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Abstract 

              

The majority of neurons in the human brain process signals from neurons elsewhere in the brain.  

Connective Field (CF) modeling is a biologically-grounded method to describe this essential aspect of 

the brain’s circuitry. It allows characterizing the response of a population of neurons in terms of the 

activity in another part of the brain. CF modeling translates the concept of the receptive field (RF) into 

the domain of connectivity by assessing the spatial dependency between signals in distinct cortical 

visual field areas. Standard CF model estimation has some intrinsic limitations in that it cannot 

estimate the uncertainty associated with each of its parameters. Obtaining the uncertainty will allow 

identification of model biases, e.g. related to an over- or under-fitting or a co-dependence of 

parameters, thereby improving the CF prediction. To enable this, here we present a Bayesian 

framework for the CF model. Using a Markov Chain Monte Carlo (MCMC) approach, we estimate the 

underlying posterior distribution of the CF parameters and consequently, quantify the uncertainty 

associated with each estimate. We applied the method and its new Bayesian features to characterize 

the cortical circuitry of the early human visual cortex of 12 healthy participants that were assessed 

using  3T fMRI. In addition, we show how the MCMC approach enables the use of effect size (beta) as 

a data-driven parameter to retain relevant voxels for further analysis. Finally, we demonstrate how 

our new method can be used to compare different CF models. Our results show that single Gaussian 
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models are favoured over differences of Gaussians (i.e. center-surround) models, suggesting that the 

cortico-cortical connections of the early visual system do not possess center-surround organisation. 

We conclude that our new Bayesian CF framework provides a comprehensive tool to improve our 

fundamental understanding of the human cortical circuitry in health and disease. 

 

 

Highlights: 

G We present and validate a Bayesian CF framework based on a MCMC approach.  

G The MCMC CF approach quantifies the model uncertainty associated with each CF parameter. 

G We show how to use effect size beta as a data-driven threshold to retain relevant voxels. 

G The cortical connective fields of the human early visual system are best described by a single, 

circular symmetric, Gaussian. 

 

 

Keywords: connective field modeling; bayesian modelling; markov chain monte carlo; population 

receptive field; visual cortex, cortical circuitry.  
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1. Introduction 

The majority of the neurons in the human brain process and integrate signals from neurons elsewhere 

in the brain (Robinson, 1989). The resulting spatial and temporal interactions and integration result in 

cortical feedback and feedforward mechanisms that underlie key brain functions such as human 

perception (Calvert & Thesen, 2004; Liang et al., 2017). 

Over the past decades, the extensive use of functional magnetic resonance imaging (fMRI) combined 

with the rapid development of biologically-grounded computational models allowed for better 

understanding the relation, dependency and function of cortical areas of the human visual system 

(Adaszewski et al., 2018; Benson & Winawer, 2018; Dumoulin & Wandell, 2008; Meindertsma et al., 

2017; Park et al., 2002; Wandell & Wade, 2003; Wandell & Winawer, 2015; Zeidman et al., 2018). 

One possible approach to disentangle this network of cortico-cortical interactions along the human 

visual pathway is connective field (CF) modeling (Haak et al., 2013). CF modeling allows characterizing 

the cortical response properties of a population of neurons in terms of the activity in another region 

of the visual cortex. It translates the concept of the stimulus-referred receptive field (RF) into the 

domain of connectivity by assessing the spatial dependency between signals in distinct cortical visual 

field areas (Haak et al., 2013). This neural-referred receptive field is also known as the cortico-cortical 

population receptive field (cc-pRF) and has so far been mainly used to investigate the connective 

plasticity in different ophthalmic diseases (Ahmadi et al., 2019; Carvalho et al., 2019; Haak et al., 

2016; Haak et al., 2013; Halbertsma et al., 2019). The intrinsic advantage of using the CF is the ability 

to assess the spatial integration properties of the visual system using both task-evoked or resting-

state neural responses (Bock et al., 2015; Gravel et al., 2014). However, the standard CF model has an 
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intrinsic limitation. Most importantly, it does not allow for model comparisons. Enabling rigorous 

model comparisons for the CF model, similar to what has been done for the pRF (Zeidman et al., 2018; 

Zuiderbaan et al., 2012), will allow us to learn something about the neurobiology of the visual cortex 

through alternative hypothesis testing. Second, standard CF modeling cannot quantify the variability 

and reliability of each CF parameter estimated. Obtaining the uncertainty will allow the identification 

of model biases, e.g. related to an over- or under-fitting or a co-dependence of parameters, thereby 

improving the CF prediction. Finally, the model parameters obtained using standard CF modelling 

procedures do not lend themselves well for statistical inference at the level of single individuals, 

which can be important in the context of case studies, e.g. with a neurodegenerative ocular disorder, 

such as glaucoma.  

 

To enable this, we here present a Bayesian inference framework for the CF modelling. Using a Markov 

Chain Monte Carlo (MCMC) approach (Robert & Casella, 2011), it estimates the underlying posterior 

distribution of the CF position and CF size, thereby quantifying the model uncertainty associated with 

each parameter. In addition, based on a linear spatiotemporal model of the fMRI response, we also 

estimate the CF effect size, which we will refer to as beta, adhering to the nomenclature used in 

Zeidman et al. (Zeidman et al., 2018). We show how this parameter can be used as a data-driven 

threshold to select relevant voxels. Finally, we use our new approach to perform a model comparison 

which demonstrates that, unlike pRFs, CFs do not appear to possess a spatial center-surround 

organisation.  
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2. Methods 

2.1 Participants 

Twelve healthy female participants (mean age 22 years, s.d. = 1.8 years) with normal or corrected-to-

normal vision and without a history of neurological disease were included. These data were included, 

and used as normative dataset in previous work (Halbertsma et al., 2019). The ethics board of the 

University Medical Center Groningen (UMCG) approved the study protocol. All participants provided 

written informed consent. The study followed the tenets of the Declaration of Helsinki. 

 

2.2 Stimuli presentation and description 

The visual stimuli were displayed on a MR compatible screen located at the head-end of the MRI 

scanner with a viewing distance of 118 cm. The participant viewed the complete screen through a 

mirror placed at 11 cm from the eyes supported by the 32-channel SENSE head coil. Screen size was 

36 x 23 degrees of visual angle and the distance from the participant’s eyes to the screen was 

approximately 75 cm. Stimuli were generated and displayed using the Psychtoolbox  

(https://github.com/Psychtoolbox-3/Psychtoolbox-3/) and VISTADISP toolbox (VISTA Lab, Stanford 

University), both MatLab based (Brainard, 1997; Pelli, 1997). The stimulus consisted of drifting bar 

apertures (of 10.2 deg radius) with a high contrast checkerboard texture on a grey (mean luminance) 

background. A sequence of eight different bar apertures with four different bar orientations 

(horizontal, vertical and diagonal orientations), two opposite motion directions and four periods of 

mean-luminance presentations completed the stimulus presentation that lasted 192 second. To 

maintain stable fixation, participants were instructed to focus on a small colored dot present in the 

center of the screen and press a button as soon as the dot changed color. The complete visual field 
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mapping paradigm was presented to the participant six times, during six separate scans. 

 

2.3 Data acquisition 

MRI and fMRI data were obtained using a 3T Philips Intera MRI scanner (Philips, the Netherlands), 

with a 32-channel head coil. For each participant, a high-resolution T1-weighted three-dimensional 

structural scan was acquired (TR = 9.00ms, TE = 3.5ms, flip-angle = 8, acquisition matrix = 

251*251*170mm, field of view = 256x170x232, voxel size = 1x1x1mm). Six VFM functional T2*-

weighted, 2D echo planar images were obtained (voxel resolution of 2.5x2.5x2.5, field of view = 

190x190x50 mm, TR = 1500ms, TE = 30ms). Each VFM scan lasted for 192s with a total of 136 

volumes. A short T1-weighted anatomical scan with the same field of view chosen for the functional 

scans were acquired and used for obtaining a better co-registration between functional and 

anatomical volume. 

 

2.4 Standard data analysis 

Preprocessing and standard (pRF and CF) analysis of fMRI data were done using ITKGray ( 

http://www.itk.org ) and the mrVista (VISTASOFT) toolbox for MatLab 

(http://www.white.stanford.edu). The Bayesian CF approach and Bayesian CF model comparison were 

developed and based on MatLab 2016b (The Mathworks Inc., Natick, Massachusetts). 

 

2.4.1 Preprocessing 

For each participant, the structural scan was reoriented  using the anterior commissure-posterior 

commissure line (AC-PC line) as reference. Next, grey and white matter were automatically 
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segmented using Freesurfer, and manually adjusted using ITKGray to minimize possible segmentation 

errors.  

All functional data were pre-processed and analysed using the mrVista toolbox. First, motion 

correction within and between scans was applied. Then, we performed an alignment of functional 

data into anatomical space and lastly, an interpolation of functional data onto the segmented 

anatomical grey and white matter obtained using the ITKGray/Freesurfer.  

 

2.4.2 Population receptive field mapping 

Retinotopy scans were analyzed using a model-based analysis, known as the population receptive 

field (pRF) method (Dumoulin & Wandell, 2008), which allows localizing the visual field maps of 

interest. Based on the best fitting prediction obtained using a 2D Gaussian model, the hemodynamic 

response (HRF), and the stimulus aperture, we estimate the visual field mapping parameters 

(eccentricity, polar angle and pRF size). The best model fit was projected onto a smoothed 3D mesh of 

the cortex, on which the visual areas were functionally identified using standard techniques (Engel et 

al., 1997; Sereno et al., 1994; Wandell & Winawer, 2015). 

Based on the phase reversal pRF maps, all the visual cortical areas (V1, V2, V3, hV4, LO1 and LO2) 

were located and used to define target and source regions in the CF analysis. 

 

2.4.3 Standard connective field model 

CF parameters (CF position and CF size) were estimated based on a procedure that fitted the 

predicted time-series in the source region (e.g. V1) to one based on the observed time-series in the 

target regions (e.g. V2 and V3),( Haak et al., 2013). The best fitting model parameters were retained 
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and projected on a smoothed 3D mesh and reported on in the further analysis. The CF parameters are 

converted  from cortical units (cortical position and size) into visual field units (eccentricity and polar 

angle) via a weighted integration (determined  by the shape of the connective field) of the analogous 

pRF properties of the voxels contained by the CF in the source region. 

 

2.5 Bayesian connective field model  

The goal Bayesian connective field modelling is to estimate the underlying posterior distribution 

associated with each CF parameter, which requires  an extensive search in the space of the model 

parameters. Here, we use a Markov Chain Monte Carlo (MCMC) approach to efficiently sample the 

search space. This space is spanned by the following parameters: CF center defined on a mesh grid 

containing the voxels of the source area, CF size, and CF effect size. Throughout this paper, we will use 

the abbreviation MCMC CF to indicate the new approach.  

The code for the MCMC CF framework will be made available via the website 

www.visualneuroscience.nl . 

Two MCMC CF modelling options are provided: the first option (A) estimates the standard CF 

parameters (position and size) using the Bayesian model. In this option the effect size (beta, scaling 

the amplitude of the predictor to the amplitude of the measured signal) is estimated using ordinary 

least squares fit (OSL) but it is not retained. The second option (B) estimates under joint estimation 

the beta parameter together with the other MCMC CF parameters. In this last option, beta is retained 

as meaningful and worth analysing further. The next section details the complete definition of latent 

variables, priors and parameters used, together with their implementation in the MCMC CF model. 

We will follow the nomenclature of Zeidman et al. 
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An overview of the MCMC CF model is presented in Figure 1 while the latent (L ) variables used are

presented in table 1.  

Figure 1 - Overview of the MCMC CF framework. In this example, we estimate the V1�V2 connective field (i.e

source region in V1 for a V2 target voxel) using the MCMC approach. Following the CF definition of Haak et al.,

predicted time series  is obtained by the overlap between a 2D symmetric Gaussian  and the neuronal popula

inputs , which are the fMRI times series of all voxels in the source region (in this case V1). The predicted t

series , the observed time series of the target region  and the latent variables (L ) that are used to define

parameters of the connective field model. Based on the total likelihood associated with error (LE) calcula

between and , the latent variables (L ) are updated in the MCMC iteration procedure (). Two different MCMC

model options are provided: option A, in which the effect sizeis estimated using OSL (indicated as FIT in figu

While in option B, the parameter is estimated under joint estimation and retained to be further analysed - the fit

procedure used in this option is indicated as ( ). Figure adapted from Haak et al. (2013). 

 

Latent variables and priors 

Based on the CF definition used in the standard approach ( Haak et al., 2013), a linear spatiotempo

model and a 2D symmetric Gaussian connective field model (2) are used to create a predicted time

serie ( ) which is fitted to the time series of a target location ( ) .  

       (1) 
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 � � �     � � � ,  0�2 / 2 
2	     (2) 

 � �  � ∑
  � � ,  � �  � �	        (3) 

Where the predicted fMRI signal  � � is obtained by the overlap between the CF model � � and the 

neuronal population inputs  � ,  �, that are defined as the BOLD time series (converted to percent signal 

change) for voxels ( ) (see eq. 3). In equation 1,  defines the effect size and  is the error term.  

The 2D symmetric Gaussian CF model of voxel ( ), � �is defined based on the shortest three-dimensional 

distance  � ,  0� between a voxel ( ) and the proposed CF center ( 0) on a triangular mesh representation 

and  , which defines the width of the CF. 

  is computed using Dijkstra’s algorithm (Dijkstra, 1959) while is constrained to the range� 
0
  	using a 

latent variable  (Zeidman et al., 2018). A flat prior is assumed for  . Therefore, the prior for the latent 

variable   is defined as a normal distribution  �0,1�(see equation 4). As explained in Zeidman et 

al.(Zeidman et al., 2018), each latent variable is assigned to a prior distribution that represents our 

beliefs for that CF parameter, before the model fitting.  

 � � �  0� �     �  , 0,1� �  0 (4) 

Where is the maximum radius and  0is the smallest allowed radius for the CF width - that can be an 

arbitrarily small non-zero number, which here were set to 10.5° and 0.01°, respectively.     indicates the 

normal cumulative distribution function. 

 

The MCMC is an iterative sampling approach. During each iteration the parameters for a new CF are 

set and the fit is compared against the current one. We will describe each parameter update in turn. A 

new location will be selected using the distance to the current position (        ). Based on the distance 

matrix (D), the maximum step (   ) possible in the source region was defined as half the maximal 
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distance from the the current position (        ) (5). Latent variable   , is randomly drawn from a normal 

distribution N(0,1) which results in a flat prior for the step size (    ) between 0 and the  maximum step [0 

  ] (5, 6). The updated sampling position ( 0         ) is defined as that position for which the distance to the 

current position is as close as possible to     . If multiple locations are found, only one is drawn randomly.  

        �      �        � / 2  (5) 

    � |  �     �  , 0,1�|  (6) 

Note that for the first iteration the CF center ( 0) was randomly selected from the source region. 

Simultaneous with an updated sample location, an updated width for the CF is calculated. The              is 

drawn from a gaussian distribution centered around the current value with a width           (7). 

            �  �  ,          �    (7) 

Note that in the first MCMC model (option A, Figure 1), the parameter   is estimated at higher 

hierarchical level inside the MCMC loop using an OLS fit, i.e. theoretically, its allowed range is 

between �∞ and �∞ . For the second MCMC CF model (option B, Figure 1), the effect size ( ) is 

estimated in parallel to the other CF parameters and is retained. In this case  is constrained to be 

positive (Zeidman et al., 2018) using the following equation:   

 �    �  � (8) 

A latent variable    was defined with a prior distribution  ��2,5� and the next value was controlled by 

           (9).  

           �  �  ,          �(9) 

In this study, the initial values of  ,   and          were set to 1 , -5 and 2, respectively. 

 

MCMC CF update  
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At each iteration of the MCMC, the updated CF parameters ( ,  ) were estimated using the following 

steps. First a predicted fMRI signal � � is generated from the source region using eq 2. Note that  � � was 

scaled to ensure that the total area under the gaussian, as calculated across the full source region, 

was equal to one. Second, the error per time point   between the measured fMRI signal ( � �) and the 

predicted fMRI signal � �was calculated. In MCMC CF (option A),  was obtained using an ordinary least 

squares fit (OLS) with free parameter  . While in the MCMC CF model (option B), since  is estimated 

jointly with the other model parameters,   was calculated via subtraction of the predicted signal  � � 

from the measured fMRI signal. Then, the log-likelihood   associated with  was estimated in the same 

way for both MCMC CF models (10). We assumed that   follows a standard normal distribution: N(0,1). 

After estimating the mean and standard deviation of   (  
�and   

�), we calculated the maximum 

likelihood estimates (   , eq. 11 and 12). Note that for MCMC CF option A only the prior for  is used (11) 

whereas for MCMC CF option B both priors for   and   are included (12).  

  �    � ��|  |,   
�,   

��� (10) 

     �  ∑
   �    � �  , 0,1�� (11) 

     �  ∑
   �    � �  , 0,1�� �    � �  , �2,5�� (12) 

At this point,     of the proposal iteration is compared to the last accepted (current) sample based on 

an Accepted ratio score    (13).  

   �     �   
           

�              �  (13) 

  was compared to a pseudo-random acceptance score defined as a normal distribution  �0,1� and only 

if the    was higher, the respective latent variables were updated. Based on the accepted   ,    and    values, 

a new CF was defined and a new MCMC iteration took place.  

Total of 15000 iterations were run, where the first 10% of iterations were discarded for the burn-in 
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process (Chib, 2011; Liu et al., 2016) and the posterior distributions were estimated based on the 

remaining part of the samples.  

 

2.5.1  Alternative kernel: Difference of Gaussians 

In addition to the single gaussian model a Difference of Gaussian model (DoG) was implemented in 

the MCMC CF framework (Rodieck, 1965; Zuiderbaan et al., 2012). In order to do so, we integrated 

the two DoG model definitions proposed by Zuiderbaan et al. and by  Zeidman et al. (Zeidman et al., 

2018; Zuiderbaan et al., 2012). The first Gaussian is defined using the same parameters as above (i.e. 

 0,  1, and  1). The second Gaussian, which characterizes surround suppression, has the same position 

parameter as the first, but is defined using independent size and amplitude parameters  2 and  2. The 

size of 2was enforced to be larger than 1(14) while, the amplitude  2was constrained to be negative and 

smaller than 1(15,16). This was enforced using scaling parameters for the size and amplitude  and 

  ,respectively.  

   2 �  1�   (14) 

 2 �     � 1 �  
 
, 0� (15) 

    � �  �   1� � 1  �  2� � 2 (16) 

Where   is constrained to be between �0,  
 
	using a latent variable  2defined as a standard normal 

distribution N(0,1).   is the smallest allowed radius for the second Gaussian and it was set to 0.01°.  

The   was forced to be positive (Zeidman et al., 2018) with a latent variable   2 with a prior 

distribution ��2,5�. 

Then, the same MCMC CF fitting procedure as described above was used. In this paper, when 

investigating the DoG model, we used the MCMC CF model option B in which both 1and 2parameters 
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and their corresponding distributions are retained for further analysis. For the sake of completenes

the MCMC CF fitting procedure for option A is reported in supplementary material. In this study, th

initial values of and were set to 5 and 10, respectively. 

 

Table 1 - Latent variables used for the two MCMC CF options and different models implemented, 

respectively. 

 

2.5.2  CF and MCMC Model validation 

For each participant, the standard CF and both MCMC CF model options were estimated using V1 a

the source region that is sampled by several target regions (V2,V3,hV4, LO1 and LO2). Target and 

source region definitions were based on the pRF analysis described in  section 2.4.2. For the purpos

of model validation, variance explained was used as thresholding approach and the threshold level 

was chosen based on Haak et al. Only voxels for which the best-fitting CF model explained more tha

15% of the time-series variance in the standard CF were included. 

To quantify the level of agreement between the standard CF and each of the MCMC CF models, the

parameters estimates (location and CF size) are compared using (circular) Pearson correlations at th

participant and the group level for each target region.    
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2.6 Bayesian analysis and new model features 

2.6.1 Uncertainty 

Based on a quantile analysis of the estimated posterior distribution, we computed a voxel-wise 

uncertainty measure (Papadopoulos & Yeung, 2001) for the MCMC CF parameters estimates as 

follows: 

  �   3 �  1  (16) 

Where  3and  1represent the upper and lower quantiles of the posterior distribution, respectively. 

Furthermore, we computed the cross-correlation coefficients to quantify possible dependencies 

between the MCMC CF parameters (VE, CF size and beta; the latter only for model option B) and the 

associated uncertainties estimates. These correlations were computed at the participant and the 

group level for each target region. 

 

2.6.2 Beta thresholding approach 

It is often good practice to limit further analysis of the model parameter estimates to voxels with 

reliable model fits. In the pRF literature this is commonly done by setting a fixed variance explained 

threshold (typically 15%). A more principled approach is to consider the probability that the observed 

model gain (or effect size) is greater than might be expected by chance alone. As such, the observed 

values must be compared against the null-distribution of these quantities. This null can be 

constructed based on theoretical distribution functions (e.g. t-distributions) and estimates of the 

degrees of freedom of the statistic of interest (parametric approach). However, due to both spatial 

and temporal dependencies, it is generally preferred to construct an empirical null by sampling the 
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statistics of interest estimated from random data with similar spatiotemporal covariance structure 

(non-parametric approach).  

  A second consideration in this context pertains to the statistic upon which thresholding will be 

based. The overall model fit is intuitively quantified by the total amount of variance that is explained 

by the model. The threshold criterion can then be chosen such that this quantity is significantly 

greater than zero (e.g. the quantity falls within the 95th percentile of the null distribution). When the 

model involves just a single free scaling parameter (i.e. effect size), testing whether this scaling is 

greater than zero is often equivalent to testing the significance of the overall model fit (i.e. variance 

explained). This is the case in the standard pRF and CF modeling procedures as well as MCMC 

approach option A, where a candidate model prediction is iteratively generated and the goodness of 

fit is determined using a single scaling parameter (eq. 1). However under the proposed MCMC 

approach option B, the scaling parameter beta is jointly estimated with the other model parameters. 

Testing whether beta is greater than zero may therefore yield different thresholding results compared 

with a threshold  based on residual variance. This is due to potential dependencies between the 

model parameters (beta and sigma). In the case of the joint estimation, parameter beta can be 

interpreted as a form of response gain (summarizing the combined effects of neuronal response gain 

and BOLD response). Testing the significance of beta for MCMC option B, therefore, provides an 

alternative thresholding approach that more directly addresses the question of whether or not a voxel 

responds to the visual stimulus in a meaningful way. 

 In order to test if beta can serve as data-driven threshold, a proxy distribution for the null 

hypothesis (which states that there is no correlation between the source and target region) surrogate 

BOLD time series were calculated for the source time-series. Based on the actual BOLD time series of 
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each source voxel, surrogate BOLD time series were generated using the iterative amplitude adjusted 

Fourier transform method (iAAFT) (Räth & Monetti, 2009; Schreiber & Schmitz, 1996). A total number 

of 40 surrogates were computed per voxel (this number was limited due to computational feasibility). 

Using the iAAF method, the temporal correlations between voxels were removed while preserving 

their spatial relationships. Then, the MCMC CF model (B) was fitted to the surrogate BOLD time series 

of the source region and real time series of the target region. Using the betas estimated based for the 

surrogate time series, we derive two alternative thresholding options: 1) a beta-uncorrected 

threshold and 2) a beta-corrected threshold. Both beta-thresholds are defined using the 95th 

percentile of the null distribution, that can be obtained by selecting one pseudo-randomly selected 

surrogate or averaging all surrogates computed per voxel. For the first option, a beta-uncorrected 

threshold is obtained for each voxel in the target region. In this case, the optimal beta-threshold may 

be different for each voxel as it is empirically derived from CF fits to the surrogate BOLD time series of 

each individual voxel. For the second option, a beta-threshold is familywise error (FWE) corrected for 

all the voxels in the target region. In this case, one unique beta-threshold is obtained using the best fit 

of one pseudo-randomly selected surrogate BOLD time series. Figure 2 provides an overview of this 

beta thresholding approach. 

Finally, we compared the voxel selection at the single participant level using both methods and for 

beta-thresholds to the Explained Variance (VE) based on the surrogate data of the MCMC CF model. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.281162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.281162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

- 

Figure 2 - Overview of the beta thresholding approach. Using the MCMC CF model (option B), the best CF fi

the surrogate BOLD time series was used to define two different beta-thresholds: an uncorrected and a FW

corrected option. Both beta-thresholding options are defined using the 95th percentile estimates of the 

distribution, that can be obtained by selecting one pseudo-randomly selected surrogate or averaging all surrog

computed per each voxel. For the first option, an optimal uncorrected threshold is computed for each voxel in

target region (top panel - the optimal uncorrected threshold obtained using the CI option is indicated by red li

Note that the optimal beta-threshold may be different for different voxels as it is empirically derived from CF fit

the surrogate BOLD time series of each individual voxel. The second optionis FWE corrected for all voxels in

target regions. In this case, one unique threshold is obtained using the best fit of one pseudo-randomly sele

surrogate BOLD time series. 

 

2.6.3 Model selection 

In order to compare the single gaussian (SG) to the DoG model, two parameters were considered: t

classical variance explained (VE) of the model (for illustrative purposes) and the Bayesian Informati

Criterion (BIC, see equation 17) (Myung & Pitt, 2004; Schwarz, 1978) defined as follows:   

(17) 
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Where   is the number of time series and  is the number of parameters estimated by the model. 

Per target voxel, the best model was determined as the one having the lowest BIC value or the 

highest VE.   

 

3. Results 

To preview our results, we observe a good level of agreement between the standard CF and the novel 

Bayesian MCMC CF models. We estimated the uncertainty and (in)dependence for the MCMC CF 

parameters ( and  ). Moreover, we implemented and showed how to use the new threshold based on 

the effect size of the model. Finally, we found that a CF model based on a single Gaussian was 

preferred over one based on a DoG to explain the observed BOLD correlations between visual areas. 

 

3.1  MCMC CF model: validation and comparison 

Figure 3 compares the standard CF estimates against the MCMC CF (A) estimates by plotting them on 

a smoothed 3D cortical surface of a representative subject. We directly compared the standard CF 

and MCMC CF (option A) models as both models estimated the CF parameters using an ordinary least 

squares fit and retained the same number of parameters. The maps were obtained using V1 as source 

region while V2, V3, hV4, LO1 and LO2 as target region (Figure 3, panel b and c). Note that the center 

of a CF is defined at a voxel location in the source region. In order to present results in terms of VFM 

coordinates, the center position in terms of voxel location is transformed into eccentricity and polar 

angle values as derived from a pRF mapping. As in the standard CF, the MCMC CF maps show a clear 

visuotopic organization for all the CF parameters estimated (Figure 3, panel c) and they are in good 

agreement with the standard CF estimates (Figure 3, panel b and c). The MCMC CF maps obtained for 
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option B are reported in supplementary material (Figure S1). 

Figure 3 - Visualization of pRF and CF maps for a single subject. From left to right: eccentricity, polar angle 

pRF/CF size parameters are displayed. Panel a corresponds to pRF model estimation and visual area definiti

Panels b and c show VFM derived maps estimates using CF and MCMC CF (option A) models, respectively.  

 

In line with the earlier work that introduced the standard CF method  (Haak et al., 2013), we 

quantified the differences between  the resulting standard CF and MCMC CF maps (in VFM 

coordinates) by correlating them against  the pRF-derived eccentricity and polar angle (Table 2). Th

same quantification of visuotopic organization at the individual subject level is reported in 

Supplementary material (Table S1). Overall a good agreement between the two CF approaches was

found for the CFs in visual cortex area V2 (i.e. V1 > V2). Given the high degree of correspondence 

between standard CF and PRF mapping we will use the standard CF maps as a reference from here 
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Table 2 - Group level correlations between the visual field maps derived using pRF, CF and MCMC CF mod

To estimate the level of agreement of CF maps, we computed the correlations coefficients and compared the

eccentricity (rho) and polar angle (theta) maps obtained using the standard CF and those derived using the MCMC

models to the pRF rho and theta (gold standard). P-values based on Spearman’s correlations range from 0.000

0.045 across different rois. 

 

Furthermore, we quantified the level of agreement between the standard CF and the MCMC CF 

models by correlating the estimated parameters of each model at voxel level per subject (Figure 4)

The best level of agreement between all parameters was observed in the early visual areas (Figure 

panel a, b and c -  V1 > V2 and  V1 > V3). For some subjects, a weak level of agreement was noticed

V1>LO2 especially if the number of voxels in LO2 is low (Figure 4, V1>LO2 ). Thus, the good agreem

and correspondence observed between the standard CF and the MCMC CF implies that this novel 

Bayes framework is a valid method to accurately reproduce cortico-cortical properties of the visual

field.  

22 - 

dels. 

 the 

C CF 

1 to 

. 

4, 

d in 

ent 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.281162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.281162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

- 23 - 

 

Figure 4 - Correlation between CF and MCMC CF parameters at the subject level. From left to right: parameter 

estimates for CFs in target regions (V2, V3, hV4, LO1 and LO2) that sample from V1. Panels a, b and c show the 

correlation between CF and MCMC CF models for eccentricity, polar angle (converted into visual field coordinates) 

and CF size parameters, respectively. Only voxels with explained variance higher than 0.5 in the standard CF model 

are considered. The remaining voxels were color coded based on the VE. Voxels with VE between 0.5 and 0.8 are 

color-coded in orange while voxels with VE higher than 0.8 are plotted in blue.  

 

3.2  MCMC CF Uncertainty 

Based on a quantile difference between  3and  1of the estimated posterior distribution, we estimate a 

voxel-wise uncertainty (see Equation 16) for the MCMC CF parameters ( and ). Only the MCMC CF 

parameters directly estimated using the model ( , ,VE) are included in the analysis. To evaluate the 

possible dependency between the MCMC parameter estimates, the corresponding (posterior) 

uncertainty and the residual noise under a OLS setting, the cross-correlation coefficients between 

these estimates were computed (Figure 5). Negative cross-correlations were obtained between the 
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model variance explained (VE) and the uncertainty estimate for  and  irrespective of the target ROI 

(Figure 5, panel a and b). A weak positive cross-correlation is present between the MCMC CF 

parameters and the corresponding uncertainties. This indicates that uncertainty is a new, 

independent parameter. Similar patterns were observed across all ROIs (Figure 5, panel a and b). 

 

 

Figure 5 - Dependency between MCMC CF parameters and uncertainty at voxel level. Cross-correlations were 

computed between the estimated MCMC CF parameters and the uncertainty derived from them. Only the CF 

parameters directly estimated using the model ( ,  and VE) are included in this analysis. Panel a shows the 

dependency obtained from MCMC CF (option A) while panel b shows the dependencies for MCMC CF (option B) 

model. 

 

3.3 Beta thresholding 

Traditionally, the standard way to threshold voxels is based on the VE which indicates the goodness of 

fit. Alternatively, a threshold can be obtained from the effect size estimate. Analogous to traditional 

fMRI analysis, the effect size (beta) is compared against its distribution under the null hypothesis of 

no effect. We implemented two options: 1) an uncorrected threshold and 2) a threshold that is FWE 

corrected for all voxels in a target ROI. 
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Figure 6 shows the distributions of  value estimated for a single V2 voxel using surrogate (Figure 6, 

panel b) and real fMRI time-series (Figure 6, panel a). Using the 95th percentile of the null 

distribution, we defined the beta-uncorrected threshold (Figure 6, panel c) and the FWE beta-

corrected threshold (Figure 6, panel d). 

From here on, the FWE-corrected beta threshold obtained using the 95th percentile is applied in the 

model comparison analysis. A full evaluation of the thresholding method can be found in the 

supplementary material.   
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Figure 6 - Beta-based threshold estimates in a single visual area (V1>V2) for an individual subject.  Panels

and b show the histogram of posterior distribution obtained from the MCMC procedure for 1 voxel in V2 sampling

from V1 using actual and surrogate data, respectively. In panel a, the best fitting MCMC beta estimate  for this vox

(= 0.9815) is indicated by a black dotted line. Panel b reports the histogram of the posterior distribution under th

null hypothesis. This histogram is obtained by  combining  posterior MCMC data across all 40 surrogates. Panel c 

shows the histogram of the best fitting beta values across all 40 surrogates This histogram can be used to obtain a

uncorrected threshold. . Finally, panel d shows the distribution of optimal beta values under the null hypothesis (

surrogate data) across all  voxelsV2. Each bar represents one surrogate. For visualization purposes, we  only pres

the first ten. The FWE-corrected beta threshold (panel d) is indicated by a red dotted line.  
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3.4 Model comparison 

We quantify the goodness of fit for a single Gaussian (SG) and difference of Gaussian (DoG) models by 

using the standard VE and then, by computing and comparing the BIC scores. For both model 

predictions, we used MCMC CF option B (see Method section 2.5 and 2.5.1). Only voxels surviving the 

subject-wise FWE beta-threshold were considered for further analysis.  

An increased VE is present for the DoG and this effect is consistent across all visual areas (Figure 8, 

panel a) albeit that this difference was not significant (1000 permutations were performed; p-values 

range from 0.6412 to 0.2794 across different rois). An increased VE for the DoG model is expected 

due to additional degrees of freedom (i.e. more free parameters to be estimated) than the SG model 

(Haefner & Cumming, 2008; Singh & Horn, 1999). Furthermore, the VE metric is highly biased from 

the intrinsic variability and residual noise in the data.  

Though the likelihood estimation of the model obtained by using the MCMC CF approach, we 

computed a Bayesian model estimation (BIC) which enables a proper model comparison between the 

two models. In contrast, the SG model shows a consistently lower BIC for the majority of voxels (~ 

80%) across all visual areas (Figure 8, panel b). Furthermore, we projected the BIC values obtained at 

voxel level onto a smoothed 3D mesh at single subject level (Figure 8, panel c and d) to investigate 

possible visuotopic (re-)organization or model preferences per single visual area. 

In this case, no visuotopic organization was observed for both SG and DoG MCMC models.  
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Figure 8 - Model comparison between SG and DoG CF models. Variance explained and BIC was computed at 

single subject level and then grouped over the population per ROI for both SG and DoG MCMC CF models. Data wa

thresholded using the CI corrected beta-based option. Panel a: the variance explained for both models is reported

almost all ROIs, the DoG CF model (blue) has an increased VE compared to SG CF model (yellow). While in panel b

the percentage of voxels with lower BIC per single ROI is reported (back). It is notable that the simpler model is 

favored for all the ROIs in the visual cortex when  the number of parameters is also taken into account. Panels c an

d show BIC derived maps estimates using OG and DoG MCMC CF models, respectively. While Panel d shows the BI

difference between the two CF models (SG - DoG).  
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4. Discussion 

We presented a new Bayesian CF modeling framework based on Markov Chain Monte Carlo sampling. 

We compared the MCMC CF and the standard CF models and observed a good level of agreement 

between them. We further showed how the Bayesian CF model provides novel parameters to explore 

underlying cortico-cortical properties of the visual system. We estimated the uncertainty associated 

to the estimation of CF size (  ) and effect size (  ). Subsequently, we implemented and tested a new 

threshold based on  and show how it can be used as a complementary threshold to the VE of the 

model. Finally, we implemented the spatial center-surround feature of receptive fields at the cortical 

level and compared its performance to the two-dimensional circular symmetric gaussian variant (SG). 

Interestingly, at the cortical level, we find that the SG model is prefered over the DoG. Below, we 

discuss our results in more detail. 

 

4.1 The MCMC connective field approach compares well to the standard approach. 

The novel MCMC CF model provides visuotopic maps qualitatively similar to those obtained using the 

standard CF model (see Figure 3). Quantifying the similarity between MCMC and classical CF models, 

we observed the best level of agreement in the early visual areas - V1 projecting to V2 (V1>V2) and V1 

projecting to V3 (V1>V3). These quantitative and qualitative results are in agreement with those 

presented previously ( Haak et al., 2013), see Figure 4 and Table 1). This high correspondence 

validates the Bayesian approach as a useful method to characterise cortico-cortical receptive field 

properties of visual cortex accurately.  

In the past years, different Bayesian approaches have been successfully applied to the pRF 

method allowing estimation of the the full posterior distribution associated to each of the receptive 
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field properties (Adaszewski et al., 2018; Benson & Winawer, 2018; Carvalho et al., 2020; Quax et al., 

n.d.; Zeidman et al., 2018). Similar to the Bayesian pRF methods (Quax et al., n.d.; Zeidman et al., 

2018), the proposed MCMC CF framework provides the marginal distribution associated with each of 

the cortico-cortical model parameters. Thus, we can estimate the variability on the data by estimating 

the uncertainty and possible dependencies between the parameter estimates. By looking at the cross-

correlation between the MCMC CF parameters and the corresponding uncertainties, the same 

relation was observed across all visual cortical areas (Figure 5): at most a weak correlation was found 

between the MCMC CF parameters and the corresponding uncertainties (correlation < 0.25). 

Therefore, uncertainties can be treated as additional, independent CF parameters that quantify their 

reliability. As expected, an inverse relationship was observed between the goodness of fit of the 

model (VE) and the uncertainty of  and  . Nonetheless, additional information on the data can be 

obtained using the Bayes CF framework as will be discussed in the next paragraph.  

 

4.2 The effect size provides a sensible threshold. 

Using our Bayes CF framework, we considered several thresholding techniques based on the posterior 

distributions of the effect size, . The standard and widely used approach to threshold voxels is based 

on the explained variance (VE) of the CF model ( Haak et al., 2013; Halbertsma et al., 2019), which 

indicates the goodness of fit of the model. However, high explained variance does not always 

correspond with low variability in the estimates (Thielen et al., n.d.). In fact, a model fitted to noisy 

data may still get a high explained variance. Here, we propose an alternative threshold obtained from 

the effect size estimate compared against its distribution under the null hypothesis. We compared 

two options versus the standard VE-based approach: 1) an uncorrected threshold and 2) a threshold, 
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FWE corrected for all voxels in a target ROI. Notebly, some voxels with high uncertainty (and 

therefore high variability) are still selected based on VE thresholding while they are discarded using 

the other two (uncorrected) thresholds (Figure 7). An FWE-corrected beta threshold when obtained 

using the 95th percentile is the most conservative threshold. In general, both beta-thresholds are 

more sensitive in the selection of voxels compared to the standard VE. Furthermore, our data-driven 

thresholds are participant-specific. Therefore, these new beta-thresholds are expected to be 

especially useful when the MCMC CF model is applied in clinical populations (e.g with a lesioned visual 

pathway or brain neurodegeneration). However, these new beta-threshold approaches require a 

proxy distribution for the null hypothesis based on multiple surrogate BOLD time series per voxel. At 

present, obtaining this is computationally demanding and time consuming. This limitation is much 

reduced when a FWE corrected threshold is applied in which case a single surrogate BOLD time serie 

per voxel will suffice. From figure 6, panel d, it can be seen that the distribution of the null hypotheses 

(across voxels) is consistent for all 40 surrogates tested. Although a FWE corrected threshold is 

generally considered to be concervative, note that our FWE corrected threshold is still more sensitive 

than the standard VE and, in contrast to VE,  participant-specific. 

 

4.3 The spatial center-surround estimation in the visual cortex. 

Another significant extension of Bayes CF framework is the ability to compare different cortical 

receptive field models. We compared the single circular Gaussian (SG) model used in the standard CF ( 

Haak et al., 2013), to the Difference of Gaussian (DoG) model that can estimate the center-surround 

configuration of a population of neurons throughout the visual cortex (Rodieck, 1965; Zuiderbaan et 

al., 2012). A similar center-surround configuration is widely used in the population RF model (DoG 
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pRF) (Anderson et al., 2017; Grigorescu et al., 2003; Zhang et al., 2009). In pRF modeling, an increased 

explained variance was reported for the DoG pRF model in the early visual cortical areas (Zeidman et 

al., 2018; Zuiderbaan et al., 2012). Therefore, they concluded that the DoG pRF model provides a 

better characterization of the fMRI signal in the visual cortex.  

We tested whether a similar argument could be made  for CF modeling. We compared the SG and 

DoG CF models using both the explained variance and the BIC values. Similar to the pRF model 

comparison, an increased variance explained was reported for the DoG CF model in all the visual 

cortical areas, albeit the increase was small (see Figure 8, panel a). However, by examining the BIC 

values, the SG CF model shows a consistent lower BIC for the majority of the voxels (~ 80%) for all 

visual areas (see Figure 8, panel b). This indicates that the SG CF model is favoured, and that the more 

complex DoG model may overfit the data. Unlike pRF model, the CF model does not appear to possess 

a spatial center-surround organisation at cortico-cortical interactions level.  

 

4.4 Limitations 

Compared to the conventional CF model the Bayes CF framework is computational intense and time 

consuming. Due to the intense computational load, we decided to use 17500 iterations. This allowed 

the model to reach the optimal-fit in a reasonable time. Future advances in hardware together with 

software optimization should contribute to reducing the computation time. Currently, we address this 

issue by using parallel GPU computing and implementing the method using cluster computation 

(Avesani et al., 2019).  
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4.5 Future directions 

The novel Bayes CF framework presented here uses a straightforward biological-grounded model to 

assess the cortical receptive field properties, and provides a starting point for future studies. 

Similar to the standard CF model, the MCMC CF model is stimuli-agnostic. Previous studies 

have shown that the standard CF still reflects the visuotopic organization of the visual cortex when 

applied to BOLD activity recorded in the absence of external stimulation (i.e. resting-state fMRI data) 

(Bock et al., 2015; Gravel et al., 2014). In a similar way, the MCMC CF model should be able to extract 

the connectivity based on intrinsic activity. Thus, it can be used to evaluate the quality of cortical 

processing in participants in which the visual input may be compromised by ocular or neurological 

lesions. 

Besides the estimation of uncertainty, additional benefits can be derived by estimating the full 

posterior distribution using the MCMC CF method. This will allow to monitor progression of a disease 

and/or the effect of an intervention by comparing the posterior distribution with the posterior 

surrogate distribution at a single subject level. This will provide new insights to the underlying cortical 

mechanisms of neuro-ophthalmic diseases, e.g. glaucoma. 

For the first time, the new Bayes CF framework allows to investigate cortico-cortical 

interactions by using different model definitions. In this study, we tested for the first time the CF DoG 

model on healthy subjects. This model may provide novel information to characterize inhibitory 

cortical mechanisms in ophthalmic patients. Besides the DoG model, the MCMC CF can be extended 

to other model definitions that could possibly characterize additional properties of cortical interaction 

between visual areas (i.e. elongated shape, rotations, (Zeidman et al., 2018). Furthermore, our 

framework enables proper cortical model comparison by estimating the likelihood estimation of the 
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model. This allows to compute Bayesian model estimations i.e. BIC, AIC or Bayes Factor at voxel level 

that can be projected onto a smoothed 3D mesh and further used to investigate possible visuotopic 

(re-)organization or model preferences per single visual area at single subject level. 

 

5. Conclusion 

In this study, we have presented and validated a Bayesian inference framework for the CF model 

using a Markov Chain Monte Carlo approach. We compared the MCMC CF performance to the 

standard CF model and observed a good agreement using empirical stimulus-driven fMRI data. 

Novel MCMC CF parameters were included: first, the parameter uncertainty that quantifies the 

variability and reliability associated with each of the CF parameters. Second, the effect size of the 

BOLD fluctuation (beta) that has been introduced as a reliable, data-driven threshold. Moreover, we 

implemented different CF kernels. Our results show that a simple SG model is favored in describing 

the cortico-cortical interactions of the early human visual system. Our new Bayesian CF framework 

provides an improved and comprehensive tool to assess the neural properties of cortical visual 

processing that will help to further improve our understanding of the ongoing processes involved in 

perception, cognition, development, and ageing in both health and  disease.  
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Supplementary Material 

Difference of Gaussians: MCMC CF option A 

As for MCMC CF model option B described in section 2.5.1, the same MCMC CF fitting procedure 

described in section 2.5 was used. In the MCMC CF model (option A), both and 2parameters were 

retained. For each of the two Gaussian distributions, a predicted weighted fMRI signal 1� �and  2� �was 

created respectively. In order to orthonormalize both  1� �and  2� �signals, the Gram-Schmidt  process 

was applied and the inner product between  1� �and  2� �was consequently used in the OLS fit. For this 

DoG MCMC CF model, the initial values of  2and  2were set to 5 and 10, respectively. 

 

Evaluation of beta thresholding approaches  

To evaluate the novel thresholding methods in the voxel selection, we consider the (posterior) 

uncertainty that is related to residual noise of the model, associated with each MCMC CF parameter, 

respectively. For each of the threshold techniques, the following thresholds were used: the VE 

obtained on the null and effect size survived the 95th percentile (for more details, see Method 2.6.2). 

By comparing both beta-uncorrected and beta-corrected thresholds (95th percentile) to the standard 

VE of the null, we noticed that most voxels with high uncertainty are discarded using the beta-

threshold approaches and not the null-based VE (see Figure S2, supplementary material) . Therefore, 

the FWE-corrected beta threshold obtained using the 95th percentile is applied in the model 

comparison analysis.  
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Supplementary Figures 

Figure S1- Visualization of MCMC CF (option B) maps for a single subject. From left to right: eccentricity, pola

angle and CF size parameters are displayed for MCMC CF (option B) model.  

 

Figure S2 - Comparison of thresholding approaches in a single subject (V1>V3). From left to right: estimates

eccentricity, polar angle, CF size and beta parameters and their corresponding uncertainty estimates are displaye

respectively. Only voxels whose beta and VE estimates exceed the 95th percentile of the null were included. In Pa
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a, the beta-uncorrected thresholds obtained with the 95th percentile technique were applied and compared to the 

standard VE of the model. While in Panel b  the FWE beta-corrected threshold obtained using the 95th percentile 

technique was applied and compared to the VE. 

 

 

 

Table S1 - Comparison between pRF, CF and MCMC CF parameters at single subject level. To estimate and 

compare the level of agreement of CF maps, we computed the correlations between eccentricity (rho) and polar 

angle (theta) parameters obtained using the standard CF and MCMC CF models to the pRF rho and theta (gold 

standard). 
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