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Abstract Recent failures of clinical trials in Alzheimer’s Disease underline the critical importance12

of identifying optimal intervention time to maximize cognitive benefit. While several models of13

disease progression have been proposed, we still lack quantitative approaches simulating the14

effect of treatment strategies on the clinical evolution. In this work, we present a data-driven15

method to model dynamical relationships between imaging and clinical biomarkers. Our approach16

allows simulating intervention at any stage of the pathology by modulating the progression speed17

of the biomarkers, and by subsequently assessing the impact on disease evolution. When applied18

to multi-modal imaging and clinical data from the Alzheimer’s Disease Neuroimaging Initiative our19

method enables to generate hypothetical scenarios of amyloid lowering interventions. Our results20

show that in a study with 1000 individuals per arm, accumulation should be completely arrested at21

least 5 years before Alzheimer’s dementia diagnosis to lead to statistically powered improvement22

of clinical endpoints.23

24

Introduction25

The number of people affected by Alzheimer’s Disease (AD) has recently exceeded 46 millions26

and is expected to double every 20 years (Prince et al., 2015), thus posing significant healthcare27

challenges. Yet, while the disease mechanisms remain in large part unknown, there are still no28

effective pharmacological treatments leading to tangible improvements of patients’ clinical progres-29

sion. One of the main challenges in understanding AD is that its progression goes through a silent30

asymptomatic phase that can stretch over decades before a clinical diagnosis can be established31

based on cognitive and behavioral symptoms. To help designing appropriate intervention strategies,32

hypothetical models of the disease history have been proposed, characterizing the progression33

by a cascade of morphological and molecular changes affecting the brain, ultimately leading to34

cognitive impairment (Jack and Holtzman, 2013; Jack et al., 2013). The dominant hypothesis is that35

disease dynamics along the asymptomatic period are driven by the deposition in the brain of the36

amyloid � peptide, triggering the so-called “amyloid cascade” (Villemagne et al., 2013;Murphy and37

LeVine, 2010; Delacourte et al., 1999; Braak and Braak, 1991; Bateman et al., 2012). Based on this38

rationale, clinical trials have been focusing on the development and testing of disease modifiers39
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targeting amyloid � aggregates (Cummings et al., 2019b), for example by increasing its clearance40

or blocking its accumulation. Although the amyloid hypothesis has been recently invigorated by a41

post-hoc analysis of the aducanumab trial (Howard and Liu, 2020), clinical trials failed so far to show42

efficacy of this kind of treatments, as the clinical primary endpoints were not met (Honig et al., 2018;43

Egan et al., 2019;Wessels et al., 2019), or because of unacceptable adverse effects (Henley et al.,44

2019). In the past years, growing consensus emerged about the critical importance of intervention45

time, and about the need of starting anti-amyloid treatments during the pre-symptomatic stages46

of the disease (Aisen et al., 2018). Nevertheless, the design of optimal intervention strategies is47

currently not supported by quantitative analysis methods allowing to model and assess the effect48

of intervention time and dosing (Klein et al., 2019). The availability of models of the pathophysi-49

ology of AD would entail great potential to test and analyze clinical hypothesis characterizing AD50

mechanisms, progression, and intervention scenarios.51

52

Within this context, quantitative models of disease progression, referred to as Disease Progression53

Models (DPMs), have been proposed (Fonteijn et al., 2012; Jedynak et al., 2012; Oxtoby et al., 2017;54

Schiratti et al., 2015; Abi Nader et al., 2020), to quantify the dynamics of the changes affecting55

the brain during the whole disease span. These models rely on the statistical analysis of large56

datasets of different data modalities, such as clinical scores, or brain imaging measures derived57

from Magnetic Resonance Imaging (MRI), Amyloid- and Fluorodeoxyglucose-Positron Emission58

Tomography (PET) (Bilgel et al., 2015; Donohue et al., 2014; Iturria-Medina et al., 2016). In general,59

DPMs estimate a long-term disease evolution from the joint analysis of multivariate time-series60

acquired on a short-term time-scale. Due to the temporal delay between the disease onset and61

the appearance of the first symptoms, DPMs rely on the identification of an appropriate tempo-62

ral reference to describe the long-term disease evolution (Lorenzi et al., 2017; Marinescu et al.,63

2019a). These tools are promising approaches for the analysis of clinical trials data, as they allow64

to represent the longitudinal evolution of multiple biomarkers through a global model of disease65

progression. Such a model can be subsequently used as a reference in order to stage subjects and66

quantify their relative progression speed (Young et al., 2014; Oxtoby et al., 2018; Li et al., 2019).67

However, these approaches remain purely descriptive as they don’t account for causal relationships68

among biomarkers. Therefore, they generally don’t allow to simulate progression scenarios based69

on hypothetical intervention strategies, thus providing a limited interpretation of the pathological70

dynamics. This latter capability is of utmost importance for planning and assessment of disease71

modifying treatments.72

73

To fill this gap, recent works such as (Hao and Friedman, 2016; Petrella et al., 2019) proposed to74

model AD progression based on specific assumptions on the biochemical processes of pathologi-75

cal protein propagation. These approaches explicitly define biomarkers interactions through the76

specification of sets of Ordinary Differential Equations (ODEs), and are ideally suited to simulate77

the effect of drug interventions (Iturria-Medina et al., 2017). However, these methods are mostly78

based on the arbitrary choices of pre-defined evolution models, which are not inferred from data.79

This issue was recently addressed by (Garbarino and Lorenzi, 2019), where the authors proposed80

an hybrid modeling method combining traditional DPMs with dynamical models of AD progres-81

sion. Still, since this approach requires to design suitable models of protein propagation across82

brain regions, extending this method to jointly account for spatio-temporal interactions between83

several processes, such as amyloid propagation, glucose hypometabolism, and brain atrophy, is84

considerably more complex. Finally, these methods are usually designed to account for imaging85

data only, which prevents to jointly simulate heterogeneous measures (Antelmi et al., 2019), such86

as image-based biomarkers and clinical outcomes, the latter remaining the reference markers for87

patients and clinicians.88

89

In this work we present a novel computational model of AD progression allowing to simulate90
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intervention strategies across the history of the disease. The model is here used to quantify the91

potential effect of amyloid modifiers on the progression of brain atrophy, glucose hypometabolism,92

and ultimately on the clinical outcomes for different scenarios of intervention. To this end, wemodel93

the joint spatio-temporal variation of different modalities along the history of AD by identifying a94

system of ODEs governing the pathological progression. This latent ODEs system is specified within95

an interpretable low-dimensional space relating multi-modal information, and combines clinically-96

inspired constraints with unknown interactions that we wish to estimate. The interpretability of97

the relationships in the latent space is ensured by mapping each data modality to a specific latent98

coordinate. The model is formulated within a Bayesian framework, where the latent representation99

and dynamics are efficiently estimated through stochastic variational inference. To generate100

hypothetical scenarios of amyloid lowering interventions, we apply our approach to multi-modal101

imaging and clinical data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our results102

provide a meaningful quantification of different intervention strategies, compatible with findings103

previously reported in clinical studies. For example, we estimate that in a study with 100 individuals104

per arm, statistically powered improvement of clinical endpoints can be obtained by completely105

arresting amyloid accumulation at least 8 years before Alzheimer’s dementia. The minimum106

intervention time decreases to 5 years for studies based on 1000 individuals per arm.107

Results108

In the following sections, healthy individuals will be denoted as NL stable, subjects with mild109

cognitive impairment as MCI stable, subjects diagnosed with Alzheimer’s dementia as AD, sub-110

jects progressing from NL to MCI as NL converters, and subjects progressing from MCI to AD as111

MCI converters. Amyloid concentration and glucose metabolism are respectively measured by112

(18)F-florbetapir Amyloid (AV45)-PET and (18)F-fluorodeoxyglucose (FDG)-PET imaging. Cognitive113

and functional abilities are assessed by the following neuro-psychological tests: Alzheimer’s Dis-114

ease Assessment Scale (ADAS11), Mini-Mental State Examination (MMSE), Functional Assessment115

Questionnaire (FAQ), Rey Auditory Verbal Learning Test (RAVLT) immediate, and RAVLT forgetting.116

Study cohort and biomarkers’ changes across clinical groups117

Our study is based on a cohort of 311 amyloid positive individuals composed of 46 NL stable118

subjects, 10 NL converters subjects, 106 subjects diagnosed with MCI, 76 MCI converters subjects,119

and 73 AD patients. The term “amyloid positive” refers to subjects whose amyloid level in the120

cerebrospinal fluid (CSF) was below the nominal cutoff of 192 pg/ml (Shaw et al., 2009) either at121

baseline, or during any follow-up visit, and conversion to AD was determined using the last available122

follow-up information. The length of follow-up varies between subjects and goes from 0 to 6 years.123

Further information about the data are available on https://adni.bitbucket.io/reference/, while124

details on data acquisition and processing are provided in Section Data acquisition and prepro-125

cessing. We show in Table 1A socio-demographic information for the training cohort across the126

different clinical groups. Table 1B shows baseline values and annual rates of change across clinical127

groups for amyloid burden (average normalized AV45 uptake in frontal cortex, anterior cingulate,128

precuneus and parietal cortex), glucose hypometabolism (average normalized FDG uptake in frontal129

cortex, anterior cingulate, precuneus and parietal cortex), for hippocampal and medial temporal130

lobe volumes, and for the cognitive ability as measured by ADAS11. Compatibly with previously131

reported results (Cash et al., 2015; Schuff et al., 2009), we observe that while regional atrophy,132

hypometabolism and cognition show increasing rate of change when moving from healthy to133

pathological conditions, the change of AV45 is maximum in NL stable and MCI stable subjects. We134

also notice the increased magnitude of ADAS11 in AD as compared to the other clinical groups.135

Finally, the magnitude of change of FDG is generally milder than the atrophy rates.136

137

The observations presented in Table 1 provide us with a glimpse into the biomarkers’ trajectories138

characterising AD. The complexity of the dynamical changes we may infer is however limited, as the139
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clinical stages roughly approximate a temporal scale describing the disease history, while very little140

insights can be obtained about the biomarkers’ interactions. Within this context, our model allows141

the quantification of the fine-grained dynamical relationships across biomarkers at stake during142

the history of the disease. Investigation of intervention scenarios can be subsequently carried out143

by opportunely modulating the estimated dynamics parameters according to specific intervention144

hypothesis (e.g. amyloid lowering at a certain time).145

Table 1. A: Baseline socio-demographic information for training cohort (311 subjects for 2188 data points,
follow-up from 0 to 6 years depending on subjects). Average values, standard deviation in parenthesis. B:

Baseline values (bl) and annual rates of change (% change / year) of amyloid burden (average normalized AV45

uptake in frontal cortex, anterior cingulate, precuneus and parietal cortex), glucose hypometabolism (average

normalized FDG uptake in frontal cortex, anterior cingulate, precuneus and parietal cortex), hippocampus

volume, medial temporal lobe volume, and ADAS11 score for the different clinical groups. Median values,

interquartile range below. The volumes of the hippocampus and the medial temporal lobe are averaged across

left and right hemispheres. NL: healthy individuals, MCI: individuals with mild cognitive impairment, AD:

patients with Alzheimer’s dementia. FDG: (18)F-fluorodeoxyglucose Positron Emission Tomography (PET)

imaging. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value Ratio. MTL: Medial

Temporal Lobe. ADAS11: Alzheimer’s Disease Assessment Scale-cognitive subscale, 11 items.

A: Socio-demographics
NL NL MCI MCI AD

stable converters stable converters

N 46 10 106 76 73

Age (yrs) 73 (7) 80 (4) 73 (6) 72 (6) 74 (8)

Education (yrs) 17 (2) 15 (2) 16 (3) 16 (3) 16 (3)

B: Biomarkers and rates of change
NL NL MCI MCI AD

stable converters stable converters

bl % change / bl % change / bl % change / bl % change / bl % change /

year year year year year

Global AV45 1.25 1.7 1.40 -0.5 1.30 1.5 1.41 0.1 1.42 1.1

(SUVR) [1.16 ; 1.40] [0.3 ; 2.6] [1.26 ; 1.58] [-1.9 ; 1.1] [1.21 ; 1.44] [0.4 ; 2.6] [1.29 ; 1.55] [-1.4 ; 1.7] [1.34 ; 1.54] [-1.5 ; 2.5]

Global FDG 1.34 -1.3 1.33 -1.5 1.31 -1.3 1.15 -3.7 1.14 -5.0

(SUVR) [1.27 ; 1.44] [-2.0 ; 0.8] [1.27 ; 1.36] [-2.4 ; 0.9] [1.24 ; 1.35] [-3.0 ; 0.0] [1.07 ; 1.25] [-5.6 ; -1.6] [1.07 ; 1.16] [-5.5 ; -1.3]

Hippocampus 3.9 -1.6 3.5 -0.4 3.4 -2.5 3.3 -3.8 2.9 -5.1

(ml) [3.5 ; 4.1] [-2.9 ; -0.5] [3.4 ; 3.6] [-2.7 ; -0.1] [3.1 ; 3.8] [-3.7 ; -0.7] [2.9 ; 3.5] [-5.3 ; -2.0] [2.7 ; 3.3] [-8.0 ; -2.4]

MTL 10.4 -0.8 9.7 -2.2 10.1 -1.1 9.5 -3.0 8.5 -5.9

(ml) [9.9 ; 11.1] [-2.0 ; 0.0] [9.5 ; 9.8] [-6.5 ; -1.1] [9.2 ; 11.0] [-2.2 ; 0.2] [8.7 ; 10.7] [-5.3 ; -1.5] [7.8 ; 9.8] [-7.9 ; -3.1]

ADAS11 5.5 0.0 7.5 0.7 9.0 1.1 12.0 5.2 19.0 7.8

[3.0 ; 7.8] [-0.1 ; 0.4] [6.0 ; 9.0] [0.0 ; 1.6] [6.0 ; 11.0] [0.3 ; 3.2] [9.0 ; 16.0] [2.7 ; 10.3] [15.0 ; 23.0] [3.8 ; 17.8]

Model overview146

We provide in Figure 1 an overview of the presented method. Baseline multi-modal imaging and147

clinical information for a given subject are transformed into a latent variable composed of four148

z-scores quantifying respectively the overall severity of atrophy, glucose hypometabolism, amyloid149

burden, and cognitive and functional assessment. The model estimates the dynamical relationships150

across these z-scores to optimally describe the temporal transitions between follow-up observa-151

tions. These transition rules are here mathematically defined by the parameters of a system of152

ODEs, which is estimated from the data. This dynamical system allows to compute the evolution of153

the z-scores over time from any baseline observation, and to predict the associated multi-modal154

imaging and clinical measures. The model thus enables to simulate the pathological progression of155

biomarkers across the entire history of the disease. Once the model is estimated, we can modify156

the ODEs parameters to simulate different evolution scenarios according to specific hypothesis.157

For example, by reducing the parameters associated with the progression rate of amyloid, we can158

investigate the relative change in the evolution of the other biomarkers. This setup thus provides159

us with a data-driven system enabling the exploration of hypothetical intervention strategies, and160

their effect on the pathological cascade.161

162

In the following sections, MRI, FDG-PET, and AV45-PET images are processed in order to respectively163

extract regional gray matter density, glucose hypometabolism and amyloid load from a brain164

parcellation. The z-scores of gray matter atrophy (zatr), glucose hypometabolism (zℎmet), and amyloid165

burden (zamy), are computed using the measures obtained by this pre-processing step. The clinical166
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z-score zcli is derived from neuro-psychological scores: ADAS11, MMSE, FAQ, RAVLT immediate,167

and RAVLT forgetting. Further details about experimental setup, method formulation, and data168

pre-processing are given in Section Methods.169

Figure 1. Overview of the method. a) High-dimensional multi-modal measures are projected into a
4-dimensional latent space. Each data modality is transformed in a corresponding z-score zamy, zℎmet, zatr, zcli. b)
The dynamical system describing the relationships between the z-scores allows to compute their transition

across the evolution of the disease. c) Given the latent space and the estimated dynamics, the follow-up

measurements can be reconstructed to match the observed data.

Progression model and latent relationships170

We show in Figure 2 the dynamical relationships across the different z-scores estimated by the171

model, where direction and intensity of the arrows quantify the estimated increase of one variable172

with respect to the other. Being the scores adimensional, they have been conveniently rescaled to173

the range [0,1] indicating increasing pathological levels. These relationships extend the summary174

statistics reported in Table 1 to a much finer temporal scale and wider range of possible biomarkers’175

values. We observe in Figure 2A, Figure 2B and Figure 2C that large values of the amyloid score zamy176

trigger the increase of the remaining ones: zℎmet, zatr, and zcli. Figure 2D shows that large increase177

of the atrophy score zatr is associated to higher hypometabolism indicated by large values of zℎmet.178

Moreover, we note that high zℎmet values also contribute to an increase of zcli (Figure 2E). Finally,179

Figure 2F shows that high atrophy values lead to an increase mostly along the clinical dimension zcli.180

This chain of relationships is in agreement with the cascade hypothesis of AD (Jack and Holtzman,181

2013; Jack et al., 2013).182

183

Relying on the dynamical relationships shown in Figure 2, starting from any initial set of biomarkers184
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Figure 2. Estimated dynamical relationships across the different z-scores (A to F). Given the values of two
z-scores, the arrow at the corresponding coordinates indicates how one score evolves with respect to the other.

The intensity of the arrow gives the strength of the relationship between the two scores.

values we can estimate the relative trajectories over time. Figure 3 (left), shows the evolution185

obtained by extrapolating backward and forward in time the trajectory associated to the z-scores of186

the AD group. The x-axis represents the years from conversion to AD, where the instant t=0 corre-187

sponds to the average time of diagnosis estimated for the group of MCI progressing to dementia.188

As observed in Figure 2 and Table 1, the amyloid score zamy increases and saturates first, followed189

by zℎmet and zatr scores whose progression slows down when reaching clinical conversion, while the190

clinical score exhibits strong acceleration in the latest progression stages. Figure 3 (right) shows the191

group-wise distribution of the disease severity estimated for each subject relatively to the modelled192

long-term latent trajectories (Section Evaluating disease severity). The group-wise difference of193

disease severity across groups is statistically significant and increases when going from healthy to194

pathological stages (Wilcoxon-Mann-Whitney test p < 0.001 for each comparisons). The reliability of195

the estimation of disease severity was further assessed through testing on an independent cohort,196

and by comparison with a previously proposed disease progression modeling method from the197

state-of-the-art (Lorenzi et al., 2017). The results are provided in Appendix 1 and show positive198

generalization results as well as a favourable comparison with the benchmark method.199

200

From the z-score trajectories of Figure 3 (left) we predict the progression of imaging and clinical201

measures shown in Figure 4. We observe that amyloid load globally increases and saturates early,202

compatibly with the positive amyloid condition of the study cohort. Glucose hypometabolism and203

gray matter atrophy increase are delayed with respect to amyloid, and tend to map prevalently204

temporal and parietal regions. Finally, the clinical measures exhibit a non-linear pattern of change,205

accelerating during the latest progression stages. These dynamics are compatible with the summary206

measures on the raw data reported in Table 1.207

208
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Time to AD (years) 

z(t)

z-score evolution

Time to AD (years) 

Estimated disease severity across clinical stages
NL stable

NL converters

MCI stable

MCI converters

AD

Figure 3. Left: Estimated long-term latent dynamics (time is relative to conversion to Alzheimer’s dementia).
Shadowed areas represent the standard deviation of the average trajectory. Right: Distribution of the estimated

disease severity across clinical stages, relatively to the long-term dynamics on the left. NL: normal individuals,

MCI: mild cognitive impairment, AD: Alzheimer’s dementia.

Simulating clinical intervention209

This experimental section is based on two intervention scenarios: a first one in which amyloid is210

lowered by 100%, and a second one in which it is reduced by 50% with respect to the estimated211

natural progression. In Figure 5 we show the latent z-scores evolution resulting from either 100% or212

50% amyloid lowering performed at the time t = −12.5 years. According to these scenarios, interven-213

tion results in a sensitive reduction of the pathological progression for atrophy, hypometabolism214

and clinical scores, albeit with a stronger effect in case of total blockage.215

216

We further estimated the resulting clinical endpoints associated with the two amyloid lowering217

scenarios, at increasing time points and for different sample sizes. Clinical endpoints consisted in218

the simulated ADAS11, MMSE, FAQ, RAVLT immediate, and RAVLT forgetting scores at the reference219

conversion time (t=0). The case placebo indicates the scenario where clinical values were computed220

at conversion time from the estimated natural progression shown in Figure 3. Figure 6 shows the221

change in statistical power depending on intervention time and sample sizes. For large sample sizes222

(1000 subjects per arm) a power greater than 0.8 can be obtained around 5 years before conversion,223

depending on the outcome score, where in general we observe that RAVLT forgetting exhibits a224

higher power than the other scores. When sample size is lower than 100 subjects per arm, a power225

greater than 0.8 is reached if intervention is performed at the latest 8 years before conversion,226

with a mild variability depending on the considered clinical score. We notice that in the case of227

a 50% amyloid lowering, in order to reach the same power intervention needs to be consistently228

performed earlier compared to the scenario of 100% amyloid lowering for the same sample size229

and clinical score. For instance, if we consider ADAS11 with a sample size of 100 subjects per arm,230

a power of 0.8 is obtained for a 100% amyloid lowering intervention performed 8 years before231

conversion, while in case of a 50% amyloid lowering the equivalent effect would be obtained by232

intervening 10.5 years before conversion.233

234

We provide in Table 2 the estimated improvement for each clinical score at conversion with a235

sample size of 100 subjects per arm for both 100% and 50% amyloid lowering depending on the236

intervention time. We observe that for the same intervention time, 100% amyloid lowering always237

results in a larger improvement of clinical endpoints compared to 50% amyloid lowering. We also238

note that in the case of 100% lowering, clinical endpoints obtained for intervention at t=-10 years239

correspond to typical cutoff values for inclusion into AD trials (ADAS11= 13.4± 6.2, MMSE= 25.8± 2.5,240

see Appendix 2 Table 1) (Gamberger et al., 2017; Kochhann et al., 2010).241
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Figure 4. Modelled long-term evolution of cortical measurements for the different types of imaging markers,
and clinical scores. Shadowed areas represent the standard deviation of the average trajectory. Brain images

were generated using the software provided in (Marinescu et al., 2019b).
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Amyloid lowering intervention 100% at t=-12.5

z(t)

Time to AD (years) 

Amyloid lowering intervention 50% at t=-12.5

z(t)

Time to AD (years) 

Figure 5. Hypothetical scenarios of irreversible amyloid lowering interventions at t=-12.5 years from
Alzheimer’s dementia diagnosis, with a rate of 100 % (left) or 50 % (right). Shadowed areas represent the

standard deviation of the average trajectory.

Table 2. Estimated mean (standard deviation) improvement of clinical outcomes at predicted conversion time
for the normal progression case by year of simulated intervention (100% and 50% amyloid lowering

interventions). Results in bold indicate a statistically significant difference between placebo and treated

scenarios (p<0.01, two-sided t-test, 100 cases per arm). AD: Alzheimer’s dementia, ADAS11: Alzheimer’s Disease
Assessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment Questionnaire, RAVLT:

Rey Auditory Verbal Learning Test.

Amyloid lowering intervention 100%
Point improvement per intervention time

Score

Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 7.0 (4.8) 4.3 (2.8) 2.0 (1.4) 0.7 (0.5) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.01 (0.01)
MMSE 2.8 (1.9) 1.8 (1.1) 0.9 (0.6) 0.3 (0.2) 0.2 (0.1) 0.1 (0.06) 0.02 (0.02) 0.0 (0.0)
FAQ 5.5 (3.8) 3.4 (2.3) 1.7 (1.1) 0.6 (0.5) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.01 (0.01)
RAVLT immediate 10.0 (7.0) 6.2 (4.1) 3.0 (2.0) 1.2 (0.8) 0.7 (0.5) 0.3 (0.3) 0.1 (0.1) 0.03 (0.02)
RAVLT forgetting (%) 23.6 (16.2) 15.0 (10.0) 7.7 (5.1) 3.0 (2.2) 2.0 (1.6) 1.0 (1.0) 0.4 (0.4) 0.2 (0.1)

Amyloid lowering intervention 50%
Point improvement per intervention time

Score

Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 3.5 (2.4) 2.1 (1.4) 1.0 (0.7) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.04 (0.03) 0.0 (0.0)
MMSE 1.4 (1.0) 0.9 (0.6) 0.4 (0.3) 0.1 (0.1) 0.1(0.1) 0.03 (0.02) 0.0 (0.0) 0.0 (0.0)
FAQ 2.8 (1.9) 1.7 (1.1) 0.8 (0.5) 0.3 (0.2) 0.2 (0.1) 0.1 (0.1) 0.03 (0.03) 0.0 (0.0)
RAVLT immediate 5.0 (3.5) 3.1 (2.0) 1.5 (1.0) 0.6 (0.4) 0.3 (0.3) 0.2 (0.1) 0.1 (0.1) 0.01 (0.01)
RAVLT forgetting (%) 11.8 (8.1) 7.4 (4.9) 3.7 (2.5) 1.5 (1.0) 0.9 (0.7) 0.5 (0.5) 0.3 (0.2) 0.1 (0.1)
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Figure 6. Statistical power of the Student t-test comparing the estimated clinical outcomes at conversion time
between placebo and treated scenarios, according to the year of simulated intervention (100% and 50%

amyloid lowering) and sample size.
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Discussion242

We presented a framework to jointly model the progression of multi-modal imaging and clinical243

data, based on the estimation of latent biomarkers’ relationships governing AD progression. The244

model is designed to simulate intervention scenarios in clinical trials, and in this study we focused245

on assessing the effect of anti-amyloid drugs on biomarkers’ evolution, by quantifying the effect246

of intervention time and drug efficacy on clinical outcomes. Our results underline the critical247

importance of intervention time, which should be performed sensibly early during the pathological248

history to effectively appreciate the effectiveness of disease modifiers.249

250

The results obtained with our model are compatible with findings reported in recent clinical studies251

(Honig et al., 2018; Egan et al., 2019;Wessels et al., 2019). For example, if we consider 500 patients252

per arm and perform a 100% amyloid lowering intervention for 2 years to reproduce the conditions253

of the recent trial of Verubecestat (Egan et al., 2019), the average improvement of MMSE predicted254

by our model is of 0.02, falling in the 95% confidence interval measured during that study ([-0.5 ;255

0.8]). While recent anti-amyloid trials such as (Honig et al., 2018; Egan et al., 2019;Wessels et al.,256

2019) included between 500 and 1000 mild AD subjects per arm and were conducted over a period257

of two years at most, our analysis suggests that clinical trials performed with less than 1000 subjects258

with mild AD may be consistently under-powered. Indeed, we see in Figure 6 that with a sample259

size of 1000 subjects per arm and a total blockage of amyloid production, a power of 0.8 can be260

obtained only if intervention is performed at least 5 years before conversion.261

262

These results allow to quantify the crucial role of intervention time, and provide an experimental263

justification for testing amyloid modifying drugs in the pre-clinical stage (Aisen et al., 2018; Sperling264

et al., 2011). This is for example illustrated in Table 2, in which we notice that clinical endpoints are265

close to placebo even when the simulated intervention takes place up to 5 years before conversion,266

while stronger cognitive and functional changes happen when amyloid is lowered by 100% or 50%267

at least 10 years before conversion. These findings may be explained by considering that amyloid268

accumulates over more than a decade, and that when amyloid clearance occurs the pathological269

cascade is already entrenched (Rowe et al., 2010). Our results are thus supporting the need to iden-270

tify subjects at the pre-clinical stage, that is to say still cognitively normal, which is a challenging task.271

Currently, one of the main criteria to enroll subjects into clinical trials is the presence of amyloid in272

the brain, and blood-based markers are considered as potential candidates for identifying patients273

at risk for AD (Zetterberg and Burnham, 2019). Moreover, recent works such as (Blennow et al.,274

2010; Westwood et al., 2016) have proposed more complex entry criteria to constitute cohorts275

based on multi-modal measurements. Within this context, our model could also be used as an276

enrichment tool by quantifying the disease severity based on multi-modal data as shown in Figure 3.277

Similarly, the method could be applied to predict the evolution of single patient given its current278

available measurements.279

280

An additional critical aspect of anti-amyloid trials is the effect of dose exposure on the production281

of amyloid (Klein et al., 2019). Currently, �-site amyloid precursor protein cleaving enzyme (BACE)282

inhibitors allow to suppress amyloid production from 50% to 90%. In this study we showed that283

lowering amyloid by 50% consistently decreases the treatment effect compared to a 100% lowering284

at the same time. For instance, if we consider a sample size of 1000 subjects per arm in the case of a285

50% amyloid lowering intervention, an 80% power can be reached only 6.5 years before conversion286

instead of 5 years for a 100% amyloid lowering intervention. This ability of our model to control the287

rate of amyloid progression is fundamental in order to provide realistic simulations of anti-amyloid288

trials.289

290

In Figure 2 we showed that amyloid triggers the pathological cascade affecting the other mark-291
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ers, thus confirming its dominating role on disease progression. Assuming that the data used292

to estimate the model is sufficient to completely depict the history of the pathology, our model293

can be interpreted from a causal perspective. However, we cannot exclude the existence of other294

mechanisms driving amyloid accumulation, which our model cannot infer from the existing data.295

Therefore, our findings should be considered with care, while the integration of additional biomark-296

ers of interest will be necessary to account for multiple drivers of the disease. It is worth noting297

that recent works ventured the idea to combine drugs targeting multiple mechanisms at the same298

time (Gauthier et al., 2019). For instance, pathologists have shown tau deposition in brainstem299

nuclei in adolescents and children (Kaufman et al., 2018), and clinicians are currently investigating300

the pathological effect of early tau spreading on AD progression (Pontecorvo et al., 2019), raising301

crucial questions about its relationship with amyloid accumulation, and the impact on cognitive302

impairment (Cummings et al., 2019a). Our model would allow to address these questions by in-303

cluding measures derived from Tau-PET images, and simulating scenarios of production blockage304

of both proteins at different rates or intervention time.305

306

Lately, disappointing results of clinical studies led to hypothesize specific treatments targeting AD307

sub-populations based on their genotype (Safieh et al., 2019). While in our work we describe a308

global progression of AD, in the future we will account for sub-trajectories due to genetic factors,309

such as the presence of �4 allele of apolipoprotein (APOE4), which is a major risk for developing AD310

influencing both disease onset and progression (Kim et al., 2009). This could be done by estimating311

dynamical systems specific to the genetic condition of each patient. Simulating the dynamical312

relationships specific to genetic factors would allow to evaluate the effect of APOE4 on intervention313

time or drug dosage. In addition, there exist numerous non-genetic aggravating factors that may314

also affect disease evolution, such as diabetes, obesity or smoking. Extending our model to account315

for panels of risk factors would ultimately allow to test in silico personalized intervention strategies.316

Moreover, a key aspect of clinical trials is their economic cost. Our model could be extended to317

help designing clinical trials by optimizing intervention with respect to the available funding. Given318

a budget, we could simulate scenarios based on different sample size, and trials duration, while319

estimating the expected cognitive outcome.320

321

Results presented in this work are based on a model estimated by relying solely on a subset of322

the ADNI cohort, and therefore they may not be fully representative of the general AD progres-323

sion. Indeed, subjects included in this cohort were either amyloid-positive at baseline, or became324

amyloid-positive during their follow-up visits (see Section Study cohort and biomarkers’ changes325

across clinical groups). They may therefore provide a limited representation of the pathological326

temporal window captured by the model. Applying the model on a cohort containing amyloid-327

negative subjects may provide additional insights on the overall disease history. However, this is328

a challenging task as it would require to identify sub-trajectories dissociated from normal ageing329

(Sivera et al., 2020; Lorenzi et al., 2015). In addition to this specific characteristic of the cohort,330

there exists additional biases impacting the model estimation. For instance, the fact that gray331

matter atrophy becomes abnormal before glucose metabolism in Figure 4 can be explained by332

the generally high atrophy rate of change in some key regions in normal elders, such as in the333

hippocampus, compared to the rate of change of FDG (see Table 1). We note that this stronger334

change of atrophy with respect to glucose hypometabolism can already be appreciated in the335

clinically healthy group. The existence of such biases can also be observed in Figure 5, in which we336

notice that atrophy is less affected by intervention, implying that its evolution is here importantly337

decorrelated from amyloid burden.338

339
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Methods340

Data acquisition and preprocessing341

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-342

ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private343

partnership, led by Principal Investigator Michael W. Weiner, MD. For up-to-date information, see344

www.adni-info.org.345

346

We considered four types of biomarkers, related to clinical scores, gray matter atrophy, amyloid347

load and glucose hypometabolism, and respectively denoted by cli, atr, amy and hmet. MRI images348

were processed following the longitudinal pipeline of Freesurfer (Reuter et al., 2012), to obtain gray349

matter volumes in a standard anatomical space. AV45-PET and FDG-PET images were aligned to the350

closest MRI in time, and normalized to the cerebellum uptake. Regional gray matter density, amyloid351

load and glucose hypometabolism were extracted from the Desikan-Killiany parcellation (Desikan352

et al., 2006). We discarded white-matter, ventricular, and cerebellar regions, thus obtaining 82353

regions that were averaged across hemispheres. Therefore, for a given subject, xatr, xamy and xℎmet354

are respectively 41-dimensional vectors. The variable xcli is composed of the neuro-psychological355

scores ADAS11, MMSE, RAVLT immediate, RAVLT forgetting and FAQ. The total number of measures356

is of 2188 longitudinal data points. We note that the model requires all the measures to be available357

at baseline in order to obtain a latent representation, but is able to handle missing data in the358

follow-up. Further details on the cohort are given in Section Study cohort and biomarkers’ changes359

across clinical groups.360

Data modelling361

We consider observations Xi(t) = [x1i (t), x
2
i (t), ..., x

M
i (t)]

T , which correspond to multivariate measures

derived from M different modalities (e.g clinical scores, MRI, AV45, or FDG measures) at time t for
subject i. Each vector xmi (t) has dimensionDm. We postulate the following generative model, in which

the modalities are assumed to be independently generated by a common latent representation of

the data zi(t):

p(Xi(t)|zi(t),�2, ) =
∏

m
p(xmi (t)|zi(t), �

2
m,  m)

=
∏

m
 (�m(zi(t),  m), �2m),

zi(t) = Λ(zi(t0), t),

zi(t0) ∼ p(zi(t0)),

(1)

where �2m is measurement noise, while  m are the parameters of the function �m which maps the362

latent state to the data space for the modality m. For simplicity of notation we denote zi(t) by363

z(t). We assume that each coordinate of z is associated to a specific modality m, leading to an364

M-dimensional latent space. The Λ operator which gives the value of the latent representation at a365

given time t, is defined by the solution of the following system of ODEs:366

dzm(t)
dt

= kmzm(t)(1 − zm(t)) +
∑

j≠m
�m,jz

j(t), m=1,...,M. (2)

For each coordinate, the first term of the equation enforces a sigmoidal evolution with a progression367

rate km, while the second term accounts for the relationship between modalitiesm and j through368

the parameters �m,j . This system can be rewritten as:369
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dz(t)
dt

=Wz(t) − Vz2(t) = g(z(t), �ODE) where,

(

Wi,j

)

=

⎧

⎪

⎨

⎪

⎩

ki if i=j,

�i,j otherwise;
and

(

Vi,j
)

=

⎧

⎪

⎨

⎪

⎩

ki if i=j

0 otherwise,

(3)

�ODE denotes the parameters of the system of ODEs, which correspond to the entries of thematrices370

W and V. According to Equation 3, for each initial condition z(0), the latent state at time t can be371

computed through integration, z(t) = z(0) + ∫ t
0 g(z(x), �ODE)dx.372

Variational inference373

We rewrite p(Xi(t)|zi(t),�2, ) as p(Xi(t)|zi(t0), �ODE ,�2, ). Assuming independence between subjects,374

the marginal log-likelihood writes as:375

 =
N
∑

i
log

[

p(Xi(t)|�ODE ,�2, )
]

=
N
∑

i
log

[

∫ p(Xi(t)|zi(t0), �ODE ,�2, )p(zi(t0))dzi(t0)
]

.

(4)

For ease of notation, we drop the i index, and dependence on t and t0 is made implicit. Within376

a Bayesian framework, we wish to maximize  in order to obtain a posterior distribution for the377

latent variable z. Since derivation of this quantity is generally not tractable, we resort to stochastic378

variational inference to tackle the optimization problem. We assume a (0, I) prior for p(z), and379

introduce an approximate posterior distribution q(z|X) (Ghahramani and Beal, 2001), in order to380

derive a lower-bound  for the marginal log-likelihood:381

log p(X|�ODE ,�2, ) ≥ Eq(z|X)
[

log p(X|z, �ODE ,�2, )
]

−
[

q(z|X)|p(z)
]

=  ,

(5)

where  refers to the Kullback-Leibler (KL) divergence. We propose to factorize the distribution
q(z|X) across modalities such that, q(z|X) =

∏

m q(zm|xm), where q(zm|xm) = (f (xm, �1m), ℎ(x
m, �2m)), is

a variational Gaussian approximation with moments parameterized by the functions f and ℎ. This
modality-wise encoding of the data enables to interpret each coordinate of z as a compressed
representation of the corresponding modality. Moreover, the lower-bound simplifies as:

 =
∑

m
Eq(z|X)

[

log p(xm|z, �ODE , �2m,  m)
]

−
[

q(zm|xm)|p(zm)
]

. (6)

Details about the ELBO derivation and the computation of the KL divergence are given in Appendix 3.382

A graphical model of the method is also provided in Appendix 3 Figure 1, while Algorithm 1 in383

Appendix 3 details the steps to compute the ELBO.384

Model optimization385

Using the reparameterization trick (Kingma and Welling, 2013), we can efficiently sample from the386

posterior distribution q(z(t0)|X(t0)) to approximate the expectation terms. Moreover, thanks to our387

choices of priors and approximations the KL terms can be computed in closed-form. In practice,388

we sample from q(z(t0)|X(t0)) to obtain a latent representation z(t0) at baseline, while the follow-up389

points are estimated by decoding the latent time-series obtained through the integration of the390
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ODEs of Equation 3. The model is trained by computing the total ELBO for all the subjects at all the391

available time points. The parameters  ,�1,�2, �ODE ,� are optimized using gradient descent, which392

requires to backpropagate through the integration operation.393

394

In order to enable backpropagation through the ODEs integration we need to numerically solve395

the differential equation using only operations that can be differentiated. In this work, we used396

the Midpoint method which follows a second order Runge-Kutta scheme. The method consists in397

evaluating the derivative of the solution at (ti+1 + ti)∕2, which is the midpoint between ti at which398

the correct z(t) is evaluated, and the following ti+1:399

∫

ti+1

ti

g(z(x))dx ≈ ℎ ⋅ g
(

z(
ti + ti+1
2

)
)

≈ ℎ ⋅ g
(

z(ti) +
ℎ
2
g(z(ti))

)

, ℎ = ti+1 − ti.
(7)

Therefore, solving the system of Equation 3 on the interval [t0, ..., t] only requires operations that400

can be differentiated, allowing to compute the derivatives of the ELBO with respect to all the401

parameters, and to optimize them by gradient descent. Moreover, in order to control the variability402

of the estimated latent trajectory z(t) due to the error propagation during integration, we initialized403

the weights of �1 and �2 such that the approximate posterior of the latent representation for each404

modality m at baseline was following a  (0, 0.01) distribution. Finally, we also tested other ODE405

solvers such as Runge-Kutta 4, which gave similar results than the Midpoint method with a slower406

execution time due its more expensive approximation scheme.407

408

Concerning the implementation, we trained the model using the ADAM optimizer (Kingma and409

Ba, 2014) with a learning rate of 0.01. The functions f, ℎ and �m were parameterized as linear410

transformations. The model was implemented in Pytorch (Paszke et al., 2017), and we used the411

torchdiffeq package developed in (Chen et al., 2018) to backpropagate through the ODE solver.412

Simulating the long-term progression of AD413

To simulate the long-term progression of AD we first project the AD cohort in the latent space via414

the encoding functions. We can subsequently follow the trajectories of these subjects backward and415

forward in time, in order to estimate the associated trajectory from the healthy to their respective416

pathological condition. In practice, a Gaussian Mixture Model is used to fit the empirical distribution417

of the AD subjects’ latent projection. The number of components and covariance type of the GMM418

is selected by relying on the Akaike information criterion (Akaike, 1998). The fitted GMM allows us419

to sample pathological latent representations zi(t0), that can be integrated forward and backward in420

time thanks to the estimated set of latent ODEs, to finally obtain a collection of latent trajectories421

Z(t) = [z1(t), ..., zN (t)] summarising the distribution of the long-term AD evolution.422

Simulating intervention423

In this section we assume that we computed the average latent progression of the disease z(t).424

Thanks to the modality-wise encoding of Section Variational inference each coordinate of the latent425

representation can be interpreted as representing a single data modality. Therefore, we propose to426

simulate the effect of an hypothetical intervention on the disease progression, by modulating the427

vector
dz(t)
dt
after each integration step such that:428

(dz(t)
dt

)∗
= �dz(t)

dt
where, � =

⎛

⎜

⎜

⎜

⎝

1
⋱

m

⎞

⎟

⎟

⎟

⎠

. (8)
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The values m are fixed between 0 and 1, allowing to control the influence of the corresponding429

modalities on the system evolution, and to create hypothetical scenarios of evolution. For example,430

for a 100% (resp. 50%) amyloid lowering intervention we set amy = 0 (resp. amy = 0.5).431

Evaluating disease severity432

Given an evolution z(t) describing the disease progression in the latent space, we propose to
consider this trajectory as a reference and to use it in order to quantify the individual disease

severity of a subject X. This is done by estimating a time-shift � defined as:

� = argmin
t

||f (X,�1) − z(t)||1

=
∑

m
|f (xm, �1) − zm(t)|.

(9)

This time-shift allows to quantify the pathological stage of a subject with respect to the disease433

progression along the reference trajectory z(t). Moreover, the time-shift can still be estimated even434

in the case of missing data modalities, by only encoding the available measures of the observed435

subject.436
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Appendix 1630

Time-shift comparison and validation631

We compared our estimated disease severity (Figure 3 in the manuscript) with the one
obtained applying the monotonic Gaussian Process (GP) model of (Lorenzi et al., 2017) from
the state-of-the-art (Figure 1A). While both methods estimate significant time differences
when going from healthy to pathological stages, our approach captures a larger temporal

variability for both earlier and later stages of the disease, as shown in Figure 1B, highlighting
a stronger separability across clinical stages.

632
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We also assessed the model on an independent testing cohort from the ADNI composed

of 130 NL stable, 10 NL converters, 125 MCI stable, 7 MCI converters, and 12 AD subjects

which were not necessarily amyloid positive. It is important to note that no PET-FDG data

was available for these subjects. We provide in Table 1 socio-demographic and clinical
information for the testing cohort across the different clinical groups. Despite the fact that

no FDG data was used to estimate the disease severity, we observe in Figure 2 that the
method still exhibits good separating performances between clinical stages, coherently with

the clinical status of the testing individuals.
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Appendix 1 Figure 1. A: Distribution of the disease severity estimated by the monotonic GP method (Lorenziet al., 2017) on the training set. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s
dementia. B: Comparison of the disease severity estimated by our method (denoted as latent ODE) with respect

to the one estimated by the monotonic GP.

Appendix 1 Table 1. Baseline socio-demographic and clinical information for testing cohort (284 subjects for
2116 data points). Average values, standard deviation in parenthesis. NL: normal individuals, MCI: mild

cognitive impairment, AD: Alzheimer’s dementia. ADAS11: Alzheimer’s Disease Assessment Scale-cognitive

subscale, 11 items. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value Ratio.

NL stable NL converters MCI stable MCI converters AD

N 130 10 125 7 12

Age (yrs) 72 (6) 74 (8) 71 (8) 73 (9) 78 (6)

Education (yrs) 17 (2) 16 (2) 16 (3) 14 (3) 17 (2)

ADAS11 5.4 (2.8) 7.7 (4.1) 7.8 (3.3) 14.3 (5.2) 15.0 (6.7)

WholeBrain (cm3) 1063 (103) 1104 (98) 1054 (97) 966 (104) 1010 (108)

AV45 (SUVR) 0.9 (0.1) 1.0 (0.1) 1.0 (0.1) 1.1 (0.2) 1.2 (0.3)
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Appendix 1 Figure 2. Distribution of the disease severity estimated for the subjects of the testing set, relatively
to the long-term dynamics of Figure 3 in the manuscript. NL: normal individuals, MCI: mild cognitive
impairment, AD: Alzheimer’s dementia.
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Appendix 2647

Simulated clinical endpoints648

We provide in Table 1 the estimated values for each clinical score at predicted conversion
time for the normal progression case when performing the simulations presented in Section

Simulating clinical intervention.

649

650

651

Appendix 2 Table 1. Estimated mean (standard deviation) of the clinical outcomes at predicted conversion
time for the normal progression case by year of simulated intervention (100% and 50% amyloid lowering

interventions). Results in bold indicate a statistically significant difference between placebo and treated

scenarios (p<0.01, two-sided t-test, 100 cases per arm). AD: Alzheimer’s dementia, ADAS11: Alzheimer’s Disease
Assessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment Questionnaire, RAVLT:

Rey Auditory Verbal Learning Test.

Amyloid lowering intervention 100%
Score per intervention time

Score

Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 10.7 (7.5) 13.4 (6.2) 15.7 (5.3) 17.0 (4.8) 17.3 (4.7) 17.5 (4.6) 17.6 (4.5) 17.7 (4.5)
MMSE 26.8 (3.0) 25.8 (2.5) 24.9 (2.2) 24.3 (2.0) 24.2 (1.9) 24.1 (1.9) 24.0 (1.8) 24.0 (1.9)
FAQ 4.6 (5.9) 6.7 (4.9) 8.4 (4.2) 9.5 (3.8) 9.8 (3.7) 10.0 (3.6) 10.1 (3.6) 10.1 (3.5)
RAVLT immediate 35.1 (11.0) 31.3 (9.0) 28.1 (7.7) 26.2 (7.0) 25.7 (6.7) 25.4 (6.6) 25.2 (6.5) 25.1 (6.4)
RAVLT forgetting (%) 63.2 (26.7) 71.8 (22.0) 79.1 (18.5) 83.8 (16.4) 85.0 (15.8) 85.8 (15.3) 86.4 (15.0) 86.6 (14.7)

Amyloid lowering intervention 50%
Score per intervention time

Score

Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 14.1 (5.7) 15.5 (5.1) 16.6 (4.8) 17.2 (4.6) 17.4 (4.5) 17.5 (4.5) 17.6 (4.5) 17.6 (4.5)
MMSE 25.5 (2.2) 25.0 (2.0) 24.5 (1.9) 24.2 (1.8) 24.1(1.8) 24.1 (1.8) 24.1 (1.8) 24.1 (1.8)
FAQ 7.2 (4.4) 8.3 (4.0) 9.2 (3.8) 9.7 (3.6) 9.8 (3.5) 9.9 (3.5) 10.0 (3.5) 10.0 (3.5)
RAVLT immediate 30.3 (8.2) 28.4 (7.4) 26.8 (6.9) 25.9 (6.6) 25.6 (6.5) 25.5 (6.4) 25.4 (6.3) 25.3 (6.3)
RAVLT forgetting (%) 74.8 (19.7) 79.2 (17.5) 82.8 (16.1) 85.1 (16.2) 85.7 (14.9) 86.0 (14.7) 86.3 (14.5) 86.5 (17.4)
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Appendix 3652

Lower bound653

We provide here the detailed derivation to obtain the ELBO of Equation 6 in the main
manuscript.

654

655

log p(X|�2, ) = log
[

∫ p(X|z, �ODE ,�2, )p(z)dz
]

= log
[

∫ p(X|z, �ODE ,�2, )p(z)
q(z|X)
q(z|X)

dz
]

= log
[

Eq(z|X)
p(X|z, �ODE ,�2, )p(z)

q(z|X)

]

Jensen
≥ Eq(z|X)

[

log
p(X|z, �ODE ,�2, )p(z)

q(z|X)

]

= Eq(z|X)
[

log p(X|z, �ODE ,�2, )
]

−
[

q(z|X)|p(z)
]

=  .

(10)

656

657

658

659

Given that:660

p(X|z, �ODE ,�2, ) =
∏

m
p(xm|z, �ODE , �2m,  m), q(z|X) =

∏

m
q(zm|X), and, p(z) = (0, I).

661

662

663

664

We obtain:665

 =
∑

m
Eq(z|X)

[

log p(xm|z, �ODE , �2m,  m)
]

−
[

q(zm|xm)|p(zm)
]

. (11)

666

667

668

669

KL divergence670

We have that:671

q(zm|X) = (f (xm, �1m), ℎ(x
m, �2m)),

p(zm) = (0, 1).
(12)

672

673

674

675

We use the closed-form formula to calculate the KL divergence between two normal distri-

butions:

676

677


[

q(z|X)|p(z)
]

=
∑

m

[

q(zm|xm)|p(zm)
]

= 1
2
∑

m

[

− log(ℎ(xm, �2m)) − 1 + ℎ(x
m, �2m) + f (x

m, �1m)
2
]

(13)

678

679

680

681

Graphical model682

Figure 1 below provides the graphical model illustrating the method presented in Section
Methods.

683

684
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ELBO computation685

Algorithm 1 below details the steps to compute the ELBO for a given subject i at time t.686

2

ODE

Appendix 3 Figure 1. Graphical model of the proposed method.

Algorithm 1 Forward pass to compute the ELBO for a given subject i at time t.
1: function COMPUTE_ELBO(X(t),X(t0), �ODE , ,�,�2)

For ease of notation we drop the i index in the pseudo-code.
2: Sample z(t0) ∼ q(z(t0)|X(t0)) =

∏

m (f (xm(t0), �1m), ℎ(x
m(t0), �2m)) ⊳ Baseline latent

representation (reparameterization trick).

3: Compute z(t) =MIDPOINT (z(t0), g, �ODE , t) ⊳ Predict latent representation at time t by
numerically solving the ODEs system.

4: Compute Eq(z(t0)|X(t0))
[

log p(xm(t)|z(t), �ODE , �2m,  m)
]

≈ −Dm
2
log(2��2m) −

1
2�2m

||xm(t) − �m(z(t))||2 ⊳
Expectation term Equation 6.

5: Compute 
[

q(zm(t0)|xm(t0))|p(zm(t0))
]

= 1
2

[

− log(ℎ(xm(t0), �2m)) − 1 + ℎ(x
m(t0), �2m) + f (x

m(t0), �1m)
2
]

⊳ KL divergence Equation 6.
6: Compute  =

∑

m Eq(z(t0)|X(t0))
[

log p(xm(t)|z(t), �ODE , �2m,  m)
]

−
[

q(zm(t0)|xm(t0))|p(zm(t0))
]

.
7: Return 
8: end function
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