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ABSTRACT
Correlated activity fluctuations in neocortex influence sensory responses and behavior.
Neural correlations reflect anatomical connectivity and change dynamically with cogni-
tive states, such as attention. Yet, how anatomical connectivity and cognitive states define
the population structure of correlations is not known. We measured correlations in single
cortical columns and found that the magnitude of correlations, their attentional modula-
tion and dependence on lateral distance are predicted by On-Off dynamics, synchronous
fluctuations in population activity across cortical layers. We developed a network model,
in which spatial connectivity correlates the On-Off dynamics across nearby columns. We
show that attentional inputs modulate the spatial extent of On-Off dynamics, resulting in
spatially non-uniform changes in correlations. We confirm this prediction in our colum-
nar recordings by showing that attentional modulation of correlations depends on lateral
distance. Our results reveal how heterogeneous spatial patterns of correlations arise from
the connectivity and network dynamics during attention.

Neocortical circuits spontaneously generate varying patterns of neural activity, which pro-
foundly influence sensory responses and behavior1–5. These endogenous activity fluctuations
are correlated across neural populations and are often quantified by correlations between pairs
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of neurons, called noise correlations6. Noise correlations are thought to reflect the anatomi-
cal circuit connectivity, and they are also dynamically influenced by behavioral and cognitive
states5, 7–9, in particular, during spatial attention10–14. Implications of noise correlations for pop-
ulation coding and behavior have been studied extensively15–19. Yet, how anatomical connectiv-
ity and cognitive states interact to define the structure of noise correlations across populations
is not well understood.

Spatial selective attention offers a rich experimental domain for studying the combined
influence of anatomical connectivity and cognitive factors on the population structure of noise
correlations. Changes in noise correlations during attention have been measured across differ-
ent anatomical dimensions, yielding heterogeneous results. Many studies of noise correlations
involved recordings from neurons in different cortical columns, e.g., using rectangular Utah
arrays which preferentially sample from laterally separated neurons in more superficial cor-
tical layers10, 12 (Fig. 1a). These studies found that noise correlations substantially decreased
when attention was directed to the receptive fields (RFs) of recorded neurons10–12. More recent
studies used linear multi-electrode arrays to measure attentional modulation of noise correla-
tions within single columns (Fig. 1a) and found effects that varied with layer and area. In V4,
noise correlations decreased during attention only in input layers during stimulus-evoked but not
spontaneous activity, and no significant changes were observed in superficial and deep layers13.
In V1, noise correlations decreased only in supragranular layers with no significant changes in
granular and infragranular layers14. In both areas, the magnitude of changes in noise correla-
tions within columns appeared an order of magnitude smaller compared to a sizable reduction of
correlations across columns. These data suggest that attentional modulation in correlated vari-
ability is not uniform across anatomical dimensions, but depends on lateral distance and cortical
layer. The network mechanisms underlying these heterogeneous modulations are unknown.

We hypothesized that heterogeneous changes in noise correlations arise from the modu-
lation of On-Off dynamics propagating through spatially structured cortical connectivity. The
On-Off dynamics are spontaneous transitions between phases of vigorous (On) and faint (Off)
spiking that occur synchronously across layers of neocortex20, 21, and are observed in visual cor-
tex of behaving monkeys22, 23 (Fig. 1b). The On-Off dynamics reflect the global cortical state
associated with arousal and are also modulated locally within retinotopic maps during selective
attention22, 23. We analyzed spiking activity recorded from single columns in V4 and found that
the scale of On-Off dynamics predicted the magnitude of noise correlations and their depen-
dence on lateral distance.

To explain the spatial patterns of noise correlations, we developed a network model of
interacting columns with spatially structured connectivity. The key mechanism in our model
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is On-Off dynamics that propagate across columns to form spatiotemporal population activ-
ity which shapes the structure of noise correlations. Attentional inputs shift the statistics of
local On-Off dynamics, which effectively regulates the efficacy of lateral interactions among
columns. As a result, attentional inputs modulate the spatial extent of On-Off dynamics, lead-
ing to spatially non-uniform changes of noise correlations.

Our model predicts that, during attention, the largest changes in noise correlations occur at
intermediate lateral distances (across columns) while within-column changes can be very small.
This contrasts with other recently proposed models predicting that attentional changes of noise
correlations are spatially uniform24 or monotonically diminish with lateral distance25. To test
these competing predictions, we analyzed how changes of noise correlations depend on lateral
distance in columnar recordings in V4. Whereas changes in noise correlations were vanish-
ingly small at short distances, they became progressively larger at longer distances, consistent
with predictions of our model. Our results provide a unifying framework that explains how
heterogeneous patterns of correlated variability emerge within neocortex through interactions
of network dynamics and cognitive state.

Results

On-Off dynamics predict the magnitude of noise correlations. We measured spiking activ-
ity from all layers within single columns of the visual cortical area V4. Spiking activity was
recorded with 16-channel linear array microelectrodes (Fig. 1a) arranged so that receptive fields
(RFs) on all channels largely overlapped22, 26. During recordings, monkeys performed a spatial
attention task, which required detecting changes in the orientation of a visual stimulus in the
presence of distractor stimuli. On each trial, an attention cue indicated the stimulus that was
most likely to change. In the attention condition, the cue directed animal’s attention to the RF
stimulus. In the control condition, the cue directed attention to a location outside the RFs of
recorded neurons (Methods).

In our columnar recordings, we examined the relationship between the scale of ongoing
On-Off dynamics and the magnitude of noise correlations. We quantified the On-Off dynamics
by fitting a two-phase Hidden Markov Model (HMM) to the population spiking activity22, 23

(Fig. 1b, Methods). The HMM models the dynamics of a latent population state that switches
between two phases, On and Off, to capture synchronized changes in firing rates across neurons.
Spikes on recorded channels were modeled as inhomogeneous Poisson processes with different
mean rates during the On and Off phases. The variance explained by a two-phase HMM (R2)

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279893
http://creativecommons.org/licenses/by-nd/4.0/


varied across recording sessions and this variation was tightly correlated with the average noise
correlation (Fig. 1c). For most recording sessions (31 total, 67%), the two-phase HMM was the
most parsimonious model among HMMs with 1 or up to 8 possible phases22. For the remaining
15 (33%) sessions, a one-phase HMM (i.e. constant firing rates without On-Off transitions) was
the most parsimonious model. These one-phase recordings consistently showed lower average
noise correlations of multi-unit (MU) activity (mean 0.13) than two-phase recordings (mean
0.32), with a pronounced 59% difference on average (Fig. 1c). Trial-to-trial variability of MU
activity, quantified by the Fano factor (FF, the ratio of the spike-count variance to the mean), was
also lower in one-phase (mean FF = 1.5) compared to two-phase (mean FF = 2.3) recordings
(35% difference). On the other hand, the mean firing rates of MUs were similar between the
one-phase (108 Hz) and two-phase (114 Hz) recordings (5% difference). Thus the scale of
On-Off dynamics predicted the overall magnitude of correlated variability in our data, which
implicates On-Off dynamics as a major source of noise correlations in visual cortex.

Attentional modulation of noise correlations in single columns. We quantified attention-
related changes in noise correlations within single columns, separately in superficial (which
included granular and supragranular) and deep (infragranular) cortical layers. We combined the
granular and supragranular layers because they showed similar changes in noise correlations
(Supplementary Fig. 1). In each session, data from each of the recording channels were assigned
laminar depth, relative to a common current source density marker26. We found that noise
correlations were slightly reduced in superficial and enhanced in deep layers in the attention
relative to control conditions (Fig. 1d). To quantify these changes, we calculated a standard
modulation index MIcorr, which was the difference between noise correlations in the attention
and control conditions divided by the sum. In two-phase recordings, the mean MIMU

corr for MU
was−0.029 in superficial layers (p < 10−5, Wilcoxon signed rank test, n = 5, 088) and 0.022 in
deep layers (p = 0.004, Wilcoxon signed rank test, n = 6, 128) (see Supplementary Tables 1,2
and Supplementary Fig. 2 for a full summary of results). The magnitude and laminar profile
(Supplementary Fig. 1) of these noise-correlation changes are consistent with other laminar
recordings in V413.

These average changes of noise-correlations within single columns were much smaller
than the robust and sizable reduction of noise correlations previously reported for neurons
in different columns10–12, 24. For comparison, a previous study in V4 using rectangular Utah
arrays10 found that the mean MIMU

corr was −0.29, which is an order of magnitude larger than
in our columnar recordings. Despite this striking difference in the modulation of noise correla-
tions, the attentional modulation of firing rates and trial-to-trial variability of individual neurons

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279893
http://creativecommons.org/licenses/by-nd/4.0/


was similar in our data and the previous study. In two-phase recordings, the mean MIMU
rate was

0.023 in superficial layers (p < 10−10, Wilcoxon signed rank test, n = 1, 752) and 0.018 in deep
layers (p < 10−10, Wilcoxon signed rank test, n = 2, 216), which is more comparable to the
previous study10. Similarly, in two-phase recordings, the mean modulation index of Fano factor
MIMU

FF was −0.010 in superficial layers (p < 10−10, Wilcoxon signed rank test, n = 1, 752)
and −0.007 in deep layers (p < 10−10, Wilcoxon signed rank test, n = 2, 216), comparable
to the previous study10. The results were similar in one-phase recordings (Supplementary Ta-
ble 1, 2). These results suggest that attention-related changes in noise-correlations depend on
the relative positions of neurons in the cortex, with sizable changes across columns and minute,
layer-dependent changes within columns. Since the striking difference in modulation of noise
correlations is not accounted for by differences in the activity of individual neurons, its likely
reflects the spatial structure of population dynamics across the cortex.

Network model of interacting cortical columns. We hypothesized that heterogeneous mod-
ulations of noise-correlations across layers and columns arise from the On-Off population dy-
namics and spatial structure of anatomical connectivity in the cortex. To test this hypothesis,
we developed a network model of interacting columns with spatially structured connectivity
(Fig. 2). The model consists of units interconnected in two parallel two-dimensional lattices,
corresponding to the superficial and deep cortical layers (Fig. 2a). Each unit represents a local
population of neurons within one layer—superficial or deep—of a single column. Each unit is
connected to its four neighboring units in the same layer, mimicking the local structure of hori-
zontal connectivity in the cortex. Visual stimuli and attention are modeled by external inputs to
local groups of units.

The key mechanism generating correlated variability in our model is the stochastic On-
Off dynamics of the population activity in single columns. In visual cortex of behaving mon-
keys, the durations of On and Off episodes are distributed exponentially with a timescale of
about 100 ms22, 23, which indicates that the On and Off phases are metastable with transitions
driven by noise27. Accordingly, we model the dynamics of each unit in the network by a two-
dimensional dynamical system with two stable fixed points, corresponding to the On and Off
phases (Fig. 2b). This dynamical system is a phenomenological mean-field description of a pop-
ulation of excitatory neurons coupled by the vertical recurrent connectivity within the column.
The first dynamical variable r(t) represents the mean firing rate of the population. It receives
a recurrent self-coupling F (r) and a negative feedback from the second dynamical variable
a(t) representing firing-rate adaption21, 27. The dynamical system is driven by white noise ξ(t),
which causes stochastic transitions between the On and Off fixed points. Each unit also receives
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external currents Istim(t) and Iatt(t), which model the bottom-up inputs from visual stimuli and
top-down inputs during attention, respectively.

The dynamics of individual units reproduce the On-Off transitions in single columns and
their modulation during attention. As in the data from visual cortex22, 23, the durations of On and
Off episodes in the model are irregular and exponentially distributed (Fig. 2c). In this regime,
the dynamics of each unit can be reduced to a two-state Markov process switching between the
On and Off phases (Supplementary Note 2.1). The Off-to-On (α1) and On-to-Off (α2) transition
rates of the Markov process set the average durations of the On and Off episodes: τon = 1/α2

and τoff = 1/α1. Consistent with this description, a two-state HMM provides the most parsimo-
nious fit of the On-Off dynamics in our two-phase recordings. Further, our model captures the
increase of On-episode durations during attention as observed in the data22, 23. During attention,
a local group of units representing the attended RFs receives a small excitatory input Iatt. This
attentional input slightly shifts the r-nullcline (Fig. 2b) elevating the threshold for transition-
ing from the On to Off fixed point, which reduces the On-to-Off transition rate of the Markov
process and results in longer average On-episode durations (Fig. 2c).

The horizontal connectivity in the network correlates the On-Off dynamics across units
in the lateral dimension. Each unit’s firing-rate variable r(t) receives a recurrent excitatory
input Irec from its four neighbors on the lattice. As a result, the On-Off dynamics of each
unit are influenced by the activity of its neighbors. The more neighbors in the On phase, the
larger is the excitatory input Irec, which elevates the threshold for On-to-Off and lowers the
threshold for Off-to-On transitions. In the description of a two-state Markov process, this is
equivalent to a dependence of the Off-to-On and On-to-Off transition rates on the On/Off phases
of the neighbors: α1 + βS± and α2 − βS± (Supplementary Note 2.3). Here, the variable
S± indicates the number of neighbors in the On phase at each time, and β is the effective
coupling strength that depends on the parameters of the dynamical system as well as on external
inputs (Supplementary Note 2.3). The reduced network of coupled binary On-Off units follows
Glauber dynamics28, allowing us to calculate noise correlations analytically in our model. In
simulations, both the dynamical-system and binary-unit versions of the network exhibit similar
spatiotemporal dynamics, where the On/Off phases form local spatial clusters (Fig. 2d).

We model two sources of spiking variability: the On-Off fluctuations of the population
activity and stochasticity of spike generation in individual neurons21, 29. We simulate spikes
of individual neurons as inhomogeneous Poisson processes with different mean rates during
the On and Off phases generated by the network (Fig. 2e). This doubly-stochastic description
coincides with the assumptions of the HMM used to fit the experimental data. We match the
model parameters to the experimental data by fitting the data with the HMM, which provides us
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the estimates of the On-Off transition rates (α1 and α2) and the On and Off firing rates (ron and
roff) for all MUs and single units (SUs) in each recording session and task condition (Fig. 2f).
We then use these parameters to predict noise correlations and compare these predictions with
the values measured for the same neuron pairs in the data.

The model accounts for correlated variability in single columns. We used the two-phase
recordings to test how accurately the model predicts changes of correlated variability in single
columns during attention. In the model, the On-Off dynamics are the source of correlations
between responses of individual neurons. All neurons in the population represented by a single
unit (column) follow the same shared sequence of On and Off episodes. The spiking responses
differ across neurons because of the independent Poisson noises as well as differences in their
On and Off firing rates. We derived analytical formulas for the Fano factor and noise correla-
tions, measured over an arbitrary time-window T , as functions of the model parameters: the
On-Off transition rates and the On and Off firing rates of each neuron (Methods and Supple-
mentary Note 2.1). The model analytically predicts the dependence of Fano factor and noise
correlations on the measurement time-window6, indicating that this dependence is determined
by the timescales of On-Off dynamics (Supplementary Note 2.1). We used these analytical for-
mulas with the parameter values estimated from the data by the HMM to predict the FF and
noise correlations for, respectively, each neuron and neuron pair in our dataset. We compared
these model predictions with direct measurements from the experimental data.

Our model makes a specific prediction that the key factor determining the magnitude of
FF and noise correlations in single columns is the On-Off firing-rate difference ∆r = ron− roff.
Specifically, FF is directly proportional to ∆r, and the noise correlation between neurons i and j
is proportional to the product ∆ri∆rj (Methods and Supplementary Note 2.1). This dependence
on ∆r is intuitive, because the source of correlations within a column is the shared On-Off
switching, hence the stronger a neuron is modulated by the On-Off dynamics (the greater is ∆r),
the stronger it will be correlated with other neurons in the same column. The dependence of
FF and noise correlations on ∆r is evident in an example recording (Fig. 3a,b), where different
MUs exhibit a variety of On-Off firing-rate differences ∆r. The FF ranges broadly across MUs,
from ∼ 1 up to ∼ 9, and this variation is very well predicted by ∆r (Fig. 3a). Similarly, MU
pairs with the largest product ∆ri∆rj also exhibit the largest noise correlations (Fig. 3b). While
both FF and noise correlations also weakly depend on the On-Off transition rates, the On-Off
firing-rate difference is the main factor defining the broad distributions of these quantities in
single columns (Supplementary Fig. 3).

As a consequence, the model also predicts that the changes in FF and noise correlations

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279893
http://creativecommons.org/licenses/by-nd/4.0/


during attention are proportional to the changes in ∆r and ∆ri∆rj , respectively. This prediction
was clearly borne out by the data: the measured change in FF had a strong trend as a function
of the change in ∆r (y-axis vs. color-axis in Fig. 3c), and the measured change in noise correla-
tions had a strong trend as a function of the change in ∆ri∆rj (y-axis vs. color-axis in Fig. 3d).
Moreover, changes in the FF and noise correlations measured from the data were accurately
matched by the model predictions (y- vs. x-axis in Fig. 3c,d). The attention-related changes
of noise correlations range widely across the population, with noise correlations substantially
reduced and enhanced in many pairs. This entire broad distribution is accurately matched by
the analytical predictions of the On-Off dynamics model in single columns. Despite substantial
changes in many pairs, the average change of noise correlations in single columns is near zero
(Fig. 1b), since the changes of ∆ri∆rj are broadly distributed but close to zero on average.
Thus, our model of On-Off dynamics explains the observed changes in correlated variability
during attention in single columns.

Decay of noise correlations with lateral distance. Next, we analyzed the dependence of noise
correlations on the lateral distance in our laminar recordings and in the network model. Previous
studies in the visual cortex found that noise correlations decrease with the lateral distance24, 30, 31.
These studies used multi-electrode arrays with lateral spacing between electrodes ranging from
∼0.35 to 4 mm, i.e. sampling distant neuron pairs in different columns. With the laminar record-
ings, we tested how noise correlations depend on the lateral distance over a much shorter range
of distances within single or nearby columns. We leveraged the fact that laminar recordings
generally exhibit slight horizontal shifts due to variability in the penetration angle (Fig. 4a). As
a surrogate for horizontal displacements between pairs of channels, we used distances between
centers of their RFs. To estimate the range of physical distances in the cortex spanned by our
laminar recordings, we converted the RF-center distances to cortical distances using the cortical
magnification factor for each eccentricity32. The range of distances spanned by our recordings
was ∼ 4− 6 dva or ∼ 1.5 mm (Methods and Supplementary Fig. 4).

We found that noise correlations decreased with lateral distance in two-phase but not in
one-phase recordings. In two-phase recordings, noise correlations monotonically decreased
with the RF-center distance both in superficial and deep layers (Fig. 4b, linear regression, one-
sided t-test, slope −0.09 ± 0.01, p < 10−8 in superficial layers, slope −0.04 ± 0.01, p < 10−3

in deep layers). With the conversion to cortical distances32, noise correlations also decreased
continuously with the lateral cortical distance over . 1 mm range (Supplementary Fig. 4).
Note that most pairs in our data were at very short distances, with the median estimated cortical
distance 0.72 mm. Thus the decay of noise correlations with lateral distance spans all distances
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within nearby and across distant columns. In contrast, noise correlations did not decrease with
the RF-center distance in the one-phase recordings (Fig. 4c, linear regression, one-sided t-test,
slope −0.010 ± 0.008, p = 0.1 in superficial layers, slope 0.014 ± 0.004, p = 0.997 in deep
layers). These results suggest that On-Off dynamics give rise to the lateral distance-dependence
of noise correlations.

In our network model, the dependence of noise correlations on the lateral distance arises
from the spatiotemporal On-Off dynamics. Whereas all neurons represented by a single unit in
the network follow the same shared sequence of On-Off phases, neurons represented by differ-
ent units follow their respective On-Off sequences. The On-Off dynamics are correlated across
nearby units in the lateral dimension due to horizontal connectivity in the network. Since the
horizontal connections are spatially local and relatively weak, the synchrony of On-Off dynam-
ics is not global across the entire network, but localized to a finite range of lateral distances.
Thus the On/Off phases form spatial clusters with a characteristic spatial length scale, and be-
yond this spatial scale the On-Off phases are uncorrelated. This network mechanism leads to a
continuous decrease of noise correlations with the lateral distance in the model (Fig. 4d).

Using the binary-unit reduced network model, we derived an analytical formula for the
dependence of noise correlations on the lateral distance d (Methods). Our calculations show
that noise correlations decay with the distance exponentially as A exp(−d/L). This formula
describes noise correlations both within and across columns. Within columns (d = 0), the
formula reduces to the pre-factorA = A(α1, α2,∆ri,∆rj), which accounts for the dependence
of noise correlations on the On-Off transition rates and the On-Off firing-rate difference, as
described in the previous section. Across columns (finite d > 0), the formula accounts for
the spatial structure of noise correlations with the exponential discount factor exp(−d/L). The
space-constant L of this exponential decay, termed correlation length, depends on the On-Off
transition rates and on the effective coupling strengths β between units in the network: L =√
β/(α1 + α2) (in dimensionless units of the lattice constant, see Methods and Supplementary

Note 2.3). This analytical result agrees well with simulations of the full dynamical-system
network model (Fig. 4d).

The exponential decay of noise correlations with distance in our model, characterized
by the correlation length L, is consistent with the decrease in noise correlations observed
over a wide range of cortical distances spanned by our laminar (Fig. 4b) and previous lat-
eral recordings24, 30, 31 from the primate visual cortex. Our model can also reconcile the decay
of noise correlations with distance in lateral recordings24, 30, 31 with the lack of distance depen-
dence in the one-phase recordings. With some heterogeneity, if a random fraction of units in
the model does not exhibit On-Off transitions (due to a more stable fixed point), the activity of
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these one-phase units is not correlated with other units at all distances. Thus lateral sampling
from a mixture of one-phase and two-phase phase units would uniformly lower the average of
noise correlations without affecting their distance dependence.

Differential changes in noise correlations arise from attentional modulation of the corre-
lation length. In our network model, attentional inputs restructure the spatiotemporal On-Off
dynamics, leading to differential changes of noise correlations within versus across columns.
In the network simulations, a local group of units receives an attentional input Iatt, while other
units without this input (Iatt = 0) are in the unattended control condition (Fig. 2d). With an
excitatory attentional input (Iatt > 0), average noise correlations between neurons in the same
column change very little relative to control (MIcorr = −0.03), while noise correlations between
neurons in different columns are substantially reduced (MIcorr = −0.28, Fig. 5a). These results
replicate the order-of-magnitude difference of MIcorr observed between laminar versus lateral
recordings from the visual cortex. We repeated simulations for a range of excitatory (Iatt > 0)
and inhibitory (Iatt < 0) attentional inputs. The excitatory inputs reduced noise correlations,
whereas inhibitory inputs increased noise correlations, but in all cases the average changes of
noise correlations within columns were very small compared to sizable changes across columns
of the network (Fig. 5b).

To reveal the mechanism leading to differential changes of noise-correlations within ver-
sus across columns, we examined how attentional inputs affect the dependence of noise corre-
lations on the lateral distance in our network. In simulations, excitatory attentional inputs pro-
duce a faster decay of noise correlations with lateral distance, which corresponds to a shorter
correlation length (Latt < Lctl, Fig. 5c). Due to this faster spatial decay, noise correlations at
intermediate lateral distances (finite d > 0) are considerably lower in attention relative to con-
trol condition, even though changes of noise-correlations within columns (d = 0) are small.
Inhibitory attentional inputs, on the other hand, produce a slower decay of noise correlations
with lateral distance, which corresponds to a longer correlation length (Latt > Lctl) and results
in higher noise correlations at intermediate lateral distances. Thus changes of the correlation
length L produce sizable changes of noise correlations at intermediate lateral distances (across
columns) even when noise correlations within columns do not change.

To understand the network mechanism by which attentional inputs modulate the correla-
tion length, we leveraged the analytical formula L =

√
β/(α1 + α2). In the dynamical-system

model, an excitatory attentional input shifts the r-nullcline, which increases Off-to-On (α1) and
decreases On-to-Off (α2) transition rates (Fig. 2b,c). Since α1 and α2 change only moderately
and in opposite directions, their sum remains nearly constant (Fig. 5d). Therefore changes of the
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correlation length L are mainly driven by changes in the effective coupling strength β, which
decreases steeply with an increasing attentional input (Fig. 5e). The effective coupling strength
β decreases because an excitatory attentional input stabilizes the On fixed point, thereby effec-
tively reducing the efficacy of the lateral recurrent inputs to drive the On-Off transitions. Vice
versa, an inhibitory attentional input makes the On fixed point less stable, thereby enhancing the
relative efficacy of the lateral recurrent inputs and hence extending the spatial correlation length
in the network (Supplementary Note 3.2). Thus the attentional input modulates the correlation
length by regulating the relative efficacy of lateral interactions between columns33, which leads
to differential changes of noise correlations within versus across columns.

The model predicts distance-dependent changes of noise correlations. The major changes
of noise correlations in our model are driven by changes of the correlation length L. The
model therefore makes a specific prediction that changes of noise correlations during atten-
tion are not uniform across space. Noise correlations decay exponentially with the lateral dis-
tance, with different decay rates in attention and control conditions. Hence the spatial profile of
noise-correlation changes is defined by the difference of two exponential decays: exp(−d/Latt)

and exp(−d/Lctl). At very short lateral distances (within columns), average changes of noise-
correlations are minute (Fig. 1d). At very long lateral distances, the average changes are negligi-
ble, because the overall magnitude of noise correlations vanishes. The largest changes of noise
correlations are predicted to occur at intermediate lateral distances, where the difference be-
tween two exponential decays dominates. Thus the network mechanism in our model predicts
a non-monotonic dependence of noise-correlation changes on lateral distance (Fig. 6a). This
prediction contrasts with predictions of recently proposed alternative models, which instead
predict that attention-related changes of noise correlations are spatially uniform24 or monotoni-
cally diminish with lateral distance25 (Supplementary Note 3). Therefore examining the spatial
profile of noise-correlation changes in the data could distinguish among network mechanisms
these alternative models postulate.

We analyzed how changes of noise correlations during attention depend on the lateral
distance (estimated by the RF-center distance) in our laminar recordings. As predicted by
our model, changes of noise correlations in the two-phase recordings were not uniform across
space. Changes of noise correlations were smallest at very short lateral distances and became
progressively greater at longer distances, with opposite trends in the superficial and deep layers
(Fig. 6b). In the superficial layers, noise correlations decreased during attention, with greater re-
duction at longer distances (linear regression, one-sided t-test, slope−0.017±0.004, p < 10−3).
The extrapolation of this trend to intermediate lateral distances (1 6 d 6 4 mm) is consistent
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with a robust reduction of noise correlations during attention observed in Utah-array record-
ings, which also sample from superficial layers10, 12. In the deep layers, the attentional effects
on noise correlations were reversed from that in superficial layers (linear regression, one-sided
t-test, slope 0.006 ± 0.004, p = 0.06; t-test for slopes superficial versus deep: p = 0.6 · 10−3).
In contrast, changes of noise correlations did not depend on lateral distance in the one-phase
recordings (Fig. 6c, linear regression, t-test, slope −0.0005 ± 0.0061, p = 0.93 in superficial
layers and slope −0.01 ± 0.01, p = 0.35 in deep layers). These results indicate that On-
Off dynamics give rise to distance-dependence of noise-correlation changes during attention.
The spatial profile of noise-correlation changes in two-phase recordings is consistent with our
network mechanism, but inconsistent with the previously proposed models, which predict ei-
ther spatially uniform24 or monotonically diminishing changes with greatest changes at zero
distance25. The observed spatial profiles of noise-correlation changes indicate that the correla-
tion length decreases in superficial and increases in deep layers, which suggests that superficial
and deep layers receive different modulatory inputs during attention34.

Discussion

Our results show that On-Off dynamics are a major source of correlated variability in the visual
cortex. We found that On-Off dynamics predicted the magnitude of noise correlations, their
attentional modulation and dependence on lateral distance. The average changes of noise cor-
relations during attention were very small within single columns of the visual area V4. Noise
correlations slightly decreased in superficial and increased in deep layers, but the changes were
an order of magnitude smaller than a robust and sizable reduction of noise correlations between
neurons in different columns. Since noise correlations strongly impact the amount of sensory
information encoded by the population15–19, a reduction of noise correlations is thought to be
a major contributor to the improved psychophysical performance during attention10. Our re-
sults show, however, that changes of noise correlations are not uniform: their magnitude and
sign depend on the relative anatomical positions of neurons within layers and columns of the
visual cortex. These heterogeneous changes of noise correlations may reflect unique contribu-
tions to behavioral improvements from different functional groups of neurons defined by their
anatomical positions within the circuit.

To explain differences in attention-related changes of noise correlations within versus
across columns, we developed a network model of interacting cortical columns. The key mech-
anism generating correlated variability in the model is On-Off dynamics, metastable transi-
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tions between the high and low firing-rate fixed points in single columns. Spatially structured
horizontal connectivity in the network correlates On-Off dynamics across nearby columns to
produce an exponential decay of noise correlations with lateral distance, characterized by the
correlation length. Attentional inputs restructure the spatiotemporal On-Off dynamics and mod-
ulate the correlation length, which results in distance-dependent changes of noise correlations.
The model accurately captures attention-related changes of noise correlations in our data. More-
over, it makes a testable prediction that greatest changes of noise correlations occur at interme-
diate lateral distances. Consistent with this prediction, we found that the magnitude of noise-
correlation changes gradually increased with lateral distance in our laminar recordings. This
experimental finding is not consistent with other models which predict that changes of noise
correlations are spatially uniform24 or monotonically diminish with lateral distance25.

Mechanisms generating correlated variability in recurrent networks. Several mechanisms
were proposed to explain how correlated fluctuations arise in cortical networks. There are
two general classes of models: one relies on external shared variability and another generates
shared variability via intrinsic network dynamics. In models with external shared variability,
the source of correlated fluctuations is assumed to be outside the network, and the network
merely filters the correlated input noise25, 35, 36. In most of these models, the mechanism is based
on a spatial connectivity structure that locally breaks the excitation-inhibition balance. The
classical balanced network model with random connectivity37, 38 operates in an asynchronous
regime, where the tight excitation-inhibition balance cancels any input correlations resulting in
zero average noise correlations39. The spatial connectivity structure, where recurrent inhibition
is broader than feedforward excitation, breaks the balance locally, hence the input correlations
cannot be canceled resulting in positive average noise correlations35, 36. However, to match the
experimentally observed temporal and spatial scales of correlations, all of these models have to
assume ad hoc spatiotemporal structure of the input noise25, 35, 36.

The second class of models can generate shared variability internally. One mechanism is
based on breaking stability in some spatial Fourier modes in a spatially organized network. For
example, in a two-dimensional balanced network with slow inhibitory kinetics, shared fluctua-
tions arise from instability at some spatial frequency that generates rate chaos24. Similarly, in
a one-dimensional balanced ring model, strong correlations arise from a feed-forward structure
in some Fourier modes of connectivity40. However, in these models correlations arise from
fluctuations around a global fixed point with a timescale defined by the mismatch between exci-
tatory and inhibitory synaptic time-constants, i.e. just a few milliseconds. This fast timescale is
inconsistent with data as fluctuations of cortical activity occur on a timescale of about hundred
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milliseconds22, 41.

An alternative mechanism that can account for the slow timescale of cortical fluctuations
is based on multi-stability. In this case, slow correlated fluctuations arise from stochastic tran-
sitions between multiple fixed points in the network. Multi-stability can result from clustered
excitatory connectivity, where each cluster corresponds to a fixed-point attractor42. Further,
bistability between high and low firing-rate attractors can arise in unstructured networks with
strong recurrent excitation and slower negative feedback such as firing-rate adaptation21, 27, 43, 44

or short-term synaptic depression45. The models with multi-stability capture the slow timescale
of cortical fluctuations and produce realistic noise correlations21, 27, 44. However, the multi-stable
networks studied previously were not endowed with a spatial connectivity layout akin to organi-
zation of cortical networks, hence they do not produce any spatial structure of noise correlations.

To account for both the slow timescale and spatial structure of noise correlations in the
visual cortex, our network model combines local bistable On-Off dynamics with spatially or-
ganized connectivity. In our model, correlated variability arises from metastable transitions be-
tween the On and Off fixed points, and not from fluctuations around a single global attractor25.
Our results suggest that a theory of noise correlations in the visual cortex should incorporate
both the anatomical connectivity structure of visual areas as well as local bistability of popula-
tion dynamics in single columns.

Mechanisms of attentional modulation of noise correlations. Recurrent network models
were previously developed to suggest possible circuit mechanisms that produce a reduction of
noise correlations during attention24, 25, 46. These models are based on a dynamical mechanism,
where the network operates around a global fixed point and attentional inputs increase the sta-
bility of this fixed point leading to suppression of correlated fluctuations. Specifically, in the
network with intrinsically generated shared variability, the stability of the operating point can
be increased by up-regulating activities of inhibitory neurons24. However, elevated inhibition
reduces firing rates of excitatory neurons, which contradicts attentional enhancement of firing
rates in experiments. In the network filtering external noise, the stability of the global fixed
point can be increased by excitatory inputs when the network operates in inhibition dominated
regime25. In this scenario, an excitatory input increases effective lateral connectivity, which
suppresses the transmission of the correlated input noise (Supplementary Note 3.4).

The mechanism we propose differs from these previous models. First, we show that a
reduction of noise correlations during attention is not universal. Therefore, a network mecha-
nism should account for heterogeneous changes of noise correlations across different anatom-
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ical dimensions. Second, the mechanism in our model is based on local bistability of On-Off
dynamics in single columns. Attentional inputs change the stability of the On and Off fixed
points, which effectively modulates the efficacy of lateral interactions across the network lead-
ing to changes of the correlation length. This mechanism is fundamentally distance-dependent,
as the major changes of noise correlations in our model are driven by changes of the corre-
lation length (Supplementary Note 2.3, 3.2). As a consequence, we find that in Fourier space
the lower spatial frequency modes contribute most to noise-correlation changes (Supplementary
Note 3.2). This result partially agrees with the previous model24, where the dominant part of
noise-correlation changes arises from zero spatial frequency mode, which however, predicts a
spatially uniform modulation of noise correlations. In contrast, contributions from higher spa-
tial frequency modes are not negligible in our model. A combination of all spatial frequency
modes generates a non-monotonic profile of noise-correlation changes in lateral dimension, a
prediction that was confirmed in our data.

Several biophysical substrates could mediate the network mechanism of attentional mod-
ulation in our model. Top-down projections from frontal cortical areas47, 48 can provide tempo-
rally and spatially precise inputs to drive fast and local modulation of On-Off dynamics in the
visual cortex. Neuromodulatory inputs can also mediate effects of attention49 and can influence
On-Off dynamics by modulating neural excitability and firing-rate adaptation50. Further, lam-
inar distribution of top-down inputs34 and of neuromodulation, combined with layer-specific
horizontal connectivity could account for the differential modulation of noise correlations in
superficial and deep layers that we observed. Identifying precise mechanisms by which these
multiple biophysical components interact within a columnar microcircuit is an important direc-
tion for future work.

Methods

Behavior and electrophysiology. Experimental procedures have been described previously22, 51.
Two male monkeys (Macaca mulatta, 8− 12 kg) were used in experiments. Experimental pro-
cedures were in accordance with NIH Guide for the Care and Use of Laboratory Animals, the
Society for Neuroscience Guidelines and Policies, and Stanford University Animal Care and
Use Committee.

In the attention task, the monkey reported cued orientation changes of visual stimuli with
an antisaccade response. On each trial, a small central cue indicated the stimulus that was most
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likely to change. The cued stimulus was therefore a target of covert attention. The monkeys
reported stimulus changes with an antisaccade to the location opposite to the change, which
was therefore a target of overt attention due to anticipation of antisaccadic response22, 51. Mod-
ulations of neural responses in V4 were highly similar during the covert and overt attention,
including changes in firing rates, spiking variability and noise correlations22, 51, and therefore
we combined the covert and overt attention conditions in our analyses.The monkey initiated
each trial by fixating a central fixation dot on the screen. Within several hundred milliseconds,
four peripheral stimuli appeared (static Gabor patches: oriented black and white gratings in a
circular Gaussian aperture). After a short delay, the attention cue appeared: a short line orig-
inating at the fixation dot and extending in the direction of one of the four stimuli, randomly
chosen on each trial with equal probability. The cue indicated with ∼ 90% validity which of
the four stimuli, if any, would change on each trial. After a post-cue period of 600− 2, 300 ms,
all stimuli synchronously disappeared for a brief interval and then reappeared. On half of the
trials, one of the four stimuli reappeared with a changed orientation (i.e. rotated in place), and
the monkey was rewarded for performing a saccadic eye movement to the location opposite to
the changed stimulus. On the other half of the trials, all stimuli reappeared with the same orien-
tations as they had before disappearing, and the monkey was rewarded for maintaining fixation
on the central dot.

While monkeys performed the attention task, recordings were made in the visual area V4
with a 16-channel linear array microelectrodes22, 51. The total length of array is 2.25 mm, and
the spacing between electrical contacts is 150 µm. Recordings were targeted with MRI to be
as perpendicular to cortical layers as possible so as to maximize the overlap of receptive fields
(RFs) of recorded neurons. Each of the recording channels were assigned laminar depth relative
to a common current source density marker as described previously26.

Data analysis. We measured Fano factor and noise correlations in our recordings using spike-
countsN of MUA and SUA in 200 ms bins (400 to 600 ms window after the attention cue onset).
The Fano factor is the ratio of the spike-count variance to its mean across trials: Var[N ]/E[N ].
The noise correlation rsc is the Pearson correlation coefficient between spike-counts Ni and Nj

of two neurons:

rsc =
E[NiNj]− E[Ni]E[Nj]√

Var[Ni]Var[Nj]
. (1)

We estimated parameters of the On-Off dynamics in single columns by fitting popula-
tion spiking activity in our recordings with a two-state Hidden Markov Model (HMM) as de-
scribed previously22. HMM has a latent variable representing an unobserved population state
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that stochastically switches between the On and Off phases following Markov dynamics. Spikes
on 16 simultaneously recorded channels are assumed to be generated by inhomogeneous Pois-
son processes, with different mean rates during the On and Off phases. The latent On-Off state
is shared by the population, but the On and Off firing rates can differ across neurons. HMM was
fitted to MUA spike-counts in 10 ms bins, during a time-window starting at 400 ms after the
attention cue onset and until the end of the post-cue period. The duration of this time-window
ranges between 200 − 1, 900 ms across trials. HMM was fitted separately for each of the 32
task conditions (4 attention conditions × 8 grating orientations). The HMM parameters were
optimized with the Expectation-Maximization algorithm22. The HMM had 34 parameters: fir-
ing rates in the On (ron) and Off (roff) phases for each of 16 channels and transition probabilities
pon and poff for the entire population.

We estimated lateral shifts between channels in our laminar recordings by distances be-
tween centers of their RFs. The RF mapping procedure was described previously22. RFs were
measured by recording spiking responses to briefly flashed stimuli on an evenly spaced 6 × 6

grid covering the lower left visual field. Spikes in the window 0 to 200 ms relative to stimu-
lus onset were averaged across all presentations of each stimulus. The RF center was defined
as the center of mass of the response map. The lateral cortical distance dcortical (mm) was es-
timated from the RF-center distance dRF (d.v.a) using the cortical magnification factor M for
each eccentricity E32:

dcortical(mm) = 9−M × dRF(d.v.a) , M = 3.1E−0.9. (2)

Network model of interacting columns. The model describes spatiotemporal dynamics of
neural population activities across cortical surface. The network consists of two two-dimensional
square lattices of units, representing superficial and deep cortical layers. Each unit represents a
local population of neurons within one layer of a single column. The dynamical variable r(x, t)
represents the mean firing-rate of this population. The two-dimensional lateral coordinates are
denoted as x. The dynamics of the network model are given by

ε
d

dt
r = F (r)− a+W∇2r + Istim + Iattn ,

d

dt
a = gr − a+ f +

√
2Qξ . (3)

Here a(x, t) is the adaption variable, ξ is a white Gaussian noise of unity intensity, and we omit
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the spatial indeces of variables r and a for clarity. The function F (r) is given by

F (r) =


−1− r , r ≤ −1/2

r , −1/2 < r < 1/2

1− r , r ≥ 1/2

. (4)

This piecewise linear function approximates the inverted N-shaped r-nullcline, typically used in
rate-models with adaptation21, which allows us to analytically reduce the dynamical system to a
binary-unit model52. The term W∇r represents lateral interactions between neighboring units,
where ∇2r = ∂2xr + ∂2yr + 2∂x∂yr implements a diffusive coupling and W is the interaction
strength parameter. The external currents Istim and Iattn are applied to local groups of units to
model stimulus and attentional inputs, respectively. A constant ε � 1 separates the timescales
of the fast firing-rate variable r and slow adaption variable a. The parameters g, f , Q are chosen
so that the system is bi-stable52, where the population rate r stochastically switches between two
stable fixed points, corresponding to the On and Off phases.

We match the model to experimental data using the fitted HMM parameters. Specifically,
the HMM transition matrix P (p11 = poff, p12 = 1 − poff, p22 = pon, p21 = 1 − pon) provides
an estimate of the On-Off transition rates: α1 = (1 − poff)/∆t and α2 = (1 − pon)/∆t, where
∆t = 10ms is the bin size used for HMM fitting. HMM also estimates the On and Off firing
rates ron and roff for each MUA and SUA, which we use to generate spikes of the model neurons.
To this end, for each network unit we segment the simulated time-series r(t) into the On (S = 1)
and Off (S = 0) phases as S(t) = Θ[r(t)], where Θ is the Heaviside step function. The spike
counts are then generated from inhomogeneous Poisson processes with rates ri(t), where the
firing rate for neuron i is

ri(t) = roff,i + ∆riSi(t) , ∆ri = (ron,i − roff,i) . (5)

Simulations. We simulated the network model Eq. (3) on a 256×256 discrete square lattice
with a time step of 0.01 s. The unit activities are initialized randomly. We compute noise
correlations from 100 simulated trials for each set of parameters. On each trial, we simulated the
period of spontaneous activity, stimulus period and attention-cue period, as in the experimental
data. During stimulus period, external inputs Istim were applied to two local groups of units
with the size 50 × 50. During the attention-cue period, one of these two groups also received
attentional inputs Iatt. To calculate noise correlations, we either assigned fixed values of ron

and roff or sampled them from distributions of ron and roff extracted from experimental data by
HMM.
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Reduction to a binary-unit network. When the dynamical-system network operates in the
bistable regime, the activity of each unit i can be approximated by a binary variable Si

52, where
Si = 1 refers to On phase, and Si = 0 to Off phase. We derived a reduced network model,
where the dynamical equations describe the state transition probabilities of binary units. Using
the mean field approximation, we derived an approximate form for transition rates of binary
units (Supplementary Note 2.3). In the leading approximation order, we have

w(Si = 0→ 1) ≈ α1 + β1Si±1 , w(Si = 1→ 0) ≈ α2 − β1Si±1 . (6)

Here Si±1 are the sum of activities of neighboring units that are connected to a given unit Si.
α1, α2 and β1 are functions of parameters in the dynamical-system model: f , g, Q, Istim and
Iattn. This reduced model allows us to derive analytical formulas for correlations between units
in the network.

The reduced network model of binary units. The binary-unit network operates on a two-
dimensional square lattice. The network consists of N units. Each unit can be in a discrete On
(Si = 1) or Off (Si = 0) state, represented by a binary variable Si = {0, 1}, (i = 1, ..., N). At
time t, the probability of the system to be in a certain configuration {S} = {S1, S2, ..., SN} is
denoted as P ({S}, t). The rate of change of P ({S}, t) is described by the master equation:

d

dt
P ({S}, t) = −P ({S}, t)

∑
i

w(Si) +
∑
i

P ({S}i∗, t)w(1− Si) . (7)

Here {S}i∗ = {S1, S2, ..., 1 − Si, ..., SN}, and w(Si) is the transition rate. When Si = 0, the
transition rate of Si from 0 to 1 is

w(Si = 0) = α1 + β1(Si±1) . (8)

When Si = 1, the transition rate of Si from 1 to 0 is

w(Si = 1) = α2 − β2(Si±1) . (9)

Here α1 and α2 represent the baseline transition rates of each unit without interactions with
other units, and β1,2 describe how the transition rates are influenced by nearby units Si±1. The
diffusive coupling between units is described by the discrete Laplacian:

Si±1 = Si+1 − Si + Si−1 − Si . (10)

For simplicity, we use a single index i to represent indices in arbitrary dimension. For example,
in two diemnsions i = (x, y), and we have

Si±1 = Sx+1,y − Sx,y + Sx−1,y − Sx,y + Sx,y+1 − Sx,y + Sx,y−1 − Sx,y . (11)
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Based on the master equation, the dynamics of the first and second moments are given by

d

dt
〈Si〉(t) = α1 − (α1 + α2)〈Si〉+ β1〈Si±1〉 ,

d

dt
〈SiSj〉(t) = α1(〈Si〉+ 〈Sj〉)− 2(α1 + α2)〈SiSj〉+ β1(〈Si±1Sj〉+ 〈Sj±1Si〉) . (12)

We studied the dynamics of the binary-unit network analytically and in simulations. In simula-
tions, the states of all units were updated based on their transition rates in 10 ms time bins.

Theoretical prediction of noise correlations. Assuming the network evolved to the equilib-
rium state, we derived in the continuum limit the steady-state solution for the averaged first
moment S(∞) and quadratic moments G(d;∞):

S(∞) =
α1

α1 + α2

, (13)

G(d;∞) = [S(∞)]2 + S(∞)(1− S(∞)) exp

(
− d
L

)
. (14)

Here the dimensionless correlation length L is given by

L =

√
β1

α1 + α2

, (15)

and d is the dimensionless lateral distance measured in units of the lattice constant ∆d.

Using these expressions for the first moment S(∞) and quadratic moments G(d;∞),
we derived an analytical formula for the noise correlations. Consider a pair of neurons (x, i)

and (y, j) that are indexed by the lateral positions x, y of units to which they belong, and by
their indices i, j within these units. Spike-counts N(x, i) and N(y, j) of these two neurons
are measured in a time-window of duration T . The theoretical prediction of noise correlation
rsc[N(x, i), N(y, j)] is given by

rsc[N(x, i), N(y, j)] = A(α1, α2) exp

(
−|x− y|

L

)
. (16)

This equation shows that noise correlations decay exponentially with the lateral distance d =

|x−y|, with the decay-rate characterized by the correlation length L. The amplitudeA(α1, α2)

depends on the On-Off transition rates α1, α2, and on the On/Off firing rates roff(x, i), roff(y, j),
∆r(x, i), ∆r(y, j). Specifically,

A(α1, α2) =
V (α1, α2)∆r(x, i)∆r(y, j)√

Var[N(x, i)]Var[N(y, j)]
, (17)
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Var[N(x, i)] = (∆r(x, i))2V (α1, α2) + roff(x, i)T +
α1

α1 + α2

T∆r(x, i) ,

Var[N(y, j)] = (∆r(y, j))2V (α1, α2) + roff(y, j)T +
α1

α1 + α2

T∆r(y, j) , (18)

where

V (α1, α2) =
2(α1α2)

(α1 + α2)3

[
T − 1

α1 + α2

(1− exp (−(α1 + α2)T ))

]
. (19)

The amplitudeA(α1, α2) is the theoretical prediction for noise correlations within single columns
(in the limit where d = |x− y| → 0) used in Fig. 3.

Data availability

All behavioral and electrophysiological data are archived at the Stanford Neuroscience Insti-
tute server at Stanford University. The data are available from the corresponding author upon
request.

Code availability

The source code to reproduce results of this study will be made publicly available on GitHub
upon publication.
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Figure 1. On-Off dynamics predict the magnitude of noise correlations within single cor-
tical columns. (a) Different recording techniques sample neurons along different anatomical
dimensions. A rectangular Utah multi-electrode array (top) samples from laterally separated
neurons in different columns, preferentially from superficial cortical layers. A linear multi-
electrode array (right) samples from neurons across all layers within single cortical columns.
(b) An example trial showing spontaneous transitions between episodes of vigorous (On) and
faint (Off) spiking in multi-unit activity simultaneously recorded from all layers of a single col-
umn in V4. Spikes (vertical ticks) on 16 recording channels are segmented into On (yellow) and
Off (blue) episodes by the HMM. (c) Scatter plot of the variance explained by the two-phase
HMM versus average noise correlation across recording sessions for two-phase (red circles) and
one-phase (teal diamonds) recordings (upper panel). Stacked histogram of average noise cor-
relations for two-phase (red) and one-phase (teal) recordings (lower panel). (d) Average noise
correlations of MU in two-phase (upper panel) and one-phase (lower panel) recordings, sepa-
rately for superficial and deep cortical layers, in attention (red) and control (grey) conditions.
Noise correlations slightly decrease in superficial and increase in deep layers, but the overall
magnitude of changes is very small.
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Figure 2. A network model of interacting cortical columns. (a) The network consists
of two parallel two-dimensional lattices corresponding to superficial and deep cortical layers.
Each unit represents a local population of neurons within one layer of a single column. The
units transition between the On (yellow) and Off (blue) phases. Bottom-up inputs from vi-
sual stimuli (grey shading) and top-down attentional inputs (red shading) target local groups of
columns in the model. (b) Dynamical system modeling On-Off dynamics in single columns
(left panel). The mean firing-rate variable r(t) receives a recurrent self-coupling F (r) and a
negative feedback from the adaptation variable a(t). The dynamical system is driven by a white
noise ξ(t), recurrent inputs from the neighboring columns Irec(t), and external inputs Istim(t)

and Iatt(t). On the phase plane (right panel), the r-nulcline (grey) and a-nullcline (black) cross
at the On (yellow) and Off (blue) stable fixed points. The attentional input shifts the r-nulcline
(red) modulating the stability of the On and Off fixed points. (c) In single columns, the model
generates stochastic On-Off transitions (left panel). The durations of On and Off episodes are
irregular and exponentially distributed (right panel). The average duration (dashed lines) of
On-episodes is longer in attention (Iatt > 0, lower row, average τ̄on = 127 ms, τ̄off = 83 ms)
relative to control condition (Iatt = 0, upper row, average τ̄on = 102 ms, τ̄off = 100 ms). (d)
The network generates spatiotemporal On-Off dynamics, where the On and Off phases form
local spatial clusters (a single snapshot of simulated activity in the dynamical-system network
is shown). The spatiotemporal pattern differs between attention (red square) and control (black
square) conditions. (e) Spikes of individual neurons are modeled as inhomogeneous Poisson
processes with different mean rates during the On (yellow) and Off (blue) phases generated by
the network. All neurons represented by a single network unit follow the same shared On-Off
sequence. (f) Model parameters are estimated by fitting the experimental data with the HMM,
which provides the On-Off transition rates (α1 and α2, top) and the On and Off firing rates (ron

and roff) for each MU and SU in each recording session and task condition. Histograms show
the On (yellow) and Off (blue) firing rates for MUs for an example HMM fit.
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Figure 3. The model accounts for attentional modulation of correlated variability in single
columns. (a) The model predicts that FF is proportional the On-Off firing-rate difference ∆r =

ron − roff. For an example recording, ∆r ranges broadly across MUs (left panel), and this
variation of ∆r tightly corresponds with the variation of FF (right panel). (b) The model predicts
that noise correlation between neurons i and j is proportional to the product ∆ri∆rj . For the
same example recording, the variation in

√
∆ri∆rj corresponds with the variation of noise

correlations (right panel) (c) Comparison between attention-related changes (∆FF = FFatt −
FFctl) in FF predicted by the On-Off dynamics model (x-axis) and measured directly from the
data (y-axis) for MUs. All MUs are divided in 10 equally-sized groups based on the change
in their On-Off firing-rate difference between attention and control conditions (∆ratt − ∆rctl,
color axis). (d) Comparison between attention-related changes (∆NC = NCatt−NCctl) in noise
correlations (NC) predicted by the On-Off dynamics model (x-axis) and measured directly from
the data (y-axis) for MUs. All MU-pairs are divided in 10 equally-sized groups based on the
change in the pair’s On-Off firing-rate difference defined as

√
∆ratt,i∆ratt,j −

√
∆rctl,i∆rctl,j

(color axis).

Figure 4. Dependence of noise correlations on lateral distance. (a) Laminar recordings
generally exhibit slight horizontal displacements which manifest in a systematic shift of the RFs
(circles) across channels (left panel). Shift of the RFs (lines, RF contours; dots, RF centers; dva,
degrees of visual angle) for an example recording (right panel). (b) In two-phase recordings,
noise correlations decrease with the RF-center distance in both superficial (crimson) and deep
(green) layers (dots - data points, lines - linear regression). Orange background highlights the
range of short lateral distances within single or nearby columns. Purple background highlights
longer lateral distances between distant columns, such as distances covered by a Utah array,
which are outside the range of our laminar recordings. Error bars represent the standard error
of the mean (SEM). (c) Same as b for one-phase recordings. Noise correlations do not decrease
with the RF-center distance. (d) Our theory predicts that noise correlations decay with lateral
distance exponentially, with the decay constant L called correlation length. Simulations of
the full dynamical-system network (circles) agree with the analytical formula derived using
the binary-unit network approximation (line). The model parameters α1, α2, ron and roff are
sampled from a distribution of parameters in HMMs fitted to the data.
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Figure 5. Attentional inputs modulate the efficacy of lateral interactions in the network
leading to changes of the correlation length. (a) In simulations of the dynamical-system net-
work model, noise correlations between neurons in different columns robustly decrease during
attention (Iatt > 0, red) relative to control (Iatt = 0, grey), while noise correlations between
neurons within columns change only slightly. The average reduction of noise correlations is
large across columns (MIcorr = −0.28, right), but small within columns (MIcorr = −0.03, left).
(b) In simulations, noise correlations decrease with excitatory (Iatt > 0) and increase with in-
hibitory (Iatt < 0) attentional inputs. In all cases, the average changes of noise correlations
within columns are very small relative to sizable changes across columns. (c) Noise correla-
tions decay faster with lateral distance in attention (red, Iatt > 0) relative to control condition
(grey, Iatt = 0), hence the correlation length is reduced Latt < Lctl. Data are shown from
simulations of the full dynamical-system network (circles) and analytical calculations using the
binary-network approximation (solid lines). Orange and purple backgrounds highlight the range
of distances within and across columns, respectively. (d) The Off-to-On (α1, blue) and On-to-
Off (α2, yellow) transition rates weakly depend on the attentional input in the dynamical-system
network. (d) The effective coupling strength β steeply decreases with increasing attentional in-
put. We estimate beta from simulations of the dynamical-system network. First, we calculate
the On-Off transition rates α1 and α2 from the average On- and Off-episode durations. Then,
we estimate the correlation length L by fitting the exponential distance-dependence of noise
correlations. Finally, β is computed using the analytical formula L =

√
β/(α1 + α2).
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Figure 6. Attentional changes of noise correlations depend on lateral distance. (a) The
model predicts that changes of noise correlations at intermediate lateral distances are driven
by changes of the correlation length L. When the correlation length decreases (Latt < Lctl,
left panel), the model predicts a robust reduction of noise correlations at intermediate distances
(purple background), even when noise correlations at zero distance (d = 0, orange background)
do not change. When the correlation length increases (Latt > Lctl, right panel), the model pre-
dicts a robust increase of noise correlations at intermediate distances. In both cases, the spatial
profile of noise-correlation changes is non-monotonic, and the greatest changes are predicted
to occur at intermediate lateral distances. (b) In two-phase recordings, changes of noise corre-
lations during attention depend on the RF-center distance. The magnitude of noise-correlation
changes is vanishing at very short distances and progressively increases at longer distances.
With increasing RF-center distance, noise correlations decrease in superficial (crimson) and in-
crease in deep (green) layers (dots - data points, lines - linear regression). Error bars represent
SEM. (c) Same as b for one-phase recordings. Changes of noise correlations during attention
do not depend on the RF-center distance.
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Figure-1 Shi et al.
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Figure-2 Shi et al.
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Figure-3 Shi et al.

 (Hz)

a

0 100 200

1

16

0 5 10
Fano factor

1

16

∆r = ron − roff

C
ha

nn
el

 n
um

br
er

C
ha

ng
e 

in
 p

ai
r’s

 O
n-

O
ff 

fir
in

g
   

   
 ra

te
 d

iff
er

en
ce

 (H
z)

c d

Predicted  FF

M
ea

su
re

d 
 F

F

C
ha

ng
e 

in
 O

n-
O

ff 
fir

in
g 

   
  r

at
e 

di
ffe

re
nc

e 
(H

z)

Predicted  NC

M
ea

su
re

d 
 N

C

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4

-10

-5

0

5

10

-0.1 0 0.1

-0.1

-0.05

0

0.05

0.1

-10

-5

0

5

10

b

C
ha

nn
el

 n
um

be
r

Channel number

0 0.2 0.4 0.6

1 16
1

16
Noise correlation

1 16
1

16

20 40 60 80 100 120

∆ri∆rj  (Hz)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279893
http://creativecommons.org/licenses/by-nd/4.0/


Figure-4 Shi et al.
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Figure-5 Shi et al.

a

0

0.1

0.2

0.3

0.4

N
oi

se
 c

or
re

la
tio

n

Control Attention

0

0.03

 Across columns 
       

 Within column

Within column
St

im
ul

us
 in

pu
t, 

Across columns

Pe
rc

en
t  

ch
an

ge
 in

 N
C

I s
ti
m

Attentional input, Iatt

b

c d

0 0.005 0.01 0.015
0

5

10

15

20

 (H
z) α1

α2

Attentional input, Iatt

 (H
z)

C
ou

pl
in

g 
st

re
ng

th
,

Attentional input, Iatt

O
n-

O
ff 

tra
ns

iti
on

 ra
te

e
0

0 1 2 3 4
Lateral distance,

0

0.1

0.2

0.3

0.4

N
oi

se
 c

or
re

la
tio

n

Control
Attention
Control
Attention

d

        Simulation

  Analytical

0 0.005 0.01 0.015
5

10

15

20

×10−3

-0.6

-0.4

-0.2

0

0.2

0.4

80−8 80−8

8
0

−
8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.02.279893doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.279893
http://creativecommons.org/licenses/by-nd/4.0/


Figure-6 Shi et al.
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