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ABSTRACT:  18 
 19 
Single cell sequencing is transforming many fields of science but the vast amount of data it 20 
creates has the potential to both illuminate and obscure underlying biology. To harness the 21 
exciting potential of single cell data for the study of the mouse spinal cord, we have created a 22 
harmonized atlas of spinal cord transcriptomic cell types that unifies six independent and 23 
disparate studies into one common analysis. With the power of this large and diverse dataset, 24 
we reveal spinal cord cell type organization, validate a combinatorial set of markers for in-tissue 25 
spatial gene expression analysis, and optimize the computational classification of spinal cord 26 
cell types based on transcriptomic data. This work provides a comprehensive resource with 27 
unprecedented resolution of spinal cord cell types and charts a path forward for how to utilize 28 
transcriptomic data to expand our knowledge of spinal cord biology. 29 
 30 
 31 
INTRODUCTION 32 
 33 
A revolution in single cell sequencing technologies is transforming many fields of biology. By 34 
sequencing the cDNA or open chromatin from many individual cells and using computational 35 
analysis to identify shared patterns of gene expression or epigenetic structure, we may 36 
simultaneously define cell “types”, characterize their molecular signatures, and track how each 37 
cell type in a tissue changes in different biological conditions such as development and disease. 38 
Within the central nervous system, this approach may also reveal the molecular basis of the 39 
impressive levels of neuronal diversity, can provide new marker genes for developing genetic 40 
tools to manipulate neuronal function, and may help to reveal the cellular basis of behavior. 41 
 42 
In the postnatal mouse spinal cord alone, there have been nine papers profiling single cell RNA 43 
expression that, combined, cover a range of biological parameters, including age, tissue region, 44 
developmental lineage, and circuit features1-9. These studies provide a powerful and multi-45 
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faceted perspective on spinal cord cell types, yet despite this significant effort and a rich 46 
literature of spinal cord cell type characterization, there is still no consensus cell type “atlas” of 47 
the spinal cord. On the contrary, by conducting these studies independently, the number of 48 
nomenclature systems for spinal cord cell types has been multiplied without clarification of how 49 
these studies overlap, thereby leaving the underlying biology yet to be understood. Major 50 
obstacles include the lack of an accepted ground truth of cell types in this tissue10 that could 51 
form the basis of a reference atlas and the difficulty in comparing data between studies even 52 
when the same tissue types and techniques are used3,5. Indeed, these are among the “grand 53 
challenges” that scientists face as we re-discover the cells and tissues we study through the 54 
perspective of single cell profiling11.  55 
 56 
To begin to overcome these challenges within the mammalian central nervous system, we 57 
sought (1) to establish a harmonized atlas of postnatal spinal cord cell types that is shared 58 
across biological time, experimental technique, and laboratory, (2) to enhance the usability of 59 
this data for broader field of spinal cord biology, and (3) to test different tools to facilitate the 60 
future classification of cells into these types. We began by performing an integrated and 61 
merged analysis of the raw data from the first six publicly available postnatal spinal cord single 62 
cell datasets. Next, we clustered the cells and nuclei of this meta-dataset to reveal 15 non-63 
neural and 69 neural cell types, thereby providing a cell type resolution and characterization 64 
that surpasses all prior studies. By analyzing gene expression profiles across families of 65 
clustered cell types, we created a combinatorial panel of marker genes and validated it with 66 
high-content in situ hybridization. Finally, we tested a range of automated classification 67 
algorithms and identified a two-tiered model based on label transfer and neural networks as 68 
the best method for classifying spinal cord cell types. We have now developed “SeqSeek“, a 69 
web-based resource for querying this data by gene or cell type and for accessing automated 70 
classification algorithm of any spinal cord cell or nucleus from raw sequencing data. 71 
 72 
 73 
RESULTS 74 
 75 
Merged Analysis of Spinal Cord Cells and Nuclei 76 
 77 
The work here is based on a merged dataset with over one hundred thousand cells and nuclei 78 
from the first six published studies of the postnatal mouse spinal cord1-6. These studies cover a 79 
range of biological and experimental parameters (Figure 1A and Supplemental Figure 1). To 80 
best compare the data from these studies, we began with the raw sequencing reads from each 81 
study and performed our own data processing with uniform methods and filters. All sequencing 82 
reads were aligned to a common genomic sequence that included both exons and introns and 83 
common filtering thresholds were used for inclusion (>200 genes per cell/nucleus) and 84 
exclusion (<5% percent of genes from mitochondria). As a result, this merged dataset contains 85 
more cells and nuclei than were analyzed in the original studies and a uniform set of genes 86 
(Supplemental Figure 1).  87 
 88 
 89 
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 90 
Figure 1 91 

 92 
Figure 1. Integration of six independent studies on single cell spinal cord data reveals the major cell types of the 93 
spinal cord. (A) Six independent studies that used single cell/nucleus RNA sequencing to analyze mouse spinal cord 94 
cell types were analyzed, covering a range of mouse ages and technical approaches. (B) UMAP presentation of the 95 
52,623 cells/nuclei in the final dataset, without integration and colored by the study of origin (colors in the 96 
legend). (C) UMAP presentation of the same 52,623 cells/nuclei in the final dataset, integrated by study and 97 
colored by the study of origin (same colors as in (B)). (D) UMAP presentation of the cells/nuclei in the final dataset, 98 
integrated by study and colored by cell type. (E) Dot plot of the expression of marker genes for the major coarse 99 
cell types. Average expression for each cluster is shown by color intensity and the percent of cells/nuclei in each 100 
cluster that expressed each gene is shown by dot diameter. 101 
 102 
Our first major goal was to create a harmonized atlas of the major spinal cord cell types that are 103 
shared across these studies. Previous reports have used the correlation in gene expression 104 
between clusters to link cell types across studies, but this approach yielded weak correlations, 105 
even between studies in which the same sample age and tissue dissociation method were 106 
used3,5. We hypothesized that co-clustering cells and nuclei across all of the studies would 107 
provide an improved ability to relate cell types in one study to those in another. We performed 108 
dimensionality reduction using principal component analysis and visualized the cells and nuclei 109 
using UMAPs. Unfortunately, the cells or nuclei from each study segregated from each other 110 
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almost completely, indicating that the study of origin is a major source of variability in the 111 
dataset (Figure 1B). This technical limitation obscured all cell type distinctions. 112 
 113 
To reduce experimental sources of variability and reveal the core set of spinal cord cell types, 114 
we used a recently developed integration method to align the cells and nuclei across studies 12-115 
15. With this approach, the cells and nuclei from all six studies were spatially interposed in a 116 
UMAP visualization of principal component space (Figure 1C) and separated into groupings that 117 
each expressed a panel of well-established cell type markers such as Snap25 (neurons), Mbp 118 
(oligodendrocytes), Aqp4 (astrocytes), and Ctss (microglia). After preliminary clustering and the 119 
removal of low-quality clusters and doublets (see Methods), we obtained a merged dataset of 120 
over fifty thousand cells and nuclei. The majority of these cells/nuclei from this analysis are 121 
from the three studies that used high throughput collection and barcoding techniques (the 122 
Sathyamurthy, Rosenberg, and Zeisel datasets) (Supplemental Figure 1). A comparison across 123 
studies revealed that these high throughput studies detected fewer genes per cell/nucleus than 124 
studies that used single well technical approaches (the Hayashi, Haring, and Baek datasets), and 125 
studies that used cells (the Hayashi, Haring, Zeisel, and Baek datasets) detected more genes per 126 
cell/nucleus but had relatively higher levels of immediate early gene and stress gene expression 127 
than did studies that used nuclei (the Sathyamurthy and Rosenberg datasets) (Supplemental 128 
Figure 1). These trends across technical approaches were expected based on other reports 129 
(reviewed12).  130 
 131 
 132 
A Harmonized Atlas of Major Cell Types 133 
 134 
Next, we performed coarse clustering to define the major cell types of the mouse spinal cord 135 
(Figure 1D,E). Sixteen major types were identified that represent all known classes of spinal 136 
cord cell types; a characterization and resolution that surpasses all of the original six studies in 137 
capturing the full diversity of spinal cord cell types. These cell types are: (1) oligodendrocyte 138 
precursor cells; (2-3) two stages of oligodendrocyte progenitors; (4-5) two types of 139 
oligodendrocytes that likely correspond to myelinating and mature cell types and that blend 140 
into each other; (6) Schwann cells; (7) peripheral glia; (8-9) two types of meninges that likely 141 
correspond to vascular leptomeningeal cells and arachnoid barrier cells; (10) ependymal cells 142 
that surround the central canal; (11-12) two types of astrocytes that likely correspond to a 143 
major population of regular astrocytes and a minor population of Gfap-expressing 144 
proliferating/activated/white matter astrocytes; (13-14) two types of vascular cells that likely 145 
correspond to endothelial cells and pericytes; (15) microglia; and (16) neurons, which are 146 
discussed in detail below.  147 
 148 
As expected, the cell types that were derived from each study corresponded to the techniques 149 
used to isolate the cells or nuclei (Supplemental Figure 1). The three studies that FACS sorted 150 
neurons from the spinal cord (Hayashi, Haring, and Baek datasets) predominantly gave rise to 151 
cells in the neuronal sub-clusters as well as the non-neural cells most likely represent doublets. 152 
Moreover, among the three studies that examined all cell types, the early postnatal Rosenberg 153 
study showed an enrichment of immature cells of oligodendrocyte lineage relative to the adult 154 
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Sathyamurthy study, while the adolescent Zeisel study showed an intermediate distribution. 155 
The only study to dissect the spinal cord including the dorsal and ventral spinal roots (the 156 
Sathyamurthy dataset) was the only source of Schwann and peripheral glia cells that would be 157 
located in these roots.  158 
 159 
 160 
A Harmonized Atlas of Neuronal Populations 161 
 162 
We next focused our analysis on neuronal populations to further probe their impressive 163 
diversity and to define a reference set of cell types for understanding the spinal cord cellular 164 
basis of behavior. Based on the coarse cell type assignments above, we selected and clustered 165 
all neuronal cells/nuclei. Preliminary analysis revealed that putative dorsal horn clusters 166 
separated well in principal component space while putative mid and ventral horn clusters did 167 
not, which prompted us to perform a targeted sub-clustering of all mid and ventral cells/nuclei 168 
(see Methods). 69 neuronal clusters were identified (Figure 2A, Table 1, Supplemental Movie 1, 169 
Supplemental Table 2) and the neurotransmitter status and putative regional location (dorsal 170 
horn, mid region, ventral horn) were determined by marker gene expression and comparison to 171 
the original six studies. We observed 20 dorsal excitatory clusters, 14 dorsal inhibitory clusters, 172 
10 deep dorsal/mid excitatory clusters, 7 deep dorsal/mid inhibitory clusters, 8 ventral 173 
excitatory clusters, 6 ventral inhibitory clusters, 3 cholinergic motoneuron clusters, and 1 174 
cluster of cerebrospinal fluid contacting neurons. As was observed in the full dataset with all 175 
cell types, neuronal cells/nuclei from studies that used massively parallel approaches 176 
(Sathyamurthy, Rosenberg, Zeisel) had fewer genes per cell/nucleus and that studies that those 177 
which used nuclei (Sathyamurthy and Rosenberg) had lower levels of immediate early gene and 178 
stress gene expression than studies that used cells (Hayashi, Haring, Zeisel and Baek) 179 
(Supplemental Figure 2).  180 
  181 
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Figure 2 182 

 183 
Figure 2. Harmonized atlas of 69 populations of spinal cord neurons. (A) UMAP presentation of 19,353 neuronal 184 
cells/nuclei of the postnatal mouse spinal cord, colored and annotated by cell-type cluster. (B) The same 185 
cells/nuclei, colored by robustness (silhouette) score, which was calculated based on bootstrapped co-clustering 186 
frequency (see Methods). (C) Dendogram showing the relationships between the 69 neuronal cell types based on 187 
their distance from each other in the 50-dimensional principal component (PC) space. MN=motoneuron; 188 
IN=interneurons (and projection neurons); CSF-cN=cerebrospinal fluid contacting neurons; DE=dorsal excitatory; 189 
DI=dorsal inhibitory; ME=mid excitatory; MI=mid inhibitory; VE=ventral excitatory; VI=ventral inhibitory; “center” 190 
represents a group of 3 cell types located near lamina X – the center of the spinal cord. (D-G) UMAP presentation 191 
of 19,353 neuronal cells/nuclei of the postnatal mouse spinal cord, colored by study of origin (E), neurotransmitter 192 
(F), lamina (G), and family (H). (E) I=inhibitory, I/Ch=inhibitory cholinergic, Ch = cholinergic; E/Ch=excitatory 193 
cholinergic; E=excitatory. (F) Laminae were assigned based on in situ hybridization validation experiments and are 194 
colored by the approximate depth from the dorsal surface of the cord (hot pink to violet). (G) See main text for 195 
description of neuronal families. 196 
 197 
To determine the robustness of these clusters, we used a bootstrapped co-clustering test of the 198 
consistency with which cells and nuclei in each cluster remain together upon repeated 199 
clustering (Figure 2B, Supplemental Figure 2). As expected, dorsal clusters showed very high 200 
robustness with this measure, whereas mid and ventral clusters showed moderate to low 201 
robustness, a general feature that was consistent with previous observations1,4. This most likely 202 
reflects the highly similar and even overlapping patterns of gene expression amongst mid and 203 
ventral clusters. Similarly, a dendrogram analysis of the distance between the clusters within 204 
the 50-dimensional principal component space also revealed that dorsal clusters were well 205 
separated from each other, while mid and ventral clusters were much closer to each other in 206 
this reduced gene expression space (Figure 2C). Intriguingly, neurons that are located at the 207 
spatial mid-point between the dorsal and ventral sides of the cord (preganglionic cells and two 208 
excitatory populations near the central canal) were organized as a single branch (Figure 2C; 209 
“center”), further underscoring the importance of spatial distribution as an organizing principle 210 
in the spinal cord.  211 
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 212 
Next, we sought to characterize these clusters at a molecular level and to define their marker 213 
genes. There are multiple approaches for identifying cell type markers based in single cell data. 214 
Commonly used methods such as such as the Wilcox Rank Sum test and ROC analysis use 215 
differential expression to identify genes that are enriched within one identified cell cluster as 216 
compared to all other clusters and we used this approach to generate candidate markers for 217 
each cluster (Supplemental Table 1). However, these approaches do not prioritize markers that 218 
are shared between related clusters or those markers that are well-established for a given 219 
tissue, nor do they produce an efficient final set of markers that can be used to define all 220 
neuronal cell types. To overcome these obstacles, we therefore used a combination of Wilcox 221 
and ROC individual cluster markers, Wilcox and ROC markers for dendrogram branches, and 222 
established markers from the literature to generate a panel of combinatorial markers for spinal 223 
cord neurons that follows a “family name” and “given name” analogy. For example, Excit-14 224 
through Excit-19 comprise the “Sox5” family. They are distinguished by expression of Col5a2 225 
(Excit-14), Col5a2 and Enpp1 (Excit-15), Col5a2, Enpp1, and Tac1 (Excit-16), Dcx expression and 226 
being present almost exclusively at early post-natal stages (Excit-17), Nmu (Excit-18), and Tac2 227 
(Excit-19) (Figure 3 and Table 1). 228 
 229 
To determine whether this panel of markers corresponded to in situ gene expression patterns 230 
and to define the anatomical distribution of each cluster, we performed high-content in situ 231 
hybridization with combinatorial sets of marker gene probes (Supplemental Table 3). We tested 232 
95 unique genes (of which 79 showed reliable expression in the adult lumbar spinal cord) and 233 
analyzed gene expression in ten overlapping sets of 12 genes each. For each set, hundreds of 234 
cells were counted from three spinal cords and their locations mapped by lamina. Using this 235 
approach, 71% of neurons in the adult lumbar spinal cord could be identified as belonging to 236 
one of the 69 neuronal clusters (2057/2894 total) and an additional 9% of neurons could be 237 
identified as belonging to pairs of closely related clusters (266/2894 total) (Supplemental Table 238 
3). We found that some sets (such as those that sub-type dorsal inhibitory neurons) could be 239 
used to identify 80-90% of cells, while other sets (such as those that sub-type mid and ventral 240 
neurons) could only identify 40-60% of neurons. This further supports the view that dorsal 241 
neurons are more molecularly distinct while mid and ventral neurons are more difficult to 242 
distinguish from one another. This detailed in situ hybridization analysis also revealed the in-243 
tissue location and prevalence of each of the lumbar adult neuronal cell types and can serve to 244 
translate single cell sequencing data back into tissue-based analysis. 245 
 246 
  247 
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Figure 3 248 

 249 
 250 
Figure 3. The Sox5 dorsal excitatory family is sub-divided into individual clusters by a panel of marker genes. (A) 251 
The region of the neuron cell types UMAP for Excit-14 through Excit-19, labeled with relevant marker genes (top) 252 
and single feature plots of selected marker genes, where expression is coded from absent (light gray) through 253 
highly expressing (dark purple) (bottom). (B) Violin plot of the distribution of selected marker genes across all 84 254 
clusters, including non-neurons, MN=motoneurons, CSF-cN=cerebrospinal fluid contacting neurons, DE=dorsal 255 
excitatory; DI=dorsal inhibitory; ME=mid excitatory; MI=mid inhibitory; VE=ventral excitatory; VI=ventral 256 
inhibitory. Each dot represents a single cell or nucleus and the Sox5 family dorsal excitatory family is highlighted 257 
with the olive green bar. (C) RNA in situ hybridization of selected marker genes Sox5, Col5a2, Tac1, Nmu, Tac2 on 258 
an adult mouse lumbar spinal cord section. 20x tiled image, with brightness and contrast adjusted. (D) Zoomed 259 
region of (C). Cells were assigned to individual excitatory clusters (see individual numbers) based on marker gene 260 
expression. Inset show representative cells of Excit-14 (14*) and Excit-15 (15**) with in situ hybridization for Sox5 261 
(green), Col5a2 (red), Enpp1 (blue). Scale bar is 100 µm.  262 
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Table 1 263 

 264 
Table 1. Cell-type census of 69 populations of spinal cord neurons. The lamina, prevalence, a neurotransmitter 265 
marker gene, “family” and individual markers for each neuronal cluster are shown. The clusters are color coded to 266 
correspond approximately to their color in Figure 2A. The prevalence of each cluster was determined by counting 267 
the confidently assigned cells of each type based on RNA in situ hybridization on sections from three animals and 268 
are presented as the percent of the total number of confidently assigned neurons. Genes in parenthesis are 269 
expressed at lower levels. Genes in gray were not validated (due to probe failure, being present only in postnatal 270 
animals, or were not included in the analysis). # denotes a putative identity (see main text). * denotes a marker 271 
that was validated using RNAScope V2 but did not work in the RNAScope Hiplex assay. 272 

MN-alpha 9 1.1 Chat MN Spp1 Poln

MN-gamma 9 0.5 Chat MN Esrrg Htr1f

PGC 7-IML N/A Chat MN Gfra3 Nos1 Fbn2

CSF-cN 10 0.3 Slc6a1 CSF-cN Pkd2l1

Excit-1 1/2o 0.6 Slc17a6 Cpne4 Dach2 (Cck) (Cck)

Excit-2 1/2o/2i 3.7 Slc17a6 Cpne4 Prkcg (Rorb) Cdh3

Excit-3 1/2o/2i 3.8 Slc17a6 Prkcg Cck Calb1 Trh

Excit-4 2i/3 2.8 Slc17a6 Prkcg (Prkcg) Nts Calb1-hi

Excit-5 2i/3/4 3.2 Slc17a6 Maf (Cck) Pvalb

Excit-6 3/4 2.4 Slc17a6 Maf Rorb Cpne4

Excit-7 N/A N/A Slc17a6 Maf Dcx (vGlut3)

Excit-8 1/2 1.4 Slc17a6 Reln Trhr (Car12) (Grp)

Excit-9 1/2/3 1.7 Slc17a6 (Reln) (Reln) Grp Calb2 Sntb1

Excit-10 1/2 2.0 Slc17a6 Reln Car12 Nmur2 (Grp)

Excit-11 N/A 0.0 Slc17a6 Reln Car12 Gabra2

Excit-12 1/2 0.2 Slc17a6 Rreb1 Satb1 Zim1

Excit-13 2i/3 0.7 Slc17a6 Rreb1 Nmur2 (Satb1)

Excit-14 1/2o 1.7 Slc17a6 Sox5 Col5a2

Excit-15 1/2/3 0.2 Slc17a6 Sox5 Col5a2 Enpp1

Excit-16 1/2o (2i/3/4) 6.5 Slc17a6 Sox5 Col5a2 Enpp1 Tac1

Excit-17 N/A N/A Slc17a6 Sox5 Dcx

Excit-18 1/2o (2i/3/4) 2.7 Slc17a6 Sox5 Nmu (Tac2)

Excit-19 2i (3/4) 1.9 Slc17a6 Sox5 Tac2 (Nmu)

Excit-20 4/5 2.0 Slc17a6 Megf11 Mdga1

Inhib-1 3 (1/2o/2i/4) 7.4 Slc6a1 Rorb Sorcs3 (Nppc) (Runx2)

Inhib-2 3 (1/2o/2i/4) 10.3 Slc6a1 Adamts5 Klhl14 Sorcs3 (Nppc)

Inhib-3 1/2o/2i/3/4 3.0 Slc6a1 Rorb Nppc Nrgn

Inhib-4 1/2o/2i 0.4 Slc6a1 Rorb Rxfp2

Inhib-5 1/2o (3) 1.0 Slc6a1 Rorb

Inhib-6 3/4 (1/2o) 1.3 Slc6a1 Cdh3

Inhib-7 2i/3 (1/2o/4) 3.6 Slc6a1 Cdh3 Kcnip2 Pvalb

Inhib-8 3/4 0.5 Slc6a1 (Cdh3) Klhl14-hi

Inhib-9 1/2o (2i/3) 1.6 Slc6a1 Pdyn (Rorb) (Rspo3)

Inhib-10 3 (1/2o/4/5) 9.7 Slc6a1 Pdyn Gal Mlxipl Rspo3

Inhib-11 1/2o/2i/3 0.9 Slc6a1 Pdyn Gal (Rorb) Nrgn

Inhib-12 1/2o/4 1.8 Slc6a1 Npy (Vgf)

Inhib-13 1/2o/2i 2.1 Slc6a1 Npy Qrfpr

Inhib-14 4 0.1 Slc6a1 Chat Slc6a5 Nos1

Excit-21 4/lat 5 0.5 Slc17a6 Lmx1b/ME Lmx1b Zfhx3 Nms Lypd1

Excit-22 4/5/6 0.1 Slc17a6 Lmx1b/ME Lmx1b Zfhx3

Excit-23 4/med 5 1.2 Slc17a6 Lmx1b/ME Lmx1b Nfib Cep112 Cdh23, Satb1

Excit-24 4/5/6 0.7 Slc17a6 Lmx1b/ME Lmx1b (Nfib) (Cep112) Cdh23, (Satb1)

Excit-25 4/5/6 0.0 Slc17a6 Lmx1b/ME Lmx1b Nfib Prox1 Cdh23, (Satb1)

Excit-26 4 0.1 Slc17a6 ME Nfib (Prox1) (Satb1)

Excit-27 4/5 1.3 Slc17a6 ME Adamts2 (Cep112)

Excit-28 10 0.1 Chat ME Pitx2 Onecut2 Pou6f2

Excit-29 5/6 0.3 Slc17a6 ME Onecut2 Pmfbp1

Excit-30 5 0.8 Slc17a6 CC# Gbx2 Neurod2 Lypd1, Pou6f2, Nfib

Inhib-15 med 5 1.1 Slc6a5 MI Prox1 Gabra1 Nfib

Inhib-16 med 5 0.6 Slc6a5 MI Gpc3 (Rorb) Sema5b

Inhib-17 N/A N/A Slc6a5 MI Satb2

Inhib-18 5/6 0.5 Slc6a5 MI Sema5b

Inhib-19 med 5 0.5 Slc6a5 MI Ccbe1 Pou6f2

Inhib-20 5/6 1.0 Slc6a5 MI Tfap2b

Inhib-21 4/med 5 0.8 Gad2 MI Nfib Pax6

Excit-31 6/7/8 0.3 Slc17a6 VE Lhx9 Gm26673 Syt2 Esrrg

Excit-32 6/7/8 0.4 Slc17a6 VE Lhx9 Prlr Mdga1 Esrrg

Excit-33 N/A N/A Slc17a6 VE Lhx9

Excit-34 6/7/8 0.4 Slc17a6 VE Bnc2 Pou6f2 Lhx2 Isl1

Excit-35 6/7 0.5 Slc17a6 VE Vsx2 Pou6f2 Shox2* Mdga1

Excit-36 6/7 0.3 Slc17a6 VE Vsx2 Esrrg Gm26673

Excit-37 7 0.8 Slc17a6 VE Vsx2 Shox2*

Excit-38 8 N/A Slc17a6 VE Sim1 Rnf220

Inhib-22 7 0.1 Slc6a5 VI Foxp2 (Esrrb)

Inhib-23 7/8 0.6 Slc6a5 VI Foxp2 Esrrb Gm26673 (Pvalb)

Inhib-24 7 0.6 Slc6a5 VI Pou6f2 Nr5a2

Inhib-25 7/8 1.1 Slc6a5 VI Esrrb (Pvalb)

Inhib-26 ventral 7 0.5 Slc6a5 VI Chrna7 Calb1 (Pvalb)

Inhib-27 7 0.3 Slc6a5 VI Foxp2 (Gata3) Pax2-hi

Cluster Lamina % NT Family Individual Markers
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 273 
The cell type markers, laminar distribution, and estimated prevalence of each cluster are shown 274 
in Table 1, Figure 3, and Supplemental Figure 3 and are presented by family, with comments, as 275 
follows. 276 
 277 

MN (3 clusters): The motoneuron (MN) family includes alpha motoneurons (MNa) which 278 
had relatively higher levels of Spp1 and Poln, gamma motoneurons (MNg) which had 279 
relatively higher levels of Esrrg and Htr1f, and the related preganglionic cells (PGC) 280 
which expressed Gfra3 and Nos1. This family was only comprised of nuclei from the 281 
Sathyamurthy and Rosenberg datasets, although the Zeisel dataset was also expected to 282 
include motoneurons. Of note, we did not detect refined sub-populations of MNa or 283 
PGC, although it is likely that further work will sub-fractionate MNa into fast and slow 284 
populations, or even specific muscle pools. Motoneurons are the final output cell 285 
through which the central nervous system controls muscles and the autonomic system 286 
and can be found in lamina 9 (MNa and MNg) or lamina 7/intermediolateral nucleus 287 
(PGC). Supplemental Figure 3A. 288 

 289 
CSF-cN (1 cluster): Cerebrospinal fluid contacting neurons were distinguished by Pkd2l1, 290 
as well as Pkd1l2. This cluster was very distinct from other neuronal populations, 291 
inhibitory, and also expressed the early neuron marker Sox2 and the V2b lineage 292 
markers Gata2 and Gata3, suggesting an “immature” phenotype. Supplemental Figure 293 
3A. 294 

 295 
Dorsal Excitatory: 296 
 297 

Cpne4 (2 clusters): This dorsal, excitatory family was comprised of Excit-1 and 298 
Excit-2. Excit-1 was a rare subset, both in the harmonized clusters and in the in 299 
situ counts, that also expressed Dach2 and Excit-2 was more prevalent and co-300 
expressed Prkcg as well as Cbln2. Supplemental Figure 3B. 301 

 302 
Prkcg (2 clusters): This dorsal, excitatory family was comprised of Excit-3 and 303 
Excit-4. Prkcg is a classic marker gene in the spinal cord and defined this family 304 
together with the neuropeptides Cck and Trh (Excit-3) and Nts (Excit-4). Both 305 
subsets also expressed Calb1, although it was not specific to these clusters. This 306 
family was also close to Excit-7, an immature cluster grouped with the Maf 307 
family. Supplemental Figure 3B. 308 

 309 
Maf (3 clusters): This dorsal, excitatory family was comprised of Excit-5, Excit-6, 310 
and Excit-7. All three clusters expressed enriched levels of Rora (which was 311 
broadly expressed in many other clusters at lower levels). Excit-5 also expressed 312 
Pvalb, Excit-6 expressed Rorb and Cpne4, and Excit-7 was distinguished by having 313 
only nuclei from the Rosenberg dataset and expressed the immature neuron 314 
marker Dcx, suggesting an immature phenotype. The similarity of Excit-7 with 315 
Excit-3, Excit-4, Excit-5, and Excit-6 suggests a shared lineage relationship 316 
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between these families. This family also expressed low levels of Slc17a8 (vGlut3). 317 
Supplemental Figure 3B. 318 

 319 
Reln (4 clusters): This dorsal, excitatory family was comprised of Excit-8, Excit-9, 320 
Excit-10, and Excit-11. These clusters expressed enriched levels of Car12 (in 321 
particular in Excit-9 and Excit-10), the neuropeptide receptors Trhr (Excit-8), 322 
Npr1 (Excit-9 and Excit-10), and Nmur2 (Excit-10) and the neuropeptide Grp 323 
(Excit-9). Supplemental Figure 3C. 324 

  325 
Rreb1 (2 clusters): This dorsal, excitatory family was comprised of Excit-12 and 326 
Excit-13. These clusters also express Satb1 and either Zim1 (Excit-12) or Nmur2 327 
and Crh (Excit-13). Supplemental Figure 3C. 328 

 329 
Sox5 (6 clusters): This dorsal, excitatory family was comprised of Excit-14, Excit-330 
15, Excit-16, Excit-17, Excit-18, and Excit-19. Within this family, Excit-14 and 331 
Excit-15 were slightly separated and also similar to the Rreb1 family clusters and 332 
expressed Col5a2 (Excit-14) or Col5a2 and Enpp1 (Excit-15). Excit-16, Excit-18, 333 
and Excit-19 expressed the neuropeptides Tac1 (Excit-16), Nmu-hi/Tac2-lo (Excit-334 
18), and Tac2hi/Nmu-lo (Excit-19). Excit-17 included almost exclusively nuclei 335 
from the Rosenberg dataset and expressed the immature neuron marker Dcx, 336 
suggesting an immature phenotype. As this cluster was similar to Excit-16, Excit-337 
18, and Excit-19, this may suggest a shared lineage relationship between these 338 
clusters. Figure 3. 339 

 340 
Megf11 (1 cluster): This Excit-20 cluster displayed features of dorsal excitatory 341 
neurons and mid excitatory neurons, being located in lamina 4/5 and being 342 
grouped with mid neurons in principal component space in the uMAP and 343 
dendogram analysis. It expressed Megf11 and Mdga1. 344 

 345 
Dorsal Inhibitory: 346 
 347 

Rorb & Adamts5 (5 clusters): This dorsal, inhibitory family was comprised of 348 
Inhib-1, Inhib-2, Inhib-3, Inhib-4, and Inhib-5. Each of these clusters, except 349 
Inhib-2, expressed Rorb. Inhib-2 is grouped with this family based on its 350 
proximity in principal component space, as reflected in the uMAP and 351 
dendogram analysis. In addition to Rorb, Inhib-1 expressed Sorcs3, Inhib-3 352 
expressed Rorb and Nppc as well as as Nrgn, Inhib-4 expressed Rorb and Rxfp2, 353 
and Inhib-5 did not express these other genes. Inhib-2 expressed Sorcs3 and 354 
Adamts5. Inhib-1 and Inhib-2 represent deeper dorsal (lamina 3) clusters, Inhib-3 355 
was distributed throughout the dorsal horn, and Inhib-4 and Inhib-5 were 356 
relatively rare clusters (as judged by the harmonized cluster sizes and the in situ 357 
counts) and were found in the superficial laminae (1/2). Supplemental Figure 3D. 358 

 359 
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Cdh3 (3 clusters): This dorsal, inhibitory family was comprised of Inhib-6, Inhib-7, 360 
and Inhib-8. Inhib-6 and Inhib-7 expressed Cdh3 and were distinguished by co-361 
expression of Kcnip2 and Pvalb in Inhib-7. While Inhib-8 contained only low 362 
levels of Cdh3 in this analysis, Cdh3 expression was confirmed by in situ 363 
hybridization and this cluster was included in this family based on proximity in 364 
principal component space as reflected in the uMAP and dendogram analysis. 365 
Inhib-8 expressed Klhl14. Supplemental Figure 3D. 366 

 367 
Pdyn (3 clusters): This dorsal, inhibitory family was comprised of Inhib-9, Inhib-368 
10, and Inhib-11. Each of these clusters expressed Pdyn, while Inhib-10 also 369 
expressed Gal and Mlxipl and Inhib-11 also expressed Gal only. Of note, the 370 
clusters in this family also expressed Rorb and Nrgn. Supplemental Figure 3E. 371 

 372 
Npy (2 clusters): This dorsal, inhibitory family was comprised of Inhib-12 and 373 
Inhib-13. These clusters expressed Npy and were distinguished by low levels of 374 
Vgf (Inhib-12) or by expression of Qrfpr (Inhib-13). Supplemental Figure 3E. 375 

 376 
Chat (1 cluster): This Inhib-14 cluster is a deep dorsal (lamina 4), inhibitory and 377 
cholinergic population and also expressed Nos1.  378 

 379 
Mid/Deep Dorsal Horn Clusters: Of note, mid clusters generally were less robust than 380 
dorsal clusters.  381 
 382 

Excitatory (ME)/Lmx1b (5 clusters): This family of mid, excitatory clusters was 383 
comprised of Excit-21, Excit-22, Excit-23, Excit-24, and Excit-25. These clusters 384 
expressed Lmx1b, suggesting a dI5/dILB embryonic origin. All of the clusters 385 
except Excit-25 expressed Tacr1 and Excit-21 also expressed Lypd1, suggesting 386 
that these are candidate ascending populations3. These clusters could also be 387 
distinguished by expression of Zfhx3 (Excit-21 and Excit-22) or Nfib (Excit-23, 388 
Excit-24, and Excit-25), which corresponded to lateral Zfhx3 and medial Nfib sub-389 
types. Other markers sub-divided the clusters in a combinatorial manner, 390 
including Nms (Excit-21), Bcl11a (Excit-22 through Excit-25), Satb1 and Cdh23 391 
(Excit-23, Excit-24, and Excit-25), Cep112 (Excit-23 and Excit-24), and Prox1 392 
(Excit-25). Of note, nearly all of the cells and nuclei in this family were from the 393 
Rosenberg and Sathyamurthy datasets. Supplemental Figure 3F. 394 

 395 
Excitatory (ME) (4 clusters): This family of mid, excitatory clusters was 396 
comprised of Excit-26, Excit-27, Excit-28, and Excit-29. These clusters do not 397 
express Lmx1b, in contrast to the other mid excitatory family and may be derived 398 
from ventral embryonic lineages. Excit-26 expressed Nfib, Excit-27 expressed 399 
Adamts2, Excit-28 expressed Chat and Pitx2 and thus likely corresponds to V0c 400 
neurons, and Excit-29 expressed Pmfbp1. Excit-28 and Excit-29 also express 401 
Onecut2 and Pou6f2, potentially revealing a link with ventral cell types. Of note, 402 
nearly all of the cells and nuclei in this family were from the Rosenberg and 403 
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Sathyamurthy datasets and Excit-26 in particular was predominantly from the 404 
Rosenberg dataset. Supplemental Figure 3A and 3F. 405 

 406 
Excit-30/CC# (1 cluster): This cluster was marked by Gbx2, Neurod2, and Sp8 and 407 
there was partial evidence that it corresponded to Clarke’s column. This cluster 408 
expressed multiple genes associated with Clarke’s column including Chmp2b, 409 
Syt4, Ebf3, Rgs4, and Enc16. The Clarke’s column marker gene, Gdnf, was 410 
expressed at very low levels in the merged dataset, but was present in several 411 
Excit-30 cells. However, this cluster only contained two defined spinocerebellar 412 
cells from the Baek et al. dataset while the majority of this cluster was from the 413 
Hayashi dataset, arguing against a Clarke’s column identity and also suggesting a 414 
V2 embryonic lineage. As the in situ hybridization experiments were performed 415 
on lumbar spinal cord sections, we did not validate markers for this cluster. 416 

 417 
Inhibitory (MI) (7 clusters): This family of mid, inhibitory clusters was comprised 418 
of Inhib-15, Inhib-16, Inhib-17, Inhib-18, Inhib-19, Inhib-20, and Inhib-21, all of 419 
which expressed the glycinergic marker Slc6a5 (with the exception of Inhib-21) 420 
and also the gabaergic marker Gad2. Inhib-15 expressed Prox1, Gabra1, and 421 
Nfib, Inhib-16 expressed Gpc3 and Sema5b, Inhib-17 expressed Satb2, Inhib-18 422 
expressed Sema5b, Inhib-19 expressed Ccbe1 and Pou6f2, Inhib-20 expressed 423 
higher levels of Tfap2b as well as Zfhx3, and Inhib-21 expressed Nfib and was 424 
distinguished by having only Gad2 and not Slc6a5 and was mainly derived from 425 
the Rosenberg dataset. Supplemental Figure 3G. 426 

 427 
Ventral Clusters: In general, the ventral clusters had less distinct gene expression 428 
patterns and were less robust than dorsal and mid clusters; therefore, the final 429 
identities of these clusters should be considered with caution. We identified several 430 
genes that contribute to overlapping gene expression patterns across clusters by being 431 
present in a spatial region of the cord and in diverse mid/ventral cell types.  For 432 
example, Pou6f2 was expressed in the deep dorsal horn and in the dorsal part of the 433 
ventral horn and was enriched in mid-excitatory (Excit-21, Excit-28, and Excit 30), ventral 434 
excitatory (Excit-34 and Excit-35), and a ventral inhibitory (Inhib-24) clusters that are 435 
located within this domain. Similarly, Nfib was expressed in the medial deep dorsal horn 436 
(mid) spinal cord and was enriched in both excitatory (Excit-23, Excit-25, and Excit-30) 437 
and inhibitory (Inhib-15 and Inhib-21) clusters. Of note, several cluster “markers” of 438 
ventral cell types, such as Sim1, were not observed in adult spinal cord tissue and likely 439 
represent lingering RNA from developmental samples. 440 

 441 
Excitatory (VE) (8 clusters): This family of ventral, excitatory clusters was 442 
comprised of Excit-31, Excit-32, Excit-33, Excit-34, Excit-35, Excit-36, Excit-37, 443 
and Excit-38. Excit-31, Excit-32, Excit-33, and Excit-34 expressed low but positive 444 
levels of Lhx2, Lhx9, and Isl1, potentially suggesting dorsal dI1/dI2/dI3 embryonic 445 
lineages for these clusters. These clusters could be distinguished by Gm26673, 446 
Syt2, and Prlr (Excit-31), Mdga1 and Prlr (Excit-32), and Bnc2 and Pou6f2 (Excit-447 
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34). Excit-35, Excit-36, and Excit-37 are likely derived from the V2a lineage, as 448 
they expressed Vsx2 (Chx10) and included many cells from the Hayashi dataset 449 
that sorted cells based on Chx10 genetic expression. Excit-35 also expressed 450 
Vamp1, Pou3f1, Shox2, and Pou6f2 and Excit-36 expressed Esrrg. Intriguingly, 451 
many cells from the Baek dataset, which sorted cells based on spinocerebellar 452 
status were found in Excit-35, suggesting an important synaptic target of this 453 
population. Excit-37 expressed the V3 marker gene Sim1 as well as Rnf220. 454 
Supplemental Figure 3H. 455 

 456 
Inhibitory (VI) (6 clusters): This family of ventral, inhibitory clusters was 457 
comprised of Inhib-22, Inhib-23, Inhib-24, Inhib-25, Inhib-26, and Inhib-27. Each 458 
of these clusters expressed the glycinergic marker Slc76a5. Inhib-22 and Inhib-27 459 
also expressed the gabaergic marker Gad2, Pax2, and Pou6f2. They were 460 
distinguished by low levels of Gata3 expression in Inhib-27, which may represent 461 
V2b lineage. Inhib-23 and Inhib-25 expressed Foxp2 and Esrrb, suggesting they 462 
correspond to the Foxp2 clade of V1 lineage neurons. They were distinguished 463 
by expression of Gm26673 and Pvalb in Inhib-23, which may suggest that this 464 
cluster included Ia-inhibitory neurons. Inhib-24 expressed both Pou6f2 and 465 
Nr5a2, suggesting that this cluster corresponded to the Pou6f2/Nr5a2 clade of 466 
V1 lineage neurons. Inhib-26 was the most robust ventral cluster and expressed 467 
the Renshaw marker genes Chrna2, Chrna7, and Calb1, suggesting that this 468 
cluster corresponded to Renshaw cells. Supplemental Figure 3I. 469 

 470 
 471 
Comparison to Two Previously Published Atlases 472 
 473 
To determine how these neuronal clusters relate to previously characterized transcriptomic 474 
spinal cord cell types, we focused on the original clusters from the Sathyamurthy and Haring  475 
datasets because these two studies included a common set of cell types (dorsal horn neurons) 476 
and provided the most analysis, annotation, and marker validation for their respective cell 477 
types. First, we analyzed how cells/nuclei from the original studies were distributed into the 478 
new harmonized cluster of the meta-analysis (Figure 4A). Some ventral neurons from the 479 
Sathyamurthy dataset appeared in low-quality clusters that were discarded from the 480 
harmonized analysis due to low counts of genes per cell/nucleus and a lack of marker genes, 481 
whereas some neurons from the Haring dataset were classified as non-neural cell types or 482 
appeared in doublet clusters that were also discarded from the harmonized analysis. 483 
Nevertheless, we found that most original cell types fell within one of the harmonized neuronal 484 
atlas clusters or split into a small group of related neuronal clusters. The co-clustering between 485 
cells and nuclei from the original studies revealed many cell type similarities. For example, the 486 
majority of Haring Glut12 cells split into harmonized clusters Excit-14 and Excit-15, together 487 
with nuclei from Sathyamurthy DE-12 and DE-16 (Figure 4A). This is consistent with the original 488 
characterizations of these clusters, in that Haring Glut12 was principally marked by Grpr and 489 
Qrfpr, Sathyamurthy DE-12 was principally marked by Grpr, and Sathyamurthy DE-16 was 490 
principally marked by Col5a2 together with Qrfpr. In addition, prior comparison of the overall 491 
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gene expression pattern of Haring Glut12 was most closely correlated with Sathyamurthy DE-12 492 
and DE-16. This suggests that Glut12 and DE-12/DE-16 represent similar cell types that the 493 
Haring study kept as one cluster but which Sathyamurthy study split into two clusters. In the 494 
harmonized analysis and in the in situ hybridization validation above (Figure 3B,D), both Excit-495 
14 and Excit-15 are relatively robust clusters (with robustness scores of 0.88 and 0.85, 496 
respectively) and can be distinguished by expression of Enpp1 in Excit-15, supporting the 497 
splitting of these related cell types into two distinct clusters. 498 
 499 
Figure 4 500 

 501 
 502 
Figure 4. Relationship with two previously published spinal cord atlases. (A) The distribution of cells from the 503 
original clusters of the Sathyamurthy and Haring datasets (rows) into the harmonized clusters (columns), ranging 504 
from 0 blue to 100% red distribution. (B) The distance between the centroids of the cells/nuclei from the original 505 
Haring and Sathyamurthy clusters, measured in 50 dimensional principal component (PC) space. Only dorsal 506 
neuron clusters are shown for the Sathyamurthy dataset and in both datasets, every other cluster is labeled. 507 
Relatively short distances = red; long distances = blue. (C) Relationship between the distance in PC space and the 508 
correlation in gene expression between pairs of clusters from the Haring and Sathyamurthy datasets. 509 
 510 
To compare the overall relationships between cells/nuclei from the Haring and Sathyamurthy 511 
studies with our harmonized meta-analysis, we calculated the distance in harmonized principal 512 
component “space” between the centroid of cells/nuclei from each original study’s cell types as 513 
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well as correlation in expression of highly variable genes for each pair of cell types (Figure 4B,C). 514 
We found that increasing correlation between the original clusters’ gene expression strongly 515 
predicted closeness in the harmonized principal component space, suggesting that co-clustering 516 
in the harmonized analysis should accurately preserve and reveal relationships with the cell 517 
types described in the original studies (Figure 4C). 518 
 519 
Using Machine Learning to Classify Spinal Cord Cell Types 520 
 521 
With this atlas of spinal cord cell types in hand, we next sought to establish a means to 522 
standardize and automate spinal cord cell type classification. First, we tested three strategies 523 
that have been used successfully to classify single cell data from other tissues on their ability to 524 
classify spinal cord cells into coarse cell types. These were label transfer13, a support vector 525 
machine, and a fully connected neural network (with two hidden layers of 512 nodes and L2 526 
regularization for each). It is important to note that each of these models were trained using 527 
cell type labels from the harmonized analysis because there is no existing gold standard for 528 
spinal cord cell identities. In this context, the analysis that follows should be considered a 529 
feasibility study for machine learning classifiers on spinal cord single cell count data. The full 530 
merged dataset of 101,070 cells and nuclei was tested, including low quality cells and nuclei 531 
and doublets, in order to represent the full range of input raw data. All three strategies 532 
performed well, with label transfer showing the best performance (overall accuracy of 89%), 533 
followed by the neural network (83%), and then the SVM (80%) (Figure 5A and Supplemental 534 
Table 4).  535 
 536 
  537 
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Figure 5 538 

 539 
 540 
Figure 5. Computational classification of spinal cord cell types. (A) Confusion matrices of the F1 scores for the 541 
classification of coarse cell types using label transfer, a support vector machine (SVM), and a fully connected neural 542 
network (neural net), (blue = 0; maroon = 1). The actual cell types are in rows and the predicted cell types are in 543 
columns in the same order. (B) Confusion matrices of the F1 scores for the classification of fine neuronal sub-types 544 
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using label transfer and a fully connected neural network. The actual cell types are in rows and the predicted cell 545 
types are in columns, both in the order presented in Table 1. Alternating cell types are labeled. (C) Model of the 546 
two-tiered classification approach in which all cells/nuclei are classified into coarse cell types using label transfer 547 
(also including low-quality “junk” and “doublets”). Subsequently, all cells/nuclei that were classified as neurons, 548 
motoneurons, or doublets by label transfer are further classified into 69 neuronal cell types (also including 549 
“doublets”). (D) Experimental design for generating an independent set of single nucleus RNA sequencing data. (E) 550 
Distribution plot showing how nuclei from each cluster (rows) were distributed into each of the harmonized cell 551 
types (columns), normalized by rows with dark blue = 0.0 fraction; maroon = 1.0 fraction). (F) Bar plot of the total 552 
counts of nuclei that were from “known” clusters and were correctly classified (81% of total), that were from 553 
“known” clusters and were incorrectly classified (9% of total), that were from “unknown” clusters but could be 554 
identified by their classification (3% of total), or that were from “unknown” clusters and could not be identified 555 
(7% of total). OPC=oligodendrocyte precursor cell; progen.1=oligodendrocyte progenitor 1; 556 
progen.2==oligodendrocyte progenitor 2; Olig.1=oligodendrocyte 1; Olig.2=oligodendrocyte 2; Periph.=peripheral 557 
glia; Mening.1=meninges 1; Mening.2=meninges 2; Epend.=Ependymal cells; Astro.1=astrocytes 1; 558 
Astro.2=astrocytes 2; Endoth=endothelial cells; Pericy.=pericytes; MN=motoneurons; low qual.=low quality. 559 
MNa=motoneurons alpha; PGC=preganglionic cell. 560 
 561 
Next, we tested label transfer and neural networks on a more refined and challenging task: the 562 
classification of 69 neuronal sub-types. For label transfer, a two-tiered analysis was performed 563 
(dorsal sub-types and then mid/ventral sub-types) because we found that this approach was 564 
important for clustering spinal cord neurons. For the neural networks, a non-exhaustive 565 
handsweep of several hyperparameters was conducted, including network depth, optimizer, 566 
number of hidden nodes, and the number of training epochs and seven different models were 567 
tested (see Methods and Supplemental Table 4). We found that a linear model (with no 568 
regularization and with an SGD optimizer) showed the best performance, with an overall test 569 
accuracy of 85% (Figure 5B and Supplemental Table 4). The model showed very high confidence 570 
scores for correct predictions; however, performance varied with cell type prevalence 571 
suggesting a target for improving the model in the future (Supplemental Figure 4). 572 
 573 
How should the performance of this model be viewed and should we expect automated 574 
classification to achieve 100% accuracy? Perfect performance would require perfect biological 575 
data: discrete cell types that express completely distinct patterns of gene expression and 576 
experimental data without doublets, low quality cells, or other sources of indeterminate data. 577 
Knowing that this is not possible, we still sought to determine a benchmark performance guide 578 
for the classification adult mouse spinal cord neurons using neural network models and 579 
considered four metrics of cluster definition and separation. We examined the relationship 580 
between the model performance for each cluster (F1 score) and (1) the co-clustering frequency 581 
of each cell type across 100 clustering iterations, (2) how distant each cluster was from its 582 
nearest neighbor in principal component space, and (3) the confidence with which clusters 583 
could be distinguished based on in situ marker expression (measured by in situ analysis sets of 584 
clusters) (Supplemental Figure 4). We found that the model performance varied with the co-585 
clustering frequency of each cluster and with the ability to identify cell types in situ and we 586 
propose that these measures can be used to set a reasonable expectation for neural network 587 
performance. Overall, neuronal cells/nuclei of a given type co-clustered together 65% of the 588 
time (average from Supplemental Figure 2E) and a total of 70% of cells could be classified in situ 589 
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(Supplemental Table 3). In comparison, the model’s accuracy of 85% reveals the outstanding 590 
performance of this approach. 591 
 592 
To develop a standardized pipeline for classification of independent datasets unrelated to the 593 
original studies analyzed above, we considered a two-tiered approach that would take 594 
advantage of the strengths of both the label transfer for coarse classification (Tier 1) and a 595 
neural network model for classification of neuronal sub-types (Tier 2) (Figure 5C). We first 596 
selected all cells/nuclei that were assigned as doublets or neurons during the harmonized 597 
analysis above to represent the output of the first-tier and input to the second tier. In this 598 
context, we trained another set of five neural network models (see Methods and Supplemental 599 
Table 4). A neural network model with one hidden layer (256 nodes) and SGD optimizer showed 600 
the best performance (overall accuracy of 80%) and was selected for further work. 601 
 602 
As a final performance test of the two-tiered model, we applied it to spinal cord nuclei from an 603 
independent experiment. Nuclei were isolated from the lumbar spinal cords of four adult mice, 604 
sequenced using 10x Chromium, clustered using Seurat, and marker genes were identified for 605 
each cluster (Figure 5D). 90% of nuclei (out of 28,584 total) were in clusters that could be 606 
assigned a cell-type label based on user-based marker gene expression (“known” clusters). In 607 
cases for which labels could not be confidently assigned (10% of nuclei, “unknown” clusters), a 608 
placeholder name was given. We performed classification of all nuclei from the independent 609 
dataset that passed quality-control thresholds (Figure 5C) in an analysis that took less than 610 
thirty minutes of computational time (~20 minutes for Tier 1 and less than one minute for Tier 611 
2). 612 
 613 
We found that 90% of nuclei from “known” clusters were accurately classified by the two-tiered 614 
model (Figure 5F “known + accurate”). We next considered how this model performed upon 615 
the classification of nuclei from the challenging “unknown” clusters that could not be identified 616 
based on marker genes. Surprisingly, we found that 28% of unknown nuclei could be identified 617 
with the two-tier classification model (Figure 5F “unknown + identified). Thus, the two-tiered 618 
model surpassed the ability of experienced users to identify spinal cord cell types.  619 
 620 
Of note, several cell types were not expected to be present in the independent dataset, 621 
including Schwann cells, peripheral glia and meninges 2 (based on the surgical dissection 622 
method used that did not include spinal roots or outer layers of meninges) and including PGC, 623 
Excitatory-7, and Excitatory-17 (based on the lumbar region and adult age that was used). As 624 
expected, these cell types were not predicted by the two-tiered model. There were also several 625 
cell types that were not classified as expected. In particular, several mid/ventral cell types were 626 
not detected in the independent dataset while two ventral clusters (Excitatory-31 and 627 
Inhibitory-27) were over-represented. This may reflect a training dataset that is not large 628 
enough to train a model that distinguishes closely related cell types, that small cell types are 629 
not modeled as well, and that some mid/ventral clusters are defined partly by early postnatal 630 
gene expression contained within the harmonized analysis but absent from the independent 631 
adult dataset. 632 
 633 
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These results establish a two-tiered model based on label transfer and a neural network as an 634 
effective approach for the computational classification of single cell sequencing data, even in 635 
the context of the finely separated populations of spinal cord neurons. The neural network 636 
model was at least as accurate as other methods such as Seurat-based clustering and high-637 
content in situ hybridization and was orders of magnitude faster. In addition, it can standardize 638 
spinal cord cell type classification so that a unified and harmonized set of cell types can be 639 
identified and studied consistently between datasets, biological conditions, and laboratories 640 
throughout the field. 641 
 642 
SeqSeek: A Community Resource for Analyzing and Classifying Spinal Cord Cell Types 643 
 644 
Finally, we have developed an online resource for spinal cord single cell data, SeqSeek 645 
(available at seqseek.ninds.nih.gov). This resource includes user-friendly tools to search gene 646 
expression across spinal cord cell types using single genes or gene lists and to view spatial 647 
distributions of selected marker genes (SeqSeek Genes), to compare gene expression between 648 
clusters or groups of clusters (SeqSeek Cell-Types), and to access the SeqSeek algorithm for cell 649 
type classification (SeqSeek Classify).  650 
 651 
 652 
DISCUSSION 653 
 654 
For the field of spinal cord biology to build upon the incredible promise of single cell 655 
technologies, it is critical to establish a standard set of cell types. Here, we leveraged and 656 
expanded upon the previously published single cell sequencing studies of the postnatal mouse 657 
spinal cord to define 84 types of spinal cord cells. We present a harmonized atlas of these cell 658 
types; a validated combinatorial panel of markers to facilitate their study either in vivo, in tissue 659 
sections, and in vitro cell culture; computational resources for classifying spinal cord cells based 660 
on transcriptomics; and a web-based resource, SeqSeek, to allow the community to interact 661 
with and explore single cell spinal cord data. This work establishes a common framework that 662 
will serve as a powerful resource for the field and facilitates the discovery of new biological 663 
features of spinal cord cell types.  664 
 665 
The first key consideration for this atlas is whether the cell types of the atlas are correct. In the 666 
absence of a commonly accepted standard set of spinal cord cell types, it is impossible to 667 
answer this question completely. However, several pieces of evidence support the accuracy of 668 
the harmonized clusters. First, these clusters are robust to different clustering approaches, 669 
suggesting that they reflect underlying biological signatures rather than a technical artifact. 670 
Second, these clusters correspond well with prior gene expression studies of the postnatal 671 
spinal cord, including three single nucleus sequencing datasets that were not included in the 672 
harmonized clustering: an independent dataset that we clustered separately and used to test 673 
the SeqSeek Classify algorithm, and two very recent studies that found similar markers to the 674 
harmonized set8,9. Third, and most importantly, nearly all of the predicted marker neuronal co-675 
expression patterns could be validated in tissue and several represent well-established 676 
molecular markers of accepted “cell types”.  677 
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 678 
In addition to serving as a powerful reference resource, what new biological information can 679 
this study reveal? By incorporating the analysis of six independent studies we have been able to 680 
resolve cell types at a granular level and created the most comprehensive description of spinal 681 
cord cell types to date. In particular, the increased power from studying many neurons across 682 
postnatal development allowed us to better characterize mid and ventral cell types. While 683 
these clusters still display low to moderate robustness, this is mainly because they are highly 684 
related to each other through overlapping gene expression patterns. Previously, we noted this 685 
trend amongst ventral clusters and we now identify spatial patterns of gene expression (such as 686 
Pou6f2 and Nfib) as a source of this relatedness. We propose that the combination of 687 
embryonic lineage and settling location contribute to the definition of cell types in the mid and 688 
ventral horn regions. This in turn gives rise to both cell type heterogeneity and the overall 689 
similarity of the mid area and ventral horn clusters.  690 
 691 
Another type of new biological insight is based on the co-clustering of cells defined by different 692 
parameters. For example, the largest fraction of neurons from Hayashi et al., which isolated 693 
V2a lineage derived neurons co-clustered within Excit-35 together with the largest fraction of 694 
neurons from Baek et al., which isolated spinocerebellar neurons. This co-clustering suggested 695 
that these cells are highly similar and may link V2 embryonic origin with spinocerebellar circuit 696 
connectivity. In support of this connection, the established V2a marker genes Shox2 and Sox14 697 
were both identified as markers of putative lamina VII spinocerebellar tract neurons in the 698 
original Baek et al. study. Thus, co-clustering of cells across different studies can reveal 699 
candidate linkages across cell type features and illustrates the power of a harmonized atlas 700 
across time and biological conditions. 701 
 702 
This study also highlights important experimental and analytical parameters. On the 703 
experimental side, this study revealed the differences between using cells versus nuclei for 704 
transcriptomic profiling. As expected, we found that single cell studies detected more genes per 705 
cell than single nucleus studies did per nucleus, but that single cells also showed higher levels of 706 
stress response gene expression. Unexpectedly, we also found that the major single cell atlas of 707 
the juvenile mouse nervous system failed to include any ventral interneurons or motoneurons 708 
while these were found readily even in adult tissue that used single nuclei. Whether this 709 
reflects greater vulnerability of ventral cells to tissue dissociation and cell stress, or whether 710 
other technical limitations were present, remains to be determined.  711 
 712 
On the analytical side, this work is among the first practical applications of automated 713 
classification for large and complex single cell datasets. A wide range of cell annotation 714 
approaches have been described recently but it is not yet clear which methods will work best 715 
for each type of data14-18. A comparative analysis of automated classification approaches across 716 
diverse datasets found that SVM and neural network models showed the best performance on 717 
the Allen Brain Atlas dataset of 92 neuronal cell types – a dataset similar in scale and 718 
complexity to the harmonized analysis here18. This analysis also found that performance 719 
depends partly on the number of cell types and the “complexity” (the relatedness between 720 
clusters) of a dataset, similar to what we observed.  721 
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 722 
The described here displayed excellent performance in the computationally challenging task of 723 
classifying cells and nuclei into the 69 “fine” resolution neuronal cell types of the spinal cord. In 724 
the future, larger spinal cord single cell datasets will be available and the neural network model 725 
that we presented here can be refined and improved. Specifically, larger training datasets may 726 
facilitate classification of closely related mid/ventral neuronal populations; region or sample 727 
age specific training datasets may reduce the number of cell types that cannot be detected; and 728 
generative models may be used to enhance training on rare cell populations. As this work 729 
proceeds, we expect that increasingly powerful neural network models will be developed that 730 
allow rapid, accurate, and standardized classification of all spinal cord cell types directly from 731 
raw sequencing data. This could be done by individual users with downloadable models or 732 
through the development of a spinal cord single cell data commons that could continuously 733 
refine the models and provide classification analysis through a cloud-based platform, similar to 734 
what has been proposed for the Human Cell Atlas19. A forthcoming study aims to partially 735 
address these challenges. Theis and colleagues propose a method called single-cell architectural 736 
surgery that uses transfer learning to map query datasets onto a reference, simultaneously 737 
contextualizing the query while updating the reference. This allows for decentralized reference 738 
building without the sharing of raw data, which could further increase effectiveness of neural 739 
network-based classifiers20.  740 
 741 
There are several notable limitations to this study and to single cell transcriptomics in general. 742 
Most specifically, this analysis is limited in scope to RNA expression in the postnatal mouse 743 
spinal cord. As more data become available from studies that include more specific regions of 744 
the spinal cord, more biological conditions, more developmental stages, more species, more 745 
specific cellular features, and more -omics modalities, we anticipate that this work will reveal 746 
exciting new insights from single cell data. As examples, future work could incorporate 747 
embryonic single cell data7 and lineage tracing to link together developmental origin with 748 
postnatal cell types or could focus deeply on specific spinal cord regions and cell types. Indeed, 749 
forthcoming work has revealed an impressive diversity of PGC visceral motoneurons that are 750 
enriched in either the thoracic or sacral spinal segments21,22. Relatedly, the in situ hybridization 751 
experiments here are also limited in scope, being specific to the adult lumbar spinal cord. The 752 
failure to detect several genes could reflect that these genes are no longer expressed at the 753 
adult stage or lumbar region that we analyzed, that the cell types themselves are not present 754 
(being transiently found in early postnatal stages or only in other spinal cord regions), or 755 
technical issues. As new data and technologies become available, we anticipate an explosion of 756 
single cell data and the opportunity to periodically supplement, evolve, revise, and refine the 757 
work presented here. 758 
 759 
A second notable caveat is that this analysis is all population based. Data is captured from 760 
thousands of individual cells, but the rate of false negative data in each cell and the 761 
requirement for statistical power necessitates analyzing many cells of each type and 762 
considering population level shared patterns. It is likely that by emphasizing common patterns, 763 
this analysis underrepresents true biological variability, including “noisy” gene expression and 764 
continua of cell types. For example, three very different methods – single cell data clustering, 765 
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multi-plexed in situ hybridization, and an artificial intelligence neural network – all showed a 766 
relatively weak ability to classify ventral cell types into discrete types and a relatively strong but 767 
still imperfect ability to classify dorsal cell types. We propose that this reflects some technical 768 
limitations but also a fundamental complexity and diversity in how gene expression is 769 
controlled within individual cells and in cell type populations. 770 
 771 
Finally, it is crucial to note that single cell/nucleus profiling, particularly single cell/nucleus RNA 772 
sequencing, produces one perspective on cell types and it is not yet clear how this will relate to 773 
other core cellular features such as developmental lineage, circuit connectivity, 774 
electrophysiology, and behavioral function. Re-considering the very definition of “cell type” and 775 
identifying the most useful system for classifying cells is now a fundamental task in 776 
understanding nervous system function. We expect that in each tissue, indeed in each region of 777 
each tissue, there may be different organizing principles of “cell types”. In that context, the 778 
work here provides a comprehensive atlas of spinal cord transcriptomic cell types that can be 779 
used as a framework to compare with other cellular features. 780 
 781 
Overall, this work brings together the first six single cell studies of the post-natal mouse spinal 782 
cord to create a standard reference set of spinal cord cell types. It will (1) serve as a unifying 783 
resource and nomenclature for the field, (2) provide a validated and combinatorial set of 784 
markers that can be used to translate this rich sequencing data back into tissue based studies, 785 
(3) be a template for the computational analysis of single cell data from complex neural tissue, 786 
and (4) facilitate the community-wide use of single cell data through a web-based resource. We 787 
hope that this work will facilitate the design and interpretation of cell-based studies of behavior 788 
and will open up opportunities for many new discoveries. 789 
 790 
METHODS 791 
 792 
Mice: 793 
Animal experiments were performed in accordance with institutional guidelines and approved 794 
(protocol #1384) by the National Institute of Neurological Disorder and Stroke’s Institutional 795 
Animal Care and Use Committee. An even balance of male and female mice that were 9 weeks 796 
old and of mixed C57BL/6J and BALB/cJ background were used for single nucleus sequencing 797 
(four mice) and validation studies (six mice). 798 
 799 
Published Data Acquisition:  800 
Published data were downloaded from the NCBI Sequence Read Archive (SRA). Raw datasets 801 
were used instead of investigator-provided count matrices so that we could align all sequences 802 
to the same genome and apply uniform data filtering. All raw datasets were pre-processed 803 
using technique-specific pipelines. For data from Sathyamurthy et al. (DropSeq, 804 
GEO:GSE103892, SRA:SRP117727), data were downloaded in fastq format from SRA. A count 805 
matrix was created following the steps in the McCarroll lab DropSeq cookbook23. For data from 806 
Hayashi et al. (GEO: GSE98664, SRA: SRP106644) and Zeisel et al. (SRA: 807 
SRP135960) both 10X, 10X sequence data were download from SRA in BAM 808 
format then converted to cellranger-compatible fastq files using the 10X-809 
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provided bamtofastq tool24. Count matrices were created using the 10X cellranger count tool25. 810 
Data from Haring et al. (C1 Fluidigm, GEO: GSE103840, SRA: 811 
SRP117627) were downloaded from SRA.  Each cell had its own fastq file for a total   of 1545 812 
files.  We followed the UMI tools  single cell tutorial26 to remove the UMI and process 813 
the sequences. For the Rosenberg et al. data (SplitSeq, GEO: GSE10823, SRA: SRP133097), 814 
data were downloaded in fastq format. Count matrices were made using the split-seq-pipeline 815 
tool developed by the Seelig Lab27. The STAR alignment tool within cellranger (v020201) was 816 
used to align the sequences from each dataset to a reference genome that was custom built to 817 
include all introns and exons.    818 
 819 
Merged Analysis and Clustering: 820 
Count matrices for each dataset were merged to obtain the full data file and we then applied 821 
uniform data filtering across the merged file. We analyzed all cells and nuclei with at least 200 822 
detected genes (to exclude low quality or “empty” barcodes) and with less than 5% of 823 
transcripts being mitochondrial (to exclude lysing cells or mitochondria-nuclei doublets). This 824 
yielded over one hundred thousand total cells/nuclei. Of note, by starting with the raw data 825 
and setting relatively relaxed thresholds for data inclusion, we analyzed more cells/nuclei from 826 
several of the original studies than were analyzed in the corresponding published datasets.  827 
The merged data was analyzed using Seurat v3. Clustering was performed in three phases on 828 
(1) all cell types, (2) all neurons, (3a) presumptive ventral neurons and (3b) motorneurons. For 829 
phase 1, data integration was performed by study, 2,000 highly variable genes were detected, 830 
and the most significant principal components were identified by elbow plot and manual 831 
inspection of the contributing gene lists and 28 PCs were used for clustering. To select cluster 832 
resolution, a range of values were tested from 0.2 to 8 and cluster evolution or clustree plots 833 
were used to determine when cluster splitting stabilized, and resolution 1.2 was selected. For 834 
phase 2, raw data from all cells in neuronal clusters was used, re-scaled, re-normalized, and re-835 
integrated, the top 4,000 highly variable genes were detected and the top 40 PCs were selected 836 
(using the approach described above). Resolutions from 0.8 through 10 were tested and a 837 
resolution of 8 was selected. A third phase of targeted sub-clustering was done because 838 
mid/ventral and motoneuron sub-types did not separate well in preliminary neuron analysis. 839 
Indeed, the robustness scores for mid/ventral cell types were very low until they are analyzed 840 
in a focused principal component space (Supplemental Figure 2). For phase 3a, presumptive 841 
ventral neurons were identified by markers and by coalescence on uMAP into a central “blob” 842 
and for phase 3b, motorneurons were identified by expression of classic markers (Chat, Isl1, 843 
Prph). In each case, the procedures described above were used to sub-divide these cell types 844 
and the following parameters were used: 3a: 40 PCs, resolution 4; 3b 7 PCs, resolution 0.6.  845 
 846 
For all three phases, each cluster was analyzed for candidate marker genes and excluded if the 847 
cluster met either of the following criteria. Clusters were considered “low-quality” if they had 848 
fewer than three significant markers relevant to cell type, particularly if they showed very low 849 
nGene. Clusters were considered “doublets” if they had significant markers for multiple 850 
unrelated cell types and a “barnyard” plot of the top ten markers of each cell type showed that 851 
individual cells in the cluster displayed both sets of markers. For all three phases, we used the 852 
following method to determine whether candidate pairs of clusters should be merged: a 853 
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dendogram based on mean gene expression and UMAP location were used to systemically 854 
identify closely related clusters and we then probed for differential gene expression. Pairs with 855 
fewer than three genes enriched in each cluster (six total) were merged unless a “classic” 856 
marker gene from the literature was one of five differentially expressed genes. Cell type 857 
annotations for the non-neuronal cell types were based on the presence of well-established 858 
marker genes (Supplemental Table 1) and on the gene expression patterns in the Allen in situ 859 
hybridization database (for meningeal, ependymal, Schwann cell and peripheral glia clusters). 860 
 861 
The meta-data (and associated final cell labels) are available in Supplemental Table 5. 862 
 863 
Cell Type Relationships and Comparison with Prior Studies  864 
To examine the relationship between the 69 neuronal clusters in the harmonized analysis, the 865 
centroid of each cluster was calculated by grouping the cells by their labels and determining the 866 
mean of each PC. Then, the pairwise Euclidean distance between each cluster was calculated 867 
using 50 PCs. This was passed to the stats::hclust function using method = “complete”. The final 868 
dendrogram was plotted using the graphics::plot function. 869 
 870 
To examine the distribution of the original Haring and Sathyamurthy clusters amongst the 871 
harmonized clusters, the frequency of each pair-wise combination of original and harmonized 872 
clusters was counted. These data were then pivoted to wide form to produce the matrix with 873 
harmonized clusters along the x-axis and original clusters along the y-axis. Finally, the data was 874 
row-normalized, so that the color represents the fraction of the original label occurring in each 875 
harmonized cluster. 876 
 877 
To examine the distance between the original Haring and Sathyamurthy clusters in harmonized 878 
PC space, the pairwise distance between the centroids of the original clusters was calculated as 879 
above. Small distances, representing close clusters, are displayed with hot colors, while large 880 
distances, representing far apart clusters, are displayed with cold colors.  881 
 882 
To examine the correlation between PC distance and the expression of the 500 most highly 883 
variable genes in the harmonized data, the average expression of these genes was calculated 884 
for each original cluster, which yielded two matrices: one a genes by cluster matrix of the 885 
Haring data, and the other a gene by cluster matrix of the Sathyamurthy data. The correlation 886 
of gene expression in each cluster between these matrices was calculated using the 887 
lineup::corbetw2mat function (CRAN version 0.37.11). These correlation scores were then 888 
plotted against the PC distances calculated above. A linear regression with 95% confidence 889 
intervals is shown. 890 
 891 
RNA In situ Hybridization: 892 
14 µm fresh frozen spinal cord sections from segment L4 on Leica Apex slides were used with a 893 
set of 97 RNAScope HiPlex probes (Supplemental Table 2) from ACDBio, according to the 894 
manufacturer’s instructions. Images for each set were registered using RNAscope HiPlex Image 895 
Registration Software and brightness/contrast were adjusted using Adobe Photoshop. Counting 896 
of cells for each set were done as follows. Set 1: All Chat+ cells in any laminae. Set 2: Any dorsal 897 
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cell that expressed any of Cpne4, Maf, or Prkcg. Set 3: Any cell in the dorsal horn with any of 898 
Slc17a6, Rreb1, Reln, or Car12. In addition, Gbx2 cells were counted separately amongst any 899 
cell in the deep dorsal horn with Slc17a6. Set 4: Any cell in the dorsal horn with any of Col5a2, 900 
Enpp1, Sox5, Tac1, Tac2, Nmu, Megf11, Mdga1, Pmfbp1, or Onecut2. Set 5: Any cell in laminae 901 
1-4 with any of Slc6a1, Gad2, or Kcnip2. Set 6: Any cell in the dorsal horn with any of Mlxipl, 902 
Pdyn, Gal, Npy, Qrfpr, Sstr2, or Rspo3. Set 7: Any cell in laminae 4-6 with any of Slc17a6, 903 
Adamts2, Lmx1b. Set 8: Any cell in laminae 4-6 with either Slc6a5 or Gad2. Set 9: Any cell in 904 
laminae 6-8 with Slc17a6. Set 10: Any cell in laminae 6-8 with any of Pax2, Slc6a5 or Gad2. The 905 
number of cells counted in each set are listed in Supplemental Table 2 and were from one 906 
section per animal, though multiple sections per animal were inspected for expression pattern 907 
consistency. Sections from three animals (2 male and 1 female or 2 female and 1 male) were 908 
counted for each set. 909 
 910 
Single Nucleus Sequencing: 911 
Nuclei were obtained as previously described28 and were processed for single cell sequencing 912 
using the 10X Genomics Chromium Single Cell 3’ Kit (v3 chemistry) and sequenced at a depth of 913 
approximately 50,000 reads per nucleus. Clustering was performed as described above and 914 
cluster identities were determined using the combinatorial marker code in Table 1 where 915 
possible (“known clusters”). Clusters that could not be identified in this manner were analyzed 916 
for neurotransmitter status and given a placeholder identification (“unknown clusters”). 917 
  918 
Computational Classification:  919 
Label Transfer: Label transfer analysis was performed using Seurat v3(.1.5). For both coarse cell 920 
types and clean neurons, 10% of cells were withheld as the query dataset, whilst the remaining 921 
were used as the reference dataset. Broadly, label transfer consists of two-steps. First, the 922 
transfer anchors are identified using the FindTransferAnchors function. Second, these anchors 923 
are then used to transfer cluster labels to the query dataset with the TransferData function. 924 
 925 
For label transfer of coarse cell types, FindTransferAnchors was called with reduction = 926 
“pcaproject”, dims = 1:28, and npcs = NULL to project the previously calculated PCA onto the 927 
query data using the same dimensions as were used in clustering the reference data. 928 
TransferData was also called with dims = 1:28 for the same reason.  929 
 930 
Label transfer of clean neurons was performed in a two-step process. First, all cells in mid- or 931 
ventral-clusters were grouped as one cluster. Then, the dorsal-clusters were transferred along 932 
with one “mid/ventral” cluster. Second, those cells classified as “mid/ventral” were labelled 933 
using only neurons from mid- or ventral-neuron clusters. In each case, a new reference object 934 
was created from the appropriate cells – all neurons for step 1 and mid-/ventral-neurons only 935 
for step 2 – via integration, as previously discussed in “Merged Analysis and Clustering”. Label 936 
transfer was run as described for coarse cell types, with the exception that dims = 1:100 was set 937 
for all neurons, and dims = 1:30 was set for mid-/ventral-neurons. 938 
 939 
In the final two-tier analysis, label transfer was performed as discussed for coarse cell types. 940 
Any cells labelled “Neuron”, “Motorneuron”, or “Doublets” were passed to the neural network 941 
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for further classification. The decision to include doublets for further classification was founded 942 
on the observation that a non-trivial number of neurons were mis-classified as doublets at the 943 
coarse cell-type level. 944 
 945 
Support Vectror Machine: Support vector machine analysis was performed using scikit-learn 946 
version 0.22.2.post1. Count matrices were taken from the default Seurat RNA assay count slot 947 
as sparse matrices. Cluster labels were numerical encoded with LabelEncoder(). To preserve 948 
sparsity for reduced training time, these counts were scaled with MaxAbsScaler(copy=False). As 949 
LinearSVC() is known to be a faster and more scalable than SVM(kernel=“linear”), it was 950 
selected for use29. As the number of samples was significantly greater than the number of 951 
features, the dual parameter was set to “False”30. Finally, to help ensure convergence, the 952 
max_iter parameter was increased from the default of 1000 to 10000. This pipeline achieved an 953 
overall accuracy of 80% on the validation data. Though this performance could likely be 954 
improved by hyperparameter tuning, given the performance of alternative models, the support 955 
vector machine was not selected for further use. 956 
 957 
Neural Networks: Count Matrices were taken out of the default Seurat RNA assay count slot as 958 
sparse matrices.  The counts were log x+1 transformed then scaled by the maximum number of 959 
counts for any gene in a cell. The data were converted into TensorFlow sparse tensors for input 960 
into neural networks define via the Keras interface to TensorFlow. Hyperparameters were 961 
initially set to default values, with a network structure consisting of direct connections between 962 
the input and output nodes.  This simple linear model was the baseline.  We added additional 963 
layers from 1 to 4 hidden layers, at various widths from 16 nodes to 512 nodes in a layer. The 964 
optimizer we switch from the default “Adam” optimizer to singular gradient descent (sgd). L1, 965 
L2 and dropout regularization were attempted.  Additionally, various batch sizes were tested. 966 
Initially, networks trained for coarse analysis used a batch size of 128 to speed training.  967 
Whereas the training was faster, validation accuracy improved by around 5% when we lowered 968 
the batch size to 32.  No additional improvement was seen at a batch size of 16, so the batch 969 
size was set to 32 for the rest of the study. In general, we used the learning curves to guide the 970 
changing of hyperparameters31. 971 
 972 
For the analysis of coarse cell types (Figure 5A), a model with two hidden layers of 512 nodes 973 
each and L2 regularization was used. For the analysis of the neuronal sub-types (Figure 5B), 974 
seven models were tested: (1.1) a linear model with no regularization (1.2) a linear model with 975 
L2 regularization (learning rate 0.001) (1.3) a neural network with two hidden layers of 512 976 
nodes each (1.4) an ensemble-like neural network with one hidden layer (128 nodes and L2 977 
regularization) and two hidden layers that were concatenated, (1.5) a neural network model 978 
with three hidden layers (512, 256, 128 and L2 regularization on the 512 node hidden layer 979 
(1.6) a neural network model with 3 layers (128, 128, 128 and L2 regularization on the first 980 
hidden layer) and (1.7) a linear model with no regularization with an SGD optimizer. 981 
Interestingly, the baseline model had the largest validation accuracy.  Since the training 982 
accuracy is 100% as compared to 85% in the validation set, the model is clearly over fitting the 983 
training data.  Adding regularization helped to lower the gap between the training and 984 
validation accuracy, but the overall validation and test accuracies are still lower suggesting that 985 
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the over trained model will perform better on unseen data.  Additional work to improve this 986 
model is needed and adding more data from new experimental studies in the future will help 987 
improve the validation accuracy. For the analysis and training of neurons and doublets together 988 
(Tier 2), five models were tested: (2.1) a linear model with no regularization (2.2) a linear model 989 
with L2 regularization (2.3) a neural network model with one hidden layer of 128 nodes (2.4) a 990 
neural network model with one hidden layer of 128 nodes and SGD optimizer, and (2.5) a 991 
neural network model with one hidden layer of 256 nodes and SGD optimizer. The final model 992 
(2.5) was selected for Tier 2.  993 
 994 
In the analysis of “unknown clusters” (Figure 5F), individual nuclei were “identified” if (1) they 995 
were from an “unknown” cluster and were classified into a harmonized true cell type (not 996 
“junk” or “doublets”) and (2) at least 80% of the total nuclei from their cluster of origin were 997 
classified into the same single harmonized cell type. 998 
 999 
Data Availability 1000 
Raw sequencing data from single nucleus sequencing will be available for download at GEO 1001 
upon publication. A searchable version of all data is available www.seqseek.ninds.nih.gov and 1002 
links to all raw data will be available at the same site. Associated code is available at 1003 
https://github.com/ArielLevineLabNINDS.  1004 
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