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Recent failures of clinical trials in Alzheimer’s Disease underline the
critical importance of identifying optimal intervention time to maxi-
mize cognitive benefit. While several models of disease progression
have been proposed, we still lack quantitative approaches simulat-
ing the effect of treatment strategies on the clinical evolution. In this
work, we present a data-driven method to model dynamical relation-
ships between imaging and clinical biomarkers. Our approach allows
simulating intervention at any stage of the pathology by modulat-
ing the progression speed of the biomarkers, and by subsequently
assessing the impact on disease evolution. When applied to multi-
modal imaging and clinical data from the Alzheimer’s Disease Neu-
roimaging Initiative our method enables to generate hypothetical sce-
narios of amyloid lowering interventions. Our results show that in a
study with 1000 individuals per arm, accumulation should be com-
pletely arrested at least 5 years before Alzheimer’s dementia diagno-
sis to lead to statistically powered improvement of clinical endpoints.
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The number of people affected by Alzheimer’s Disease1

(AD) has recently exceeded 46 millions and is expected to2

double every 20 years (1), thus posing significant healthcare3

challenges. Yet, while the disease mechanisms remain in4

large part unknown, there are still no effective pharma-5

cological treatments leading to tangible improvements of6

patients’ clinical progression. One of the main challenges7

in understanding AD is that its progression goes through8

a silent asymptomatic phase that can stretch over decades9

before a clinical diagnosis can be established based on10

cognitive and behavioral symptoms. To help designing11

appropriate intervention strategies, hypothetical models of12

the disease history have been proposed, characterizing the13

progression by a cascade of morphological and molecular14

changes affecting the brain, ultimately leading to cognitive15

impairment (2, 3). The dominant hypothesis is that disease16

dynamics along the asymptomatic period are driven by the17

deposition in the brain of the amyloid β peptide, triggering18

the so-called “amyloid cascade” (4–8). Based on this rationale,19

clinical trials have been focusing on the development and20

testing of disease modifiers targeting amyloid β aggregates21

(9), for example by increasing its clearance or blocking its22

accumulation. Although the amyloid hypothesis has been23

recently invigorated by a post-hoc analysis of the aducanumab24

trial (10), clinical trials failed so far to show efficacy of25

this kind of treatments, as the clinical primary endpoints26

were not met (11–13), or because of unacceptable adverse27

effects (14). In the past years, growing consensus emerged28

about the critical importance of intervention time, and about 29

the need of starting anti-amyloid treatments during the 30

pre-symptomatic stages of the disease (15). Nevertheless, 31

the design of optimal intervention strategies is currently not 32

supported by quantitative analysis methods allowing to model 33

and assess the effect of intervention time and dosing (16). The 34

availability of models of the pathophysiology of AD would 35

entail great potential to test and analyze clinical hypothesis 36

characterizing AD mechanisms, progression, and intervention 37

scenarios. 38

39

Within this context, quantitative models of disease progression, 40

referred to as Disease Progression Models (DPMs), have been 41

proposed (17–21), to quantify the dynamics of the changes 42

affecting the brain during the whole disease span. These 43

models rely on the statistical analysis of large datasets of 44

different data modalities, such as clinical scores, or brain 45

imaging measures derived from Magnetic Resonance Imaging 46

(MRI), Amyloid- and Fluorodeoxyglucose-Positron Emission 47

Tomography (PET) (22–24). In general, DPMs estimate 48
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a long-term disease evolution from the joint analysis of49

multivariate time-series acquired on a short-term time-scale.50

Due to the temporal delay between the disease onset and51

the appearance of the first symptoms, DPMs rely on the52

identification of an appropriate temporal reference to describe53

the long-term disease evolution (25, 26). These tools are54

promising approaches for the analysis of clinical trials data, as55

they allow to represent the longitudinal evolution of multiple56

biomarkers through a global model of disease progression.57

Such a model can be subsequently used as a reference in58

order to stage subjects and quantify their relative progression59

speed (27–29). However, these approaches remain purely60

descriptive as they don’t account for causal relationships61

among biomarkers. Therefore, they generally don’t allow62

to simulate progression scenarios based on hypothetical63

intervention strategies, thus providing a limited interpretation64

of the pathological dynamics. This latter capability is of65

utmost importance for planning and assessment of disease66

modifying treatments.67

68

To fill this gap, recent works such as (30, 31) proposed to69

model AD progression based on specific assumptions on the70

biochemical processes of pathological protein propagation.71

These approaches explicitly define biomarkers interactions72

through the specification of sets of Ordinary Differential73

Equations (ODEs), and are ideally suited to simulate the74

effect of drug interventions (32). However, these methods are75

mostly based on the arbitrary choices of pre-defined evolution76

models, which are not inferred from data. This issue was77

recently addressed by (33), where the authors proposed an78

hybrid modeling method combining traditional DPMs with79

dynamical models of AD progression. Still, since this approach80

requires to design suitable models of protein propagation81

across brain regions, extending this method to jointly account82

for spatio-temporal interactions between several processes,83

such as amyloid propagation, glucose hypometabolism, and84

brain atrophy, is considerably more complex. Finally, these85

methods are usually designed to account for imaging data only,86

which prevents to jointly simulate heterogeneous measures87

(34), such as image-based biomarkers and clinical outcomes,88

the latter remaining the reference markers for patients and89

clinicians.90

91

In this work we present a novel computational model of AD92

progression allowing to simulate intervention strategies across93

the history of the disease. The model is here used to quantify94

the potential effect of amyloid modifiers on the progression95

of brain atrophy, glucose hypometabolism, and ultimately on96

the clinical outcomes for different scenarios of intervention.97

To this end, we model the joint spatio-temporal variation98

of different modalities along the history of AD by identify-99

ing a system of ODEs governing the pathological progression.100

This latent ODEs system is specified within an interpretable101

low-dimensional space relating multi-modal information, and102

combines clinically-inspired constraints with unknown inter-103

actions that we wish to estimate. The interpretability of the104

relationships in the latent space is ensured by mapping each105

data modality to a specific latent coordinate. The model106

is formulated within a Bayesian framework, where the la-107

tent representation and dynamics are efficiently estimated108

through stochastic variational inference. To generate hypo-109

thetical scenarios of amyloid lowering interventions, we apply 110

our approach to multi-modal imaging and clinical data from 111

the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our 112

results provide a meaningful quantification of different interven- 113

tion strategies, compatible with findings previously reported in 114

clinical studies. For example, we estimate that in a study with 115

100 individuals per arm, statistically powered improvement 116

of clinical endpoints can be obtained by completely arresting 117

amyloid accumulation at least 8 years before Alzheimer’s de- 118

mentia. The minimum intervention time decreases to 5 years 119

for studies based on 1000 individuals per arm. 120

Results 121

In the following sections, healthy individuals will be denoted 122

as NL stable, subjects with mild cognitive impairment as 123

MCI stable, subjects diagnosed with Alzheimer’s dementia as 124

AD, subjects progressing from NL to MCI as NL converters, 125

and subjects progressing from MCI to AD as MCI converters. 126

Amyloid concentration and glucose metabolism are respec- 127

tively measured by (18)F-florbetapir Amyloid (AV45)-PET 128

and (18)F-fluorodeoxyglucose (FDG)-PET imaging. Cognitive 129

and functional abilities are assessed by the following neuro- 130

psychological tests: Alzheimer’s Disease Assessment Scale 131

(ADAS11), Mini-Mental State Examination (MMSE), Func- 132

tional Assessment Questionnaire (FAQ), Rey Auditory Verbal 133

Learning Test (RAVLT) immediate, and RAVLT forgetting. 134

Study cohort and biomarkers’ changes across clinical 135

groups. Our study is based on a cohort of 311 amyloid 136

positive individuals composed of 46 NL stable subjects, 10 137

NL converters subjects, 106 subjects diagnosed with MCI, 138

76 MCI converters subjects, and 73 AD patients. The term 139

“amyloid positive” refers to subjects whose amyloid level in the 140

cerebrospinal fluid (CSF) was below the nominal cutoff of 192 141

pg/ml (35) either at baseline, or during any follow-up visit, 142

and conversion to AD was determined using the last available 143

follow-up information. The length of follow-up varies between 144

subjects and goes from 0 to 6 years. Further information about 145

the data are available on https://adni.bitbucket.io/reference/, 146

while details on data acquisition and processing are provided 147

in Section 1. We show in Table 1A socio-demographic 148

information for the training cohort across the different clinical 149

groups. Table 1B shows baseline values and annual rates of 150

change across clinical groups for amyloid burden (average 151

normalized AV45 uptake in frontal cortex, anterior cingulate, 152

precuneus and parietal cortex), glucose hypometabolism 153

(average normalized FDG uptake in frontal cortex, anterior 154

cingulate, precuneus and parietal cortex), for hippocampal 155

and medial temporal lobe volumes, and for the cognitive 156

ability as measured by ADAS11. Compatibly with previously 157

reported results (36, 37), we observe that while regional 158

atrophy, hypometabolism and cognition show increasing 159

rate of change when moving from healthy to pathological 160

conditions, the change of AV45 is maximum in NL stable and 161

MCI stable subjects. We also notice the increased magnitude 162

of ADAS11 in AD as compared to the other clinical groups. 163

Finally, the magnitude of change of FDG is generally milder 164

than the atrophy rates. 165

166

The observations presented in Table 1 provide us with a glimpse 167

into the biomarkers’ trajectories characterising AD. The com- 168
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Table 1. A: Baseline socio-demographic information for training cohort (311 subjects for 2188 data points, follow-up from 0 to 6 years
depending on subjects). Average values, standard deviation in parenthesis. B: Baseline values (bl) and annual rates of change (% change
/ year) of amyloid burden (average normalized AV45 uptake in frontal cortex, anterior cingulate, precuneus and parietal cortex), glucose
hypometabolism (average normalized FDG uptake in frontal cortex, anterior cingulate, precuneus and parietal cortex), hippocampus volume,
medial temporal lobe volume, and ADAS11 score for the different clinical groups. Median values, interquartile range below. The volumes of
the hippocampus and the medial temporal lobe are averaged across left and right hemispheres. NL: healthy individuals, MCI: individuals
with mild cognitive impairment, AD: patients with Alzheimer’s dementia. FDG: (18)F-fluorodeoxyglucose Positron Emission Tomography
(PET) imaging. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value Ratio. MTL: Medial Temporal Lobe. ADAS11:
Alzheimer’s Disease Assessment Scale-cognitive subscale, 11 items.

A: Socio-demographics
NL NL MCI MCI AD

stable converters stable converters
N 46 10 106 76 73

Age (yrs) 73 (7) 80 (4) 73 (6) 72 (6) 74 (8)
Education (yrs) 17 (2) 15 (2) 16 (3) 16 (3) 16 (3)

B: Biomarkers and rates of change
NL NL MCI MCI AD

stable converters stable converters
bl % change / bl % change / bl % change / bl % change / bl % change /

year year year year year
Global AV45 1.25 1.7 1.40 -0.5 1.30 1.5 1.41 0.1 1.42 1.1

(SUVR) [1.16 ; 1.40] [0.3 ; 2.6] [1.26 ; 1.58] [-1.9 ; 1.1] [1.21 ; 1.44] [0.4 ; 2.6] [1.29 ; 1.55] [-1.4 ; 1.7] [1.34 ; 1.54] [-1.5 ; 2.5]
Global FDG 1.34 -1.3 1.33 -1.5 1.31 -1.3 1.15 -3.7 1.14 -5.0

(SUVR) [1.27 ; 1.44] [-2.0 ; 0.8] [1.27 ; 1.36] [-2.4 ; 0.9] [1.24 ; 1.35] [-3.0 ; 0.0] [1.07 ; 1.25] [-5.6 ; -1.6] [1.07 ; 1.16] [-5.5 ; -1.3]
Hippocampus 3.9 -1.6 3.5 -0.4 3.4 -2.5 3.3 -3.8 2.9 -5.1

(ml) [3.5 ; 4.1] [-2.9 ; -0.5] [3.4 ; 3.6] [-2.7 ; -0.1] [3.1 ; 3.8] [-3.7 ; -0.7] [2.9 ; 3.5] [-5.3 ; -2.0] [2.7 ; 3.3] [-8.0 ; -2.4]
MTL 10.4 -0.8 9.7 -2.2 10.1 -1.1 9.5 -3.0 8.5 -5.9
(ml) [9.9 ; 11.1] [-2.0 ; 0.0] [9.5 ; 9.8] [-6.5 ; -1.1] [9.2 ; 11.0] [-2.2 ; 0.2] [8.7 ; 10.7] [-5.3 ; -1.5] [7.8 ; 9.8] [-7.9 ; -3.1]

ADAS11 5.5 0.0 7.5 0.7 9.0 1.1 12.0 5.2 19.0 7.8
[3.0 ; 7.8] [-0.1 ; 0.4] [6.0 ; 9.0] [0.0 ; 1.6] [6.0 ; 11.0] [0.3 ; 3.2] [9.0 ; 16.0] [2.7 ; 10.3] [15.0 ; 23.0] [3.8 ; 17.8]

plexity of the dynamical changes we may infer is however169

limited, as the clinical stages roughly approximate a temporal170

scale describing the disease history, while very little insights171

can be obtained about the biomarkers’ interactions. Within172

this context, our model allows the quantification of the fine-173

grained dynamical relationships across biomarkers at stake174

during the history of the disease. Investigation of interven-175

tion scenarios can be subsequently carried out by opportunely176

modulating the estimated dynamics parameters according to177

specific intervention hypothesis (e.g. amyloid lowering at a178

certain time).179

Model overview. We provide in Figure 1 an overview of the180

presented method. Baseline multi-modal imaging and clinical181

information for a given subject are transformed into a latent182

variable composed of four z-scores quantifying respectively the183

overall severity of atrophy, glucose hypometabolism, amyloid184

burden, and cognitive and functional assessment. The model185

estimates the dynamical relationships across these z-scores to186

optimally describe the temporal transitions between follow-up187

observations. These transition rules are here mathematically188

defined by the parameters of a system of ODEs, which is189

estimated from the data. This dynamical system allows190

to compute the evolution of the z-scores over time from191

any baseline observation, and to predict the associated192

multi-modal imaging and clinical measures. The model thus193

enables to simulate the pathological progression of biomarkers194

across the entire history of the disease. Once the model is195

estimated, we can modify the ODEs parameters to simulate196

different evolution scenarios according to specific hypothesis.197

For example, by reducing the parameters associated with the198

progression rate of amyloid, we can investigate the relative199

change in the evolution of the other biomarkers. This setup 200

thus provides us with a data-driven system enabling the 201

exploration of hypothetical intervention strategies, and their 202

effect on the pathological cascade. 203

204

In the following sections, MRI, FDG-PET, and AV45-PET 205

images are processed in order to respectively extract regional 206

gray matter density, glucose hypometabolism and amyloid 207

load from a brain parcellation. The z-scores of gray matter 208

atrophy (zatr), glucose hypometabolism (zhmet), and amyloid 209

burden (zamy), are computed using the measures obtained 210

by this pre-processing step. The clinical z-score zcli is de- 211

rived from neuro-psychological scores: ADAS11, MMSE, FAQ, 212

RAVLT immediate, and RAVLT forgetting. Further details 213

about experimental setup, method formulation, and data pre- 214

processing are given in Section . 215

Progression model and latent relationships. We show in 216

Figure 2 Panel I) the dynamical relationships across the 217

different z-scores estimated by the model, where direction 218

and intensity of the arrows quantify the estimated increase 219

of one variable with respect to the other. Being the scores 220

adimensional, they have been conveniently rescaled to the 221

range [0,1] indicating increasing pathological levels. These 222

relationships extend the summary statistics reported in 223

Table 1 to a much finer temporal scale and wider range of 224

possible biomarkers’ values. We observe in Figure 2A, 2B and 225

2C that large values of the amyloid score zamy trigger the 226

increase of the remaining ones: zhmet, zatr, and zcli. Figure 227

2D shows that large increase of the atrophy score zatr is 228

associated to higher hypometabolism indicated by large values 229

of zhmet. Moreover, we note that high zhmet values also 230
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4

Fig. 1. Overview of the method. a) High-dimensional multi-modal measures are projected into a 4-dimensional latent space. Each data modality is transformed in a
corresponding z-score zamy, zhmet, zatr, zcli. b) The dynamical system describing the relationships between the z-scores allows to compute their transition across the
evolution of the disease. c) Given the latent space and the estimated dynamics, the follow-up measurements can be reconstructed to match the observed data.
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contribute to an increase of zcli (Figure 2E). Finally, Figure231

2F shows that high atrophy values lead to an increase mostly232

along the clinical dimension zcli. This chain of relation-233

ships is in agreement with the cascade hypothesis of AD (2, 3).234

235

Relying on the dynamical relationships shown in Figure236

2 Panel I), starting from any initial set of biomarkers237

values we can estimate the relative trajectories over time.238

Figure 2 Panel II) (left), shows the evolution obtained by239

extrapolating backward and forward in time the trajectory240

associated to the z-scores of the AD group. The x-axis241

represents the years from conversion to AD, where the242

instant t=0 corresponds to the average time of diagnosis243

estimated for the group of MCI progressing to dementia.244

As observed in Figure 2 Panel I) and Table 1, the amyloid245

score zamy increases and saturates first, followed by zhmet246

and zatr scores whose progression slows down when reaching247

clinical conversion, while the clinical score exhibits strong248

acceleration in the latest progression stages. Figure 2 Panel249

II) (right) shows the group-wise distribution of the disease250

severity estimated for each subject relatively to the modelled251

long-term latent trajectories (Section Evaluating disease252

severity). The group-wise difference of disease severity across253

groups is statistically significant and increases when going254

from healthy to pathological stages (Wilcoxon-Mann-Whitney255

test p < 0.001 for each comparisons). The reliability of the256

estimation of disease severity was further assessed through257

testing on an independent cohort, and by comparison with258

a previously proposed disease progression modeling method259

from the state-of-the-art (25). The results are provided in260

section 1 of the Supplementary Material and show positive261

generalization results as well as a favourable comparison with262

the benchmark method.263

264

From the z-score trajectories of Figure 2 Panel II) (left) we265

predict the progression of imaging and clinical measures shown266

in Figure 3. We observe that amyloid load globally increases267

and saturates early, compatibly with the positive amyloid268

condition of the study cohort. Glucose hypometabolism and269

gray matter atrophy increase are delayed with respect to270

amyloid, and tend to map prevalently temporal and parietal271

regions. Finally, the clinical measures exhibit a non-linear272

pattern of change, accelerating during the latest progression273

stages. These dynamics are compatible with the summary274

measures on the raw data reported in Table 1.275

276

Simulating clinical intervention. This experimental section277

is based on two intervention scenarios: a first one in which278

amyloid is lowered by 100%, and a second one in which it279

is reduced by 50% with respect to the estimated natural280

progression. In Figure 4 we show the latent z-scores evolution281

resulting from either 100% or 50% amyloid lowering performed282

at the time t = −12.5 years. According to these scenarios,283

intervention results in a sensitive reduction of the pathological284

progression for atrophy, hypometabolism and clinical scores,285

albeit with a stronger effect in case of total blockage.286

287

We further estimated the resulting clinical endpoints associ-288

ated with the two amyloid lowering scenarios, at increasing289

time points and for different sample sizes. Clinical endpoints290

consisted in the simulated ADAS11, MMSE, FAQ, RAVLT291

immediate, and RAVLT forgetting scores at the reference 292

conversion time (t=0). The case placebo indicates the 293

scenario where clinical values were computed at conversion 294

time from the estimated natural progression shown in Figure 295

2 Panel II) (left). Figure 5 shows the change in statistical 296

power depending on intervention time and sample sizes. For 297

large sample sizes (1000 subjects per arm) a power greater 298

than 0.8 can be obtained around 5 years before conversion, 299

depending on the outcome score, where in general we observe 300

that RAVLT forgetting exhibits a higher power than the other 301

scores. When sample size is lower than 100 subjects per arm, a 302

power greater than 0.8 is reached if intervention is performed 303

at the latest 8 years before conversion, with a mild variability 304

depending on the considered clinical score. We notice that 305

in the case of a 50% amyloid lowering, in order to reach the 306

same power intervention needs to be consistently performed 307

earlier compared to the scenario of 100% amyloid lowering 308

for the same sample size and clinical score. For instance, if 309

we consider ADAS11 with a sample size of 100 subjects per 310

arm, a power of 0.8 is obtained for a 100% amyloid lowering 311

intervention performed 8 years before conversion, while in 312

case of a 50% amyloid lowering the equivalent effect would be 313

obtained by intervening 10.5 years before conversion. 314

315

We provide in Table 2 the estimated improvement for each 316

clinical score at conversion with a sample size of 100 subjects 317

per arm for both 100% and 50% amyloid lowering depending 318

on the intervention time. We observe that for the same inter- 319

vention time, 100% amyloid lowering always results in a larger 320

improvement of clinical endpoints compared to 50% amyloid 321

lowering. We also note that in the case of 100% lowering, 322

clinical endpoints obtained for intervention at t=-10 years 323

correspond to typical cutoff values for inclusion into AD trials 324

(ADAS11= 13.4 ± 6.2, MMSE= 25.8 ± 2.5, see Table S2 in 325

Supplementary Information) (39, 40). 326

Discussion 327

We presented a framework to jointly model the progression 328

of multi-modal imaging and clinical data, based on the 329

estimation of latent biomarkers’ relationships governing AD 330

progression. The model is designed to simulate intervention 331

scenarios in clinical trials, and in this study we focused on 332

assessing the effect of anti-amyloid drugs on biomarkers’ 333

evolution, by quantifying the effect of intervention time and 334

drug efficacy on clinical outcomes. Our results underline the 335

critical importance of intervention time, which should be 336

performed sensibly early during the pathological history to 337

effectively appreciate the effectiveness of disease modifiers. 338

339

The results obtained with our model are compatible with 340

findings reported in recent clinical studies (11–13). For 341

example, if we consider 500 patients per arm and perform a 342

100% amyloid lowering intervention for 2 years to reproduce 343

the conditions of the recent trial of Verubecestat (12), the 344

average improvement of MMSE predicted by our model is of 345

0.02, falling in the 95% confidence interval measured during 346

that study ([-0.5 ; 0.8]). While recent anti-amyloid trials such 347

as (11–13) included between 500 and 1000 mild AD subjects 348

per arm and were conducted over a period of two years at 349

most, our analysis suggests that clinical trials performed with 350

less than 1000 subjects with mild AD may be consistently 351
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6

Fig. 2. Panel I: Estimated dynamical relationships across the different z-scores (A to F). Given the values of two z-scores, the arrow at the corresponding coordinates indicates
how one score evolves with respect to the other. The intensity of the arrow gives the strength of the relationship between the two scores. Panel II, left: Estimated long-term
latent dynamics (time is relative to conversion to Alzheimer’s dementia). Shadowed areas represent the standard deviation of the average trajectory. Panel II, right: Distribution
of the estimated disease severity across clinical stages, relatively to the long-term dynamics on the left. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s
dementia.
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7

Fig. 3. Modelled long-term evolution of cortical measurements for the different types of imaging markers, and clinical scores. Shadowed areas represent the standard deviation
of the average trajectory. Brain images were generated using the software provided in (38).
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Amyloid lowering intervention 100% at t=-12.5

z(t)

Time to AD (years) 

Amyloid lowering intervention 50% at t=-12.5

z(t)

Time to AD (years) 

Fig. 4. Hypothetical scenarios of irreversible amyloid lowering interventions at t=-12.5 years from Alzheimer’s dementia diagnosis, with a rate of 100 % (left) or 50 % (right).
Shadowed areas represent the standard deviation of the average trajectory.

Table 2. Estimated mean (standard deviation) improvement of clinical outcomes at predicted conversion time for the normal progression case
by year of simulated intervention (100% and 50% amyloid lowering interventions). Results in bold indicate a statistically significant difference
between placebo and treated scenarios (p<0.01, two-sided t-test, 100 cases per arm). AD: Alzheimer’s dementia, ADAS11: Alzheimer’s
Disease Assessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment Questionnaire, RAVLT: Rey Auditory Verbal
Learning Test.

Amyloid lowering intervention 100%
Point improvement per intervention time

Score
Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 7.0 (4.8) 4.3 (2.8) 2.0 (1.4) 0.7 (0.5) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.01 (0.01)
MMSE 2.8 (1.9) 1.8 (1.1) 0.9 (0.6) 0.3 (0.2) 0.2 (0.1) 0.1 (0.06) 0.02 (0.02) 0.0 (0.0)
FAQ 5.5 (3.8) 3.4 (2.3) 1.7 (1.1) 0.6 (0.5) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.01 (0.01)
RAVLT immediate 10.0 (7.0) 6.2 (4.1) 3.0 (2.0) 1.2 (0.8) 0.7 (0.5) 0.3 (0.3) 0.1 (0.1) 0.03 (0.02)
RAVLT forgetting (%) 23.6 (16.2) 15.0 (10.0) 7.7 (5.1) 3.0 (2.2) 2.0 (1.6) 1.0 (1.0) 0.4 (0.4) 0.2 (0.1)

Amyloid lowering intervention 50%
Point improvement per intervention time

Score
Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 3.5 (2.4) 2.1 (1.4) 1.0 (0.7) 0.4 (0.3) 0.2 (0.2) 0.1 (0.1) 0.04 (0.03) 0.0 (0.0)
MMSE 1.4 (1.0) 0.9 (0.6) 0.4 (0.3) 0.1 (0.1) 0.1(0.1) 0.03 (0.02) 0.0 (0.0) 0.0 (0.0)
FAQ 2.8 (1.9) 1.7 (1.1) 0.8 (0.5) 0.3 (0.2) 0.2 (0.1) 0.1 (0.1) 0.03 (0.03) 0.0 (0.0)
RAVLT immediate 5.0 (3.5) 3.1 (2.0) 1.5 (1.0) 0.6 (0.4) 0.3 (0.3) 0.2 (0.1) 0.1 (0.1) 0.01 (0.01)
RAVLT forgetting (%) 11.8 (8.1) 7.4 (4.9) 3.7 (2.5) 1.5 (1.0) 0.9 (0.7) 0.5 (0.5) 0.3 (0.2) 0.1 (0.1)
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Fig. 5. Statistical power of the Student t-test comparing the estimated clinical outcomes at conversion time between placebo and treated scenarios, according to the year of
simulated intervention (100% and 50% amyloid lowering) and sample size.
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under-powered. Indeed, we see in Figure 5 that with a sample352

size of 1000 subjects per arm and a total blockage of amyloid353

production, a power of 0.8 can be obtained only if intervention354

is performed at least 5 years before conversion.355

356

These results allow to quantify the crucial role of intervention357

time, and provide an experimental justification for testing358

amyloid modifying drugs in the pre-clinical stage (15, 41).359

This is for example illustrated in Table 2, in which we360

notice that clinical endpoints are close to placebo even361

when the simulated intervention takes place up to 5 years362

before conversion, while stronger cognitive and functional363

changes happen when amyloid is lowered by 100% or 50%364

at least 10 years before conversion. These findings may be365

explained by considering that amyloid accumulates over more366

than a decade, and that when amyloid clearance occurs the367

pathological cascade is already entrenched (42). Our results368

are thus supporting the need to identify subjects at the369

pre-clinical stage, that is to say still cognitively normal, which370

is a challenging task. Currently, one of the main criteria to371

enroll subjects into clinical trials is the presence of amyloid372

in the brain, and blood-based markers are considered as373

potential candidates for identifying patients at risk for AD374

(43). Moreover, recent works such as (44, 45) have proposed375

more complex entry criteria to constitute cohorts based on376

multi-modal measurements. Within this context, our model377

could also be used as an enrichment tool by quantifying the378

disease severity based on multi-modal data as shown in Figure379

2 Panel II) (right). Similarly, the method could be applied380

to predict the evolution of single patient given its current381

available measurements.382

383

An additional critical aspect of anti-amyloid trials is the effect384

of dose exposure on the production of amyloid (16). Currently,385

β-site amyloid precursor protein cleaving enzyme (BACE)386

inhibitors allow to suppress amyloid production from 50%387

to 90%. In this study we showed that lowering amyloid by388

50% consistently decreases the treatment effect compared to a389

100% lowering at the same time. For instance, if we consider390

a sample size of 1000 subjects per arm in the case of a 50%391

amyloid lowering intervention, an 80% power can be reached392

only 6.5 years before conversion instead of 5 years for a 100%393

amyloid lowering intervention. This ability of our model to394

control the rate of amyloid progression is fundamental in395

order to provide realistic simulations of anti-amyloid trials.396

397

In Figure 2 Panel I) we showed that amyloid triggers the398

pathological cascade affecting the other markers, thus con-399

firming its dominating role on disease progression. Assuming400

that the data used to estimate the model is sufficient to401

completely depict the history of the pathology, our model can402

be interpreted from a causal perspective. However, we cannot403

exclude the existence of other mechanisms driving amyloid404

accumulation, which our model cannot infer from the existing405

data. Therefore, our findings should be considered with care,406

while the integration of additional biomarkers of interest will407

be necessary to account for multiple drivers of the disease. It is408

worth noting that recent works ventured the idea to combine409

drugs targeting multiple mechanisms at the same time410

(46). For instance, pathologists have shown tau deposition411

in brainstem nuclei in adolescents and children (47), and412

clinicians are currently investigating the pathological effect of 413

early tau spreading on AD progression (48), raising crucial 414

questions about its relationship with amyloid accumulation, 415

and the impact on cognitive impairment (49). Our model 416

would allow to address these questions by including measures 417

derived from Tau-PET images, and simulating scenarios of 418

production blockage of both proteins at different rates or 419

intervention time. 420

421

Lately, disappointing results of clinical studies led to 422

hypothesize specific treatments targeting AD sub-populations 423

based on their genotype (50). While in our work we describe 424

a global progression of AD, in the future we will account 425

for sub-trajectories due to genetic factors (51), such as the 426

presence of ε4 allele of apolipoprotein (APOE4), which is a 427

major risk for developing AD influencing both disease onset 428

and progression (52). This could be done by estimating 429

dynamical systems specific to the genetic condition of each 430

patient. Simulating the dynamical relationships specific to 431

genetic factors would allow to evaluate the effect of APOE4 432

on intervention time or drug dosage. In addition, there 433

exist numerous non-genetic aggravating factors that may 434

also affect disease evolution, such as diabetes, obesity or 435

smoking. Extending our model to account for panels of risk 436

factors would ultimately allow to test in silico personalized 437

intervention strategies. Moreover, a key aspect of clinical 438

trials is their economic cost. Our model could be extended to 439

help designing clinical trials by optimizing intervention with 440

respect to the available funding. Given a budget, we could 441

simulate scenarios based on different sample size, and trials 442

duration, while estimating the expected cognitive outcome. 443

444

Results presented in this work are based on a model 445

estimated by relying solely on a subset of the ADNI cohort, 446

and therefore they may not be fully representative of the 447

general AD progression. Indeed, subjects included in this 448

cohort were either amyloid-positive at baseline, or became 449

amyloid-positive during their follow-up visits (see Section 450

Study cohort and biomarkers’ changes across clinical groups). 451

They may therefore provide a limited representation of 452

the pathological temporal window captured by the model. 453

Applying the model on a cohort containing amyloid-negative 454

subjects may provide additional insights on the overall disease 455

history. However, this is a challenging task as it would require 456

to identify sub-trajectories dissociated from normal ageing 457

(53, 54). In addition to this specific characteristic of the 458

cohort, there exists additional biases impacting the model 459

estimation. For instance, the fact that gray matter atrophy 460

becomes abnormal before glucose metabolism in Figure 3 can 461

be explained by the generally high atrophy rate of change in 462

some key regions in normal elders, such as in the hippocampus, 463

compared to the rate of change of FDG (see Table 1). We 464

note that this stronger change of atrophy with respect to 465

glucose hypometabolism can already be appreciated in the 466

clinically healthy group. The existence of such biases can also 467

be observed in Figure 4, in which we notice that atrophy is 468

less affected by intervention, implying that its evolution is 469

here importantly decorrelated from amyloid burden. 470

471
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Materials and Methods472

473

Data acquisition and preprocessing. Data used in the preparation474

of this article were obtained from the Alzheimer’s Disease475

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The476

ADNI was launched in 2003 as a public-private partnership, led477

by Principal Investigator Michael W. Weiner, MD. For up-to-date478

information, see www.adni-info.org.479

480

We considered four types of biomarkers, related to clinical scores,481

gray matter atrophy, amyloid load and glucose hypometabolism,482

and respectively denoted by cli, atr, amy and hmet. MRI images483

were processed following the longitudinal pipeline of Freesurfer (55),484

to obtain gray matter volumes in a standard anatomical space.485

AV45-PET and FDG-PET images were aligned to the closest MRI486

in time, and normalized to the cerebellum uptake. Regional gray487

matter density, amyloid load and glucose hypometabolism were488

extracted from the Desikan-Killiany parcellation (56). We discarded489

white-matter, ventricular, and cerebellar regions, thus obtaining 82490

regions that were averaged across hemispheres. Therefore, for a491

given subject, xatr,xamy and xhmet are respectively 41-dimensional492

vectors. The variable xcli is composed of the neuro-psychological493

scores ADAS11, MMSE, RAVLT immediate, RAVLT forgetting and494

FAQ. The total number of measures is of 2188 longitudinal data495

points. We note that the model requires all the measures to be496

available at baseline in order to obtain a latent representation, but497

is able to handle missing data in the follow-up. Further details on498

the cohort are given in Section .499

Data modelling. We consider observations Xi(t) =
[x1
i (t),x

2
i (t), ...,x

M
i (t)]T , which correspond to multivariate

measures derived from M different modalities (e.g clinical scores,
MRI, AV45, or FDG measures) at time t for subject i. Each vector
xmi (t) has dimension Dm. We postulate the following generative
model, in which the modalities are assumed to be independently
generated by a common latent representation of the data zi(t):

p(Xi(t)|zi(t),σ2,ψ) =
∏
m

p(xmi (t)|zi(t), σ2
m, ψm)

=
∏
m

N (µm(zi(t), ψm), σ2
m),

zi(t) = Λ(zi(t0), t),
zi(t0) ∼ p(zi(t0)),

[1]

where σ2
m is measurement noise, while ψm are the parameters of the500

function µm which maps the latent state to the data space for the501

modality m. For simplicity of notation we denote zi(t) by z(t). We502

assume that each coordinate of z is associated to a specific modality503

m, leading to an M -dimensional latent space. The Λ operator which504

gives the value of the latent representation at a given time t, is505

defined by the solution of the following system of ODEs:506

dzm(t)
dt

= kmz
m(t)(1− zm(t)) +

∑
j 6=m

αm,jz
j(t), m=1,...,M. [2]

For each coordinate, the first term of the equation enforces a sig-507

moidal evolution with a progression rate km, while the second term508

accounts for the relationship between modalities m and j through509

the parameters αm,j . This system can be rewritten as:510

dz(t)
dt

= Wz(t)−Vz2(t) = g(z(t), θODE) where,(
Wi,j

)
=
{

ki if i=j,
αi,j otherwise;

and
(

Vi,j

)
=
{

ki if i=j
0 otherwise,

[3]

θODE denotes the parameters of the system of ODEs, which corre-511

spond to the entries of the matrices W and V. According to Equa-512

tion 3, for each initial condition z(0), the latent state at time t can513

be computed through integration, z(t) = z(0)+
∫ t

0 g(z(x), θODE)dx.514

Variational inference. We rewrite p(Xi(t)|zi(t),σ2,ψ) as 515

p(Xi(t)|zi(t0), θODE ,σ2,ψ). Assuming independence between 516

subjects, the marginal log-likelihood writes as: 517

L =
N∑
i

log
[
p(Xi(t)|θODE ,σ2,ψ)

]
=

N∑
i

log
[∫

p(Xi(t)|zi(t0), θODE ,σ2,ψ)p(zi(t0))dzi(t0)
]
.

[4]

For ease of notation, we drop the i index, and dependence on t 518

and t0 is made implicit. Within a Bayesian framework, we wish 519

to maximize L in order to obtain a posterior distribution for the 520

latent variable z. Since derivation of this quantity is generally not 521

tractable, we resort to stochastic variational inference to tackle the 522

optimization problem. We assume a N (0, I) prior for p(z), and 523

introduce an approximate posterior distribution q(z|X) (57), in 524

order to derive a lower-bound E for the marginal log-likelihood: 525

log p(X|θODE ,σ2,ψ) ≥ Eq(z|X)

[
log p(X|z, θODE ,σ2,ψ)

]
−D
[
q(z|X)|p(z)

]
= E,

[5]

where D refers to the Kullback-Leibler (KL) divergence. We
propose to factorize the distribution q(z|X) across modali-
ties such that, q(z|X) =

∏
m
q(zm|xm), where q(zm|xm) =

N (f(xm, φ1
m), h(xm, φ2

m)), is a variational Gaussian approxima-
tion with moments parameterized by the functions f and h. This
modality-wise encoding of the data enables to interpret each co-
ordinate of z as a compressed representation of the corresponding
modality. Moreover, the lower-bound simplifies as:

E =
∑
m

Eq(z|X)

[
log p(xm|z, θODE , σ2

m, ψm)
]
−D
[
q(zm|xm)|p(zm)

]
.

[6]

Details about the ELBO derivation and the computation of the 526

KL divergence are given in sections 3 and 4 of the Supplementary 527

Information. A graphical model of the method is also provided in 528

Figure S3, while Supplementary Algorithm 1 details the steps to 529

compute the ELBO. 530

Model optimization. Using the reparameterization trick (58), we can 531

efficiently sample from the posterior distribution q(z(t0)|X(t0)) 532

to approximate the expectation terms. Moreover, thanks to our 533

choices of priors and approximations the KL terms can be computed 534

in closed-form. In practice, we sample from q(z(t0)|X(t0)) to 535

obtain a latent representation z(t0) at baseline, while the follow-up 536

points are estimated by decoding the latent time-series obtained 537

through the integration of the ODEs of Eq 3. The model is 538

trained by computing the total ELBO for all the subjects at all 539

the available time points. The parameters ψ,φ1,φ2, θODE ,σ are 540

optimized using gradient descent, which requires to backpropagate 541

through the integration operation. 542

543

In order to enable backpropagation through the ODEs integration 544

we need to numerically solve the differential equation using only 545

operations that can be differentiated. In this work, we used the 546

Midpoint method which follows a second order Runge-Kutta scheme. 547

The method consists in evaluating the derivative of the solution at 548

(ti+1 + ti)/2, which is the midpoint between ti at which the correct 549

z(t) is evaluated, and the following ti+1: 550∫ ti+1

ti

g(z(x))dx ≈ h · g
(

z(
ti + ti+1

2
)
)

≈ h · g
(

z(ti) +
h

2
g(z(ti))

)
, h = ti+1 − ti.

[7]
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Therefore, solving the system of Equation 3 on the interval551

[t0, ..., t] only requires operations that can be differentiated,552

allowing to compute the derivatives of the ELBO with respect553

to all the parameters, and to optimize them by gradient descent.554

Moreover, in order to control the variability of the estimated555

latent trajectory z(t) due to the error propagation during556

integration, we initialized the weights of φ1 and φ2 such that557

the approximate posterior of the latent representation for each558

modality m at baseline was following a N (0, 0.01) distribution.559

Finally, we also tested other ODE solvers such as Runge-Kutta560

4, which gave similar results than the Midpoint method with a561

slower execution time due its more expensive approximation scheme.562

563

Concerning the implementation, we trained the model using the564

ADAM optimizer (59) with a learning rate of 0.01. The functions565

f, h and µm were parameterized as linear transformations. The566

model was implemented in Pytorch (60), and we used the torchdiffeq567

package developed in (61) to backpropagate through the ODE solver.568

Simulating the long-term progression of AD. To simulate the long-569

term progression of AD we first project the AD cohort in the latent570

space via the encoding functions. We can subsequently follow the571

trajectories of these subjects backward and forward in time, in572

order to estimate the associated trajectory from the healthy to their573

respective pathological condition. In practice, a Gaussian Mixture574

Model is used to fit the empirical distribution of the AD subjects’575

latent projection. The number of components and covariance type of576

the GMM is selected by relying on the Akaike information criterion577

(62). The fitted GMM allows us to sample pathological latent578

representations zi(t0), that can be integrated forward and backward579

in time thanks to the estimated set of latent ODEs, to finally obtain a580

collection of latent trajectories Z(t) = [z1(t), ..., zN (t)] summarising581

the distribution of the long-term AD evolution.582

Simulating intervention. In this section we assume that we computed583

the average latent progression of the disease z(t). Thanks to the584

modality-wise encoding of Section 1 each coordinate of the latent585

representation can be interpreted as representing a single data586

modality. Therefore, we propose to simulate the effect of an hypo-587

thetical intervention on the disease progression, by modulating the588

vector dz(t)
dt

after each integration step such that:589

(
dz(t)
dt

)∗
= Γ

dz(t)
dt

where, Γ =

γ1
. . .

γm

 . [8]

The values γm are fixed between 0 and 1, allowing to control the590

influence of the corresponding modalities on the system evolution,591

and to create hypothetical scenarios of evolution. For example, for592

a 100% (resp. 50%) amyloid lowering intervention we set γamy = 0593

(resp. γamy = 0.5).594

Evaluating disease severity. Given an evolution z(t) describing the
disease progression in the latent space, we propose to consider
this trajectory as a reference and to use it in order to quantify
the individual disease severity of a subject X. This is done by
estimating a time-shift τ defined as:

τ = arg min
t

||f(X,φ1)− z(t)||1

=
∑
m

|f(xm, φ1)− zm(t)|.
[9]

This time-shift allows to quantify the pathological stage of a subject595

with respect to the disease progression along the reference trajectory596

z(t). Moreover, the time-shift can still be estimated even in the case597

of missing data modalities, by only encoding the available measures598

of the observed subject.599
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Time-shift comparison and validation. We compared our estimated disease severity (Figure 2 Panel II in the manuscript) with12

the one obtained applying the monotonic Gaussian Process (GP) model of (1) from the state-of-the-art (Figure S1A). While13

both methods estimate significant time differences when going from healthy to pathological stages, our approach captures a14

larger temporal variability for both earlier and later stages of the disease, as shown in Figure S1B, highlighting a stronger15

separability across clinical stages.16

17

We also assessed the model on an independent testing cohort from the ADNI composed of 130 NL stable, 10 NL converters, 12518

MCI stable, 7 MCI converters, and 12 AD subjects which were not necessarily amyloid positive. It is important to note that no19

PET-FDG data was available for these subjects. We provide in Table S1 socio-demographic and clinical information for the20

testing cohort across the different clinical groups. Despite the fact that no FDG data was used to estimate the disease severity,21

we observe in Figure S2 that the method still exhibits good separating performances between clinical stages, coherently with22

the clinical status of the testing individuals.23
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Fig. S1. A: Distribution of the disease severity estimated by the monotonic GP method (1) on the training set. NL: normal individuals, MCI: mild cognitive impairment, AD:
Alzheimer’s dementia. B: Comparison of the disease severity estimated by our method (denoted as latent ODE) with respect to the one estimated by the monotonic GP.

Table S1. Baseline socio-demographic and clinical information for testing cohort (284 subjects for 2116 data points). Average values, standard
deviation in parenthesis. NL: normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s dementia. ADAS11: Alzheimer’s Disease
Assessment Scale-cognitive subscale, 11 items. AV45: (18)F-florbetapir Amyloid PET imaging. SUVR: Standardized Uptake Value Ratio.

NL stable NL converters MCI stable MCI converters AD
N 130 10 125 7 12

Age (yrs) 72 (6) 74 (8) 71 (8) 73 (9) 78 (6)
Education (yrs) 17 (2) 16 (2) 16 (3) 14 (3) 17 (2)

ADAS11 5.4 (2.8) 7.7 (4.1) 7.8 (3.3) 14.3 (5.2) 15.0 (6.7)
WholeBrain (cm3) 1063 (103) 1104 (98) 1054 (97) 966 (104) 1010 (108)

AV45 (SUVR) 0.9 (0.1) 1.0 (0.1) 1.0 (0.1) 1.1 (0.2) 1.2 (0.3)
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Fig. S2. Distribution of the disease severity estimated for the subjects of the testing set, relatively to the long-term dynamics of Figure 2 Panel II) left in the manuscript. NL:
normal individuals, MCI: mild cognitive impairment, AD: Alzheimer’s dementia.
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Simulated clinical endpoints. We provide in Table S2 the estimated values for each clinical score at predicted conversion time24

for the normal progression case when performing the simulations presented in Section Simulating clinical intervention.25

Table S2. Estimated mean (standard deviation) of the clinical outcomes at predicted conversion time for the normal progression case by
year of simulated intervention (100% and 50% amyloid lowering interventions). Results in bold indicate a statistically significant difference
between placebo and treated scenarios (p<0.01, two-sided t-test, 100 cases per arm). AD: Alzheimer’s dementia, ADAS11: Alzheimer’s
Disease Assessment Scale, MMSE: Mini-Mental State Examination, FAQ: Functional Assessment Questionnaire, RAVLT: Rey Auditory Verbal
Learning Test.

Amyloid lowering intervention 100%
Score per intervention time

Score
Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 10.7 (7.5) 13.4 (6.2) 15.7 (5.3) 17.0 (4.8) 17.3 (4.7) 17.5 (4.6) 17.6 (4.5) 17.7 (4.5)
MMSE 26.8 (3.0) 25.8 (2.5) 24.9 (2.2) 24.3 (2.0) 24.2 (1.9) 24.1 (1.9) 24.0 (1.8) 24.0 (1.9)
FAQ 4.6 (5.9) 6.7 (4.9) 8.4 (4.2) 9.5 (3.8) 9.8 (3.7) 10.0 (3.6) 10.1 (3.6) 10.1 (3.5)
RAVLT immediate 35.1 (11.0) 31.3 (9.0) 28.1 (7.7) 26.2 (7.0) 25.7 (6.7) 25.4 (6.6) 25.2 (6.5) 25.1 (6.4)
RAVLT forgetting (%) 63.2 (26.7) 71.8 (22.0) 79.1 (18.5) 83.8 (16.4) 85.0 (15.8) 85.8 (15.3) 86.4 (15.0) 86.6 (14.7)

Amyloid lowering intervention 50%
Score per intervention time

Score
Years to AD −12.5 −10 −7.5 −5 −4 −3 −2 −1

ADAS11 14.1 (5.7) 15.5 (5.1) 16.6 (4.8) 17.2 (4.6) 17.4 (4.5) 17.5 (4.5) 17.6 (4.5) 17.6 (4.5)
MMSE 25.5 (2.2) 25.0 (2.0) 24.5 (1.9) 24.2 (1.8) 24.1(1.8) 24.1 (1.8) 24.1 (1.8) 24.1 (1.8)
FAQ 7.2 (4.4) 8.3 (4.0) 9.2 (3.8) 9.7 (3.6) 9.8 (3.5) 9.9 (3.5) 10.0 (3.5) 10.0 (3.5)
RAVLT immediate 30.3 (8.2) 28.4 (7.4) 26.8 (6.9) 25.9 (6.6) 25.6 (6.5) 25.5 (6.4) 25.4 (6.3) 25.3 (6.3)
RAVLT forgetting (%) 74.8 (19.7) 79.2 (17.5) 82.8 (16.1) 85.1 (16.2) 85.7 (14.9) 86.0 (14.7) 86.3 (14.5) 86.5 (17.4)

Lower bound. We provide here the detailed derivation to obtain the ELBO of Equation 6 in the main manuscript.26

log p(X|σ2,ψ) = log
[ ∫

p(X|z, θODE ,σ2,ψ)p(z)dz
]

= log
[ ∫

p(X|z, θODE ,σ2,ψ)p(z)q(z|X)
q(z|X)dz

]
= log

[
Eq(z|X)

p(X|z, θODE ,σ2,ψ)p(z)
q(z|X)

]
Jensen
≥ Eq(z|X)

[
log p(X|z, θODE ,σ

2,ψ)p(z)
q(z|X)

]
= Eq(z|X)

[
log p(X|z, θODE ,σ2,ψ)

]
−D

[
q(z|X)|p(z)

]
= E .

[1]

Given that:27

p(X|z, θODE ,σ2,ψ) =
∏
m

p(xm|z, θODE , σ2
m, ψm), q(z|X) =

∏
m

q(zm|X), and, p(z) = N (0, I).

We obtain:28

E =
∑
m

Eq(z|X)

[
log p(xm|z, θODE , σ2

m, ψm)
]
−D

[
q(zm|xm)|p(zm)

]
. [2]

KL divergence. We have that:29

q(zm|X) = N (f(xm, φ1
m), h(xm, φ2

m)),
p(zm) = N (0, 1).

[3]
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We use the closed-form formula to calculate the KL divergence between two normal distributions:30

D
[
q(z|X)|p(z)

]
=

∑
m

D
[
q(zm|xm)|p(zm)

]
= 1

2
∑
m

[
− log(h(xm, φ2

m))− 1 + h(xm, φ2
m) + f(xm, φ1

m)2
] [4]

Graphical model. Figure S3 below provides the graphical model illustrating the method presented in Materials and Methods.31

2

ODE

Fig. S3. Graphical model of the proposed method.

ELBO computation. Algorithm 1 below details the steps to compute the ELBO for a given subject i at time t.32

Algorithm 1 Forward pass to compute the ELBO for a given subject i at time t.

1: function compute_elbo(X(t),X(t0), θODE ,ψ,φ,σ2)
For ease of notation we drop the i index in the pseudo-code.

2: Sample z(t0) ∼ q(z(t0)|X(t0)) =
∏
m
N (f(xm(t0), φ1

m), h(xm(t0), φ2
m)) . Baseline latent representation

(reparameterization trick).
3: Compute z(t) = MIDPOINT (z(t0), g, θODE , t) . Predict latent representation at time t by numerically solving the

ODEs system.
4: Compute Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ2

m, ψm)
]
≈ −Dm

2 log(2πσ2
m)− 1

2σ2
m
||xm(t)− µm(z(t))||2 .

Expectation term Equation 6.
5: Compute D

[
q(zm(t0)|xm(t0))|p(zm(t0))

]
= 1

2

[
− log(h(xm(t0), φ2

m))− 1 + h(xm(t0), φ2
m) + f(xm(t0), φ1

m)2
]

. KL
divergence Equation 6.

6: Compute E =
∑

m
Eq(z(t0)|X(t0))

[
log p(xm(t)|z(t), θODE , σ2

m, ψm)
]
−D

[
q(zm(t0)|xm(t0))|p(zm(t0))

]
.

7: Return E
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