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ABSTRACT 

Background and Purpose: Source-based morphometry (SBM) has been used in multi-centre 

studies pooling magnetic resonance imaging (MRI) data across different scanners to advance 

the reproducibility of neuroscience research. In the present study, we developed an analysis 

strategy for Scanner-Specific Detection (SS-Detect) of SBPs in multi-scanner studies, and 

evaluated its performance relative to a conventional strategy.   

Methods: In the first experiment, the SimTB toolbox was used to generate simulated datasets 

mimicking twenty different scanners with common and scanner-specific SBPs. In the second 

experiment, we generated one simulated SBP from empirical gray matter volume (GMV) 

datasets from two different scanners. Moreover, we applied two strategies to compare SBPs 

between schizophrenia patients’ and healthy controls’ GMV from two different scanners.  

Results: The outputs of the conventional strategy were limited to whole-sample-level results 

across all scanners; the outputs of SS-Detect included whole-sample-level and scanner-specific 

results. In the first simulation experiment, SS-Detect successfully estimated all simulated SBPs, 

including the common and scanner-specific SBPs whereas the conventional strategy detected 

only some of the whole-sample SBPs. The second simulation experiment showed that both 

strategies could detect the simulated SBP. Quantitative evaluations of both experiments 

demonstrated greater accuracy of the SS-Detect in estimating spatial SBPs and subject-specific 

loading parameters. In the third experiment, SS-Detect detected more significant between-group 

SBPs, and these SBPs corresponded with the results from voxel-based morphometry analysis, 

suggesting that SS-Detect has higher sensitivity in detecting between-group differences. 

Conclusions: SS-Detect outperformed the conventional strategy and can be considered 

advantageous when SBM is applied to a multi-scanner study. 
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INTRODUCTION 

Source-based morphometry (SBM) is a data-driven multivariate approach for identifying cross-

subject covarying structural brain patterns (SBPs) and the subject-specific loading parameters 

of these patterns.1,2 While this approach was initially proposed as an extension and a 

multivariate alternative to voxel-based morphometry (VBM) of gray matter volume (GMV),3 it has 

also been implemented to construct SBPs based on cortical thickness,4 myelin volume fraction,5 

and fractional anisotropy.6 

To date, SBM has been predominantly used in single-scanner studies to investigate 

neuroanatomical differences between populations and neuroanatomical correlates of 

demographic or clinical characteristics.7-10 More recently, SBM has also been employed in 

collaborative studies,11-14 since pooling of multi-scanner magnetic resonance imaging (MRI) data 

from multiple sites has gained research momentum in the past decade.15,16 Theoretically, SBM 

assumes common SBPs and varying loading parameters across all subjects of the investigated 

cohort.1,3 Therefore, the conventional strategy to implement SBM in a multi-scanner setting is to 

directly concatenate data from the different scanners to form a single matrix as the input of 

independent component analysis (ICA);3 the outputs are whole-sample-level SBPs derived from 

the entire study sample across all scanners. The main limitations of this strategy is that it only 

yields whole-sample-level SBPs and it cannot ascertain scanner-specific variations. There is 

growing interest in studying individual variability in neuroscience,17,18 but the data-pooling nature 

of current SBM techniques precludes personalized SBPs detection.2 To align SBM with the goal 

of precision neuroscience, it is vital that we develop new ways to model scanner-specific SBPs, 

and infer more accurate estimates of subject-specific loading parameters. To address this 

challenge, we developed SS-Detect, a novel analysis strategy to detect scanner-specific 

structural brain patterns in multi-scanners studies, and used simulation experiments and real-

world datasets to evaluate its performance against the conventional strategy. 

METHODS 

SBM analysis strategies for multi-scanner studies 

Principal component analysis (PCA) and ICA are necessary for the SBM approach 

demonstrated in the present study so we begin with a brief description. PCA is usually used as 

a data reduction and de-noising method in ICA,19 it is typically carried out by computing the 

eigenvalue decomposition of the sample covariance matrix or by using singular value 

decomposition on the data. Since its introduction to functional MRI studies,20 ICA decomposition 

has been one of the primary approaches for analyzing brain imaging data. ICA is a statistical 
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method used to discover hidden factors from a set of observed data such that the factors are 

maximally independent. In the context of its application on MRI data, ICA works by 

decomposing the mixed observed data (i.e., MRI data) into maximally spatially independent 

SBPs revealing patterns of variation that occur in MRI images.3 Each spatial SBP is associated 

with a loading parameter vector.  

The conventional SBM analysis method for a multi-scanner study concatenates all the 

data from the different scanners to form a single matrix as the input for further analyses (Fig 1A), 

including PCA compression and ICA decomposition.20 It assumes that all scanner data have 

common spatial SBPs.21 In this case X��������	��



 = [x�; x�; …; x] would be a typical data matrix, 

where �� is the data matrix from the �-th scanner with dimension of �n×v, in which �n is the n-th 

subject studied on the �-th scanner and v represents voxel number. In the present study, PCA 

via eigenvalue decomposition is performed on X��������	��

  for dimensional reduction across all 

subjects scanned across all scanners. Thereafter, ICA is performed on X��������	�� which is the 

reduced data matrix, and the outputs of ICA are the whole-sample-level SBPs (S��������	��) and 

their associated loading parameter matrix (A��������	��): X��������	�� = A��������	��  S��������	��. 

Each column of the loading parameter matrix is a loading vector of the corresponding SBP 

presenting the weights of this SBP across all participants. More specifically, the loading 

parameter matrix expresses the relationship between all participants and SBPs: the columns of 

this matrix indicate how one SBP contributes to all participants, e.g., ICA decomposition of GMV 

data delineates structural SBPs based on the covariation of GMV among participants, and 

provides each participant an index (loading parameter) that reflects the degree to which each 

participant expresses the identified SBP. Unlike the VBM which assesses gray matter 

differences between individuals or groups by directly comparing their gray matter images, SBM 

assumes the consistency of the spatial structural brain patterns (SBPs) across the investigated 

participants, and the differences of the identified SBPs between different participants are 

expressed through the different loading parameters. In other words, one detects the gray matter 

differences of the SBPs by indirectly comparing loading parameters of different individuals or 

groups.  

Fig 1B presents the flowchart of the SS-Detect which is a scanner-specific analysis 

strategy. By analogy to the group ICA approach used in functional MRI studies,21 SS-Detect first 

applies PCA to data matrix x� , � 	 
1, n at a scanner-level, then a second PCA procedure is 

conducted on the concatenated matrix ���������	��

  which is followed by the ICA decomposition 

procedure to obtain the whole-sample-level SBP matrix S��������	��  and loading parameter 
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matrix A��������	�� : X��������	��  = A��������	��  S��������	�� , where X��������	��  is the output 

from the second PCA procedure and serves as the input of ICA decomposition. The final step is 

to back-reconstruct the scanner-specific-level results based on the whole-sample-level results.22 

In the present study, dual regression was used to back-reconstruct scanner-specific SBPs and 

loading parameters. Given whole-sample-level S��������	�� , dual regression first estimated 

scanner-specific loading parameter vectors, then scanner-specific SBPs, via multiple least-

squares regression.22,23 

Simulation with SimTB toolbox 

We evaluated and compared the conventional and the SS-Detect strategies with GMV data from 

simulated structural MRI data. GMV was used as an exemplar in the present study given that it 

is the most widely-used structural metric in the SBM literature,1 and GMV-based SBPs have 

been demonstrated to follow functionally meaningful architectures.24,25 However, the method 

can be implemented using other structural metrics (e.g. cortical thickness). We generated 20 

GMV datasets mimicking 20 different scanners using the SimTB toolbox.26,27 In simulated data 

representing each scanner, the number of subjects was randomly generated between 50 and 

100. Simulated data representing each scanner were generated as the product of a loading 

parameter matrix and a SBP matrix. The code used to generate simulated data is available on 

GitHub (https://github.com/ruiyangge/multiscanner_SBM). The first 10, and second 10 datasets 

were comprised of 15 SBPs each (with dimension 300×300 with baseline intensity of 1,000). 

The two sets of 10 datasets shared 14 common SBPs, yielding 16 different SBPs in total. The 

two dataset-specific SBPs were generated to mimic the variability of SBPs between different 

scanners. Spatial locations of these 16 SBPs were shown in Fig 2A. Rician noise was added to 

the simulated datasets with different signal-to-noise-ratio (SNR, uniformly varied from 40 to 

110),28,29 defined as ��/��, where �� is the mean value of the SBP signal and �� is the standard 

deviation of the noise. Varying SNR values were used to mimic the varying distribution of SNR 

values across different scanners.30 Then, the conventional and the proposed analysis strategies 

were then applied to these 20 datasets, with model orders of ICA were set as 16 for both 

strategies. To ensure the stability of the ICA decomposition, the ICASSO technique with one-

hundred ICA repetitions was used.31 Consistency of a spatial SBP estimated from different 

repetitions of ICA was quantified using the ICASSO cluster quality index �� ranging from 0 to 1, 

with close-to-one ��  for a given SBP indicates that the SBP is consistent and stable across 

these repetitions. 

Simulation with empirical GMV data 
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In this simulation, we used two datasets collected at the University of British Columbia MRI 

Research Centre on a Philips Achieva 3.0-T scanner and a GE (General Electric) Genesis 

Signa 1.5-T scanner. Each dataset comprised 43 healthy participants (25 females). The age 

range of the participants was 18-63 and 16-47 years, for the Philips and GE datasets 

respectively. All participants provided written informed consent and studies were approved by 

the University of British Columbia ethics board. T1-weighted images from the Philips Achieva 

scanner were acquired with the following parameters: 165 axial slices; TR = 8.1 ms; TE = 3.5 

ms; flip angle (FA) = 8°; field of view (FOV) = 256 mm × 256 mm × 165 mm; acquisition matrix = 

256 × 250; slice thickness = 1 mm. T1-weighted images from the GE Genesis Signa scanner 

were acquired with the following parameters: 124 axial slices; TR = 11.2 ms; TE = 2.1 ms; FA= 

20°; FOV = 256 mm× 256 mm × 260 mm; acquisition matrix = 256×256; slice thickness = 1.5 

mm. 

Preprocessing for VBM was performed using the CAT12 toolbox (http://www.neuro.uni-

jena.de/cat/). First, the images were segmented into gray matter, white matter and 

cerebrospinal fluid probability maps by unified segmentation. Next, gray matter images were 

registered to the tissue probability map using affine transformation. Diffeomorphic Anatomical 

Registration using Exponential Lie Algebra was carried out to implement a high-dimensional 

nonlinear normalization. Through iteration of image registration and template creation, gray 

matter maps were normalized to their own average templates and further to the Montreal 

Neurological Institute space, and resampled to a voxel size of 1.5 mm3. Thereafter, normalized 

gray matter images were modulated with the Jacobian determinants of the nonlinear 

transformation and smoothed with an 8 mm3 Gaussian kernel. After preprocessing, we obtained 

normalized, modulated, and smoothed GMV images for subsequent SBM analysis. 

We first decomposed each dataset into 10 SBPs with SBM, and replaced one randomly-

selected empirical SBP with a simulated SBP located in the frontal lobe (Fig 3A). Specifically, 

data for the background voxels (voxels outside of the selected frontal region) were randomly 

generated with the MATLAB “randn” function, and data of the SBP voxels were drawn from the 

empirical SBP. The loading parameter matrix was randomly generated with the “randn” function. 

Simulated MRI data of each dataset were generated as the product of the loading parameter 

matrix and the SBP matrix. Thereafter, the conventional SBM analysis strategy, and the 

proposed strategy for multi-scanner studies were applied to the simulated datasets, with the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.09.03.282236doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.282236
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

model orders of ICA set as 10 for each strategy. This procedure was repeated ten times, with 

the ICASSO technique using one-hundred ICA repetitions in each run.  

Evaluation of the two strategies 

Three quantitative measures were used to assess the two analysis strategies: (1) Dice’s 

coefficients between spatial templates and SBPs; (2) area under a curve (AUC) of the Dice’s 

coefficients curves; and (3) Pearson’s correlation coefficients between ground-truth loading 

vectors and estimated loadings. 

In the SimTB-based simulated data, overall performance at the whole-sample-level results 

was the mean of each quantitative measure across the 16 SBPs; overall performance at the 

scanner-specific results was the mean of each quantitative measure across the 15 simulated 

SBPs for the first 10 and the second 10 datasets, respectively.  

In the empirical data-based simulation, overall performance both at the whole-sample-

level and the scanner-specific results was the final value of each performance measure 

averaged across ten runs.  

Finally, we compared the performance measures (i.e., Dice’s coefficients, AUC of Dice’s 

coefficient’s curve, and correlation coefficients of loadings) between the two analysis strategies 

with Wilcoxon signed-rank tests. We used the ICASSO cluster quality index �� to compare the 

consistency of the two strategies. Specifically, the mean �� averaged over all SBPs was used for 

evaluation, and this was conducted on the whole-sample-level spatial SBPs on which the 

ICASSO repetitions were conducted. The statistical significance level was set as p < 0.05. 

Evaluation of the whole-sample-level spatial SBPs 

The whole-sample-level spatial SBPs could be detected with both analysis strategies. For each 

experiment, we computed the Dice’s coefficients between the ground-truth templates (see Fig 

2A, and Fig 3A) and the SBPs. Dice's coefficient ranges from 0 to 1, with higher values 

indicating higher similarity between two binary images. We first z-transformed the SBPs, then 

used a z-threshold to binarize the SBPs, varying this threshold over an interval of [0.1, 10]. We 

took the Dice’s coefficient with z-threshold = 2.5 as one quantitative measure of the analysis 

strategies, this z-threshold was selected because it is a popular empirical threshold for 

displaying the results of spatial SBPs.12,32-34 We also plotted curves of the Dice’s coefficients 

with varying z-thresholds, and computed the area under curve (AUC) of the Dice’s coefficient 

curves as another quantitative measure.  

Evaluation of the scanner-specific spatial SBPs 
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The scanner-specific spatial SBPs could be detected only with SS-Detect. For the scanner-

specific spatial SBPs of the SimTB data, we used a one-sample t-test to summarize the results 

of the first 10 and second 10 datasets separately, and used t-thresholds varying between 0.1 

and 10 to binarize the t-maps.  

For the scanner-specific spatial SBPs of the empirical data, we used a one-sample t-test 

to summarize the results of Philips and GE data separately, with t-thresholds varying between 

0.1 and 75 to binarize the t-maps. Dice’s coefficient between the thresholded t-maps and 

ground-truth templates at each t-threshold was then computed.  

Evaluation of the loadings of the SBPs 

Each subject had a single loading parameter for each SBP. To assess the detection ability of 

the analysis strategies for the loading parameters, we computed the Pearson’s correlations 

between the ground-truth loading vectors and those obtained from each strategy. This 

procedure was the same for both experiments. 

Application of the SS-Detect in a cross-sectional schizophrenia vs control study  

The conventional and SS-Detect strategies were applied to GMV data of two schizophrenia 

datasets. One dataset (COBRE data; http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html) 

was collected in a Siemens 3.0-T Trio TIM scanner with the following parameters: 192 sagittal 

slices; TR = 2,530 ms; TE = 1.64 ms; FA = 7°; FOV = 256 mm × 256 mm; acquisition matrix = 

256 × 256; slice thickness = 1.0 mm. Given that there are differences in brain morphology 

between female schizophrenia patients and males schizophrenia patients,35 only MRI data from 

male participants were used in this experiment. This dataset consists of a group of 58 male 

schizophrenia patients (age MEAN±SD: 37.517±14.032) and a group of 51 male healthy 

controls (age MEAN±SD: 36.431±11.846). No significant difference was detected of the age 

(two-sample t-test, p = 0.666) between the two groups. The second dataset (UBC data) was 

collected in a GE Genesis Signa 1.5-T scanner with the following parameters: 124 axial slices; 

TR = 11.2 ms; TE = 2.1 ms; FA= 20°; FOV = 256 mm × 256 mm × 260 mm; acquisition matrix = 

256 × 256; slice thickness = 1.5 mm. All participants in this dataset provided written informed 

consent and studies were approved by the University of British Columbia ethics board. This 

dataset consists of 48 male schizophrenia patients (age MEAN±SD: 20.908±4.060) and 39 

healthy controls (age MEAN±SD: 23.559±10.168). No significant difference was detected of the 

age (two-sample t-test, p = 0.102) between the two groups. All schizophrenia patients in the two 

datasets were diagnosed on the basis of a structured clinical interview for DSM-IV-TR. 
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Preprocessing of voxel-based morphometry was performed using the CAT12 toolbox for 

each dataset separately, and each procedure was the same as the procedure mentioned in the 

simulation with empirical GMV data section. Subsequently, SBM analysis was conducted with 

conventional analysis strategy and SS-Detect strategy with the preprocessed GMV images as 

the inputs. The ICA order of each strategy was set to fifteen,7 and then by one-hundred ICASSO 

repetitions. We conducted cross-sectional comparisons between schizophrenia patients and 

healthy controls on the loading parameters of the SBPs through Wilcoxon rank-sum test, with 

age, total intracranial volume (TIV), and scanners as nuisance variables. Furthermore, we 

conducted between-group comparisons on the voxel-wise GMV images, with age, TIV, and 

scanners as nuisance variables. In these analyses, statistical significance level was set as p < 

0.05. 

RESULTS 

Results from the simulated datasets  

Fig 2 presents the estimated SBPs based on the two analysis strategies. At the whole-sample-

level, the SS-Detect successfully detected all 16 simulated SBPs (Fig 2C), whereas the 

conventional analysis detected only 12 as some SBPs were apparently fused (Fig 2B); for 

example, one estimated SBP (pattern ID: 1, Fig 2B) consisted of two simulated SBPs (pattern 

IDs: 1 and 11, Fig 2A). SS-Detect successfully detected both the 14 common and the 2 

scanner-specific SBPs in each scanner-specific dataset and at the whole-sample-level. The 

results of the first 10 datasets contained a “noise-like” SBP (pattern ID: 16) which was not 

simulated in these datasets, and the results of the second 10 datasets contained a “noise-like” 

SBP (pattern ID: 15) which was not simulated in these datasets. 

Quantitative evaluation of the SBM results showed that at the whole-sample-level, 

estimated SBPs from the SS-Detect had higher AUC and Dice’s coefficient (z-score = 2.5) 

relative to the conventional analysis (Fig 4A). Although the first 10 simulated datasets had 

different SBPs compared with the second 10 datasets, their AUC and Dice’s coefficients were 

similar (Fig 4B). Fig 4C showed that the average correlation coefficient between the estimated 

loading parameters and the ground-truth loadings from SS-Detect was significantly higher than 

that from the conventional strategy. This finding was detected both in the first 10 datasets 

(MEAN±SD: 0.828±0.097 versus 0.745±0.317) and the second 10 datasets (MEAN±SD: 

0.841±0.072 versus 0.731±0.344). The ICASSO cluster quality index ��  of SS-Detect was 

significantly higher than that of the conventional strategy (MEAN±SD: 0.856±0.171 vs 
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0.983±0.005, p = 0.006), demonstrating that SS-Detect produced more stable SBPs relative to 

the conventional strategy. 

Results from the empirical data 

For visualization purpose, we presented one exemplar result from the ten simulations of each 

analysis strategy at the whole-sample level. SS-Detect successfully estimated the simulated 

SBP (Fig 3C), whereas the estimated SBP from the conventional strategy included regions (e.g., 

left precentral lobe cluster ‘a’ and left superior parietal regions ‘b’ and ‘c’ in Fig 3B) which were 

not part of the SBP (Fig 3B). Therefore, the conventional strategy detected false-positive 

regions. We quantified the level of false-positive detection by counting the number of 

background voxels (voxels outside of the simulated frontal region) that were detected in the 

simulated SBP with threshold z > 2.5, i.e., if a background voxel had a z-value higher than 2.5, 

we counted it as a false-positive voxel. Results at the whole-sample-level spatial SBPs showed 

that average false-positive voxel count was 3320.100 (SD: 1782.621) and 15.700 (SD: 23.286) 

across the ten simulations for the conventional strategy and SS-Detect, respectively, and the 

statistical comparison between the two strategies on this count was significant (p < 0.001). At 

the scanner-level, the average false-positive voxel count across the ten simulations was 

169.900 (SD: 165.721) and 129.200 (SD: 111.887) for the Philips Achieva scanner and GE 

Genesis Signa scanner, respectively. Quantitative evaluation of the SBM results showed that at 

the whole-sample-level, SS-Detect estimated SBPs with higher AUC and Dice’s coefficient (z-

score = 2.5) relative to the conventional analysis (Fig 5A). At the scanner level, we presented 

the result from one-sample t-test of the ten simulations. SS-Detect successfully detected the 

simulated SBP for both datasets (Fig 3D). The AUC of the Philips dataset was slightly higher 

than that of the GE dataset (Fig 5B). Fig 5C showed that the average correlation coefficient 

between the estimated loading parameters and the ground-truth loadings from SS-Detect was 

significantly higher than that from the conventional strategy. This finding was observed in both in 

MRI data from Philips Achieva scanner (MEAN±SD: 0.877±0.070 versus 0.728±0.172) and GE 

Genesis Signa scanner (MEAN±SD: 0.895±0.055 versus 0.804±0.150). The ICASSO cluster 

quality index ��  of SS-Detect was significantly higher than that of conventional strategy 

(MEAN±SD: 0.972±0.052 vs 0.939 ±0.091, p = 0.002). 

Results from the schizophrenia datasets 

For each analysis strategy, spatial maps of fifteen SBPs were shown in Fig 6.  Because ICA 

algorithms generate SBPs in an arbitrary order,36 and for visualization purpose, these SBPs 

were inspected and reordered based on the similarities between spatial maps from SS-Detect 
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and conventional strategy. At the whole-sample-level, the outputs of the two SBM analysis 

strategies were highly similar except one cerebellar SBP (3rd SBPs in Fig 6): SS-Detect strategy 

detected a SBP which located in the bilateral insula and anterior cingulate cortex; whereas the 

conventional strategy did not detect this SBP but one located in the precunes and posterior 

cingulate cortex, and this SBP largely overlapped with the 9th SBP (Fig 6A). The ICASSO 

cluster quality index ��  of SS-Detect was higher than that of the conventional strategy 

(MEAN±SD: 0.980±0.006 vs 0.958 ±0.048, p = 0.051). Each SBP of the SS-Detect had an �� 

higher than 0.950, suggesting the high reliability of these SBPs. For SBPs of the conventional 

strategy, thirteen had �� higher than 0.950, and the 3rd SBP had an �� of 0.843 and 9th SBP had 

an �� of 0.840, suggesting that these two SBPs had lower reliability than other SBPs across the 

one-hundred ICASSO repetitions. All scanner-level SBPs from SS-Detect highly resembled to 

the corresponding whole-sample-level results, although the shape of the SBPs were slightly 

different between the two different datasets. 

In the comparison between schizophrenia patients and healthy controls, both SS-Detect and the 

conventional strategy detected one SBP that controls showed significantly higher loading 

parameters than patients (Fig 7A and Fig 7B). This SBP located in bilateral superior temporal 

gyrus and posterior insula. SS-Detect detected three more SBPs that controls had significantly 

higher loading parameters: one SBP located in bilateral thalamus, one SBP located in bilateral 

middle prefrontal and medial prefrontal gyrus, and one located in bilateral superior, inferior and 

middle temporal gyrus, and temporal pole. The spatial location of these four SBPs overlapped 

with the VBM results (clusters ‘a’, ‘b’, ‘c’, and ‘d’ in Fig 7C). Fig 7D and 7E showed a cerebellar 

SBP that patients had significantly higher loading parameters than controls. This SBP located in 

cerebellar tonsil, and overlapped with the VBM results (cluster ‘e’ marked with green arrows in 

Fig 7F).  

DISCUSSION 

In this paper, we proposed SS-Detect as a scanner-specific analysis strategy to improve the 

detection of SBPs in SBM analyses of multi-scanner datasets. SS-Detect can be considered an 

adaptation to anatomical MRI studies of the commonly-used group ICA in the field of functional 

MRI.21,37 Both SS-Detect and the conventional strategy assessed in the present study employed 

group spatial ICA to establish correspondence of SBPs across datasets acquired with different 

MRI scanners. The present report describes a simulation study to assess the performance of 

SS-Detect. In the first simulation experiment, we demonstrated that SS-Detect could 

successfully estimate all SBPs, both at the whole-sample-level and at the individual scanner-
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level. These findings suggest that SS-Detect preserves the variability of the SBPs between 

different scanners, which cannot be ascertained with the conventional strategy. The 

conventional strategy did not recover all simulated SBPs correctly, even when some SBPs were 

shared between different datasets. This was because the conventional strategy concatenated 

the multi-scanner data along the subject dimension with an assumption that all scanner data 

have common spatial SBPs,21 and this assumption was inviolated by the fact that in our 

simulation we generated scanner-specific SBPs that were not shared by all scanners. Our 

results revealed that SS-Detect largely mitigated this constraint and successfully detected all 

SBPs. It is noted that for the SS-Detect results, Dice coefficients in the scanner-level were 

substantially lower than Dice’s coefficients in the whole-sample level. This phenomenon can be 

explained by the facts that with the current SS-Detect framework, scanner-level results were 

back-reconstructed based on the whole-sample-level results; in the meanwhile, the whole-

sample-level results were produced by the concatenated data with larger sample size which 

could significantly increase statistical power and replicability relative to a single small-sample 

study.38,39 In the second simulation experiment, by using empirical GMV data, we demonstrated 

that SS-Detect detected less false-positive regions in the simulated SBP than the conventional 

strategy. Quantitative comparisons in two simulation experiments demonstrated that SS-Detect 

was more accurate than the conventional strategy in estimating both the spatial SBPs and 

subject-specific loading parameters. These findings underscore the advantage of using SS-

Detect for analysis of SBM in a multi-scanner study. 

Our experiment on schizophrenia patients and healthy controls showed that most of the 

SBPs generated by two different strategies were similar, and these SBPs have been revealed 

by previous studies with healthy participants.25,40 SS-Detect strategy detected a SBP which 

located in the bilateral anterior insula, and this SBP corresponded to the salience network.41 

However, the conventional strategy did not detect this SBP but one (3rd SBP in Fig 6A) largely 

overlapped with another SBP (9th SBP in Fig 6A), this result signaled that the conventional 

strategy did not decompose the data in a proper way because spatial ICA used in the present 

study was meant to generate maximally independent SBPs, i.e., systematically spatially non-

overlapping SBPs. Moreover, the lower reliability of these two SBPs across the ICASSO 

repetitions also suggested the deficiency of the conventional strategy relative to SS-Detect.  

SBM was proposed as a multivariate alternative to voxel-wise VBM, and usually SBPs 

show significant between-group differences of SBPs that locate in brain regions that exhibit 

significant differences in the VBM analysis.1,3 In the comparison between patients and controls, 

both analysis strategies detected higher loading parameters of controls relative to patients in a 
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superior temporal SBP, indicating GMV loss of this SBP in schizophrenia patients. This result 

has been consistently found in previous studies using SBM.3,8,12 More importantly, SS-Detect 

revealed three more SBPs (a thalamus SBP, a dorsolateral prefrontal SBP, and a temporal SBP 

in Fig 7B) that exhibited higher loading parameters in controls relative to patients, whereas the 

conventional strategy failed to detect these differences. Meta-analyses of the GMV studies 

suggested thalamic volume anomalies in schizophrenia patients,42-44 and SBM studies on 

schizophrenia patients also have reported decreased thalamic SBP in schizophrenia patients.3,45 

Similarly, decreased GMV of bilateral middle prefrontal gyrus, inferior and middle temporal 

gyrus have been reported,46-48 and a multi-centre SBM study has discovered a middle prefrontal 

SBP decrement in schizophrenia patients.12 Our VBM analysis further confirmed schizophrenia 

patients’ GMV loss in the aforementioned regions (Fig 7C). All these results suggested that SS-

Detect was more sensitive in detecting the GMV loss of SBPs than the conventional strategy. 

VBM analysis of the present study revealed a larger cerebellar tonsil GMV in patients relative to 

healthy controls (Fig 7F), and SBM results of both strategies confirmed this finding by showing 

that patients had higher loading parameters of the cerebellar tonsil SBP (Fig 7D and 7E). These 

results were contradictory to the results of a recent report in which cerebellar volume decrease 

was found in schizophrenia patients.49 Plausible explanations for this incongruence could be 

different gender distributions of the two studies,50 different medication status of the patients etc. 

Although it is beyond the scope of the present study which was to compare the two SBM 

analysis strategies, more work is needed to focus on the schizophrenia-related cerebellum 

abnormalities by disassociating different variables that might contribute to the inconsistency 

between different studies. Additionally, the conventional strategy detected a significant between-

group difference in a precuneus/posterior cingulate SBP (Fig 7D), however, as mentioned 

earlier this SBP had low stability across the ICASSO repetitions and should be eliminated for 

further consideration as previous studies.33 

Future studies will be necessary to extend this work in two ways. First, SS-Detect could be 

used to explore systematic differences introduced into a multi-scanner MRI study because of 

the different scanning platforms used; this could also assist in eliminating undesired noise which 

confounds true effects of interest.51,52 Second, relative to the conventional analysis strategy, SS-

Detect is a further step towards the goal of precision neuroscience by establishing 

correspondence of SBPs in the entire study sample across scanners and simultaneously 

preserving the variability within each scanner-specific dataset. Nonetheless, the primary 

limitation of SS-Detect is that it cannot be applied at an individual subject level. Accordingly, 

future studies are need to go beyond, by addressing individual subject variability. Constructing 
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SBPs from an individual anatomical MRI image would make it possible to investigate variability 

between individuals.2,53 Third, comparisons between schizophrenia patients and healthy controls 

were conducted on male participants only, therefore, findings in this experiment cannot be 

generalized to female population directly. Future studies are needed to characterize the gender-

effects on the gray matter abnormalities in schizophrenia patients. 

In conclusion, we proposed SS-Detect as a scanner-specific analysis strategy to improve 

the detection of SBPs in SBM analyses of multi-scanner datasets. With three experiments, we 

demonstrated that SS-Detect could successfully estimate all simulated SBPs, and detect less 

false-positive regions in a SBP, and improve the sensitivity in detecting between-group 

differences compared to the conventional strategy. Therefore, SS-Detect outperformed the 

conventional strategy and can be considered advantageous when SBM is applied to a multi-

scanner study. 
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FIGURE LEGENDS 

Fig 1. Flowcharts of the two analysis strategies of source-based morphometry (SBM). PCA: 

principal component analysis. X, A, and S indicate the MRI data matrix, loading parameter 

matrix, and spatial structural brain pattern (SBP) matrix. The MRI data matrix can be a matrix of 

gray matter volume, cortical thickness, or fractional anisotropy etc. 

Fig 2. (A) Spatial locations of the simulated structural brain patterns; the first 10 data were 

comprised of 15 patterns (pattern IDs: 1-15), and the second 10 data were comprised of 15 

patterns (pattern IDs: 1-14, and 16). Whole-sample-level results of the conventional analysis 

strategy (B) and SS-Detect analysis strategy (C). (D) Individualized scanner-specific results of 

the first 10 data and the second 10 data. A one-sample t-test was used to summarize the first 

10 data and second 10 data separately.  

Fig 3. (A) Spatial location of the simulated component with the empirical gray matter volume 

data. Whole-sample-level results of the conventional analysis strategy (B) and SS-Detect 

analysis strategy (C). (D) Individualized scanner-specific results. A one-sample t-test was used 

to summarize the results of Philips and GE (General Electric) data separately. Green arrows in 

(B) indicate three large false-positive clusters detected by the conventional analysis strategy. L: 

left; R: right. 

Fig 4. Results of the SimTB simulated datasets. (A) Average Dice’s coefficient between the 16 

structural brain patterns (SBPs) and the ground truth at the whole-sample-level. Statistical 

analysis showed that the estimated SBPs from the SS-Detect analysis strategy had higher AUC 

and Dice’s coefficient (at z-score of 2.5) relative to the conventional analysis strategy. (B) 

Average Dice’s coefficient between the 15 SBPs and the spatial ground truth at the individual 

scanner-level for the first and second 10 simulated data, respectively. (C) Average correlation 

coefficient between the estimated loading parameters and the ground truth for the first and 

second 10 simulated data, respectively. Error bars indicate the standard deviation across all 

SBPs. AUC: area under curve. 

Fig 5. Results of the empirical datasets. (A) Average Dice’s coefficient between the simulated 

structural brain pattern (SBP) and the ground truth at the whole-sample-level. Statistical 

analysis showed that the estimated SBP from the SS-Detect analysis strategy had higher AUC 

and Dice’s coefficient (at z-score of 2.5) relative to the conventional analysis strategy. (B) 

Average Dice’s coefficient between the estimated SBP and the spatial ground truth at the 

individual scanner-level for the Philips and GE (General Electric) data, respectively. (C) Average 
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correlation coefficient between the loading parameters and the ground truth for the Philips and 

GE data, respectively. Error bars indicate the standard deviation across the 10 repetitions of the 

simulation. AUC: area under curve. 

Fig 6. Spatial maps of the fifteen structural brain patterns (SBPs) projected over axial slices, at 

their respective global maximum coordinate. Spatial maps were thresholded at Z >�2.5 for 

visualization purposes, and a Z-score color bar was presented at the bottom of each SBP. L: left; 

R: right. 

Fig 7. (A) One structural brain pattern (SBP) with significant higher loading parameters in the 

control group relative to the schizophrenia patient group was detected through the conventional 

analysis strategy. (B) Four SBPs with significant higher loading parameters in the control group 

relative to the schizophrenia patient group were detected through the SS-Detect strategy. P-

value of between-group comparison for each SBP was shown. (C) Voxel-wise between-group 

comparison of the gray matter volume (GMV) images showed higher GMV in controls relative to 

patients (p < 0.05 uncorrected with cluster size k > 100). Four locations were marked with 

arrows, including [a] bilateral superior temporal gyrus and posterior insula; [b] bilateral thalamus; 

[c] bilateral middle and medial prefrontal gyrus; [d] bilateral superior, middle and inferior 

temporal gyrus, and temporal pole. (D) One precuneus/posterior-cingulate SBP and one 

cerebellar SBP with significant higher loading parameters in the schizophrenia patient group 

relative to the control group were detected through the conventional analysis strategy. P-value 

of between-group comparison for each SBP were shown. (E) One cerebellar SBP with 

significant higher loading parameters in the schizophrenia patient group relative to the control 

group was detected through SS-Detect. (F) Voxel-wise between-group comparison of the GMV 

images showed higher GMV in patients relative to controls (p < 0.05 uncorrected with cluster 

size k > 100). One cerebellar cluster [e] was marked with arrows. L: left; R: right. 
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