
 

Transcriptome-Wide Off-Target Effects 
of Steric-Blocking Oligonucleotides 
 
Erle M. Holgersen ​1​, Shreshth Gandhi ​1​, Yongchao Zhou ​1​, Jinkuk Kim​1​, Brandon Vaz​1​, Jovanka 
Bogojeski ​1​, Magdalena Bugno ​1,2​, Zvi Shalev​1​, Kahlin Cheung-Ong ​1​, João Gonçalves​1​, Matthew 
O'Hara ​1​, Mark Sun ​1​, Boyko Kakaradov​1,3​, Andrew Delong ​1​, Daniele Merico ​1​, Amit G. Deshwar​1 

 

1​ Deep Genomics Inc., 661 University Avenue, MaRS Centre West Tower Suite 480, Toronto, 
ON M5G 1M1, Canada 
2 ​Current address: The Hospital for Sick Children, Toronto, ON, Canada 
3 ​Current address: ​Skyhawk Therapeutics, Waltham, MA 02451, USA 

Abstract 
 
Steric-blocking oligonucleotides (SBOs) are short, single-stranded nucleic acids designed to 
modulate gene expression by binding to mRNA and blocking access from cellular machinery 
such as splicing factors. SBOs have the potential to bind to near-complementary sites in the 
transcriptome, causing off-target effects. In this study, we used RNA-seq to evaluate the 
off-target differential splicing events of 81 SBOs and differential expression events of 46 SBOs. 
Our results suggest that differential splicing events are predominantly hybridization-driven, while 
differential expression events are more common and driven by other mechanisms. We further 
evaluated the performance of ​in silico​ screens for off-target events, and found an edit distance 
cutoff of three to result in a sensitivity of 14% and false discovery rate of 99%. A machine 
learning model incorporating splicing predictions substantially improved the ability to prioritize 
low edit distance hits, increasing sensitivity from 4% to 26% at a fixed FDR. Despite these large 
improvements in performance, the approach does not detect the majority of events at a false 
discovery rate below 99%. Our results suggest that ​in silico​ methods are currently of limited use 
for predicting the off-target effects of SBOs. 
 

Introduction 
Antisense oligonucleotides (ASOs) are short, single stranded nucleic acids designed to bind to a 
target mRNA using Watson-Crick base pairing (Khvorova & Watts, 2017; Roberts et al., 2020; 
X. Shen & Corey, 2018). They have been successfully used as therapeutics by downregulating 
gene expression (Benson et al., 2018) and altering splicing (Finkel et al., 2017).  
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As with other therapeutic compounds, ASOs can cause off-target effects. These can be grouped 
into effects caused by unintended hybridization to RNA regions that are similar to the ASO 
target sequence (known as hybridization-dependent off-target events), sequence-dependent 
effects resulting from ASO-protein interactions (W. Shen et al., 2018), and 
sequence-independent effects resulting from the chemical properties of the ASO or delivery 
system. Hybridization-driven effects depend on the sequence, and so it has been suggested 
that they can be identified through ​ in silico​ screens for near-complementary sites in the 
transcriptome (Lindow et al., 2012).  
 
Previous studies have assessed the hybridization-dependent off-target effects of ASOs 
designed to degrade the target mRNA through RNase H cleavage. Oligonucleotides acting 
through this mechanism are known as gapmers, due to the presence of DNA bases flanked by 
modified bases (Crooke, 2004; X. Shen & Corey, 2018). One study used microarrays to assess 
the off-target gene expression changes of two locked nucleic acid gapmers (Yoshida et al., 
2019). They calculated the edit distance, a count of the number of mismatches or gaps between 
the ASO and RNA sequence, to all genes, and found that 139 / 256 (54%) of all downregulated 
genes were at an edit distance of zero or one. Others have used qPCR dose-response 
experiments to investigate off-targets nominated from ​in silico​ screens of 96 high viability 
gapmers (Watt et al., 2020). In this study 97/ 832 predicted off-target sites had a reduction in 
gene expression with potency within 10-fold of the intended target transcript.  
 
Steric-blocking oligonucleotides (SBOs) are fully modified ASOs that do not contain any DNA 
bases. Without DNA bases, RNAse H does not recognize the binding between the 
oligonucleotide and mRNA, and so the target mRNA is not degraded. SBOs instead act by 
blocking access to regulatory proteins and modifying RNA secondary structure (Havens & 
Hastings, 2016; Rigo et al., 2012). These properties have been exploited therapeutically to 
modulate splicing (Dulla et al., 2018; Finkel et al., 2017; J. Kim et al., 2019; Komaki et al., 2018) 
or to increase expression (Lim et al., 2020). 
 
Since not all potential binding sites overlap a regulatory element, hybridization-dependent 
off-target effects are expected to be less frequent than for gapmers. One group used 
reverse-transcriptase PCR to quantify splicing changes at off-target binding sites with low 
predicted minimum free energy, a measure of the stability of the ASO/ RNA complex, and 
observed a splicing change for 22/108 exons (Scharner et al., 2020).  
 
In this study, we use RNA-seq to comprehensively characterize the off-target splicing effects of 
81 steric-blocking oligonucleotides. Differential expression off-target effects are characterized 
for a subset of 46 SBOs with sufficient biological replicates (see Methods). By assessing 
off-target effects transcriptome-wide, not only at near-complementary sites, we are able to 
evaluate the sensitivity and specificity of ​in silico ​methods. To our knowledge this is the most 
extensive characterization of off-target transcriptome changes induced by SBOs.  
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Methods 
 
SBO design and synthesis 
81 PS-MOE steric-blocking oligos of lengths 16 to 20 were synthesized at Integrated DNA 
Technologies using solid-supported methods in an oligonucleotide synthesizer. 
2’-O-methoxyethyl (MOE) nucleotide phosphoramidites of adenosine (A), guanosine (G), 
5-methyl cytidine (5-methyl C), and thymidine (T) were used in iterative detritylation, coupling, 
capping, and sulfurization steps. Protecting groups were removed from the oligonucleotide and 
the support was cleaved before desalting. The amount of salt-free oligonucleotide in the 
aqueous solution was measured using UV absorbance of the solution. The tube was then dried 
by vacuum and the resulting oligonucleotide pellet was resuspended in 1xTE buffer, pH 8.0, to a 
final concentration of 100 uM, using the known amount of salt-free oligonucleotide in the tube. 
 
RNA-seq experiments  
105 RNA-seq experiments were performed in HepG2 cells, HEK293T cells, or PXB-cells, 
human hepatocytes isolated from a repopulated mouse liver (Hata et al., 2020). Each 
experiment compared samples transfected with a steric blocking oligo (SBO) to 
mock-transfected samples. Two to six (median three) biological replicates were used per 
condition. SBO concentrations were chosen to maximize the on-target effect for several 
therapeutic programs (data not shown). 
 
Oligonucleotide transfections were performed by reverse transfection in HepG2 and HEK293T 
cells using Lipofectamine RNAiMAX reagent (ThermoFisher Scientific). Briefly, 300 pmol of 
oligonucleotide was mixed with 200 ul of OptiMEM reduced serum medium (ThermoFisher 
scientific) in a 12 well plate. 3 ul of RNAiMAX was then added to each well, mixed by rocking, 
and allowed to incubate for 20 minutes prior to addition of cells. Following the incubation, 3 x 
10^5 cells in 800 ul of media without antibiotics (DMEM + 10% FBS for HepG2, IMDM + 10% 
Cosmic calf serum for HEK293T) was added to each well and mixed by rocking, giving a final 
oligonucleotide concentration of 300nM Cells were then incubated for 48 hours, after which 
RNA extractions were performed either manually using the Qiagen RNeasy Mini Kit (Qiagen) or 
by using the QIAcube automated extraction system according to the manufacturer’s 
recommended protocols (inclusive of DNase digestion steps). 
 
For PXB-cells, oligonucleotide transfections were performed by forward transfection using 
Lipofectamine RNAiMAX reagent. Briefly, 6.5 x 10^4 PXB cells were first seeded in 96 well 
plates in a volume of 100 ul antibiotic free PXB culture medium plus 10% FBS. After incubation 
for 24 hours, 50 pmol of oligonucleotide was mixed with 20 ul of OptiMEM reduced serum media 
combined with 0.3 ul of Lipofectamine RNAiMAX and allowed to incubate for 20 minutes. 
Following Lipofectamine incubation, OptiMEM/Lipofectamine/oligonucleotide mixtures were 
added to the wells (417 nM final concentration of oligonucleotide), mixed by rocking, and 
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returned to the cell culture incubator for 48 hours. For RNA extractions, the Qiagen RNeasy Mini 
Kit was used according to the manufacturer’s recommended protocol with the following 
exceptions. Initially, 100 ul of buffer RLT plus beta-mercaptoethanol was added to each well 
containing cells in the plate and pipetted up and down to lyse cells. 6 replicate wells with 100 ul 
of lysate were then combined together and an equal volume of 70% ethanol was added to the 
lysate. Two separate centrifugations were performed to process the entire volume of 
lysate/ethanol mixture. The remainder of the protocol was followed according to the 
manufacturer’s recommended conditions (inclusive of DNase digestion steps). 
 
RNA quality was assessed using a Bioanalyzer 2100, and samples with RNA integrity score 
below 7.5 were dropped. RNA-seq libraries were prepared with the NEBNext Ultra II Directional 
RNA preparation kit, with polyA-selection performed using the NEBNext Poly(A) mRNA 
Magnetic Isolation module. Sequencing was done on an Illumina HiSeq 2500 or NovaSeq 6000 
sequencer. 
 
Cell viability assay 
HepG2 cells were reverse transfected with SBOs using RNAiMAX in 96 well plates. 20,000 
HEPG2 cells were seeded per well. SBOs were transfected at 400 nM and cells were incubated 
for 48 hrs at 37°C and 0.5% CO​2​. Viability was assessed using the CellTiter-Fluor Cell Viability 
Assay (Promega) and performed in quadruplicate. To calculate SBO viability scores, 
background fluorescence was first subtracted from the fluorescence in all wells with SBOs. 
Negative and positive controls on each plate were then used to create a linear mapping to a 
reference dataset, ensuring that the reported values are comparable across experiments. 
 
RNA-seq analysis 
Reads were aligned with HISAT2 v2.1.0 (D. Kim et al., 2019) to obtain full alignments for 
differential splicing analyses. The alignment index was generated by combining Gencode v25 
annotations with Intropolis (Nellore et al., 2016) splicing junctions (filtered to junctions supported 
by at least two samples and five reads, with one end annotated in Gencode v25, and spliced in 
at least 0.01% of the time). The first 20 million reads for each sample were first aligned to detect 
novel splice sites, and these splice sites were used as input for a final HISAT2 run to align all 
reads. The samples had a median of 60.2 million mapped paired-end reads. Quality control was 
performed by assessing read coverage, percentage duplicated reads, and 5' to 3' read bias with 
FastQC v0.11.8 and RSeQC v2.6.4. 
 
Quantifying exon usage 
We developed a novel method for quantifying exon usage based on spliced reads. For each 
exon, a set of possible upstream donors and downstream acceptors is compiled from all 
overlapping annotated Gencode v27 transcripts. Splicing junctions mapping from any of these 
splice sites to the exon boundaries are counted as inclusion reads, , while splicing junctionsI  
mapping directly from upstream splice sites to downstream ones without including the exon are 
counted as exclusion reads, . The splicing junctions themselves do not need to be consistentE  
with an annotated transcript, but both the 5' and the 3' end of the junction must be annotated as 
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a splice site.  
 
Because every mRNA molecule can result in at most two inclusion reads and one exclusion 
read, the inclusion reads are divided by two. Percent spliced in (PSI) of the exon can then be 
calculated as the ratio of inclusion reads to total reads. 
 

SI   P =  I/2
I/2 + E  

 
 
In the case where the exon of interest shares exactly one splice site with another exon, reads 
mapping to the end with the shared splicing junction cannot be used to distinguish between the 
two exons and are not counted. Only the end with the alternative splice site end is used, and 
spliced reads mapping to the alternative boundary of the other annotated exon are counted as 
exclusion reads. Since only one end of the exon is considered, each mRNA molecule can give 
rise to at most one inclusion read, and the inclusion read count is not divided by two. 
 
If the exon shares its acceptor site with another exon, and its donor site with a different one, PSI 
cannot be quantified and such exons are dropped from the analysis. This was the case for 
19,072 / 241,061 (7.9%) of unique exon intervals in Gencode v27. 
 
Detecting splicing changes 
To test for significant differences in PSI between treated and control samples, we use a 
bootstrap test. If the observed difference in PSI is due to chance, it should be comparable to the 
differences we would see if the treated and control sample labels are shuffled. To simulate this 
scenario, we used a two-step bootstrap procedure that starts by randomly selecting samples 
with replacement, and ​ ​then samples reads with replacement. 
 
At each bootstrap iteration, treated and control samples are first sampled with replacement. The 
reads for these samples are pooled to a common set of reads. For each “treated” and “control” 
sample, reads are bootstrapped from this pooled set. The observed difference in PSI (dPSI) 
between the actual treated and control samples was compared to the simulated differences to 
obtain an empirical p-value. Each exon was initially run for 1000 bootstrap iterations. If the 
p-value was below 0.05, 49,000 additional bootstrap iterations were performed to obtain a more 
accurate p-value estimate.  
 
Detecting expression changes 
To estimate transcript abundances for differential expression analysis, reads were 
pseudo-aligned to Gencode v27lift37 with Kallisto v0.46.0 (Bray et al., 2016), using 1000 
bootstrap iterations and sequence-based bias correction. Transcript-level counts were 
aggregated to gene-level counts with tximport v1.10.1. DESeq2 v1.22.0 (Love et al., 2014) was 
used to test for differential expression between treated and control samples. Multiple testing 
correction was performed using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.281667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.281667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Experiment reproducibility 
Average transcripts per million and PSI-estimates were compared between repeated 
experiments using Spearman correlation. To assess reproducibility of differential expression 
and splicing results, log fold changes and dPSI were compared. We used the observed absolute 
effect size (log fold change or dPSI) as a predictor of significant events in the replication 
experiment. Sensitivity and false discovery rate was evaluated at different thresholds.  
 
Quantifying effects by edit distance 
We computed the minimal edit distance between each SBO and different regions in the 
transcriptome. Edit distance was computed up to a maximum of four for SBOs of length 16 or 17 
and a maximum of five for SBOs of length 18 or longer. Sites without any binding site at the 
maximum edit distance or lower were labelled as background. 
 
To quantify splicing events by edit distance, we calculated the edit distance to all non-terminal 
in-frame exons, as skipping an out-of-frame exon is likely to trigger nonsense-mediated decay. 
We further removed all exons with a total read coverage less than 15 for either cases or controls 
due to low power (34,004-47,427, median of 36,889 filtered in-frame exons). Multiple testing 
correction was performed on the remaining exons using the Benjamini-Hochberg method. For 
each edit distance bin, we counted the proportion of exons where a significant (q < 0.05) change 
in splicing was observed.  
 
To quantify differential expression events, comparisons with fewer than three case or control 
samples were removed due to low power, resulting in 64 comparisons of 46 unique SBOs. 32 of 
the SBOs were designed to hybridize to a specific region of the transcriptome (3' UTR N = 5, 
exonic N = 20, intronic N = 7), five were designed as non-targeting controls, three as 
"promiscuous" SBOs with exact complementarity to many regions, and six to bind to 
RNA-binding protein motifs. We calculated the minimal edit distance between the SBO and the 
full gene (pre-mRNA or mature principal APPRIS v27 transcript), 5' UTR, 3' UTR, and 
out-of-frame exons. For each category, the proportion of significant changes in gene expression 
was calculated within each edit distance bin.  
 
Sequence-dependence of expression events 
RNA-seq experiments were done with five SBOs targeting the same exon such that four SBOs 
overlap each other in two sets of two. Treated samples were compared to mock-transfected 
samples, and the Spearman correlation of log fold changes was computed for all pairs of SBOs. 
To compare the overlap of differential expression events with absolute log fold change greater 
than 1, the Jaccard index was computed for all pairs of SBOs. 
 
Predicting splicing changes 
We evaluated the sensitivity and false discovery rate of different edit distance-based and 
energy-based methods for predicting off-target events. In-frame exons with a statistically 
significant change in PSI and an absolute dPSI of at least 0.5 were labelled as positive off-target 
hits. The delta G of SBO/ exon hybridization was computed using the RNA-cofold and RNA-plex 
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methods included in ViennaRNA v2.4.14 (Lorenz et al., 2011), with a padding of 50 bp around 
the exon sequence. Exons longer than 1000 bp were excluded. 
 
Combined splicing effect and binding affinity model 
To investigate the predictive ability of a model that factors in both splicing as well as binding 
affinity we trained a Gradient-Boosted Decision Tree (GBDT) using the LightGBM algorithm (Ke 
et al., 2017). We first created high quality splicing junction annotations using Gencode v27 and 
Intropolis (Nellore et al., 2016). For all genomic locations within protein-coding genes we 
labelled whether it lied within an intron or exon, or if it corresponded to an acceptor or donor 
splicing junction. We trained a Deep Convolutional Neural Network (CNN) that took the raw 
genomic sequence in a large window (16 kbp) and predicted the splicing annotations for every 
position in the input. We then used this CNN to predict the change in splicing caused by the 
SBO, assuming perfect hybridization to the exon. These predicted splicing scores combined 
with the predicted delta G, PSI of control samples, and features describing the relative position 
of the SBO with respect to the exon were then fed into the GBDT to predict the likelihood of an 
exon-SBO pair being an off-target hit. The model was trained and evaluated on exon-SBO pairs 
at an edit distance of five or lower (exon body or 200bp into flanking intron). We split the dataset 
with a 70:15:15 split for training,validation and testing ensuring that no SBO or exon appears in 
multiple splits. Having data splits fully disjointed by both SBO and exon sequence, we can get 
an unbiased estimate of the model’s generalization performance on new unseen examples. 

Results 
We systematically assessed the off-target effects of splice-switching steric blocking 
oligonucleotides (SBOs) through 105 RNA-seq experiments with 81 different SBOs 
(​Supplementary Table 1 ​). 39 of the SBOs were designed to hybridize to specific places in the 
transcriptome (3' UTR N = 5, exonic N = 25, intronic N = 9), a total of 18 different genes. Of the 
remaining 42, five were designed as non-targeting controls, 31 as “promiscuous” SBOs with 
complementarity to many parts of the transcriptome (2-30,670, median of 4 exact matches in 
the transcriptome), and six to be complementary to RNA-binding protein motifs (​Supplementary 
Figure 1 ​).  
 
For each RNA-seq experiment, treated samples were compared to mock-transfected samples 
and putative off-target events were identified through differential splicing analyses (​Figure 1​, 
Methods ​). Differential expression events were assessed for a subset of 46 SBOs with sufficient 
number of replicates. The experiments had a median of 322.5 (range 3-5,403) differentially 
expressed genes (q-value < 0.05) with a reduction in expression of at least 50% or increase of 
at least 2x. Differential splicing events were less frequent, with a median of 5 (range 0-140) 
differentially used exons with a large change in PSI (|dPSI| > 0.5). As expected based on a 
hybridization and sequence-specific mechanism, non-targeting control oligos had the lowest 
numbers of differential splicing (median = 1) and differential expression (median = 96) events 
(​Table 1 ​).  
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We assessed the reproducibility of RNA-seq by conducting repeated experiments in HepG2 
cells with four SBOs, each with four to six replicates. Transfections were performed on different 
days by different people, and sequencing done in separate batches. Average expression and 
PSI-estimates were highly reproducible (Spearman correlations of 0.88 to 0.91,​ Supplementary 
Figure 2 ​), while differential results comparing cases to controls were more variable. 750 / 4788 
(15.7%) differential expression events with a reduction of 50% or increase of 2x and 11 / 60 
(18.3%) differential splicing events with a change in PSI of at least 0.5 were shared between the 
two experiments. If we consider all significant changes regardless of effect size, the overlap in 
differential expression events increases to 11,804 / 32,172. When using the observed changes 
in the first experiment to predict the significant events in the replication experiment, differential 
splicing is more predictable than differential expression (​Supplementary Figure 3​). In 
particular, differential splicing events with a large decrease in PSI are generally consistent 
between experiments. Several of these events occur at high edit distances (​Supplementary 
Figure 4 ​). 
 
Next, we sought to quantify off-target events at near-complementary binding sites. To quantify 
the similarity between the SBO and off-target binding site, we counted the number of 
mismatches or gaps (edit distance) between the SBO and the reverse complement of the 
binding site. We computed the edit distance between the 81 SBOs and all in-frame non-terminal 
exons, and evaluated the probability of observing an off-target effect for edit distance zero to 
five. Exons without a low edit distance binding site were included in the analysis to provide an 
estimate of the background rate of events. 
 
Splicing changes are strongly enriched at low edit distances, with decreasing probability of 
observing a difference and smaller effect sizes as the edit distance increases (​Figure 2a​). At 
exons that contain a binding site perfectly complementary to the SBO, the probability of seeing 
a change in PSI of at least 0.2 is around 35%, although this could be partially driven by the 
selection of SBOs with an on-target effect. This result is consistent with previous screens of 
steric-blocking oligos (Hua et al., 2007; Sinha et al., 2018), where not all exonic binding SBOs 
alter splicing. 
 
While the probability of observing a change in splicing drops off with more gaps and 
mismatches between the SBO and off-target binding site, even high edit distances have an 
enrichment of events compared to exons without an off-target binding site. Exons at edit 
distance five have a 5-fold enrichment of large splicing changes compared to background 
exons. Due to the larger number of candidate exons, most differential splicing events occur at 
high edit distances (​Supplementary Table 2​). 678 / 724 (93.6%) large splicing changes occur 
at exons with an edit distance of three or higher. Similar results are observed when restricting 
the analysis to the subset of 46 SBOs used for differential expression (​Supplementary Figure 
5​). 
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By contrast, expression changes do not have a clear association with edit distance (​Figure 2b, 
Supplementary Table 3 ​). The background set of genes without a low edit distance hit have 
around a 19% probability of seeing a downregulation in expression, far higher than the expected 
type I error rate of 5%. Similar results were observed when looking at off-target binding sites in 
other regions of the gene and restricting to high viability SBOs (​Supplementary Figure 6-7​).  
 
To assess whether differential expression events that do not depend on direct hybridization still 
depend on sequence, we used five SBOs designed to skip the same exon. The two pairs of 
overlapping SBOs had more similar expression changes than SBOs that do not overlap, 
although the concordance in differentially expressed genes is low for all pairs (​Supplementary 
Figure 8 ​). Based on these results, we chose to focus on differential splicing events as a more 
direct readout of hybridization-dependent effects.  
 
For gapmer oligonucleotides, it has previously been reported that intronic binding sites are more 
susceptible to off-target effects than exonic regions (Kamola et al., 2015). To investigate the 
effects of intronic off-target binding for steric-blocking oligonucleotides, we repeated the 
differential splicing analysis when including the flanking intron (​Figure 3​). The enrichment of 
significant events at low edit distances drops off as intronic sequences are included, consistent 
with there being fewer splicing enhancer and silencer elements in intronic regions. 
 
The US Food and Drug Administration (FDA) draft guidance for Hepatitis B virus drugs 
suggested using ​in silico​ screens to identify potential off-target binding sites with three or fewer 
mismatches to an ASO (Food and Drug Administration Center for Drug Evaluation and 
Research, 2018). While splicing changes are more likely to occur if the edit distance between 
the SBO and exon is low, the majority of differential splicing events in our dataset still occur at 
higher edit distance sites. We therefore set out to evaluate the performance of different edit 
distance cutoffs for predicting off-target effects (​Figure 4 ​).  
 
If only exonic sites with exact complementarity are considered as potential off-target binding 
sites, only 1.6% of all large off-target splicing (absolute dPSI > 0.5) events are recovered at a 
false discovery rate of 80%. Increasing the edit distance cutoff improves sensitivity, but results 
in an overwhelming false discovery rate. Even at an edit distance of 5, only 40.6% of all 
differential splicing events are recovered, and 99.91% of predicted off-target sites do not have a 
change in splicing. We compared this performance to gapless edit distance, edit distance with 
flanking intronic sequence, and predicted minimum free energy (delta G) from RNA-cofold and 
RNA-plex.  
 
None of the predictors are able to identify the majority of off-target events at a false discovery 
rate below 99%. Following the FDA guidance of considering off-target binding sites at three or 
fewer mismatches would only identify 9.1% of the true differential splicing events, and 98.3% of 
the identified sites would be false positives. Similar results are observed when removing the 
SBOs designed to hybridize to more than one region in the transcriptome (​Supplementary 
Figure 9 ​). 
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Edit distance and minimum free energy predictions measure the likelihood of an SBO binding to 
a particular sequence, but do not capture any information on the expected splicing effect.  
To explore whether ​in silico​ hits (edit distance five or lower) can be further prioritized based on 
the expected splicing effect, we trained a gradient-boosted tree (​Methods​) to predict splicing 
changes with a change in PSI of 0.2 or more, using both splicing predictions and binding affinity 
predictions as input. This model shows a clear improvement over binding affinity alone when 
evaluated on a test set of unseen SBOs and exons, increasing the sensitivity at 90% false 
discovery rate from 4.4% to 26.1% (​Figure 5​). Due to the lack of a clear association with edit 
distance, we did not attempt to train a similar model for differential expression results. 
 

Discussion 
 
Steric-blocking oligos designed to hybridize to one site in the transcriptome can cause off-target 
effects by binding to near-complementary sites. Our results suggest that expression changes 
are more common than splicing changes, but also that only off-target splicing effects are 
predominantly hybridization-dependent and more reproducible. Changes in transcript levels may 
be driven by other off-target mechanisms, or indirect transcriptional effects of on-target effects, 
or confounders such as batch effects. Technical factors such as transfection efficiency could 
also affect the reproducibility of differential expression events. Given the enrichment of splicing 
effects at low edit distances to in-frame exons, we would expect that there is a set of genes 
downregulated due to off-target binding to an out-of-frame exon, but this effect is not clear from 
the data due to a high background rate of differential expression events.  
 
Limited reproducibility and the lack of a clear, hybridization-driven mechanism suggests that 
differential expression events need to be replicated before they can be considered true 
off-target effects. Differential splicing results, especially when of large effect, are more 
reproducible, although replication experiments could still be necessary to accurately detect 
smaller splicing changes. 
 
Unlike for gapmers, hybridization to an off-target region is not enough for an SBO to cause an 
effect (Obad et al., 2011). Intronic binding sites rarely lead to a change in splicing, and even the 
majority of exonic binding sites do not cause a large effect, making it difficult to predict off-target 
events based on binding affinity alone. A previous study of two gapmers found 54% of gene 
expression changes to occur at an edit distance of zero or one, with a false discovery rate of 
72% (Yoshida et al., 2019). By contrast, we found an edit distance cutoff of one to the exon 
body to result in a sensitivity of 3.4% at a false discovery rate of 91% for differential splicing 
events. Differential expression events are even more difficult to predict from ​in silico​ screens, as 
there is no clear association with edit distance. 
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These results suggest that ​in silico​ methods that consider all binding sites below a certain edit 
distance as potential off-target hits are of limited use for SBOs, as they are likely to only capture 
a small fraction of all off-target events and result in a high false discovery rate. Empirically 
searching for these events using RNA-seq may be a superior approach to detecting these 
events, although follow-up experiments may be needed to replicate the findings. Better 
predictors that incorporate both binding affinity and splicing effects could also improve the utility 
of ​in silico​ methods. 
 
Our study is limited to PS-MOE SBOs in three different cell types, and does not investigate the 
effect of different chemistries or delivery methods on off-target hybridization. Larger studies that 
include ​in vivo​ experiments will be needed to understand the extent of hybridization-dependent 
off-target effects for therapeutic compounds. 
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Figures 

 
Figure 1: ​Quantification of percent spliced in for each exon. Overlapping transcripts are used to 
identify a set of upstream and downstream splice sites, and spliced reads mapping between 
these and the exon boundaries are counted as inclusion reads (green). Reads mapping directly 
between the upstream and downstream splice sites are counted as exclusion reads (blue). 
Reads where one or both ends does not match an annotated splicing junction are not counted 
(grey). 
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Figure 2: ​Proportion of potential binding sites resulting in a splicing (A) and expression (B) 
change, broken down by edit distance and effect size. The numbers above the bars give the 
number of significant (q-value < 0.05) events with absolute dPSI > 0.5 (A) or fold change < 0.5 
(B) and the total number of events by edit distance. Error bars show 95% binomial proportion 
confidence intervals.  
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Figure  3: ​ Enrichment of hits at different compared to a background of hits at edit distance 6+ at 
different dPSI cutoffs, broken by region. Error bars show 95% bootstrap confidence intervals. 
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Figure 4: ​Performance of different predictors at identifying off-target splicing events with a 
change in PSI of at least 0.5.  
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Figure 5: ​ (A)​ ​Illustration of the gradient-boosted tree model trained to prioritize ​ in silico​ hits at 
an edit distance of five or lower. (B) Performance when evaluated on a test set of unseen SBOs 
and exons. Significant splicing changes with dPSI greater than 0.2 were labelled as positives. 
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Tables 

Analysis Category Q1 Median Q3 
Number of 
experiments 

Median 
replicates 

expression 3' UTR 639 857 1393 5 3 

expression exonic 63.75 397.5 1190.25 30 3 

expression intronic 29 137 750 9 3 

expression non-targeting control 7.75 95.5 456 8 3 

expression promiscuous 127 838 2263 6 3 

expression RBP motif 8.5 124.5 1244.75 6 3 

splicing 3' UTR 6 9 11 5 3 

splicing exonic 1.5 8 17 35 3 

splicing intronic 0 1 2 13 3 

splicing non-targeting control 0 1 2 9 3 

splicing promiscuous 2 6 21 37 2 

splicing RBP motif 0.5 2.5 31.5 6 3 

 
 
Table 1: ​ Number of significant differential expression events (absolute log2 fold change >  1) 
and differential splicing events (absolute dPSI > 0.5) by category of SBO.  
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Supplementary Figures 
 

 
 
Supplementary figure 1: ​ Pairwise edit distances between all SBOs included in the study. The 
edit distance is indicated by the colour and additionally shown as a text label for edit distances 
less than or equal to seven. DG2386 is a biotin-labelled version of DG111. 
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Supplementary figure 2: ​ Reproducibility of exon PSI-estimates (A) and transcripts per million 
(B) between repeated experiments. Spearman correlation is shown for each SBO. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.281667doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.281667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
Supplementary figure 3: ​Reproducibility of differential splicing and expression estimates in 
repeat experiments. (A) Spearman correlation between dPSI estimates. (B) Spearman 
correlation between log fold changes. (C) Performance when using observed absolute dPSI in 
the first experiment to predict significant changes with absolute dPSI > 0.2 in the replication 
experiment. (D) Performance when using observed absolute log fold change in the first 
experiment to predict significant changes with absolute log fold change > 1 in the replication 
experiment. 
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Supplementary Figure 4: ​Examples of replicated differential splicing events at high edit 
distances for two SBOs.  
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Supplementary figure 5: ​ Enrichment of differential splicing events by edit distance for the 
subset of 46 SBOs used for differential expression.  
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Supplementary figure 6: ​ Gene expression changes as a function of edit distance, for different 
categories of hits. Both upregulation and downregulation events were included. 
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Supplementary figure 7: ​(A) Distribution of normalized cell line viability scores for SBOs 
included in differential expression analysis. (B) Differential expression events by edit distance to 
full gene, broken down by absolute log fold change, for highest 75%, 50%, and 25% viability 
SBOs.   
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Supplementary figure 8: ​(A) Hybridization intervals of five SBOs targeting the same exon. (B) 
Spearman correlation of log fold changes between all pairs of SBOs. (B) Overlap of significant 
(q < 0.05) differential expression events with absolute log2 fold change greater than 1, for all 
pairs of SBOs. 
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Supplementary figure 9: ​ Performance of different predictors at identifying off-target splicing 
events with a change in dPSI of at least 0.5 when removing the 31 SBOs designed to have 
complementarity to several parts of the transcriptome. 
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Supplementary Tables 
 
Supplementary table 1 
RNA-seq experiments included in the study. 
 
Supplementary table 2 
Off-target differential splicing events with q-value < 0.05 and absolute dPSI > 0.5. 
 
Supplementary table 3 
Off-target differential expression events with q-value < 0.05 and absolute log fold change > 1. 
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