 times higher than the White British population 7–9, as well as an increased 
risk of congenital anomalies due to the prevalence of consanguinity 10. These factors, 
combined with the laudable drive to increase the number of genetic studies on people with 
non-European ancestry 11, have spurred the creation of several cohort studies whose aims 
include exploring the environmental and genetic contributions to various phenotypes in 
Pakistani-ancestry individuals and the impact of homozygous gene knockouts 12. These 
include Genes & Health (G&H) 13 and Born in Bradford (BiB) 14 (in the UK), and the Pakistan 
Risk of Myocardial Infarction Study (PROMIS) 15. A proper understanding of the demographic 
history of the target populations is important for designing robust and effective genetic 
analyses, as has been recently highlighted in work on polygenic scores 16,17.  
 
Modern South Asians are a mixture of different proportions of two ancestral populations: the 
Ancestral Northern Indian (ANI) and Ancestral Southern Indian (ASI) components 18,19. North-
west Indians and Pakistanis have a greater proportion of the ANI component 18,19. Several 
major studies of human genetic diversity, such as the Human Genome Diversity Project 
(HGDP) 20, 1000 Genomes 21 and GenomeAsia 22, have highlighted differences between 
multiple ethnic groups within Pakistan, as well as the elevated levels of autozygosity due to 
consanguinity 23.  These previous studies have focused mostly on population structure on a 
macro-scale, with relatively limited sample sizes per population, and they lacked information 
on finer-scale groupings within each of these populations.  
 
Most of the ethnic and tribal groups in Pakistan follow a patrilineal kinship system based on  
the biraderi (brotherhood) that shares its historical roots with the better-studied Indian caste 
system. The biraderi system is a means of attributing social status and providing mutual 
social support 24. Some biraderi groups such as Rajput and Jatt have been present on the 
Indian sub-continent for the last 2,000-3,000 years 25–27. Other biraderi originated in the early 
Medieval period, such as the Gujjars whose identity is traced back to the Gurjara kingdom in 
present-day Rajasthan around 570 CE 28. Mass-conversion to Islam during the pre-Mughal 
and Mughal era introduced multiple new biraderi, including Syed, Qureshi, Malik and Sheikh 
29. Historical records suggest that endogamous practices were strengthened during the 
Mughal Empire to ensure order in society 30, and became even stricter during the colonial 
times of the 19th century, as the social classification system was reinforced by the British to 
solidify their political authority,  enable rationalised taxation, and establish rules about 
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individual and family property 30,31. Overall, however, there are limited historical records about 
when the biraderi groups emerged or the extent to which endogamy was practiced over the 
centuries. Very little is known about the effect of this historical social structure on present-
day genetics, and previous work has been limited to small studies of a few microsatellite 
markers 27,32,33.  
 
Here, we analyse genotype array data and exome sequence data from thousands of 
Pakistani-ancestry individuals sampled in Britain as part of the Born in Bradford (BiB) project. 
BiB is a birth cohort set up to investigate the social, environmental, and genetic causes of 
poor health and educational outcomes of children born in Bradford, a city with high levels of 
socio-economic deprivation in the north of England 14. Around half of the individuals in this 
cohort have Pakistani ancestry, coming primarily from Azad Kashmir (Mirpur) and northern 
Punjab (see map in Supplementary Figure 1), in proportions similar to the British Pakistani 
community as a whole 5,35. BiB has rich self-reported information on the Pakistani mothers’ 
biraderi groups, places of birth, and parental relatedness. To our knowledge, this is the 
largest sample of Pakistani-ancestry individuals analysed to date to explore population 
genetic questions.  

Results 
Samples and dataset 
We assembled a large dataset of 7,180 individuals with Pakistani ancestry (Supplementary 
Tables 1 and 2) from the BiB project, of which 5,669 had been genotyped on the Illumina 
CoreExome array and 1,511 on the Illumina Global Screening Array (GSA); 2,484 of these 
also had exome-sequence data. Identifying related individuals is challenging in a population 
with high consanguinity and endogamy, so we tried several algorithms (Methods, 
Supplementary Figure 2). We erred on the side of caution and used the algorithm that gave 
the highest estimates of kinship, PropIBD from KING 36, to identify and remove putative 
relatives (3rd degree or closer). Most analyses in this paper are based on 2,200 unrelated  
mothers genotyped on the CoreExome array, with 1,616 unrelated children (CoreExome) 
and 228 unrelated fathers (GSA) used in some analyses.  
 
After cleaning the questionnaire responses about biraderi membership, we determined that 
fifty-six distinct groups had been reported. Most of these are recognised biraderi groups, but 
some individuals identified themselves with tribal/regional  groups (e.g. Pathan, or Kashmiri), 
or clans within a biraderi (e.g. Choudhry) (Supplementary Table 3). Presuming that 
individuals have reported the labels that best represent their group identity within the context 
of the Bradford Pakistani community, we henceforth refer to these collectively as ‘subgroups’ 
rather than ‘biraderi’.  

Genetic diversity of Bradford Pakistanis in a worldwide context 
We first investigated the genetic relationships between the Bradford Pakistanis and other 
worldwide populations from publicly available datasets (HGDP, Human Origins and 1000 
Genomes). Principal component analysis (PCA) 37,38 showed that Pakistanis from Bradford 
cluster with other South Asians (Supplementary Figure 3a). Focusing on Pakistani groups, 
the Bradford Pakistanis lie between the Sindhi, Pathan and Burusho (Supplementary Figure 
3b,c), as expected given they are predominantly from Punjab and Kashmir (Supplementary 
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Figure 1). Identification of ancestral components using ADMIXTURE 38 (Supplementary 
Figure 4a) showed that Bradford Pakistanis have a similar genetic profile to other South Asian 
populations, and display little variation in their ancestral components in this broad context. 
Only the Pathans stand out; they have a higher fraction of the pink and blue components 
seen in Europeans. This is consistent with the fact that they represent a distinct ethnic group 
from Punjabis and Kashmiris, speaking a language from a different family (Pashto from the 
Iranian family, as opposed to Punjabi from the Indo-Aryan family). Outgroup f3 statistics39 
(Supplementary Figure 4b) confirmed genetic affinity between the BiB Pakistanis and the 
HGDP Pathans, 1000 Genomes Punjabis, and northern (Uttar Pradesh Brahmins) and 
western (Kashimiri Pandit) Indian populations. They also have genetic similarity to Central 
Asia populations (Supplementary Figure 4a,b), consistent with previous studies that have 
demonstrated the ANI component in modern Pakistanis 18,19.  
 
We next investigated whether the self-reported subgroups who claim to have recent Arabic 
ancestry had a different pattern of genetic sharing with Middle Eastern populations compared 
to the other subgroups. We did not find statistically significant differences between groups 
using outgroup f3 or f4 statistics (Supplementary Figure 4c, Supplementary Table 4). We 
also saw no differences in the distribution of Y chromosome haplogroups between the 
biraderi that report Arabic ancestry and the other subgroups. Eighty-nine percent of 
individuals belong to the IJ* Y haplogroups, which are prevalent in Pakistan and Central Asia 
40,41, while the rest have other haplogroups that are present in Central and South Asia 
(Supplementary Table 5)42,43. Similarly, the mothers have mitochondrial haplogroups that are 
common in Central and South Asia 44,45,46,47,48 (Supplementary Table 6).  

Population structure 
We next investigated the fine-scale population structure within the Bradford Pakistanis. PCA 
of the samples revealed clear structure, with the first three principal components (PCs) each 
explaining ~4% of the variation and driven respectively by the separation of the Jatt and 
Choudhry subgroups, the Pathan, and the Bains and a subset of the Rajput individuals 
(Figure 1). The fact that the Choudhry and Jatt subgroups cluster together is consistent with 
the fact that “Choudhry” is an honorary title in Punjab and Kashmir used most commonly by 
the Jatts, who are the one of the largest ethnic groups in Pakistan and north-west India 27. 
ADMIXTURE analysis of the Bradford Pakistani samples alone indicates that the subgroups 
that were distinguishable on the PCA have different proportions of genetic components 
(Figure 1c). The Rajput group contains two distinct subgroups that we term henceforth 
Rajput-A and Rajput-B; the Rajput-B group, which has a higher fraction (> 40%) of the “red” 
ancestry component, appears more similar to Bains than to Rajput-A, and these individuals 
cluster with Bains on the PCA (Figure 1b). We found no evidence that the Rajput-A versus 
Rajput-B distinction is driven by geographical origin within Pakistan (Supplementary Figure 
5). It may well be that Rajput-B and the different subgroups of Rajput-A represent different 
sub-clans of Rajputs, of which there are hundreds across South Asia 49,50. An alternative 
explanation is that some people self-identifying as Rajputs actually have diverse ancestries 
since individuals from other subgroups chose to identify with this group to benefit from land 
allocations during British colonial times 24,51 or to increase their social status after migration 
to the UK 52. The fact that Bains and the Rajput-B group appear to form a homogeneous 
genetic cluster is consistent with historical evidence that Bains is one of the Rajput families 
53.  
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We next applied Uniform Manifold Approximation and Projection (UMAP) to the first 20 PCs 
(Supplementary Figure 6). This allowed us to define the Pathan and the Bains/Rajput-B 
subgroups more cleanly than on the PCA, but failed to distinguish additional groups. We 
found no significant correlation (Mantel test p-value: 0.9384) between genetic distance 
(measured by UMAP1 and UMAP2 vectors) and geographic distance (measured by 
geographic coordinates of the individual’s or her parents’ self-reported village of origin in 
Pakistan).  
 
We then applied fineSTRUCTURE 54, a Bayesian clustering algorithm, to a matrix of 
haplotype-sharing patterns. The inferred hierarchical clustering tree based on 1,520 
individuals from the sixteen major subgroups (Figure 2, Supplementary Figure 7) identified 
three clusters containing the majority of the self-reported Pathan (Cluster 8), Bains and 
Rajput-B (Cluster 9), and Jatt and Choudhry (Cluster 10) individuals. Subsets of Bains and 
Rajput-B (Cluster 6) and Jatt and Choudhry (Cluster 11) clustered with individuals from other 
groups, although Cluster 11 had lower support than the other clusters (Figure 2). The Bains 
and Rajput-B in Cluster 6 showed a smaller proportion of the red component in the 
ADMIXTURE plot (Figure 1c) than those in Cluster 9 (Wilcoxon rank sum test p-value=1x10-

12). For other self-reported groups, the majority of individuals from the group fell in a single 
fineSTRUCTURE cluster: the Kashimiri (Cluster 1), Syed and Awaan (Cluster 2), Arain 
(Cluster 4), Gujjar (Cluster 5), and Qasabi (Cluster 7). Some of the self-reported groups 
appear to be quite heterogeneous, with individuals from these groups distributed across 
different inferred clusters; Rajput-A is a notable example (Figure 2). Rerunning 
fineSTRUCTURE a second time and running it including the minor subgroups 
(Supplementary Figure 9) produced a very similar tree. Genetic differentiation was very low 
(FST< 0.001) between the Awaan and Syed in Cluster 2, the Bains and Rajput-B in Cluster 9, 
and the Jatt and Choudhry in Cluster 10 (Supplementary Figure 8, Supplementary Table 7). 
We henceforth pooled together individuals in these very similar subgroups who fell within 
those dominant clusters (Awaan/Syed, Bains/Rajput-B, and Jatt/Choudhry), and restricted 
the Arain, Gujjar, Kashmiri, Pathan and Qasabi subgroups to those individuals who fell within 
the dominant fineSTRUCTURE cluster for that group.  
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Figure 1: Population structure within British Pakistanis from Bradford. (a,b) Principal 
components analysis of 2,200 unrelated Pakistani mothers, with the self-reported subgroups 
with >20 samples indicated in different colours. Plots show PC1 versus PC2 (a) and PC2 
versus PC3 (b). Proportion of overall variation explained by each PC is noted in brackets on 
the axis label. (c) ADMIXTURE plot (K=4) illustrating different ancestral components making 
up the various subgroups, with the largest subgroups indicated. We have indicated the two 
distinct subgroups amongst the Rajput. 
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Figure 2: Fine-scale population structure inferred amongst 1,520 Bradford Pakistani 
mothers using fineSTRUCTURE. The tree illustrates the results of hierarchical clustering 
of the co-ancestry matrix using patterns of haplotype sharing from ChromoPainter. Each ‘leaf’ 
on the tree contains multiple individuals. The coloured bars represent the composition of 
each of the major clusters indicated by the thick black vertical lines. The length of each 
coloured bar is proportional to the number of individuals in that cluster, with the proportion of 
each colour representing the fraction of individuals from each self-reported subgroup that 
make up the cluster. The labels on the edges are the posterior assignment probabilities from 
fineSTRUCTURE. Only the individuals from the sixteen largest groups were included here, 
but several other smaller subgroups could be distinguished when applying fineSTRUCTURE 
to all 2,220 unrelated mothers (Supplementary Figure 9).  
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The biraderi system is culturally characterised by patrilineal kinship ties, so we examined 
GSA data on 228 unrelated Pakistani fathers from BiB to test whether males from the same 
subgroups did indeed carry the same Y haplogroups (Supplementary Table 5). Despite the 
clear delineation of some groups observed through analysis of the autosomal data, we found 
that even males within the most distinct groups (e.g. Jatt/Choudhry, Bains/Rajput-B, Pathan) 
did not tend to cluster together by Y haplogroup (Supplementary Figure 10). This is consistent 
with previous findings in Punjabi Rajputs 33 and in Jatts 27, and may suggest that the founders 
of each biraderi included males with several different haplogroups, or that, historically, the 
patrilineality of the biraderi system was not very strict.  

Demographic history, endogamy and consanguinity 
We next estimated population divergence times between the homogeneous subgroups 
defined in the previous section, using the NeON package 55 which considers patterns of 
linkage disequilibrium decay. We found that all groups diverged from one another within the 
last ~70 generations (Figure 3a, Supplementary Table 8, Supplementary Table 9), consistent 
with the low genetic differentiation between the subgroups (Supplementary Figure 8). The 
estimates in Figure 3a suggest that the history of these subgroups cannot be considered as 
a series of clean splits between ancestral populations; rather, it appears that several groups 
began to differentiate from one another around the same time, with some degree of admixture 
persisting between the groups after their initial formation. Nonetheless, we can see that 
Bains/Rajput-B (Cluster 9 in Figure 2) show the oldest divergence time from the other groups, 
followed by Qasabi (Cluster 7) and Pathan (Cluster 8) (Supplementary Table 8). Within 
clusters, Bains and Rajput-B (Cluster 9) have a divergence time estimate close to zero, as 
do Jatt and Choudhry in (Cluster 10; Supplementary Table 9), consistent with their clustering 
together on fineSTRUCTURE and having very low FST (FST < 0.001).  
 
Population relationships and gene flow inferred by Treemix 56 suggested that the 
Bains/Rajput-B group is characterized by the strongest genetic drift, followed by Qasabi and 
Pathan (Supplementary Figure 11). The tree topology without migration edges explained 
most of the variance (97.4%), but adding one or two migration edges increased the variance 
explained to >99%, detecting gene flow events from Pathan into Kashimiri (one migration 
edge), and from Bains/RajputB and Jatt/Choudhry into Kashmiri (two migration edges) (p-
values<0.001) . f3-statistics 39 also showed that the Kashmiri were characterised by 
significant admixture events with other subgroups (Supplementary Figure 12, Supplementary 
Table 11). Although about half of the Bradford Pakistanis come from Azad Kashmir, people 
who refer to themselves as “Kashmiri” are believed to originate specifically from the Kashmir 
Valley 57. Our finding that the Kashmiri have gene flow from other groups is consistent with 
historical evidence that the Kashmiri from the valley belonged to different biraderi and tribes. 
Some migrated to Azad Kashmir and Punjab during the 19th century, where they began 
identifying themselves as Kashmiri ahead of their biraderi identity, tending to marry within 
this group 53,58,59. This likely explains the relative genetic homogeneity of the Kashmiri in our 
sample (80% of individuals fall in Cluster 1 on Figure 2) and the observation that the most 
recent estimated divergence time between Kashmiri and other groups is ~10 generations 
ago (Figure 3a).   
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Figure 3: Divergence times and historical effective population size changes of 
Bradford Pakistani subgroups. Note that these are the homogeneous subgroups defined 
using the fineSTRUCTURE clusters. (a) Divergence times estimated using NeON 55. Within 
each panel, the points show the estimated divergence time between the group indicated on 
the left on the y-axis and those indicated in the legend. The horizontal lines indicate 95% 
confidence intervals.  (b) Change in effective population size (Ne) through time estimated with 
IBDNe. The coloured lines indicate the mean estimate and the grey shading indicates 95% 
confidence intervals. Supplementary Figure 13b shows results from IBDNe using the 
fineSTRUCTURE clusters. 
 
 
We next applied IBDNe 60 to infer recent effective population sizes (Ne) through time across 
the different subgroups. All subgroups were inferred to have relatively low Ne over the last 
50 generations compared to white British individuals (Supplementary Figure 13a), likely 
reflecting the endogamy of the biraderi system. Bains/Rajput-B (Cluster 9), Jatt/Choudhry 
(Cluster 10) and Pathan (Cluster 8) showed a similar trend: a strong reduction in Ne around 
10-20 generations ago followed by a recovery (Figure 3b). The other subgroups and clades, 
except for Arain, showed a progressive decrease in Ne in the last 15 generations (Figure 3b), 
which may reflect the increase in endogamy that occurred during the Mughal Empire and 
British colonial times 30.  
 
To quantify the extent of this historical endogamy, we calculated identity-by-descent (IBD) 
scores 34 in the Pakistani subgroups. These scores represent the average total length of IBD 
shared between any two individuals from the same subgroup after excluding relatives, 
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considering segments between 5 and 30 cM (Supplementary Figure 14). Most of the 
Pakistani subgroups have substantially higher IBD scores than other worldwide populations 
from the 1000 Genomes Project, including the Finns (Figure 4a), similar to those reported 
previously for some isolated Indian groups 34. The Bains/Rajput-B group had the highest IBD 
score, followed by Qasabi and Jatt/Choudhry. Similar results were obtained when 
constructing IBD scores using the same length filtering as Nakatsuka et al. 34, and when 
focusing on the fineSTRUCTURE clusters (Supplementary Figure 15).  
 
Fifty-seven percent of the BiB Pakistani mothers reported that their parents were related, and 
63% reported being related to their child’s father (Supplementary Tables 12 and 13). As 
expected, a much higher fraction of the genome was homozygous (FROH) in the Pakistani 
mothers than the White British (Supplementary Figure 16). Amongst the BiB children, those 
whose parents were both born in the UK had significantly lower FROH than those whose 
parents were both born in Pakistan, and both groups had significantly lower FROH than those 
who had one parent born in Pakistan and the other in the UK (Supplementary Figure 17a). 
This likely reflects changing marriage preferences in second-generation British Pakistanis 61. 
 

 
Figure 4: Effect of endogamy and consanguinity on IBD sharing and ROH patterns in 
BiB Pakistani subgroups. Note that these are the homogeneous subgroups defined using 
the fineSTRUCTURE clusters. a) IBD scores calculated as the average total length of IBD 
segments between 5 and 30cM shared between individuals from the indicated group, 
standardised by the value for the 1000 Genomes Finns (FIN). The error bars indicate 
standard errors. YRI: Yoruba; CEU: Western Europeans. b) Boxplots showing the distribution 
of the fraction of the genome in regions of homozygosity (FROH) broken down by subgroup. 
(See Supplementary Figure 16 for a breakdown by self-reported group.) c) As for b) but with 
only the individuals who self-reported as being offspring of first cousins. The red vertical line 
indicates the expectation (1/16) for offspring of first-cousins whose parents are themselves 
unrelated. 
 
FROH differed significantly between the subgroups (ANOVA; F-test p=8x10-8; Figure 4b). In a 
joint model, self-reported consanguinity explained 41% of the variance in FROH (ANOVA F-
test p<1x10-173), self-reported subgroup explained 2% (p=0.017) and their interaction 
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explained 6% (p=0.016). Hence, while both consanguineous marriage and intra-biraderi 
marriage make a significant contribution to homozygosity, the former explains more variance. 
The pattern of differences in FROH across subgroups was similar between individuals who 
were born in Pakistan and those born in the UK (Supplementary Figure 17b), implying that 
each subgroup’s relative frequency of consanguineous marriage has not changed 
substantially after migration. We saw variation between subgroups even amongst individuals 
who reported that their parents were first cousins (ANOVA; F-test p=0.01; Figure 4c). This 
likely partially reflects levels of consanguinity in previous generations, and it is notable that 
the groups with the highest homozygosity amongst offspring of first cousins (Jatt/Choudhry, 
Bains/Rajput-B) also have higher levels of IBD sharing (Figure 4a). For many of the 
subgroups, long regions of homozygosity (ROHs) between 5 and 50 cM are seen even in 
individuals who report that their parents are unrelated (Supplementary Figure 18), particularly 
in the Bains/Rajput-B group. It may be that there is under-reporting of close consanguinity, 
but low Ne due to endogamy is also undoubtedly contributing to the landscape of ROHs as 
well as to IBD sharing between individuals.  
 
To model the joint effects of consanguinity and endogamy on ROHs and IBD segments, we 
applied recently developed theory 62 to predict their length distribution given historical 
consanguinity rates and historical Ne trajectory. We focus on the two largest homogeneous 
subgroups: the Pathan from Cluster 8 (N=213) and the Jatt/Choudhry from Cluster 10 
(N=299) (Figure 2). As an initial naive estimate of consanguinity rate, we used the proportion 
of mothers in each group who reported that their parents were first cousins, second cousins, 
or ‘other blood/other relative’, which we assumed were third cousins. This gave an estimate 
of the average kinship between spouses of 0.016 for Pathan and 0.028 for Jatt/Choudhry 
(see Methods). Supplementary Figure 19 illustrates the importance of considering not only 
average kinship between spouses but also historical Ne when evaluating the proportion of the 
genome covered by ROHs of different lengths (the ‘ROH footprint’); the Ne has a major 
influence on the expected footprint of ROHs < 25cM, but much less on ROHs longer than 
this, since those are primarily due to mating between close relatives. We ran the model from 
62 using the Ne estimates from IBDNe (Figure 3b) as input, varying the average spousal 
kinship (see Methods). Figure 5 compares the observed ROH and IBD footprints to those 
expected under the models with different parameters. It indicates that the observed ROH 
footprint determined with bcftools/roh is not consistent with the average spousal kinship we 
estimated naively from the parental relationships reported by the mothers, but is about twice 
as high as this: ~0.035 in the Pathans and ~0.056 in the Jatt/Choudhry group. This likely 
reflects the influence of consanguinity in earlier generations on the realised relatedness 
between spouses (Supplementary Figure 2c,d). Similar results were obtained with ROHs 
called by PLINK, whereas GARLIC seems to call more short ROHs than the model predicts 
(Supplementary Figure 20), consistent with the higher false positive rate for short ROHs 
reported in the original GARLIC paper 63. 

Searching for founder effects  
A reduction in Ne due to endogamy can lead to founder effects, which may push rare 
pathogenic variants to higher frequency  34,64 . To investigate this, we searched for variants 
with significant allele frequency differences between each of the three largest homogeneous 
Pakistani subgroups (Pathan in Cluster 8, Bains/Rajput-B in Cluster 9, Jatt/Choudhry in 
Cluster 10) and all individuals in Clusters 1 to 5 and Cluster 7 (Figure 2). We used three 
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approaches: pcadapt 65 and GEMMA-LMM 66 for outlier detection on the CoreExome 
genotype data, and a simple Fisher’s exact test on variants ascertained with whole-exome 
sequencing data, following previous work 67 (see Methods). We found 215 significant variants 
in 140 independent loci (r2<0.2) after multiple testing correction on at least one of these tests 
(Supplementary Figure 21, Supplementary Tables 14 and 15), including a total of forty-eight 
protein-altering variants. A few of these were in Mendelian disease-causing genes, but we 
found no evidence that these were likely to be pathogenic.  
 

 

 
Figure 5. Observed ROH and IBD footprints compared to the expectation under a 
coalescent model 62. The footprint is the average fraction of the genome covered by 
segments of a given length interval. The top lines represent the ROH footprint and the bottom 
lines the IBD footprint. Points are plotted at the beginning of each 1cM interval. The Ne profile 
used to compute the expected footprints was determined by IBDNe using the Pathan from 
fineSTRUCTURE’s Cluster 8 (a) or Jatt/Choudhry from Cluster 10 (b). We used several 
different values for the average kinship between spouses (see Methods), as indicated by the 
green and pink lines. Note that for IBD segments, the expectation is unaffected by the kinship 
value. The observed footprints (black lines) were determined using filtered IBD and ROH 
calls from IBDseq and bcftools/roh respectively. Supplementary Figure 20 shows equivalent 
plots using the upper and lower bounds of the 95% confidence interval for the IBDNe estimate 
as the Ne trajectory, and using observed footprints from different ROH or IBD calling/filtering 
strategies. 
 
 
We noted multiple variants in the HLA region that had significantly different frequencies in 
the Jatt/Choudhry subgroup (Supplementary Figure 21), several of which are significantly 
associated with various complex traits such as leprosy (rs9274741; p=4x10-10 in 68), IgA 
nephropathy (rs9275596; p=3x10-31 in 69), idiopathic membranous nephropathy (rs3115663, 
rs3130618, rs3134945, rs11229; p<2x10-40 in 70), complement C4 levels (rs2071278; p=4x10-

72 in 71) and haemoglobin levels (rs10885; p=2x10-36 in 72). Variants in the HLA are known to 
have been subject to selection in multiple populations, likely because they confer resistance 
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to pathogens 73. It might be that this signal in the HLA in the Jatt/Choudhry subgroup is due 
to selection rather than simply drift, since it was by far the strongest signal in the pcadapt or 
GEMMA-LMM analysis of the Jatt/Chowdhry subgroup (minimum p=3x10-9 in pcadapt), with 
no SNPs outside this region having p<10-6.    

Discussion 
We have carried out the first large-scale investigation of population structure and 
demographic history of Pakistanis. We found genetic structure in the cohort reflecting the 
influences of the biraderi social stratification system, with some subgroups forming 
identifiable and homogeneous clusters (Figures 1 and 2). Our analyses suggest that these 
subgroups come from a common ancestral population but diverged from one another within 
the last 70 generations (1,500-2,000 years) (Figure 3a). This is consistent with an earlier 
finding that the transition from intermarrige to strict endogamy on the Indian subcontinent 
started from about 70 generations ago74, concurrent with or immediately after the drafting of 
the ancient Law Code of Manu that described a  ranked social stratification system31.  
 
Historically, intra-biraderi marriages and consanguinity were practised to solidify socio-
economic bonds 75,76. Intra-biraderi marriages continue to be very common in the Bradford 
Pakistani community, constituting >90% of marriages in the Gujjar, Pathan, Jatt, and Bains, 
≥80% in the Syed, Qasabi, Rajput, Awaan, and Choudhry, and ~60-63% in Qureshi, Malik, 
and Sheikh in the current BiB participants 76, according to the self-reported questionnaire 
data. Interestingly, the subgroups we inferred to be the most genetically homogeneous and 
with the highest IBD sharing (Figure 3a) are generally those with the highest self-reported 
rates of intra-biraderi marriage. Endogamous practices became stronger, particularly 
amongst the elite classes, during the Mughal Empire (mid-1500s to mid-1800s) 30, and then 
amongst all classes under the British Raj (mid-1800s to 1947) when the laws of land 
ownership changed 30,31. This could be the explanation for the decrease in effective 
population size seen in all subgroups starting 15-20 generations ago (~375-580 years ago if 
the average generation time were 25-29 years) (Figure 3b). However, there is considerable 
uncertainty in the average generation time; according to historical records, it was not 
uncommon for women in South Asian communities to marry and have children as early as 
12-18 years old 77,78. Hence, we should be cautious about attributing these changes in Ne to 
demographic changes or historical events at particular time points. 
 
To explore the elevated rates of homozygosity and IBD sharing in our cohort, we leveraged 
new theory (62 and Methods) to estimate the recent consanguinity rates in founder 
populations, while, for the first time, properly accounting for ROH attributed to historical 
endogamy. We found that for both the Jatt/Choudhry and Pathan subgroups, a naive 
estimate of spousal kinship based on self-reported parental relatedness underestimates the 
proportion of the genome in ROH segments, and thus, the true kinship coefficient between 
spouses must be higher. Stronger kinship would be consistent with the fact that 67% of the 
Pakistani mothers who reported being related to their partner also reported that their parents 
were related. A limitation of our approach was that we did not explicitly model this more 
complex pedigree structure. Another is that we have little power to identify historical changes 
in the consanguinity rate (Supplementary Figure 22). This is because, as we go back in time, 
the ROH and IBD distributions are similarly affected both by the average kinship between 
parents, 𝑘, and by 𝑁#, so we can only infer the product 𝑁#	(1 − 3𝑘).  
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Our results suggest that, even in the absence of close consanguinity, increased 
homozygosity due to endogamy is likely to be contributing to recessive disease burden 79 
and the elevated frequency of rare homozygous knockouts 12,80 in this population. Offspring 
of unrelated parents from the same subgroup have on average 2.6-times more rare, 
putatively deleterious homozygous coding variants than offspring of unrelated parents from 
different subgroups (Supplementary Figure 23), which may be proportional to their risk of 
recessive disorders. However, we note there is a wide confidence interval on this estimate 
(i.e. [1.5-7.0]-times more).  
 
We hypothesised that rare disease-causing variants might have increased in frequency in 
certain Pakistani subgroups through founder events. We did find a few dozen coding variants 
with significantly altered frequency amongst the three largest subgroups compared to the 
rest of the BiB Pakistani samples (Supplementary Table 15), but none of these had 
compelling evidence for pathogenicity. We identified multiple variants in the HLA region at 
significantly altered frequency in the Jatt/Choudry subgroup, which may be due to selection 
rather than drift. The HLA region has been identified as a target of selection in different 
human populations and is involved in immunity against pathogens but also implicated in other 
phenotypes such as high altitude adaptation 73,81–83. A larger sample size and a population-
specific HLA reference panel would be required to fine-map the most differentiated variants 
in this region in the Jatt/Choudhry subgroup, which would be a prerequisite of forming 
hypotheses about which phenotypes might have been the target of selection. 

 
This study has several limitations. Although we had samples from fifty-six distinct groups, 
many of them had a small sample size that would not allow reliable group-level inference 
about demographic history or founder events. The majority of our sample comprised 
individuals with Pathan, Punjabi or Kashmiri ancestry residing in the UK; additional data from 
the UK and Pakistan, including from other ethnic groups such as the Baloch and Sindhi, 
would allow us to explore how generalizable our findings are. Furthermore, our study was 
based primarily on SNP-genotype data, which, although highly valuable for describing 
population structure, did not allow the finer scale demographic inference that would be 
possible with whole-genome sequence data. For example, whole-genome sequence data on 
more males would allow us to leverage a larger number of Y chromosomal markers to further 
explore whether biraderi membership has indeed been passed down patrilineally in recent 
time.  
 
We have presented the largest investigation to date of fine-scale population structure and 
history in Pakistanis. We have shown how the biraderi social stratification system has played 
a significant role in shaping the population structure in Pakistani communities over the last 
70 generations. Endogamous practices have led to greatly elevated IBD sharing as well as 
increased homozygosity, which is likely to have implications for disease risk on top of the 
high rates of consanguinity. Larger sample sizes and data on Mendelian disease diagnoses 
(as opposed to proxy estimates of risk) will be needed to quantify the risk of recessive 
disorders for offspring of intra- versus inter-biraderi marriages accurately, noting that our 
results imply that this differs between biraderi, and that certain disorders may be enriched in 
particular biraderi as a result of founder effects. Furthermore, future studies of disease 
genetics in Pakistanis should consider our findings in order to best control for population 
stratification due to recent structure in genome-wide association studies 16 and potentially to 
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increase power by exploiting the IBD within some groups as a proxy for rare variant sharing 
84.  

Materials and methods 

Dataset 
We had genetic data from 7,180 individuals of Pakistani ancestry and 6,818 of White British 
ancestry (Supplementary Tables 1 and 2) from the Born in Bradford (BiB) cohort. These were 
predominantly from mothers and their children, with some fathers also included. The children 
were only included for the analyses in Supplementary Figure 17, since we needed to restrict 
the population genetic analyses to unrelated individuals. The samples were genotyped using 
two chips: 1) the Infinium CoreExome-24 v1.1 BeadChip (~550K SNPs), and 2) the Infinium 
Global Screening Array-24 v1 (GSA; ~640K SNPs). We also analysed whole-exome 
sequencing (WES) data for 2,484 Pakistani individuals who were also genotyped. Recruited 
mothers were asked to fill in a self-reported questionnaire including, for the Pakistani 
mothers, questions about biraderi groups, places of birth and parental relatedness 
(consanguinity).  

Quality control of genotype chip data 
Data quality control was performed using PLINK v1.90b4 85. We required <1% missingness 
per SNP and <10% missingness per individual. Duplicated variants were removed. We 
removed 110 samples with sex discrepancies, 123 genetic duplicates, 465 individuals who 
were not genetically related to someone who should have been a first-degree relative, and 
five individuals who had an inferred first-degree relative who should not have been related. 
Genetic ancestry was assigned with principal component analysis (PCA) using the self-
reported information on ethnicity, and an additional 52 samples were filtered out because 
their declared ethnicity was different from their genetic ancestry inferred using EIGENSOFT 
7.2.137,86. SNPs with Hardy-Weinberg Equilibrium p-value < 1x10-6 were removed 
considering Pakistani (3,348 CoreExome variants, 1,435 GSA variants) and White British 
(305 CoreExome variants, 224 GSA variants) separately. These filters resulted in a dataset 
of 476,816 autosomal SNPs (246 mtDNA SNPs) and 14,624 individuals on the Core Exome 
chip and 598,326 SNPs (583,667 autosomal, 1,056 Y chromosome) and 4,398 samples on 
the GSA. For this study, we focused primarily on individuals of Pakistani ancestry, but in 
some figures the White British individuals were used for comparison. Results presented are 
from the CoreExome chip data unless otherwise stated, since this gave a larger sample size, 
and taking the intersection of the two chips would have left insufficient SNPs for most 
analyses.  
 
We performed the demographic inferences on mothers genotyped on the CoreExome chip 
using common autosomal SNPs (251,853 SNPs with minor allele frequency (MAF) > 0.01). 
For the PCA and ADMIXTURE analyses, we filtered out SNPs in high linkage disequilibrium 
(LD) (r2>0.5). Fathers from the GSA dataset were used for the Y chromosome analysis. This 
resulted in a dataset of 3,081 Pakistani and 2,873 white British mothers and 2,588 Pakistani 
children on the CoreExome chip and 601 mothers and 235 Pakistani fathers on the GSA.  
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Inference and removal of relatives 
A critical step in population genetic analysis is identifying and removing close relatives. In 
endogamous populations, distinguishing recent familial relatedness from population structure 
is challenging because both show genetic similarity through allele sharing 87. We inferred 
relatedness coefficients with KING, which has been reported to be robust to population 
structure 36, unlike PLINK’s𝛱+estimator. We compared the original kinship estimate from KING 
(called ‘KING-robust’ in 36) to a new estimator in KING, PropIBD, which integrates IBD 
segment information to infer sample relationships for 3rd and 4th degree relatives more 
accurately (http://people.virginia.edu/~wc9c/KING/manual.html). Comparisons of these 
different estimators on the mothers genotyped on the CoreExome showed that PropIBD 
identified more third-degree and closer relatives than the other methods (Supplementary 
Figure 2a,b): KING ProbIBD removed 881 samples, KING-kinship removed 741 samples, 
and PLINK’s 𝛱+ removed 821 samples.  
 
To try to determine which of these estimators was more accurate, we compared the genetic 
estimates of kinship to self-reported relationships for 196 Pakistani mother-father pairs for 
whom the relationship had been declared by the mother on the questionnaire. For these, 
since mothers and fathers had been genotyped on different arrays, we took the intersection 
of CoreExome chip and GSA (134,218 SNPs with MAF>0.01) and ran KING on this 
(Supplementary Figure 2c,d). The results suggest that KING-kinship may be underestimating 
true kinship for third-degree relatives: 21/75 (28%) self-declared 1st cousins were called 
more distant than third degree relatives by KING-kinship, versus only 4/75 (5%) with KING-
PropIBD. PropIBD called 38/75 (51%)  self-declared 1st cousins as second-degree relatives. 
This seems to be mostly driven by inbreeding in the previous generation, since when we 
restrict to couples for whom both the mother’s and father’s parents were reported to be 
unrelated, KING-kinship and KING-PropIBD gave very concordant estimates 
(Supplementary Figure 2d).  
 
To be conservative in our population genetic analyses, we decided to use the relatedness 
estimates from KING-PropIBD to exclude relatives. We removed one sample from each pair 
of individuals with third-degree relatedness or above (i.e. PropIBD>0.0884). We retained 
2,200 Pakistani and 2,520 White British mothers and 1,616 Pakistani children on the Core 
Exome chip and 544 Pakistani mothers and 228 Pakistani fathers on the GSA.  

Biraderi categorisation 
On the questionnaire, Pakistani mothers in BiB were asked to state their own biraderi, that 
of each of their parents, and that of their husband and of his parents. We cleaned the biraderi 
membership data, checking for spelling errors and combining groups with variable spellings 
of the same group. We determined that fifty-six distinct groups had been reported. To ensure 
we were assigning individuals to the biraderi that was most consistent with their parental 
biraderi, we compared the mother’s self-reported biraderi to the biraderi reported for each of 
her parents, and likewise for the father’s biraderi. The biraderi for a mother or father was set 
to missing if it was not reported (N=645), or if her/his parents’ biraderi was not reported 
(N=58) or was discordant with his/her own (N=118). The biraderi for a child was assigned 
following the same approach used for mothers and fathers. We assigned 2,324 mothers 
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(1,652 unrelated), 1,568 children (906 unrelated) and 169 fathers (164 unrelated) 
unambiguously to biraderi groups.  

Population structure  
For comparison with other modern worldwide populations, we merged our dataset with the 
Human Genome Diversity Project (HGDP)88 and 1000 Genomes Project Phase 3 21. For 
comparison with modern and ancient individuals, we combined our samples with a dataset 
of published genotypes from modern and ancient individuals 
(https://reich.hms.harvard.edu/datasets) 18. In both cases, we used GRCh37. 
 
Principal component analysis (PCA) was performed on the pruned datasets using 
EIGENSOFT 7.2.1 37,86. For the worldwide dataset, the eigenvectors were computed using 
the non-BiB datasets and the individuals from BiB were projected onto them (Supplementary 
Figure 3a,b). For Supplementary Figure 3c, to ensure that the BiB Pakistanis were not 
dominating the structure due to their large sample size, we computed the PCA using HGDP 
Pakistani populations and just 25 BiB Pakistanis, then projected the remaining BiB Pakistanis 
onto them.  
 
ADMIXTURE v1.338 was run on the pruned datasets, and the cross validation (CV) error was 
calculated for identifying the best K value, which was found to be 4 for Figure 1c and 8 for 
Supplementary Figure 4a.  We separated Rajput-A and Rajput-B according to the proportion 
of the red component in the ADMIXTURE analysis, defining Rajput-B individuals as those for 
which the red component made up >40% of their ancestry.  Rajput-A individuals had a 
maximum red component proportion of 18%.  
 
Genetic affinity with other worldwide populations was tested by computing f-statistics using 
ADMIXTOOLS v6.0. We computed both f3 and f4-statistics. Outgroup f3-statistics were 
computed with the phylogeny f3(Bradford Pakistanis, X; Mbuti), where X represents another 
worldwide population. Standard errors were obtained using blocks of 500 SNPs. f4-statistics 
were computed using qpDstat with f4mode:YES and with the phylogeny f4(W, X; Y, 
Chimpanzee), where W represents the biraderi groups reporting Arabic ancestry (Qureshi, 
Sheikh or Syed), X are all the other Bradford sub-groups and Y represents Middle East 
populations39. Positive values indicate gene flow between W and Y. f-statistic tests with Z-
score > 3 were considered significant.  
 
Uniform Manifold Approximation and Projection (UMAP) was computed from the top 20 PCs 
with default parameters in the BiB dataset using the uwot R package 89. To compare genetic 
to geographic distance, we first assigned 547 mothers to a village of origin in Pakistan using 
either the mother’s own self-reported village of origin, or that of her parents if she was born 
in the UK and reported that her parents were born in the same Pakistani village. We then 
determined the latitude and longitude of the villages in order to define geographic distances 
between them. Genetic  (measured as UMAP1 and UMAP2 vectors) and geographic 
distances  were computed as Euclidean distances using the dist R function with 
method=Euclidean. Correlation between genetic and geographic distance was estimated 
using a Mantel test implemented in the Ade4 R package (mantel.rtest function)90. The number 
of permutations used for the Mantel test was 9999.  
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We ran fineSTRUCTURE v4.0.154 to infer fine-scale population structure in the BiB Pakistani 
mothers. The haplotypes were phased using SHAPEIT v2.1291 using the 1000 Genomes 
Phase 3 dataset as a reference panel. We generated the co-ancestry matrix using 
ChromoPainter and used it to run fineSTRUCTURE with 1,000,000 burn-in steps and 
1,000,000 iterations. A PCA on the co-ancestry matrix using the prcomp R function 
(Supplementary Figure 7) confirmed the structure in the tree (Figure 2). We ran the algorithm 
twice on the dataset with the major subgroups to make sure the tree structure was robust 
(data not shown). We also ran it on the dataset including all subgroups to confirm that the 
clusters were consistent (Supplementary Figure 9).  
 
Given the heterogeneity of the genetic clusters inferred in our cohort (Figure 2), we defined 
self-reported groups as homogeneous if at least 60% of the individuals from each self-
reported subgroup fell in the same genetic cluster inferred by fineSTRUCTURE. We then 
estimated pairwise FST (calculated with the Weir and Cockerham’s method using the program 
4P92,93) between homogeneous self-reported groups within a fineSTRUCTURE cluster, and 
combined two groups if they had FST< 0.001 (5th percentile of the empirical distribution for 
all pairs of groups shown in Supplementary Figure 8b). For demographic analyses, we 
included only the homogeneous self-reported groups that had at least 20 individuals. These 
were: Awaan+Syed from Cluster 2, Bains+Rajput-B from Cluster 9, Jatt+Choudhry from 
Cluster10, Arain from Cluster 4, Gujjar from Cluster 5, Kashmiri from Cluster 1, Pathan from 
Cluster 8 and Qasabi from Cluster 7. Sample sizes for these groups are shown in 
Supplementary Table 7.  
 
Chromosome Y haplogroups were defined with yhaplo 94 and mtDNA haplogroups with 
Haplogrep2 95. A median joining haplotype network for the Y chromosome data from BiB 
Pakistani fathers  was constructed with PopART v1.7 96.  

Divergence time estimation  
We calculated the time of divergence between the homogeneous sub-populations and 
genetic clusters using the approach described in McEvoy et al.97 and implemented in the 
NeON R package 55. The 95% confidence intervals for the times of divergence were 
calculated using a jackknife procedure, leaving out one chromosome each time.  

IBD segment calling 
We conducted several analyses using identical-by-descent (IBD) segments between the 
Pakistani individuals, called using IBDseq v.r1206 98 and/or GERMLINE 1.5.3 99. IBDseq 
requires unphased data whereas GERMLINE phased haplotypes. IBDseq ran with default 
parameters. For GERMLINE, we phased the data with Eagle v2.4.1 100 using 1000 Genomes 
Project Phase 3 genetic maps. IBD segments were defined using GERMLINE with the 
parameters -bits 75 -err_hom 0 -err_het 0 -min_m 3 -h_extend, and the HaploScore algorithm 
101 was used to remove false-positive IBD tracts (genotype error=0.0075, switch-error=0.003, 
mean overlap = 0.8).  
 
In plotting the unfiltered IBD calls along the genome, we noticed that a suspiciously high 
number of IBD calls were being made in particular regions (Supplementary Figure 24), and 
that these regions were enriched for gaps or overlapping centromeric regions, suggesting 
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that these were artefacts. We thus excluded IBD segments overlapping these regions: 
chr1:120-152Mb, chr2:88-102Mb; chr9:38-72Mb; chr10:17-19Mb and chr11:0-3Mb 
(Supplementary Figure 25; “filter 1” in Supplementary Figure 26). We furthermore excluded 
a small number of outlier IBD segments longer than 23cM that were seen with identical 
coordinates in more than ten pairs of unrelated (PropIBD<0.084) individuals, and some IBD 
segments >25cM partially overlapping the centromeric region of chr15,  which were seen 
with identical coordinates in more than five pairs of unrelated individuals (“filter 2” in 
Supplementary Figure 26). Finally, we excluded IBD segments overlapping the HLA region 
and centromeres. 

Estimating historical effective population size 
We estimated historical changes in effective population size (Ne) for both Pakistani 
subgroups and White British individuals using IBDNe v.19Sep19.268 60. As recommended, 
we ran IBDseq 98 to identify IBD segments with default parameters. We then excluded IBD 
chunks overlapping problematic regions as explained above, although in practice we found 
this had a minimal effect on the results. We ran IBDNe with the default parameters, except 
that we set a lower limit of 5cM for the IBD segments considered. We also ran IBDNe using 
the IBD calls from GERMLINE and found that this gave systematically higher Ne estimates 
than IBDseq, although the trajectories were very similar, particularly for the larger groups 
(Supplementary Figure 27).      

Calculating IBD scores 
We computed the IBD score developed in Nakatsuka et al. 34 from GERMLINE IBD calls to 
quantify the extent of founder events in each population using IBD segments. Nakatsuka et 
al. had used IBD segments >30cM to define and exclude possible close relatives (on top of 
a filter based on PLINK’s 𝛱+), and then considered the total length of segments between 3 
and 20cM. The appropriateness of these cutoffs depends on the patterns of IBD sharing 
within a population of interest, as well as the density of SNPs being used to call IBD 
segments. We found that in the BiB Pakistanis, a nontrivial fraction of individuals who were 
estimated to be unrelated by KING had an IBD segment between 20 and 30cM 
(Supplementary Figure 13), and due to the sparsity of SNPs on the CoreExome chip, we 
suspected IBD segments <5cM were not reliably estimated. Hence, we selected slightly 
different filters when preparing Figure 4. Specifically, in addition to the aforementioned 
removal of individuals who were third-degree relatives or closer  based on the KING PropIBD 
metric (PropIBD<0.0884), we also removed one individual from each pair of samples sharing 
an IBD chunk > 40 cM, to be sure that we were not mistakenly including closely related 
individuals.  
 
We calculated IBD scores as the total length of IBD segments between 5 and 30 cM detected 
between individuals in the same subgroup divided by the total number of possible pairs i.e. 
[-.
-
− 𝑛], where n is the number of samples in that subgroup. We then standardised each IBD 

score by the score for the Finnish individuals from the 1000 Genomes Phase 3 34. Standard 
errors for IBD scores were calculated using a weighted block jackknife for each chromosome, 
and 95% confidence intervals were defined as the IBD score ± 1.96 × standard error. We 
also computed IBD scores using the same set of filters used in Nakatsuka et al. (IBD segment 
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filter > 30 cM to identify relatives, then counting  IBD segments between 3 and 20 cM) and 
found that the results were similar (Supplementary Figure 14). 

Inferring gene flow between Pakistani subgroups 
Gene flow was inferred using the Treemix v1.13 approach 56 and f3-statistics 19,39. We ran 
the Treemix analysis with default parameters, without the -root option. We added migration 
edges (-m) until we reached a total variance explained of 99.5%. The f3 statistics were 
calculated in the form of f3(target, source 1, source 2) using ADMIXTOOLS v6.0, and provide 
evidence that the target population is derived from an admixture of populations related to 
source 1 and source 2. We tested all possible combinations of target and source populations 
in our dataset. Standard errors were obtained using blocks of 500 SNPs. Tests with a Z-
score < -3 were considered significant. 

ROH calling 
We used three different ROH callers: bcftools/roh, GARLIC v1.6.0a, and PLINK. The results 
in Figures 4 and 5 and Supplementary Figures 16, 17, and 18 are based on bcftools/roh calls, 
and in Supplementary Figure 20 and Supplementary Figure 23 we compare all three callers. 
 
With bcftools/roh, we used the -G 30 flag. We noticed an excess of apparently artefactual 
ROHs spanning long gaps between SNPs around centromeres, so we removed ROHs < 
10Mb overlapping centromeres. In practice, this made very little difference to the ROH 
footprint (Supplementary Figure 20). For GARLIC 63,102, we set the number of resamples for 
estimating allele frequencies (--resamples) to 20 and we assumed a genotyping error rate (-
-error) of 0.001. We used the --auto-winsize flag to guess the best window size based on the 
SNP density. For PLINK, we followed previous publications 103,104 and used the following 
parameters: --homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 1500 --homozyg-
gap 1000, --homozyg-density 50 --homozyg-window-missing 5 --homozyg-window-het 1. 

Analysis of FROH 

FROH was determined for each individual by summing the lengths of the (autosomal) ROHs in 
base pairs and dividing by the length of the autosomal genome. We fitted an ANOVA to 
assess the effect of self-reported consanguinity and self-reported subgroup and their 
interaction on FROH in the mothers. We calculated the partial r2 of each factor using the etasq() 
function in R. The categories of self-reported consanguinity are shown in Supplementary 
Table 13; for this analysis, we combined ‘other blood’ and ‘other marriage’ into a single 
category. The figures given in the Results section come from bcftools/roh calls, but very 
similar results were obtained with PLINK and GARLIC (data not shown). We also calculated 
FROH in the BiB children from the bcftools/roh calls and stratified these estimates according 
to the parents’ birthplace: both parents born in the UK, one parent born in the UK and one in 
Pakistan, and both parents born in Pakistan.  

Analysis of ROH and IBD distributions 
We applied theory from 62,105 to determine the expected length distribution and genomic 
footprint of ROHs and IBD segments given a particular historical Ne trajectory and rate of 
consanguinity. In the model developed in the above papers, there are 𝑁# pairs of parents, 
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who, in each generation, have probability 𝑟2of being (full) siblings, 𝑟-of being (full) first 
cousins, 𝑟3of being second cousins, etc., up to a certain degree 𝑛. A key parameter of the 
model is the average kinship between parents, 𝑘 = ∑.672

89
:9

, which is the probability of a 
random chromosome in each parent coalescing due to consanguinity. It is assumed that the 
parents are related only through a single path of degree 1, . . . , 𝑛, or are otherwise unrelated. 
 
In 62, a Markov chain was derived for the evolution of the state of two chromosomes. The 
possible states are as follows: the chromosomes are in unrelated individuals, in one of each 
parent, in the same individual as two homologous chromosomes, or in the same individual 
as a single chromosome (coalescence). We then considered 𝑡>#?@##., the time to the most 
recent common ancestor (TMRCA, or coalescence time) of two chromosomes sampled from 
two unrelated individuals, and 𝑡@6?A6., the TMRCA of the two chromosomes of an individual. 
In refs. 62,105, the mean and variance of 𝑡>#?@##. and 𝑡@6?A6. were computed using a first-step 
analysis. An approximation of the distribution was derived using a separation-of-time-scales 
analysis, The results showed that 𝑡>#?@##. is approximately exponential with rate 1/[4𝑁#	(1 −
3𝑘)]. [The factor of 4 is because there are 𝑁# pairs of parents, thus 2𝑁# individuals, and 4𝑁# 
chromosomes.] 𝑡@6?A6. has probability 𝑘/(1 − 3𝑘) of being O(1), i.e., representing a rapid 
coalescence within the family due to consanguineous unions, and is otherwise approximately 
exponential as 𝑡>#?@##.. 
 
Here, we assume that 𝑡>#?@##. is distributed as in the standard coalescent, but with a 
population size trajectory scaled according to the theory as 𝑁#(𝑡)(1 − 3𝑘). Thus, in discrete 
time, it has the distribution 𝑃(𝑡>#?@##. = 𝑡) = 2

:FG(?)(2H3I)
∏?H2
K72 L1 − 2

:FG(K)(2H3I)
M. For 𝑡@6?A6., 

as the approximate distribution groups together all rapid coalescence events, we used a 
composite approach. For 𝑡 ≤ 50, the distribution was computed numerically by running the 
exact Markov chain for 100,000 iterations. For 𝑡 > 50, the distribution was set to 𝑃(𝑡@6?A6. =
𝑡 > 50) ∝ 2

:FG(?)(2H3I)
∏?H2
K72 L1 − 2

:FG(K)(2H3I)
M (as for 𝑡>#?@##.), where the coefficient of 

proportion was set such that the entire distribution was normalized. Running the exact model 
for only 𝑡 < 10 or 𝑡 < 40 gave almost indistinguishable results.  
 
We defined the genomic “footprint” of IBD and ROH segments as the proportion of the 
genome (in genetic map units) found in segments (of each type, respectively) of length 
between [𝑙2, 𝑙-] 106. Given the distributions 𝑃(𝑡>#?@##.) and 𝑃(𝑡@6?A6.), we computed the 
footprint as follows. In 107, Ringbauer et al. (eq. (4) therein) showed that, in a chromosome of 
length 𝐿, the mean number of segments with TMRCA 𝑡 of length in the small interval [𝑙, 𝑙 +
𝛥𝑙] (in Morgan) is: 

𝐸[𝑛Y#Z(𝑙; 𝐿, 𝑡)] 	= 	4𝑡𝑒H-?](1 + 𝑡(𝐿 − 𝑙)) ⋅ 𝛥𝑙 
The mean chromosome length covered by segments (with TMRCA 𝑡) of length in [𝑙2, 𝑙-], 
denoted 𝑐(𝑙2, 𝑙-; 𝐿, 𝑡), is: 
𝐸[𝑐(𝑙2, 𝑙-; 𝐿, 𝑡)] = ∫]a]b 𝐸[𝑛Y#Z(𝑙; 𝑡)] ⋅ 𝑙𝑑𝑙 = 𝑒H-?]bd𝐿 + 2𝐿𝑡𝑙2 − 2𝑡𝑙2

-e − 𝑒H-?]ad𝐿 + 2𝐿𝑡𝑙- −

2𝑡𝑙-
-e. 

The mean length covered by segments of all TMRCAs is obtained by numerically summing 
over all TMRCAs, using their distributions (𝑡>#?@##. for IBD segments, who are between 
unrelated individuals, and 𝑡@6?A6. for ROH segments): 

𝐸[𝑐fgh(𝑙2, 𝑙-; 𝐿)] = ∑i?72 𝐸[𝑐(𝑙2, 𝑙-; 𝐿, 𝑡)]𝑃(𝑡 >#?@##. = 𝑡), 
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𝐸[𝑐jkl(𝑙2, 𝑙-; 𝐿)] = ∑i?72 𝐸[𝑐(𝑙2, 𝑙-; 𝐿, 𝑡)]𝑃(𝑡 @6?A6. = 𝑡). 
Finally, the footprint is obtained by summing over all chromosomes and dividing by the total 
genome length, 

𝐸[𝑓(𝑙2, 𝑙-)] = ∑--672 𝐸[𝑐(𝑙2, 𝑙-; 𝐿6)]/d∑--672 𝐿6e, 
where 𝐿6 is the length of chromosome 𝑖, in Morgans. The code implementing this model can 
be accessed at (https://github.com/scarmi/ibd_roh).  
 
To generate the expected statistics shown in Figure 5 and Supplementary Figures 19, 20, 
and 22, we set 𝑟2 = 0 and estimated 𝑟- and 𝑟3 using the fraction of mothers who declared 
that their parents were first cousins/first cousins once removed or second cousins, 
respectively. We set 𝑟: to be the proportion of mothers who declared that their parents were 
related but that the relationship type was unknown or was described as ‘other blood’ or ‘other 
marriage’. This gave an estimate for 𝑟 = (𝑟2, 𝑟-, 𝑟3, 𝑟:) of (0, 0.235, 0.052, 0.155) for Pathan 
in cluster 8 and of (0, 0.425, 0.057, 0.151) for Jatt/Choudhry in cluster 10, giving naive kinship 
estimates 0.016 and 0.028, respectively. We also tried scaling the 𝑟 vectors by a constant 𝑐 
to obtain higher kinship estimates for plugging into the model, and then compared the 
observed ROH footprint to the expectations given these values (Figure 5, Supplementary 
Figure 20). [Scaling 𝑟 by 𝑐 > 1 implies that the sum of its components may in some cases be 
greater than 1, which could represent multiple paths leading to the same relationship. The 
model still holds as long as the kinship satisfies 𝑘 < 1/4.] 
 
To investigate the effect of a sudden change in consanguinity rates at a certain point in the 
past, we tried reducing the kinship value to 1x10-4 at the time the distribution switched to the 
approximate model (𝑡 = 50). However, this proved to have only very subtle effects on the 
expected ROH and IBD segment footprint (Supplementary Figure 22), so we could not 
evaluate this possibility with the observed data. 
 
For the Ne trajectory, we used a constant value of Ne for Supplementary Figure 19. For the 
other analyses, we used trajectory estimated with IBDNe for the last 50 generations (using 
the point estimate for Figure 5 and the bounds of the 95% confidence interval for 
Supplementary Figure 20), followed by a constant value for 𝑡 > 50 (the IBDNe estimate at 
𝑡 = 50). [We divided the IBDNe population sizes by 2 before plugging them into the model, 
as the model assumes 𝑁# is the number of mating pairs.] We note that by using IBD data 
alone, IBDNe estimates 𝑁#(𝑡)(1 − 3𝑘) rather than 𝑁#(𝑡). Thus, given the IBDNe inferred 
trajectory 𝑁+#(𝑡), we set 4𝑁#(𝑡)(1 − 3𝑘) = 𝑁+#(𝑡) in the equations above. 
 
To compute the ROH footprint in the real data, we averaged the total lengths of ROH 
segments (within each length interval) over all individuals in the group, and divided by the 
number of individuals. For the IBD footprint, we averaged the total lengths of IBD segments 
over all pairs of individuals in the group, and divided by 2𝑛(2𝑛 − 2)/2 (where 𝑛 is the number 
of individuals), which is the number of chromosome pairs in different individuals. 
 
We restricted the real data analysis to ROHs and IBD segments greater than 5cM, since we 
suspected that segments shorter than this could not be called reliably with the CoreExome 
chip data, and less than 30cM, since there were few ROHs longer than this so the average 
footprint became very noisy. We used 1cM segment length intervals for both ROH and IBD, 
where each data point was plotted at the beginning of each interval. The empirical IBD 
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footprint was plotted using the IBDseq calls filtered as described above, since these calls 
were used as input for IBDNe. 

Quality control of exome sequence data  
Whole-exome sequence (WES) data were generated, and mapping and variant calling 
carried out as previously described 12 using BWA-MEM  108 and GATK 109 respectively. 2,311 
samples were generated as part of this previous publication and had a median on-target 
coverage of 38X, and 473 additional samples were sequenced later to a median coverage of 
50X. This gave a dataset of 2,784 individuals, of which 2,484 were Pakistani. We excluded 
variants that failed these criteria, based on standard GATK annotations: 

● SNPs: QD < 2 , FS > 60 , MQ < 40 , MQRankSum < -12.5 , ReadPosRankSum < -8, 
or Hardy-Weinberg equilibrium p-value < 1x10-6. 

● Indels: QD < 2, FS > 200, ReadPosRankSum < -20, or Hardy-Weinberg Equilibrium 
p-value < 1x10-6. 

We set genotypes to missing if they had genotype quality (GQ) < 20, allelic depth p-value < 
0.001, or depth < 7, then removed variants with more than 20% missingness. This resulted 
in a dataset of 1,931,299 variants (1,895,447 SNPs and 35,852 indels). The variants were 
annotated with the Variant Effect Predictor (version 95) using the LOFTEE plugin. 

Burden of rare damaging variants by parental relatedness level 
For Supplementary Figure 23, we defined groups of individuals to compare based on the 
self-reported parental relatedness and self-reported parental subgroups. We extracted 
variants with minor allele frequency < 1% in the BiB Pakistani mothers from the exome 
sequence data. We then restricted to those whose most damaging annotation for any 
transcript was either: 

- loss-of-function (LOFTEE high confidence), or 
- missense and predicted to be “deleterious” by SIFT and “probably damaging” or 

“possibly damaging” by PolyPhen 
We then simply counted the number of homozygous genotypes at these variants per 
individual (distributions shown in Supplementary Figure 23A), and calculated the ratio of 
mean numbers per group for Supplementary Figure 23B. The confidence intervals were 
calculated by bootstrapping individuals 1000 times within each of these groups. 

Inference of founder effects on specific variants 
We tested for potential founder effects in particular subgroups using three approaches: 1) a 
PCA approach for outlier detection implemented in the pcadapt R package 65 applied to the 
CoreExome chip data; 2) a genome-wide association study-like approach implemented in 
GEMMA-LMM 66 applied to the CoreExome chip data; 3) a simple Fisher’s exact test on 
variants ascertained with whole-exome sequencing data, following the example in 67 .  
 
We compared allele frequencies in either Bains/Rajput-B in Cluster 9 (CoreExome: N=98; 
WES: N=64), Jatt/Choudhry in Cluster 10 (CoreExome: N=299; WES: N=195) or Pathan in 
Cluster 8 (CoreExome: n=213, WES: n=88) (“target group”), with a “control group” comprising 
individuals in Clusters 1-5 and 7 (CoreExome: N=723; WES: N=432) (Figure 2). We excluded 
Cluster 6 from the “control group” since it contained Bains/Rajput-B individuals who might be 
admixed. For both pcadapt and GEMMA-LMM, we included only polymorphic SNPs with an 
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allele count (AC) ≥ 5 in the target+control groups to avoid false positives due to errors in 

assessing rare variants with SNP genotype data 110. For the Fisher’s exact test using whole-

exome sequencing data we included variants with an AC ≥ 2 in the target+control groups.  
 
For the pcadapt analysis, we first performed PCA on the genotype matrix generated with the 
function read.pcadapt from the PLINK files to verify that it was indeed PC1 that was 
separating the target from the control group. We then performed a component-wise genome 
scan according to the package instructions (https://bcm-
uga.github.io/pcadapt/articles/pcadapt.html), specifying K=1 and method=componentwise. 
The method effectively computes the correlation between each SNP and the kth principal 
component of interest (in our case, PC1), and determines an associated p-value.  
 
We carried out association tests with a univariate linear mixed model approach implemented 
in GEMMA-LMM, comparing the target to the control group. Firstly, we calculated a genomic 
relatedness matrix (GRM) with the -gk flag. We then conducted the association analysis (-
lmm flag) using the GRM and the first 20 PCs as covariates.  
 
We performed a two-sided Fisher’s exact test using the fisher.test function in R on variants 
ascertained with whole-exome sequencing data and on those that were significant with the 
pcadapt or GEMMA-LMM analysis on the CoreExome chip. We used the number of 
reference and alternate alleles for each variant in our target and control groups. 
Supplementary Table 14 includes the log-odds ratio calculated using the Haldane–
Anscombe correction for comparisons with a zero-cell in the contingency table: 

𝑙𝑜𝑔(𝑂𝑅) 	= 	𝑙𝑜𝑔([(0.5 + 𝐴𝐿𝑇𝑡𝑎𝑟𝑔𝑒𝑡) ⋅ (0.5	 + 	𝑅𝐸𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙)]	/	[(0.5 + 𝑅𝐸𝐹𝑡𝑎𝑟𝑔𝑒𝑡) ⋅ (0.5	
+ 	𝐴𝐿𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙)]) 

 
For all three tests we applied Bonferroni correction and considered SNPs with p-value < 1x10-

7 as significant for the pcadapt and GEMMA-LMM analyses (0.05/N, where is the number of 
SNPs used in the analysis: Jatt/Choudhry=256,523, Bains/Rajput-B=256,603, 
Pathan=257,020) and p-value < 1x10-7 as significant for the Fisher’s exact test analysis on 
the whole-exome sequencing data (0.05/N, with N being: Jatt/Choudhry=279,643, 
Bains/Rajput-B=261,563, Pathan=263,107). We annotated variants using Ensembl Variant 
Effect Predictor (GRCh37) and generated Manhattan plots using the qqman R package111. 
 
To determine the number of independent significant loci, we merged the CoreExome and 
exome-sequence data for each target group separately (Bains/Rajput-B, Jatt/Chowhury, 
Pathan), then calculated LD between significant variants. Variants with an r2> 0.2 were 
considered part of the same locus.  

Data availability 
The genetic data and questionnaire data (covering self-reported consanguinity, village of 
origin and biraderi group) from Born in Bradford can be obtained as described here 
https://borninbradford.nhs.uk/research/how-to-access-data/ .  
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Supplementary Figures 
 

 
 
Supplementary Figure 1: Map of Pakistan indicating the approximate origin of each of the 
HGDP populations in the coloured text, as well as the self-reported geographic origin location 
of the BiB Pakistani (see Methods). The size of the circles is proportional to the number of 
individuals reporting that they originate from that location. Most of the BiB Pakistani are from 
Mirpur in Azad Kashmir and northern Punjab. Note that although the Pathan are concentrated  
in the northwest of the country, many Pathan also live in other parts of Pakistan including 
Punjab, Sindh and Kashmir. The map does not include the boundaries of the disputed 
territory of Jammu & Kashmir.  
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Supplementary Figure 2: Relatedness checks. a-b) Relatedness estimates between all BiB 
CoreExome Pakistani mothers compared between three different metrics, where the colours 
indicate the relationship type inferred by KING-PropIBD.  a) KING-kinship versus KING-
PropIBD; b) KING PropIBD versus PLINK’s 𝛱+ (PI_HAT). In (c) and (d), we compare the two 
KING estimators for the 196 Pakistani couples from the GSA/CoreExome intersection for 
whom we had self-declared relationship information. (c) shows all couples and (d) shows 
only those for which both the mother’s parents and father’s parents were reported to be 
unrelated. The vertical and horizontal lines indicate the recommended cutoffs for defining 
relatives, and the sloped line indicates the expectation if the two methods were performing 
identically.   
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Supplementary Figure 3. PCA of Born in Bradford mothers along with external datasets. a) 
PCA of the HGDP dataset with BiB Pakistani and European samples projected onto it, 
illustrating their position in a worldwide context. b) PCA of HGDP Pakistani samples, with BiB 
Pakistani samples projected onto them. c) PCA computed using HGDP Pakistani samples 
and 25 BiB Pakistanis, with the remaining BiB Pakistanis projected onto them. In both (b) 
and (c) the BiB Pakistanis cluster together on the PCA, on top of the HGDP Pathan and 
between the Sindhi and Burusho 
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Supplementary Figure 4. Genetic similarity between Bradford Pakistanis and other 
worldwide populations. a) Admixture plot (K=8) illustrating different ancestral components 
making up the various worldwide populations. BiB Pathans stand out compared to other 
subgroups and have a similar genetic profile to the HGDP Pathans. b,c) Outgroup f3-
statistics of BiB Pakistanis compared to other worldwide populations. The x-axis represents 
the f3-statistics, computed with the phylogeny f3(Bradford Pakistanis, X; Mbuti), where X 
represents the indicated worldwide population. The higher the value, the higher the genetic 
sharing between the pair of populations tested. Error bars indicate standard errors. b) All BiB 
Pakistanis compared to other South and Central Asian groups. c) Self-reported subgroups 
compared to Middle Eastern populations indicated on the right. In italics are the self-reported 
groups that claim Arabic ancestry: Qureshi, Syed, and Sheikh. 
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Supplementary Figure 5. Comparison of the geographic origin of Rajput-A and Rajput-B 
individuals using the World Geodetic System (WGS-84) latitude and longitude coordinates. 
This is based on self-reported information about the mother’s own village of origin, or that 
of her parents.  
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Supplementary Figure 6. Population structure of the Bradford Pakistani subgroups as 
inferred with UMAP analysis using 20 PCs. a) UMAP plot coloured by major self-reported 
groups. b) The same UMAP plot but highlighting Rajput-A and Rajput-B samples in pink and 
brown respectively. 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279190doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279190
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 
Supplementary Figure 7. PCA on ChromoPainter co-ancestry matrix  coloured by the 
genetic clusters defined by fineSTRUCTURE in Figure 2.  
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Supplementary Figure 8. a) Heatmap of pairwise FST values for the subgroups, using only 
individuals who fell within the dominant cluster for that subgroup on fineSTRUCTURE (see 
Methods). b) Distribution of all pairwise FST values, with the dotted line denoting the 5th 
percentile of the empirical distribution. 
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Supplementary Figure 9. fineSTRUCTURE tree for all subgroups among Bradford 
Pakistanis. The tree illustrates the results of hierarchical clustering of the co-ancestry matrix 
defined using patterns of haplotype sharing from ChromoPainter. Each ‘leaf’ on the tree 
contains multiple individuals indicated by the number before the subgroup name. Boxed in 
black are additional individuals from other subgroups clustering together that were not 
included in Figure 2 (Kumhar, Rehmani, Sehgal). 
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Supplementary Figure 10. Y chromosome haplotype network based on median joining for 
228 BiB Pakistani fathers, constructed from Y chromosome SNPs on the GSA chip. The area 
of the circles is proportional to the frequency of the haplogroup. Note that the branch length 
is not proportional to the genetic distance. The mutations separating each haplotype are 
indicated as hatch marks. The letters on the plot represent the different haplogroups.  
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Supplementary Figure 11. Inferred population trees with different mixture events based on 
Treemix analyses, using the homogeneous Pakistani subgroups defined with 
fineSTRUCTURE. The migration arrows are coloured and labelled according to their weight, 
which is correlated with the ancestry fraction shared. a) No migration edges allowed. b) One 
migration edge allowed. c) Two migration edges allowed. This could indicate, for example, 
that, according to the tree topology shown in (c), 43% of Kashmiri ancestry is derived from 
Jatt/Choudhry and 9% from Bains/RajputB. Note that the tree topology changes as migration 
edges are added, so one should not place too great a weight on it.   
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Supplementary Figure 12.  Boxplot of f3-statistics test of admixture, using all possible 
combinations of sources among the homogeneous Pakistani subgroups defined with 
fineSTRUCTURE. Dotted lines represent Z-score values of 0 and -3 which represent 
indication of putative admixture and significant admixture respectively. The only population 
that shows significant f3 values is the Kashmiri. 
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Supplementary Figure 13. Effective population size (Ne) changes through time estimated 
with IBDNe.The coloured lines indicate the mean estimate and the grey shading indicates 
95% confidence intervals. a) Comparison of BiB White British and homogeneous Pakistani 
subgroups defined with fineSTRUCTURE. b) Ne estimates for all fineSTRUCTURE clusters 
(Figure 2). 
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Supplementary Figure 14. Cumulative distribution of IBD segments called by GERMLINE 
stratified by KING coefficient of relationship (PropIBD). The plot shows the proportion of 
individuals that share at least one segment greater than the length bin indicated on the x-
axis, stratified by coefficient of relationship. The vertical lines represent the IBD thresholds 
used for IBD scores (see Methods, Figure 4): the dashed line represents the threshold used 
to define and exclude possible relatives and the full lines represent the range of IBD 
considered for the IBD score calculations. Red lines indicate those used for Figure 4, and 
black lines those used in Nakatsuka et al. and for Supplementary Figure 15a.  
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Supplementary Figure 15.  IBD scores calculated between individuals from the indicated 
group standardised by the value for the 1000 Genomes Finnish individuals. The error bars 
indicate the IBD score standard error. a) Homogeneous groups defined by fineSTRUCTURE 
considering the total length of IBD segments between 3 and 20cM, i.e. the same cutoffs used 
in Nakatsuka et al. 34. b-c) All genetic clusters defined by fineSTRUCTURE, considering the 
total length of IBD segments between 5 and 30cM (i.e. the filtering used for Figure 4a) (b) or 
between 3 and 20cM (c). 
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Supplementary Figure 16. Boxplots showing the distribution of the fraction of the genome 
in regions of homozygosity (FROH) in Pakistani versus White British mothers, with the 
Pakistanis broken down by self-reported subgroup. a) all individuals; b) individuals who self-
reported as being offspring of first cousins. The red vertical line indicates the expectation for 
offspring of first-cousins whose parents are themselves unrelated. 
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Supplementary Figure 17. Patterns of FROH in BiB children and mothers according to 
parents’ or own birthplace. a) Boxplot of FROH for Pakistani children split by their parents’ 
birthplace. P-values are from Wilcoxon tests. b) Average FROH with 95% confidence intervals 
for Pakistani mothers born in Pakistan versus in the UK, split by self-declared subgroup. The 
slope for the line of best fit (dotted line) is 0.63 (standard error 0.27) (p=0.04). Only the Malik 
show a significant difference between those born in Pakistan versus the UK (p-value from 
one-sided t-test = 0.03). 
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Supplementary Figure 18. Distributions of the lengths of regions of homozygosity for White 
British mothers versus different subsets of the Pakistani mothers in BiB. a-c) Pakistani 
mothers split by homogeneous subgroup as defined using the fineSTRUCTURE clusters. d-
f) Pakistani mothers split by self-reported groups. a,d) all mothers; b,e) all mothers self-
declaring as having unrelated parents; c,f) all mothers who declared that their parents were 
first cousins. 
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Supplementary Figure 19. Impact of the effective population size and average kinship 
between spouses on the expected ROH footprint determined using the theory from 62 and 
Methods. The ROH footprint is the average fraction of the genome covered in ROHs of a 
given length. N = number of mating couples (i.e. Ne/2). The average kinship values shown 
represent our naive estimates for Pathan (0.016) and Jatt/Choudhry (0.028) based on the 
fraction of the mothers who reported that their parents were first cousins, second cousins, or 
other relatives (which we assumed to be third cousins). The Ne has a major influence on the 
expected footprint of ROHs < 25cM. 
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Supplementary Figure 20. Observed ROH and IBD footprints compared to expectation 
under the model in 62. The footprint is the average fraction of the genome covered by 
segments of a given length interval. The top lines represent the ROH footprint and the bottom 
lines the IBD footprint. Points are plotted at the beginning of each 1cM interval. The 
expectation was determined using the indicated kinship values and either the point estimates 
of Ne(t) from IBDNe (middle plots) or the lower or upper bound of their 95% confidence 
interval for 𝑡 ≤ 50 (lefthand and righthand plots, respectively), then a constant Ne for 𝑡 > 50. 
The IBDNe results used were for Pathan from fineSTRUCTURE Cluster 8 (a-c) or 
Jatt/Choudhry from Cluster 10 (d-f), and the corresponding observed footprints are plotted 
accordingly. We show the observed IBD footprint from IBDseq calls and the observed ROH 
footprint with bcftools/roh calls both with and without the filtering described in Methods, as 
well as the ROH footprint from PLINK and GARLIC ROH calls. Note that the expected IBD 
footprint does not depend on the kinship, so those lines are superimposed. 
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Supplementary Figure 21. Analysis of variants with outlier frequencies in homogeneous 
subgroups. Manhattan plots of -log10(p-values) (y-axis) plotted against genomic coordinates 
(x-axis) from different methods for Bains/Rajput-B, Jatt/Choudhry and Pathan, as indicated 
in the column header. In each case, the index group was compared to individuals in Clusters 
1-5 and Cluster 7 of the fineSTRUCTURE tree (Figure 2). The red line represents the 
Bonferroni corrected p-value (0.05/genome-wide number of variants tested). a,b,c) Results 
obtained applying the pcadapt method to the CoreExome data; d,e,f) Results obtained 
applying the GEMMA-LMM method to the CoreExome data; g,h,i) Results obtained applying 
the Fisher’s exact test to the whole-exome sequencing data  
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Supplementary Figure 22. Effect of changes in historical consanguinity rates on the 
expected ROH and IBD footprints.  The footprint is the average fraction of the genome 
covered by segments of a given length interval. The top lines represent the ROH footprint 
and the bottom lines the IBD footprint. Points are plotted at the beginning of each 1cM 
interval. The expectation was determined using the mean IBDNe estimate as Ne(t) for Pathan 
from fineSTRUCTURE cluster 8 and an average parental kinship value, k, of 0.0354 for 𝑡 ≤
50, then using a constant Ne and the indicated k for 𝑡 > 50. Note that the expected ROH 
footprint is barely altered when using k=1x10-4 versus k=0.05. The observed IBD footprint 
comes from IBDseq calls and the observed ROH footprint from bcftools/roh calls, with the 
filtering described in Methods. 
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Supplementary Figure 23. Effect of different levels of parental relationship on the number 
of rare deleterious homozygous protein-altering variants in the BiB mothers, inferred from 
exome-sequence data. A) Boxplot showing the distribution of the number of such variants 
per individual, stratified by self-reported parental relationship. b) Ratio of mean numbers of 
variants between groups of mothers who reported that their parents had the relationships 
reported on the X-axis. Error bars represent 95% confidence intervals from bootstrapping.  
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Supplementary Figure 24. Likely artefacts in IBD segment calling with GERMLINE. The 
plots show the number of IBD segments called per 1Mb bin along each chromosome using 
the Bradford Pakistani mothers genotyped on the CoreExome chip. Note that the scale for 
chr1 differs from the one for the other chromosomes. The regions indicated with the red 
boxes appeared to be problematic in that they had a large number of identical IBD segments 
called over gaps. Several of these regions were also problematic in the IBDseq calling. We 
applied the filters described in the Methods to clean these data, and the results are shown in 
Supplementary Figure 25.  
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Supplementary Figure 25: IBD segments called with GERMLINE, after filtering problematic 
regions as described in the Methods. The plots show the number of IBD segments remaining 
after filtering per 1Mb bin along each chromosome, using the Bradford Pakistani mothers 
genotyped on the CoreExome chip. Note that the peak on chr6 is around the HLA region, 
where there is likely to be increased IBD sharing due to selection. IBD segments overlapping 
the HLA region and centromeres were removed for the IBD score and IBDNe analyses. 
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Supplementary Figure 26. Filtering likely spurious IBD segments from GERMLINE (see 
Methods). The yellow points indicate segments in problematic regions that were apparent in 
the whole-genome plot shown in Supplementary Figure 24. The red points indicated 
segments that were removed in a further filter because they appeared to be called an 
unusually high number times given their length. These tended to overlap long gaps between 
SNPs and seemed likely to be artefacts. 
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Supplementary Figure 27. Change in effective population size (Ne) through time estimated 
with IBDNe. The solid lines indicate the mean estimate using GERMLINE IBD output and the 
dashed line using IBDSeq output. The grey shading indicates 95% confidence intervals. The 
sample size for each subgroup is indicated in brackets. 
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Supplementary Tables 
Supplementary Table 1: Number of BiB samples by dataset and self-declared ethnicity.  
Supplementary Table 2: Number of Pakistani and White British samples by dataset with 
participant information (mother/father/child), before outlier removal. 
Supplementary Table 3: Number of Pakistani mothers and fathers (after sample QC) with 
self-declared subgroup information, before and after removing relatives using the KING 
PropIBD filter. 
Supplementary Table 4: f4-statistics results for Bradford sub-groups reporting Arabic 
ancestry using other subgroups and Middle East populations. The f4-statistics were 
computed with the phylogeny f4(W, X; Y, Chimpanzee), where W represents the biraderi 
groups reporting Arabic ancestry (Qureshi, Sheikh or Syed), X are all the other Bradford sub-
groups and Y represents Middle East populations39. Positive values of f4 statistics indicate 
gene flow between W and Y, but none of these are significant (Z<3 for all tests). 
Supplementary Table 5: Y-chromosome haplogroups found in Pakistani fathers split by self-
declared subgroup. The haplotype distribution listed in column B is from 42,43.  
Supplementary Table 6: mtDNA haplogroups found in Pakistani mothers split by self-
declared subgroup. The haplotype distribution listed in column B is from 47,48,112.  
Supplementary Table 7: Pairwise FST values between each pair of homogeneous 
subgroups defined by fineSTRUCTURE, with their sample sizes. 
Supplementary Table 8: Pairwise divergence times (in generations) between homogeneous 
subgroups defined by fineSTRUCTURE, inferred using NeON. Sample sizes are given in 
the second column. The numbers in brackets indicate 95% confidence intervals. 
Supplementary Table 9: Pairwise divergence times (in generations) for all clusters defined 
by fineSTRUCTURE, inferred using NeON. The numbers in brackets indicate 95% 
confidence intervals. 
Supplementary Table 10: Pairwise divergence times (in generations) within Cluster 9 
(Bains/Rajput-B) and Cluster 10 (Jatt/Choudhry) defined by fineSTRUCTURE, inferred using 
NeON. The numbers in brackets indicate 95% confidence intervals. 
Supplementary Table 11: Significant f3-statistics for Kashmiri using different pairs of the 
other homogeneous populations as source populations. The f3 statistics were calculated in 
the form of f3(target, source 1, source 2). Significant tests (Z< -3) provide evidence that the 
target population is derived from an admixture of populations related to source 1 and source 
2.  
Supplementary Table 12: Rates of consanguinity as declared by BiB Pakistani mothers, 
split by self-declared subgroup. Note that the totals may not match those in Supplementary 
Tables 2 and 3 due to missing data in the questionnaire responses. 
Supplementary Table 13: Rates of consanguinity as reported by BiB Pakistani mothers, 
split by homogeneous subgroup defined using fineSTRUCTURE. Note that the sample sizes 
may not match those given in Supplementary Table 8 due to missing data in the 
questionnaire responses. 
Supplementary Table 14: Significant results from pcadapt and GEMMA-LMM, applied to 
CoreExome chip SNPs to identify variants at differing frequency in the largest homozygous 
subgroups compared to cluster 1-5+7. Only variants that passed multiple-testing correction 
in at least one of the two tests are shown. Fisher’s exact test p-values for the significant 
variants are reported. The allele frequencies given pertain to the alternative allele.   
Supplementary Table 15: Results from the Fisher’s exact test applied to exome-sequence 
data to identify variants at differing frequency in the largest homozygous subgroups 
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compared to cluster 1-5+7. Only variants that passed multiple-testing correction are shown.   
The allele frequencies given pertain to the alternative allele. 
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