- 1 Title: Serum metabolomic biomarkers of perceptual speed in cognitively normal and mildly
- 2 impaired subjects with fasting state stratification

- 4 Authors:
- 5 Kamil Borkowski<sup>1\*</sup>, Ameer Y. Taha<sup>1,2</sup>, Theresa L. Pedersen<sup>2</sup>, Philip L. De Jager<sup>3</sup>, David A.

6 Bennett<sup>4</sup>, Rima Kaddurah-Daouk<sup>5</sup>, John W. Newman<sup>1,6,7</sup>

7

```
8 Author Affiliations:
```

9 1 – West Coast Metabolomics Center, Genome Center, University of California Davis, Davis,
10 CA 95616, USA.

11 2 – Dept Food Science and Technology, University of California - Davis, Davis, CA 95616,

12 USA.

13 3 – Center for Translational & Computational Neuroimmunology, Department of Neurology &

- 14 Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia
- 15 University Irving Medical Center, New York, NY 10032, USA.
- 4 Rush Alzheimer's Disease Center, Rush Medical College, Rush University, Chicago, IL
   60612, USA.
- 18 5 Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and
- 19 Department of Medicine, Duke University, Durham NC 27708, USA.

- 6 Western Human Nutrition Research Center, United States Department of Agriculture -
- Agriculture Research Service, Davis, CA 95616, USA.
- 7 Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
- \* Corresponding author

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282343; this version posted September 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

#### 35 Abstract

36

Cognitive decline is associated with both normal aging and early pathologies leading to 37 dementia. Here we used quantitative profiling of metabolites involved in the regulation of 38 inflammation, vascular function, neuronal function and energy metabolism, including oxylipins, 39 endocannabinoids, bile acids, and steroid hormones to identify metabolic biomarkers of mild 40 cognitive impairment (MCI). Serum samples (n = 210) were obtained from subjects with or 41 without MCI opportunistically collected with incomplete fasting state information. To maximize 42 power and stratify the analysis of metabolite associations with MCI by the fasting state, we 43 developed an algorithm to predict subject fasting state when unknown (n = 71). In non-fasted 44 45 subjects, linoleic acid and palmitoleoyl ethanolamide levels were positively associated with perceptual speed. In fasted subjects, soluble epoxide hydrolase activity and tauro-alpha-46 muricholic acid levels were negatively associated with perceptual speed. Other cognitive 47 domains showed associations with bile acid metabolism, but only in the non-fasted state. 48 Importantly, this study shows unique associations between serum metabolites and cognitive 49 function in the fasted and non-fasted states and provides a fasting state prediction algorithm 50 based on measurable metabolites. 51

52

Key Words: Cognition, inflammation, lipid mediators, fasting state prediction, soluble epoxide
hydrolase, metabolomics, lipidomics

55

#### 57 **1. Introduction**

Neurocognitive disorders including Alzheimer's dementia (AD) are associated with 58 59 cognitive decline. Biochemical markers of altered cognitive capacity may provide diagnostic 60 and prognostic biomarkers of these diseases and their associated metabolic trajectories before clinical symptoms manifest. Additionally, such biomarkers could provide new insights into the 61 62 mechanisms of cognitive decline. Cognition can be decomposed into dissociable domains, characterized as perceptual speed, perceptual orientation along with semantic, working and 63 episodic memory. These cognitive domains become increasingly inter-correlated as people 64 65 become cognitively impaired <sup>1</sup>, and have been linked to pathologic changes in the brain <sup>2</sup>. While the events which initiate these changes are as yet unknown, dysregulated cellular mechanisms 66 associated with metabolic dysfunctions and/or inflammatory responses are attractive hypotheses. 67

It has recently become clear that cardiometabolic disorders and associated low-grade 68 systemic inflammation and altered lipid and energy metabolism, are risk factors for AD <sup>3-5</sup>. 69 70 Therefore, changes in circulating markers of low-grade inflammation and metabolism may track these pertinent metabolic changes. Obesity and the metabolic syndrome shift the profile of both 71 plasma lipids and multiple lipid-derived physiological mediators <sup>6,7</sup>. Four important families of 72 such lipid mediators readily detected in the circulation are the oxygenated polyunsaturated fatty 73 acids (i.e. oxylipins), the endogenous cannabinoid receptor activators and their structural 74 75 equivalents (i.e. endocannabinoids), bile acids and steroids.

The oxylipins including fatty acid alcohols, diols, epoxides, ketones, and prostanoids are derived from multiple polyunsaturated fatty acids (PUFA) by the action of cyclooxygenases (COX), lipoxygenases (LOX), cytochrome P450 (CYP), soluble epoxide hydrolase (sEH) or reactive oxygen species (ROS) and various downstream enzymatic processes <sup>8,9</sup>. Circulating

| 80  | endocannabinoids are produced either by acylation and release of acyl ethanolamides from                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 81  | phosphatidylethanolamine, or as a product of glycerol-lipid metabolism (monoacylglycerols).                                |
| 82  | Oxylipins and endocannabinoids are known to regulate multiple processes including both                                     |
| 83  | acute and low-grade systemic inflammation <sup>9,10</sup> , cardiovascular health <sup>11</sup> , neuronal outgrowth,      |
| 84  | cell differentiation and energetics <sup>12</sup> . Bile acids and steroid are also linked to the regulation of            |
| 85  | glucose and insulin metabolism <sup>13</sup> , energy metabolism and inflammation <sup>14,15</sup> and implicated in       |
| 86  | the pathogenesis of type 2 diabetes and metabolic syndrome <sup>16</sup> . Previous studies reported                       |
| 87  | associations between AD, cognition and plasma levels of oxylipins <sup>17</sup> , bile acids <sup>18,19</sup> and steroids |
| 88  | <sup>20,21</sup> . However, broader simultaneous assessments of lipid mediator profiles in the context of mild             |
| 89  | cognitive impairment have not been conducted to date.                                                                      |
| 90  | Frozen collections of serum and plasma from studies of neurocognitive disorders,                                           |
| 91  | including measures of cognitive function, provide a resource for biomarker discovery in this                               |
| 92  | arena <sup>22</sup> However, opportunistically collected samples rarely contain information regarding                      |
| 93  | fed/fasted states, which can compromise "omics" analyses. Here, we took advantage of data and                              |
| 94  | biospecimens from subjects in the Religious Order Study and Rush Memory and Aging Project                                  |
| 95  | (ROS/MAP) <sup>23</sup> , develop a predictive tool for the fasted/non-fasted state discrimination and                     |
| 96  | stratify our biomarker discovery effort by the fasted state. We describe an exploration of                                 |
| 97  | circulating oxylipin, endocannabinoids, bile acids, and steroids for biomarkers of cognitive                               |
| 98  | impairment, providing insights into unique associations in basal and postprandial metabolism.                              |
| 99  |                                                                                                                            |
| 100 | 2. Materials and methods                                                                                                   |

2.1. Subjects 101

Participants in the Religious Orders Study (ROS) are older nuns, priests, and brothers from 102 across the United States, while those in the Rush Memory and Aging Project (MAP) are older 103 lay persons from the greater Chicago area <sup>23</sup>. Both studies enrolled persons without known 104 dementia and perform annual detailed clinical evaluations. Both studies were approved by an 105 Institutional Review Board of Rush University Medical Center. All participants signed an 106 107 informed consent and a repository consent to allow their biospecimens and data to be shared. ROS/MAP resources can be requested at www.radc.rush.edu. The current sample consists of 196 108 subjects with 14 subjects having two blood samples collected on average  $5.8 \pm 3.3$  years apart. 109 110 Repeated blood draws were in opposite fasting states (either fasted or non-fasted). Subjects demographics: 22% male, 95% white and non-Hispanic. Average age (mean  $\pm$  standard 111 deviation) = 78.2  $\pm$ 7.2, average BMI = 27.2  $\pm$ 4.8 average years of education = 15.3  $\pm$ 2.8. 112 Number of known fasted samples as recorded by a technician = 59; non fasted = 80, unknown = 113 71. 114

115

116 **2.2.** Clinical evaluation of cognition

All subjects are under a yearly structured clinical evaluation, including a medical history, 117 neurologic examination and cognitive testing. The studies have 19 tests in common. Eleven tests 118 are used to inform diagnostic classification of dementia and its causes, and cognitive impairment 119 with as previously reported <sup>24,25</sup>. Mild cognitive impairment (MCI) refers to people with 120 cognitive impairment without dementia<sup>24</sup>. No cognitive impairment (NCI) are those without 121 dementia or MCI<sup>24</sup>. Seventeen tests are used for four measure of global cognition and five 122 123 distinct cognitive domains including perceptual speed, perceptual orientation, episodic memory, semantic memory and working memory. The global cognition was calculated by converting 124

each test to a z score based on the baseline mean and standard deviation and averaging the 17
 tests; the domains were created by averaging subsets of z-scores as previously reported in detail
 <sup>26</sup>.

### 128 2.4. Quantification of clinical lipids, glucose and glycosylated hemoglobin

129 Phlebotomists and nurses collected the blood specimen as previously reported <sup>27</sup>. Tests were

130 performed by Quest Diagnostics (Secaucus, NJ). For this study we used glucose (mg/dL),

hemoglobin A1c, expressed as a percentage of hemoglobin, and a basic lipid panel consisting of

total cholesterol, HDL and LDL cholesterol, and triglycerides (all units mg/dL).

133

## 2.5. Quantification of oxylipins, endocannabinoids, PUFA, non-steroidal anti-inflammatory 134 drugs, bile acids and steroids: Serum concentrations of non-esterified PUFA, oxylipins, 135 endocannabinoids, a group of non-steroidal anti-inflammatory drugs (NSAIDs) including 136 ibuprofen, naproxen, acetaminophen, a suite of conjugated and unconjugated bile acids, and a 137 series of glucocorticoids, progestins and testosterone were quantified by liquid chromatography 138 tandem mass spectrometry (LC-MS/MS) after protein precipitation in the presence of deuterated 139 metabolite analogs (i.e. analytical surrogates) using modifications of published procedures <sup>28,29</sup>. 140 Samples were processed with rigorous quality control measures including the analysis of batch 141 blanks and replicates of serum pools and NIST Standard Reference Material 1950 (Sigma-142 Aldrich). Samples were re-randomized for acquisition, with method blanks and internal reference 143 material and calibration sets scattered regularly throughout the set. Instrument limits of detection 144 (LODs) and limits of quantification (LOQs) were estimated according to the Environmental 145 Protection Agency method (40 CFR, Appendix B to Part 136 revision 1.11, U.S. and EPA 821-146

| 147 | R-16-006 Revision 2). These values were then transformed into sample nM concentrations by               |
|-----|---------------------------------------------------------------------------------------------------------|
| 148 | multiplying the calculated concentration by the final sample volume (i.e. 250 $\mu$ L) and dividing     |
| 149 | by the volume of sample extracted (i.e. 50 $\mu$ L). Using the Students t-Distribution, the t-value was |
| 150 | determined at a 95% 1-tail confidence level to define the LOD. A complete analyte list with their       |
| 151 | LOD and LOQ is provided in the Supplemental Table S1. The majority of analytes were                     |
| 152 | quantified against analytical standards with the exception of eicosapentaenoyl ethanolamide             |
| 153 | (EPEA), palmitoleoyl ethanolamide (POEA), and the measured PUFA [i.e. linoleic acid (LA);               |
| 154 | alpha-linolenic acid (aLA); arachidonic acid (AA); eicosapentaenoic acid (EPA);                         |
| 155 | docosahexaenoic acid (DHA)]. For those compounds the area counts were recorded, adjusted for            |
| 156 | deuterated-surrogate and the relative response factors were expressed as the relative abundance         |
| 157 | across all analyzed samples. MAGs are reported as the sum of 1 and 2 isomers, due to their              |
| 158 | potential isomerization during the sample processing. The complete metabolomic data are                 |
| 159 | available via the AD Knowledge Portal (https://adknowledgeportal.synapse.org). The AD                   |
| 160 | Knowledge Portal is a platform for accessing data, analyses, and tools generated by the                 |
| 161 | Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other National                 |
| 162 | Institute on Aging (NIA)-supported programs to enable open-science practices and accelerate             |
| 163 | translational learning. The data, analyses and tools are shared early in the research cycle without     |
| 164 | a publication embargo on secondary use. Data is available for general research use according to         |
| 165 | the following requirements for data access and data attribution                                         |
| 166 | (https://adknowledgeportal.synapse.org/DataAccess/Instructions). See                                    |
| 167 | doi: 10.7303/syn22344904.                                                                               |
|     |                                                                                                         |

**2.6. Statistical analysis:** All statistical tests were performed using JMP Pro 14 (JMP, SAS 170 institute, Carry, NC). Prior to analysis, two data points were removed as outliers using the robust 171 Huber M test and missing data were imputed using multivariate normal imputation for variables 172 which were at least 75% complete. Imputation facilitated multivariate data analysis and did not 173 significantly influence univariate results. Additionally, variables were normalized, centered and 174 175 scaled using Johnson's transformation, with normality verification using the Shapiro-Wilk test. Cognitive sores were adjusted for BMI, sex, age, race and education and their residuals were 176 used for further analysis. Metabolite inter-correlations were evaluated using Spearman's rank-177 178 order correlations. Variable clustering by hierarchical cluster analysis used the Ward agglomeration. Multiple comparison control was accomplished with the false discovery rate 179 (FDR) correction method of Benjamini and Hochberg<sup>30</sup>, with the number of independent 180 181 observations determined by the correlative structure of variables (number of variable clusters). Predictive models for fasting state and cognitive functions were prepared using a 182 combination of bootstrap forest and stepwise linear regression modeling, with Bayesian 183 information criterion (BIC) cutoff. Variables most frequently appearing in the models were 184

identified by bootstrap forest (logistic or regression, respectively): trees in forest = 100; terms 185 186 sampled per split = 5; bootstrap sample rate = 1. A variable contribution scree plot was generated using variable rank and the likelihood ratio of chi-square (for categorical fasted/non-fasted 187 prediction) or sum of squares (for continues cognitive scores). The scree plot was used to 188 189 determine a likelihood ratio of chi-square or sum of squares cutoff value for variables contributing to the model. Selected variables were then subjected to stepwise logistic regressions 190 for fasted/non-fasted predictions, or stepwise linear regressions for cognitive scores. Data were 191 split into training (60%) and validation (40%) cohorts, with balanced separation across 192

193 metabolites and cognitive domains. Stepwise analysis was performed with the maximal

validation  $r^2$  as the model stopping criteria, or if an additional step increased the BIC.

195

196 **3. Results** 

#### **3.1.** Serum lipid mediators predict the fasting state

Our cohort consists of 210 samples including 59 fasted, 80 non-fasted and 71 of unknown 198 fasting state. Using samples with known fasting state, A fasting state prediction model was 199 developed using measured PUFA, lipid mediator, bile acid, steroid, clinical lipid and glucose 200 data. Clinical lipids (e.g. triglycerides or cholesterol) and glucose did not produce strong 201 predictive models and did not contribute to the final model. A high probability of the fasted state 202 was described by low levels of the LA-derived CYP metabolite [12(13)-EpOME], low levels of 203 the primary conjugated bile acid glycochenodeoxycholic acid (GCDCA) and elevated levels of 204 the glycine-conjugated oleic acid (NO-Gly; Fig. 1 A and B). The model misclassification rate 205 was 12%., with fasting probability described by the Equation 1 and Equation 2. 206

207 Probability for fasted = 
$$\frac{1}{(1 + Exp(-Lin. prob. fasted))}$$

Equation 1. Probability of the fated state. Where "Lin.prob.fasted" is defined by the Equation 2:

210 *Lin. prob. fasted* = 
$$10.01 - (2.82 \times a) + (1.94 \times b) - (1.35 \times c)$$

Equation 2. Lin prob fasted: a = Log[12(13)-EpOME]; b = Log(NO-Gly); c = Log(GCDCA).
Concentrations expressed in (nM).

| 214                                           | Oxylipins, endocannabinoids, PUFA, bile acids and steroids create correlative structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 215                                           | along metabolic pathways or from common precursor fatty acids (Fig. 1C). Therefore, similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 216                                           | fasting state predictions could be achieved by substituting metabolites with ones close in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 217                                           | correlation network. For example, NO-Gly can be effectively replaced by oleoyl ethanolamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 218                                           | (OEA). Validation of model was performed using an independent cohort <sup>31</sup> of fasted plasma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 219                                           | (n = 133) and showed a misclassification rate of 17%, dropping to 12% when considering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 220                                           | samples with a probability of prediction >70%. To facilitate understanding of oxylipin and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 221                                           | endocannabinoid metabolic relationship, their synthesis pathway from PUFA as well as coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 222                                           | of metabolites detected in this study are presented in the Supplemental Fig. S1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 223                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 224                                           | 3.2. Fasted and non-fasted serum reveal distinct associations between lipid mediators and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 225                                           | cognitive functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 226                                           | Spearman's rank correlations demonstrated associations between serum lipid mediators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 226<br>227                                    | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 226                                           | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation                                                                                                                                                                                                                                                                                                                                     |
| 226<br>227<br>228<br>229                      | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation<br>between the five cognitive domains.                                                                                                                                                                                                                                                                                              |
| 226<br>227<br>228                             | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation                                                                                                                                                                                                                                                                                                                                     |
| 226<br>227<br>228<br>229                      | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation<br>between the five cognitive domains.                                                                                                                                                                                                                                                                                              |
| 226<br>227<br>228<br>229<br>230               | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation<br>between the five cognitive domains.<br>Oxylipins and endocannabinoids showed the greatest number of associations with                                                                                                                                                                                                            |
| 226<br>227<br>228<br>229<br>230<br>231        | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation<br>between the five cognitive domains.<br>Oxylipins and endocannabinoids showed the greatest number of associations with<br>perceptual speed (from 8% to 10% of metabolites in fasted and non-fasted samples respectively,                                                                                                          |
| 226<br>227<br>228<br>229<br>230<br>231<br>232 | Spearman's rank correlations demonstrated associations between serum lipid mediators<br>and cognitive functions. Cognitive scores were adjusted for BMI, gender, age, race and<br>education. The analysis was stratified by subject fasting states. <b>Figure 2</b> shows correlation<br>between the five cognitive domains.<br>Oxylipins and endocannabinoids showed the greatest number of associations with<br>perceptual speed (from 8% to 10% of metabolites in fasted and non-fasted samples respectively,<br><b>Table 1</b> ). The number of associations for other cognitive domains and global cognition did not |

| 235 | speed was positively associated with the level of free PUFA, particularly LA, eicosapentaenoic                |
|-----|---------------------------------------------------------------------------------------------------------------|
| 236 | acid (EPA) and docosahexaenoic acid (DHA), as well as the N-acyl ethanolamides derived from                   |
| 237 | palmitoleate (POEA), and EPA (EPEA) and the EPA- and DHA-derived mono-alcohols (15-                           |
| 238 | HEPE and 4-HDoHE respectively). These associations were absent in fasted subjects.                            |
| 239 | Additionally, when fasted and non-fasted subjects were analyzed together without fasting state                |
| 240 | stratification, the above-mentioned associations were either not present or weaker than in non-               |
| 241 | fasted subjects alone, see Supplemental Table S3).                                                            |
| 242 | On the other hand, fasted samples manifested negative correlations between perceptual                         |
| 243 | speed and sEH products of EPA and DHA, and the ratio of LA vicinal diols (i.e. those with two                 |
| 244 | hydroxy groups on adjacent carbons) to their corresponding epoxides, an estimator of sEH                      |
| 245 | activity <sup>32</sup> . This association was not detected in non-fasted subjects. Importantly, the cognitive |
| 246 | domains scores were not different between the fasting states. Additionally, interaction with sex              |
| 247 | were not detected for the above-mentioned associations.                                                       |
| 248 | Numerous significant correlations were detected between bile acid levels and cognitive                        |
| 249 | scores, mainly in non-fasted subjects (episodic memory: 9% to 38%; semantic memory: 3% to                     |

subjects respectively, **Table 2**). Perceptual orientation and working memory showed <6%

25%; global cognition: 6% to 25%; and perceptual speed: 3% to 16% in fasted and non-fasted

associations (Supplemental Table S2).

250

In non-fasted subjects, unconjugated bile acids correlated positively with perceptual speed and semantic memory. On the on the other hand, conjugated bile acids and the ratios of conjugated to unconjugated bile acids showed negative associations with perceptual speed, semantic and episodic memory and global cognition. Additionally, positive associations were observed between the ratio of glycine to taurine conjugated bile acids and episodic memory and

| 258 | global cognition. Negative associations were observed between the ratio of the downstream        |
|-----|--------------------------------------------------------------------------------------------------|
| 259 | product to their precursor - cholic acid (CA) and episodic memory and global cognition. Finally, |
| 260 | negative associations were observed between the ratio of tauro-alpha-muricholic acid             |
| 261 | (T-a-MCA) and its precursor chenodeoxycholic acid (CDCA).                                        |
| 262 | Four according between compilier and hild saids were abcomed in the facted subjects Negative     |
| 262 | Few associations between cognition and bile acids were observed in the fasted subjects. Negative |
| 263 | associations were observed between T-a-MCA and T-a-MCA/CDCA ratio and episodic and               |
| 264 | semantic memory, perceptual speed and the global cognition. Also, positive associations were     |
| 265 | observed between the ratio of glycine conjugated to unconjugated ursodeoxycholic acid (UDCA)     |
| 266 | and episodic memory and global cognition. No associations were found between cognitive           |
| 267 | domains and steroid hormones.                                                                    |
|     |                                                                                                  |

# 269 3.3. Fasted state lipid mediators predict perceptual speed

| 270 | Predictive models revealed covariate relationships between serum lipid mediators and                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 271 | cognition. Stepwise linear regression models (Supplemental Table S4) were built independently                              |
| 272 | for each cognitive domain and for fasted/non-fasted samples. Valid models could not be                                     |
| 273 | generated using non-fasted subject data. Consistent with Spearman's correlation results,                                   |
| 274 | perceptual speed formed the strongest model ( $R^{2}_{perceptual speed} = 0.44$ ; $R^{2}_{perceptual orientation} = 0.4$ ; |
| 275 | $R^{2}_{episodic memory} = 0.29$ ; $R^{2}_{global cognition} = 0.24$ ) using samples from fasted subjects. The final model |
| 276 | for perceptual speed is presented in the Fig. 3. This model included the ratio of LA-derived                               |
| 277 | 12,13-DiHOME to 12(13)-EpOME, the sum of n-3 diols, consisting of EPA- and DHA-derived                                     |
| 278 | diols (14,15-DiHETE, 17,18-DiHETE and 19,20-DiHDoPE) and T-a-MCA. The epoxide/diol                                         |
| 279 | ratio and the sum of n-3 diols contributed the most to the model, with p-values of 0.0012 and                              |

| 280 | 0.0007 respectively, and T-a-MCA with a weaker, but significant contribution (p value = $0.046$ ) |
|-----|---------------------------------------------------------------------------------------------------|
| 281 | Supplemental Fig. S2 shows correlative structure of all detected metabolites in fasted subjects.  |
| 282 | Sum of n-3 diols consist of all detected EPA and DHA diols. Corresponding EPA and DHA-            |
| 283 | derived epoxides were not detected.                                                               |

### 285 4. Discussion

In the current study we identified serum lipid mediators associated with cognitive function in a cohort exhibiting normal to mildly-impaired cognition. Moreover, this study provides a solution to the unknown fasting state of subjects that may occur when using opportunistically collected samples, and identifies unique associations with cognition in both fasted and non-fasted states.

Opportunistically collected serum and plasma are often collected without regards an 291 individuals' fasting state, compromising investigations probing peripheral factors influenced by 292 postprandial fluctuations in the metabolome <sup>33</sup>, proteome <sup>34</sup> and transcriptome <sup>35</sup>. Using 293 metabolomic data, we have developed a tool to determine subject fasting states and show 294 295 enhanced statistical power with fasting state stratification. In addition, fasting state stratification highlighted aspects of metabolism which manifest themselves uniquely in the postprandial and 296 fasted states. Indeed, while fasted serum has been a source of many markers for metabolic 297 diseases <sup>36</sup>, individual responses to a meal can carry information regarding metabolic flexibility 298 <sup>37</sup>, prediabetes state <sup>38</sup> or postprandial inflammation <sup>39</sup>. To our knowledge, the issue of the mixed 299 population of fasted and non-fasted subjects in the biobanked samples has not been previously 300 addressed. As our model was built using absolute quantification it is transferable to other studies, 301

and could be especially useful for cohorts without fasting state information. Of note, the stability
 of metabolomics factors used to generate the fasting state predictive model during sub-optimal
 collection practices (i.e. storage at room temperature for days prior to refrigeration) <sup>40</sup> and upon
 prolong freezer storage were previously described <sup>41</sup>.

The postprandial state is the dominant metabolic state due to the common ingestion of 306 multiple meals yielding 6-8hr postprandial fluctuation in lipoprotein particles <sup>42</sup>, non-esterified 307 lipids <sup>43</sup>, hormones <sup>33</sup>, etc. The strongest positive associations in the non-fasted samples were 308 observed between perceptual speed and levels of non-esterified LA, EPA, DHA, the 15-LOX 309 310 metabolite of EPA (15-HEPE) and palmitoleate- and EPA-derived ethanolamides (i.e. POEA and EPEA). Other measured ethanolamides did not show significant associations with perceptual 311 speed. The positive association between LA and perceptual speed suggests a role of LA in 312 regulating memory domains, consistent with studies showing reduced LA concentrations in 313 multiple brain regions affected by Alzheimer's Disease pathology <sup>44</sup>. 314

Ethanolamides are generally considered anti-inflammatory <sup>45</sup> and neuroprotective <sup>46</sup>. 315 however, their postprandial physiological consequences are not well understood. Like PUFA, all 316 ethanolamides are lower in non-fasted versus fasted subjects (Supplemental Fig. S3) as 317 previously reported<sup>47</sup>. This may suggest that maintaining a higher level of LA and/or POEA 318 and/or EPEA in the postprandial state may reflect metabolism beneficial to perceptual speed and 319 cognition and is not dependent on the "basal" fasted state. The majority of ethanolamide studies 320 321 have focused on derivatives of AA, oleic acid and palmitic acid, i.e. AEA, OEA and PEA respectively. AEA and PEA can activate CB1 and CB2 receptors <sup>48</sup>, important players in 322 neuroinflammatory processes <sup>49</sup>. Moreover, AEA can similarly activate the transient vanilloid 323 324 receptor type 1 (TRPV1) involved in the transduction of acute and inflammatory pain signals in

| 325 | the periphery <sup>50</sup> , and have a variety of functions within the central nervous system, and may           |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 326 | mediate some excitotoxic effects $^{51}$ . OEA, a peroxisome proliferator-activated receptor $\alpha$ agonist,     |
| 327 | is a regulator of satiety and sleep with both central and peripheral anorexigenic effects <sup>48</sup> .          |
| 328 | Similarly, a satiety effect was achieved by external administration of the linoleoyl ethanolamide                  |
| 329 | (LEA) and $\alpha$ -linolenoyl ethanolamide (aLEA) respectively <sup>52</sup> . However, little is known about the |
| 330 | biological actions of POEA and EPEA. Additionally, palmitoleic acid and its metabolites are                        |
| 331 | highly abundant in adipose tissue and have been described adipose derived lipokines <sup>53</sup> , which          |
| 332 | may indicate a specific involvement of adipose tissue in the maintenance of perceptual speed.                      |
| 333 | In the non-fasted state, bile acids manifested similar relationships with perceptual speed,                        |
| 334 | semantic and episodic memory and global cognition. Generally, cognitive domains showed                             |
| 335 | positive associations with unconjugated and negative associations with both taurine and glycine                    |
| 336 | conjugated bile acids, the observation strengthened by associations with                                           |
| 337 | conjugated/unconjugated bile acid ratios, implying a role for liver metabolism in cognitive                        |
| 338 | maintenance. Of note, the same associations were observed for primary and secondary bile acid.                     |
| 339 | Additionally, we saw negative associations of episodic memory and global cognition with the                        |
| 340 | ratio of both conjugated and unconjugated deoxycholic acid (DCA) to cholic acid (CA) and                           |
| 341 | conjugated lithocholic acid (LCA) to CDCA. Those ratios represent dihydroxylation of primary                       |
| 342 | bile acids (CA and CDCA) by gut bacteria and were previously reported to be negatively                             |
| 343 | associated with cognition $^{54}$ and atrophy, and brain glucose metabolism in AD $^{55}$ .                        |
| 344 | These findings suggest increased liver bile acid modification (i.e. conjugation with amino                         |
| 345 | acids), as well as gut microbiome activity may negatively influence cognition. Importantly, these                  |
| 346 | relationships were not observed in fasted samples, suggesting the importance of postprandial                       |

metabolism to either drive or highlight these metabolic associations with cognition, warrantingfurther clinical trials using standardized meal tolerance tests.

349 Using only fasted subjects, we found perceptual speed to be negatively associated with sEH activity reflected by LA-dependent product: substrate ratios <sup>32</sup>, EPA- and DHA-derived sEH 350 metabolites, and T-a-MCA and positively associated with the glycine conjugation ratio of UDCA 351 352 (GUDCA/UDCA). Notably, and the predictive model for perceptual speed depended on both sEH activity assessments and sEH-derived omega 3 diols, these metabolic domains appear to 353 354 contain independent information. Of note, addition of T-a-MCA provided only slight 355 improvement to the model and in alternate iterations of the model through bootstrapping could be replace by free AA (positively associated with perceptual speed). Therefore, our results 356 357 implicate eighteen carbon fatty acid metabolism (i.e. sEH action on LA and aLA epoxides) and long chain omega 3 fatty acid metabolism (i.e. sEH activity on EPA and DHA epoxides) in the 358 decline of perceptual speed. This is an agreement with two recent studies which showed negative 359 associations between circulating sEH activity and executive function <sup>56,57</sup>. 360

Epoxy fatty acids have potent vasorelaxant and anti-inflammatory properties, while fatty acid diols have demonstrated pro-inflammatory effects and actions as inhibiters of protein kinase B- (i.e. Akt) dependent processes <sup>58</sup>. Recent studies of mice and men have implicated sEH in neurodegenerative diseases of the brain <sup>59</sup>. Moreover, DHA feeding enhances the therapeutic efficacy of sEH inhibitors in reducing neurocognitive complications in rodent models of diabetes <sup>60</sup>. Together, these studies provide strong evidence that the identified shifts in sEH metabolism in association with cognitive decline may be linked to the underlying pathology of this process.

368 In contrast to the non-fasted state, in the fasted state general association between bile 369 acids metabolism and cognition were not observed, and few specific bile acids showed

| 370 | significant correlations. The ratio of conjugated to unconjugated UDCA was positively                                  |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 371 | associated with episodic memory and global cognition, whereas T-a-MCA was negatively                                   |
| 372 | associated with almost all cognitive domains. UDCA and its conjugated derivatives are                                  |
| 373 | hydrophilic bile acids previously reported to improve mitochondrial function <sup>61</sup> and manifest                |
| 374 | neuroprotective properties both <i>in vivo</i> $^{62}$ and prevent amyloid- $\beta$ – induced neuronal death <i>in</i> |
| 375 | vitro <sup>63</sup> . T-a-MCA appears in the predictive model for perceptual speed, together with sEH,                 |
| 376 | suggesting their independent association with cognition. GUDCA/UDCA and T-a-MCA both                                   |
| 377 | appear in predictive model for episodic memory and global cognition, suggesting their                                  |
| 378 | independent associations with cognition.                                                                               |
| 379 | In conclusion, here we have analyzed serum from the ROS/MAP cohort using a suite of                                    |
| 380 | targeted metabolomic assays in search of biomarkers of cognitive function with plausible links to                      |
| 381 | inflammatory responses and energy metabolism. Our study suggests the involvement of sEH and                            |
| 382 | omega-3 PUFA metabolism in cognition. Moreover, during the course of this effort we have                               |
| 383 | produced a tool to determine subject fasting state when unknown, and demonstrated the pivotal                          |
| 384 | nature of this discrimination in biomarker discovery. We have demonstrated that the fasted and                         |
| 385 | non-fasted states carry distinct information regarding the connection of metabolism and                                |
| 386 | cognition. As opportunistically collected non-fasted samples manifest high variance, future                            |
| 387 | studies using a standardized mix meal tolerance test <sup>64</sup> could prove useful to validate and                  |
| 388 | discover new relationships between postprandial metabolism and cognition.                                              |
| 389 |                                                                                                                        |

**390** Author Contributions:

KB, TP and JWN adapted analytical methods, conducted analyses, and evaluated analytical data
quality. KB, AYT and JWN developed statistical analysis plan. KB conducted statistical
analyses. DAB obtained study samples. DAB, PLDJ and RK-D were responsible for study
design and procured funding. KB and JWN wrote the manuscript. All authors edited and
approved the manuscript.

396

Acknowledgement: The data presented here are in whole or in part based on data obtained from 397 398 the AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org/#/Explore/Data). Metabolomics data is provided by the Alzheimer's Disease Metabolomics Consortium (ADMC) 399 and funded wholly or in part by the following grants and supplements thereto: NIA 400 401 R01AG046171, RF1AG051550, RF1AG057452, R01AG059093, RF1AG058942, U01AG061359, U19AG063744 and FNIH: #DAOU16AMPA awarded to Dr. Kaddurah-Daouk 402 403 at Duke University in partnership with a large number of academic institutions. As such, the 404 investigators within the ADMC, not listed specifically in this publication's author's list, provided data but did not participate in analysis or writing of this manuscript. A complete listing of 405 406 ADMC investigators can be found at: https://sites.duke.edu/adnimetab/team/. The Religious Orders and the Rush Memory and Aging studies (ROS/MAP) was funded by the following NIA 407 grants awarded to Dr. David Bennet at Rush University [P30AG10161, R01AG16819, 408 409 R01AG17917, U01AG61356]. ROSMAP data can be requested at https://www.radc.rush.edu. Additional support was provided by USDA Intramural Project 2032-51530-022-00D and NIH 410 411 U24 DK097154 awarded to John W. Newman. The USDA is an equal opportunity employer and 412 provider.

#### 413 **Conflicts of Interest:** none

# 415 Tables

- 416 Table 1. Spearman's rank order correlations between serum oxylipins and
- 417 endocannabinoids and perceptual speed. The numbers represent Spearman's ρ with the p
- 418 value <0.05 and FDR corrected with the q =0.2. Full names of all identified compounds are
- 419 presented in the **Supplemental Table S1** and correlation for all cognitive domains are presented

# 420 in the **Supplemental Table S2**.

|                       | Non-Fasted            | Fasted   |  |
|-----------------------|-----------------------|----------|--|
| Metabolite            | (n = 142)             | (n = 71) |  |
| Fatty acids, ethanola |                       |          |  |
|                       |                       |          |  |
| LA                    | 0.25                  |          |  |
| AA                    |                       | 0.26     |  |
| EPA                   | 0.22                  |          |  |
| DHA                   | 0.25                  |          |  |
| EPEA                  | 0.18                  |          |  |
| POEA                  | 0.24                  |          |  |
| 4-HDoHE               | 0.18                  |          |  |
| 15-HEPE               | 0.2                   |          |  |
| Dihydroxy fa          | tty acids - sEH pathv | vay      |  |
| 14,15-DiHETE          |                       | -0.27    |  |
| 19,20-DiHDoPE         | 0.2                   | -0.31    |  |
| Sum (n3-Diols)        |                       | -0.28    |  |
| Sum (DiHETEs)         |                       | -0.25    |  |
| 12,13-DiHOME/         |                       | 0.22     |  |
| 12(13)-EpOME          |                       | -0.32    |  |
| Prostaglan            | dins - COX pathway    | 7        |  |
| PGD2                  |                       | 0.25     |  |

421

### 423 Table 2. Spearman's rank order correlations between serum bile acids and cognitive

- **domains**. The numbers represent Spearman's  $\rho$  with the p value <0.05 and FDR corrected with
- 425 the q =0.2. Full names of all identified compounds are presented in the **Supplemental Table S1**
- 426 and correlation for all cognitive domains are presented in the Supplemental Table S2. PS –
- 427 perceptual speed; SE semantic memory; EP episodic memory; Global global cognition.

| Metabolite       | Non-Fasted (n=142) |           |           | Fasted (n=71) |           |       |       |        |
|------------------|--------------------|-----------|-----------|---------------|-----------|-------|-------|--------|
| Cognitive domain | PS                 | SE        | EP        | Global        | PS        | SE    | EP    | Global |
|                  |                    | Bile A    | cids - un | conjuga       | ted       |       |       |        |
| CDCA             | 0.2                | 0.19      |           |               |           |       | 0.27  |        |
| DCA              |                    | 0.2       |           |               |           |       |       |        |
|                  |                    | Bile      | Acids - c | onjugate      | ed        |       |       |        |
| TCDCA            |                    | -0.2      |           |               |           |       |       |        |
| TLCA             | -0.2               | -0.27     | -0.28     | -0.29         |           |       |       |        |
| TDCA             |                    |           | -0.18     |               |           |       |       |        |
| GDCA             |                    |           | -0.21     |               |           |       |       |        |
|                  | Bil                | e acids - | conjugat  | ed/unco       | njugateo  | 1     |       |        |
| TDCA/DCA         |                    | -0.25     | -0.18     | -0.22         |           |       |       |        |
| GDCA/DCA         |                    | -0.3      | -0.23     | -0.27         |           |       |       |        |
| GCDCA/CDCA       | -0.24              | -0.28     |           | -0.2          |           |       |       |        |
| GCA/CA           |                    |           | -0.22     |               |           |       |       |        |
| TCA/CA           |                    |           | -0.21     |               |           |       |       |        |
| GUDCA/UDCA       |                    |           |           |               |           |       | 0.3   | 0.32   |
|                  |                    | Bile ac   | ids - gly | cine/taur     | rine      |       |       |        |
| (GDCA+GLCA)/     |                    |           | 0.18      | 0.19          |           |       |       |        |
| (TDCA+TLCA)      |                    |           | 0.18      | 0.19          |           |       |       |        |
|                  | Bile               | Acids - d | lehydrox  | ylation b     | by bacter | ria   |       |        |
| TDCA/CA          |                    |           | -0.26     | -0.19         |           |       |       |        |
| GDCA/CA          |                    |           | -0.28     | -0.18         |           |       |       |        |
| DCA/CA           |                    |           | -0.19     |               |           |       |       |        |
| GLCA/CDCA        | -0.19              |           |           |               |           |       |       |        |
| TLCA/CDCA        | -0.24              | -0.28     | -0.24     | -0.27         |           |       |       |        |
|                  |                    | Bi        | le Acids  | - other       |           |       |       |        |
| T-a-MCA          |                    |           |           |               | -0.28     | -0.26 | -0.29 | -0.31  |
| T-a-MCA/CDCA     | -0.22              | -0.27     |           | -0.2          |           | -0.26 | -0.35 | -0.31  |
| w-MCA/T-a-MCA    |                    | 0.23      |           | 0.2           |           | 0.28  |       |        |

#### 429 5. References

430 Wilson, R. S., Segawa, E., Hizel, L. P., Boyle, P. A. & Bennett, D. A. Terminal dedifferentiation of 1 431 cognitive abilities. Neurology 78, 1116-1122, doi:10.1212/WNL.0b013e31824f7ff2 (2012). 432 2 Magistro, D. et al. The Relationship between Processing Speed and Regional White Matter 433 Volume in Healthy Young People. Plos One 10, doi:ARTN e0136386 10.1371/journal.pone.0136386 (2015). 434 435 3 Alkan, E. et al. Metabolic syndrome alters relationships between cardiometabolic variables, 436 cognition and white matter hyperintensity load. Sci Rep 9, 4356, doi:10.1038/s41598-019-40630-6 (2019). 437 438 4 Bosia, M. et al. Improving Cognition to Increase Treatment Efficacy in Schizophrenia: Effects of Metabolic Syndrome on Cognitive Remediation's Outcome. Front Psychiatry 9, 647, 439 doi:10.3389/fpsyt.2018.00647 (2018). 440 441 5 Monthe-Dreze, C., Rifas-Shiman, S. L., Gold, D. R., Oken, E. & Sen, S. Maternal obesity and 442 offspring cognition: the role of inflammation. Pediatr Res 85, 799-806, doi:10.1038/s41390-018-443 0229-z (2019). 444 6 Shearer, G. C. et al. Abnormal lipoprotein oxylipins in metabolic syndrome and partial correction 445 by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 128, 1-10, doi:10.1016/j.plefa.2017.10.006 (2018). 446 447 Grapov, D., Adams, S. H., Pedersen, T. L., Garvey, W. T. & Newman, J. W. Type 2 diabetes 7 448 associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. 449 PLoS One 7, e48852, doi:10.1371/journal.pone.0048852 (2012). 450 8 Picklo, M. J. & Newman, J. W. Antioxidant supplementation and obesity have independent 451 effects on hepatic oxylipin profiles in insulin-resistant, obesity-prone rats. Free Radical Bio Med 452 89, 182-191, doi:10.1016/j.freeradbiomed.2015.07.152 (2015). 453 9 Gabbs, M., Leng, S., Devassy, J. G., Monirujjaman, M. & Aukema, H. M. Advances in Our 454 Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr 6, 513-540, 455 doi:10.3945/an.114.007732 (2015). 456 10 Jones, R. D. et al. Epoxy-Oxylipins and Soluble Epoxide Hydrolase Metabolic Pathway as Targets for NSAID-Induced Gastroenteropathy and Inflammation-Associated Carcinogenesis. Front 457 458 *Pharmacol* **10**, 731, doi:10.3389/fphar.2019.00731 (2019). 459 11 Nayeem, M. A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin **39**, 1142-1154, 460 doi:10.1038/aps.2018.24 (2018). 461 12 Barquissau, V. et al. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 136, 3-11, doi:10.1016/j.biochi.2016.12.012 (2017). 462

| 463<br>464<br>465 | 13 | Ahmad, T. R. & Haeusler, R. A. Bile acids in glucose metabolism and insulin signalling -<br>mechanisms and research needs. <i>Nat Rev Endocrinol</i> <b>15</b> , 701-712, doi:10.1038/s41574-019-<br>0266-7 (2019).                                                               |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 466<br>467        | 14 | Li, T. & Apte, U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer.<br><i>Adv Pharmacol</i> <b>74</b> , 263-302, doi:10.1016/bs.apha.2015.04.003 (2015).                                                                                               |
| 468<br>469        | 15 | Chiang, J. Y. Bile acid metabolism and signaling. <i>Compr Physiol</i> <b>3</b> , 1191-1212, doi:10.1002/cphy.c120023 (2013).                                                                                                                                                     |
| 470<br>471<br>472 | 16 | Ferrell, J. M. & Chiang, J. Y. L. Understanding Bile Acid Signaling in Diabetes: From<br>Pathophysiology to Therapeutic Targets. <i>Diabetes Metab J</i> <b>43</b> , 257-272,<br>doi:10.4093/dmj.2019.0043 (2019).                                                                |
| 473<br>474<br>475 | 17 | Devassy, J. G., Leng, S., Gabbs, M., Monirujjaman, M. & Aukema, H. M. Omega-3<br>Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer<br>Disease. <i>Adv Nutr</i> <b>7</b> , 905-916, doi:10.3945/an.116.012187 (2016).                     |
| 476<br>477<br>478 | 18 | Nho, K. <i>et al</i> . Altered bile acid profile in mild cognitive impairment and Alzheimer's disease:<br>Relationship to neuroimaging and CSF biomarkers. <i>Alzheimers &amp; Dementia</i> <b>15</b> , 232-244,<br>doi:10.1016/j.jalz.2018.08.012 (2019).                        |
| 479<br>480<br>481 | 19 | MahmoudianDehkordi, S. <i>et al.</i> Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome. <i>Alzheimers &amp; Dementia</i> <b>15</b> , 76-92, doi:10.1016/j.jalz.2018.07.217 (2019).                        |
| 482<br>483        | 20 | Vest, R. S. & Pike, C. J. Gender, sex steroid hormones, and Alzheimer's disease. <i>Horm Behav</i> 63, 301-307, doi:10.1016/j.yhbeh.2012.04.006 (2013).                                                                                                                           |
| 484<br>485<br>486 | 21 | Lv, W. <i>et al.</i> Low Testosterone Level and Risk of Alzheimer's Disease in the Elderly Men: a Systematic Review and Meta-Analysis. <i>Mol Neurobiol</i> <b>53</b> , 2679-2684, doi:10.1007/s12035-015-9315-y (2016).                                                          |
| 487<br>488<br>489 | 22 | Yu, D. <i>et al.</i> Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. <i>Transl Stroke Res</i> , doi:10.1007/s12975-018-0672-5 (2018).                     |
| 490<br>491        | 23 | Bennett, D. A. <i>et al.</i> Religious Orders Study and Rush Memory and Aging Project. <i>J Alzheimers Dis</i> <b>64</b> , S161-S189, doi:10.3233/JAD-179939 (2018).                                                                                                              |
| 492<br>493        | 24 | Bennett, D. A. <i>et al.</i> Natural history of mild cognitive impairment in older persons. <i>Neurology</i> <b>59</b> , 198-205, doi:10.1212/wnl.59.2.198 (2002).                                                                                                                |
| 494<br>495<br>496 | 25 | Bennett, D. A. <i>et al.</i> Decision rules guiding the clinical diagnosis of Alzheimer's disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. <i>Neuroepidemiology</i> <b>27</b> , 169-176, doi:10.1159/000096129 (2006). |
| 497<br>498<br>499 | 26 | Bennett, D. A. <i>et al</i> . Neuropathology of older persons without cognitive impairment from two community-based studies. <i>Neurology</i> <b>66</b> , 1837-1844, doi:10.1212/01.wnl.0000219668.47116.e6 (2006).                                                               |
| 500<br>501        | 27 | Lamar, M. <i>et al.</i> Associations of literacy with diabetes indicators in older adults. <i>J Epidemiol Community Health</i> <b>73</b> , 250-255, doi:10.1136/jech-2018-210977 (2019).                                                                                          |

| 502<br>503<br>504 | 28 | La Frano, M. R. <i>et al.</i> Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice. <i>Nutr Res</i> <b>46</b> , 11-21, doi:10.1016/j.nutres.2017.07.006 (2017). |
|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 505<br>506<br>507 | 29 | Pedersen, T. L. & Newman, J. W. Establishing and Performing Targeted Multi-residue Analysis for Lipid Mediators and Fatty Acids in Small Clinical Plasma Samples. <i>Methods Mol Biol</i> <b>1730</b> , 175-212, doi:10.1007/978-1-4939-7592-1_13 (2018).         |
| 508<br>509        | 30 | Benjamini, Y. & Yekutieli, D. Quantitative trait loci analysis using the false discovery rate.<br><i>Genetics</i> <b>171</b> , 783-789, doi:10.1534/genetics.104.036699 (2005).                                                                                   |
| 510<br>511        | 31 | Goetz, M. E. <i>et al.</i> Rationale and Design of the Emory Healthy Aging and Emory Healthy Brain Studies. <i>Neuroepidemiology</i> <b>53</b> , 187-200, doi:10.1159/000501856 (2019).                                                                           |
| 512<br>513<br>514 | 32 | Lee, C. R. <i>et al.</i> Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. <i>Hum Mol Genet</i> <b>15</b> , 1640-1649, doi:10.1093/hmg/ddl085 (2006).              |
| 515<br>516        | 33 | Racz, B. <i>et al.</i> Daily profiles of steroid hormones and their metabolites related to food intake. <i>Physiol Res</i> <b>64 Suppl 2</b> , S219-225 (2015).                                                                                                   |
| 517<br>518<br>519 | 34 | Camargo, A. <i>et al.</i> Postprandial changes in the proteome are modulated by dietary fat in patients with metabolic syndrome. <i>J Nutr Biochem</i> <b>24</b> , 318-324, doi:10.1016/j.jnutbio.2012.06.014 (2013).                                             |
| 520<br>521<br>522 | 35 | Sagaya, F. M., Hurrell, R. F. & Vergeres, G. Postprandial blood cell transcriptomics in response to the ingestion of dairy products by healthy individuals. <i>J Nutr Biochem</i> <b>23</b> , 1701-1715, doi:10.1016/j.jnutbio.2012.01.001 (2012).                |
| 523<br>524<br>525 | 36 | Zheng, M. <i>et al</i> . Relationship between inflammatory markers and mild cognitive impairment in Chinese patients with type 2 diabetes: a case-control study. <i>BMC Endocr Disord</i> <b>19</b> , 73, doi:10.1186/s12902-019-0402-3 (2019).                   |
| 526<br>527<br>528 | 37 | Chu, L., Morrison, K. M., Riddell, M. C., Raha, S. & Timmons, B. W. Validity and reliability of a novel metabolic flexibility test in children with obesity. <i>J Appl Physiol (1985)</i> <b>124</b> , 1062-1070, doi:10.1152/japplphysiol.00093.2017 (2018).     |
| 529<br>530<br>531 | 38 | Kumar, A. A. <i>et al</i> . Postprandial Metabolism is Impaired in Overweight Normoglycemic Young<br>Adults without Family History of Diabetes. <i>Sci Rep</i> <b>10</b> , 353, doi:10.1038/s41598-019-57257-2<br>(2020).                                         |
| 532<br>533        | 39 | de Vries, M. A. <i>et al.</i> Postprandial inflammation: targeting glucose and lipids. <i>Adv Exp Med Biol</i> <b>824</b> , 161-170, doi:10.1007/978-3-319-07320-0_12 (2014).                                                                                     |
| 534<br>535<br>536 | 40 | La Frano, M. R. <i>et al.</i> Impact of post-collection freezing delay on the reliability of serum metabolomics in samples reflecting the California mid-term pregnancy biobank. <i>Metabolomics</i> <b>14</b> , 151, doi:10.1007/s11306-018-1450-9 (2018).       |
| 537<br>538        | 41 | Koch, E. <i>et al.</i> Stability of oxylipins during plasma generation and long-term storage. <i>Talanta</i> <b>217</b> , 121074, doi:10.1016/j.talanta.2020.121074 (2020).                                                                                       |

Karpe, F., Steiner, G., Uffelman, K., Olivecrona, T. & Hamsten, A. Postprandial lipoproteins and
progression of coronary atherosclerosis. *Atherosclerosis* **106**, 83-97, doi:10.1016/00219150(94)90085-x (1994).

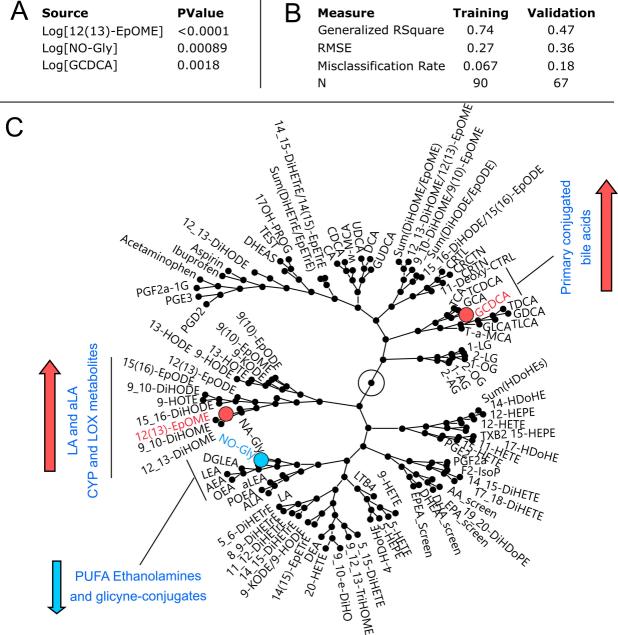
- Jackson, K. G., Wolstencroft, E. J., Bateman, P. A., Yaqoob, P. & Williams, C. M. Acute effects of
  meal fatty acids on postprandial NEFA, glucose and apo E response: implications for insulin
  sensitivity and lipoprotein regulation? *Br J Nutr* **93**, 693-700, doi:10.1079/bjn20051410 (2005).
- 545 44 Snowden, S. G. *et al.* Association between fatty acid metabolism in the brain and Alzheimer
  546 disease neuropathology and cognitive performance: A nontargeted metabolomic study. *PLoS*547 *Med* 14, e1002266, doi:10.1371/journal.pmed.1002266 (2017).
- 548 45 Turcotte, C., Chouinard, F., Lefebvre, J. S. & Flamand, N. Regulation of inflammation by
  549 cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide,
  550 and their metabolites. *J Leukoc Biol* **97**, 1049-1070, doi:10.1189/jlb.3RU0115-021R (2015).
- 46 Petrosino, S. & Di Marzo, V. The pharmacology of palmitoylethanolamide and first data on the
  therapeutic efficacy of some of its new formulations. *Br J Pharmacol* **174**, 1349-1365,
  doi:10.1111/bph.13580 (2017).
- Joosten, M. M., Balvers, M. G., Verhoeckx, K. C., Hendriks, H. F. & Witkamp, R. F. Plasma
  anandamide and other N-acylethanolamines are correlated with their corresponding free fatty
  acid levels under both fasting and non-fasting conditions in women. *Nutr Metab (Lond)* 7, 49,
  doi:10.1186/1743-7075-7-49 (2010).
- 55848Bradshaw, H. B. & Walker, J. M. The expanding field of cannabimimetic and related lipid559mediators. Br J Pharmacol 144, 459-465 (2005).
- 56049Saito, V. M., Rezende, R. M. & Teixeira, A. L. Cannabinoid modulation of neuroinflammatory561disorders. Curr Neuropharmacol 10, 159-166, doi:10.2174/157015912800604515 (2012).
- 50 Bradshaw, H. B., Raboune, S. & Hollis, J. L. Opportunistic activation of TRP receptors by
  563 endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.
  564 *Life Sci* 92, 404-409, doi:10.1016/j.lfs.2012.11.008 (2013).
- 56551Kim, S. R. *et al.* Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1566receptors in the brain: neuroprotection versus neurotoxicity. *Mol Neurobiol* **35**, 245-254,567doi:10.1007/s12035-007-0030-1 (2007).
- 568 52 Ho, M., Anderson, G. H., Lin, L., Bazinet, R. P. & Kubant, R. Ethanolamides of essential alpha569 linolenic and linoleic fatty acids suppress short-term food intake in rats. *Food Funct*,
  570 doi:10.1039/c9fo02884f (2020).
- 57153Frigolet, M. E. & Gutierrez-Aguilar, R. The Role of the Novel Lipokine Palmitoleic Acid in Health572and Disease. Adv Nutr 8, 173S-181S, doi:10.3945/an.115.011130 (2017).
- 57354MahmoudianDehkordi, S. *et al.* Altered bile acid profile associates with cognitive impairment in574Alzheimer's disease-An emerging role for gut microbiome. *Alzheimers Dement* **15**, 76-92,575doi:10.1016/j.jalz.2018.07.217 (2019).
- 55 Nho, K. *et al.* Altered bile acid profile in mild cognitive impairment and Alzheimer's disease:
  577 Relationship to neuroimaging and CSF biomarkers. *Alzheimers Dement* **15**, 232-244,
  578 doi:10.1016/j.jalz.2018.08.012 (2019).

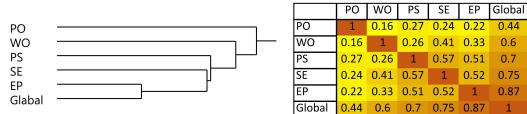
| 579<br>580<br>581        | 56 | Yu, D. <i>et al.</i> Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. <i>Transl Stroke Res</i> <b>10</b> , 522-533, doi:10.1007/s12975-018-0672-5 (2019).                                                             |
|--------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 582<br>583<br>584<br>585 | 57 | Shinto, L. <i>et al.</i> Oxidized Products of Omega-6 and Omega-3 Long Chain Fatty Acids Are<br>Associated with Increased White Matter Hyperintensity and Poorer Executive Function<br>Performance in a Cohort of Cognitively Normal Hypertensive Older Adults. <i>J Alzheimers Dis</i> <b>74</b> ,<br>65-77, doi:10.3233/JAD-191197 (2020). |
| 586<br>587<br>588        | 58 | Wagner, K. M., McReynolds, C. B., Schmidt, W. K. & Hammock, B. D. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. <i>Pharmacol Ther</i> <b>180</b> , 62-76, doi:10.1016/j.pharmthera.2017.06.006 (2017).                                                                            |
| 589<br>590               | 59 | Hashimoto, K. Role of Soluble Epoxide Hydrolase in Metabolism of PUFAs in Psychiatric and Neurological Disorders. <i>Front Pharmacol</i> <b>10</b> , 36, doi:10.3389/fphar.2019.00036 (2019).                                                                                                                                                |
| 591<br>592<br>593        | 60 | Pardeshi, R. <i>et al.</i> Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase<br>Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of<br>Diabetes. <i>Front Pharmacol</i> <b>10</b> , 288, doi:10.3389/fphar.2019.00288 (2019).                                                    |
| 594<br>595<br>596        | 61 | Bell, S. M. <i>et al.</i> Ursodeoxycholic Acid Improves Mitochondrial Function and Redistributes Drp1 in Fibroblasts from Patients with Either Sporadic or Familial Alzheimer's Disease. <i>J Mol Biol</i> <b>430</b> , 3942-3953, doi:10.1016/j.jmb.2018.08.019 (2018).                                                                     |
| 597<br>598<br>599        | 62 | Keene, C. D. <i>et al.</i> Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic<br>animal model of Huntington's disease. <i>Proc Natl Acad Sci U S A</i> <b>99</b> , 10671-10676,<br>doi:10.1073/pnas.162362299 (2002).                                                                                                |
| 600<br>601<br>602        | 63 | Sola, S., Castro, R. E., Laires, P. A., Steer, C. J. & Rodrigues, C. M. Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. <i>Mol Med</i> <b>9</b> , 226-234, doi:10.2119/2003-00042.rodrigues (2003).                                          |
| 603<br>604<br>605        | 64 | Ruan, Y. <i>et al.</i> Mixed-meal tolerance test to assess residual beta-cell secretion: Beyond the area-<br>under-curve of plasma C-peptide concentration. <i>Pediatr Diabetes</i> <b>20</b> , 282-285,<br>doi:10.1111/pedi.12816 (2019).                                                                                                   |
| 606                      |    |                                                                                                                                                                                                                                                                                                                                              |
| 607                      |    |                                                                                                                                                                                                                                                                                                                                              |
| 608                      |    |                                                                                                                                                                                                                                                                                                                                              |
| 609                      |    |                                                                                                                                                                                                                                                                                                                                              |
| 610                      |    |                                                                                                                                                                                                                                                                                                                                              |
| 611                      |    |                                                                                                                                                                                                                                                                                                                                              |

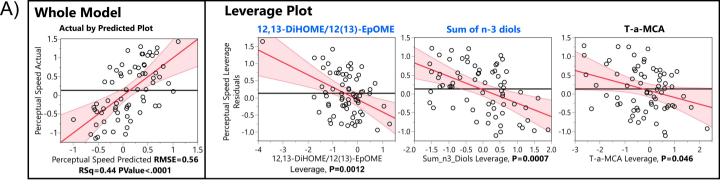
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282343; this version posted September 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

612

### 613 **Figure Legends**

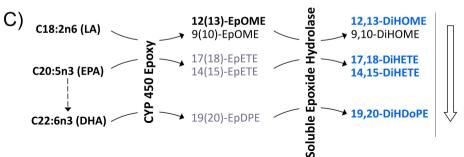

| 614 | Figure 1: Serum lipid metabolites and bile acids are predictors of the fasting state. A)          |  |  |
|-----|---------------------------------------------------------------------------------------------------|--|--|
| 615 | Stepwise logistic model parameters predicting the fasting state using 12(13)-EpOME, GCDCA         |  |  |
| 616 | and NO-Gly. B) Visualization of the correlative environment (generated using hierarchical         |  |  |
| 617 | clustering) of metabolites used for fasting state prediction. Nodes represent branching points in |  |  |
| 618 | the hierarchical clustering network with metabolites on the fringe named. Metabolite used in the  |  |  |
| 619 | final model are indicated by colors. Directionality of changes in metabolites due to non-fasted   |  |  |
| 620 | state compared to the fasted state are indicated by arrows.                                       |  |  |
| 621 |                                                                                                   |  |  |
| 622 | Figure 2. Correlative relationships between cognitive domains. A) Hierarchical clustering of      |  |  |
| 623 | cognitive domains using Ward method. B) Pearson's correlation matrix. PO – perceptual             |  |  |
| 624 | orientation; WO - working memory; PS - perceptual speed; SE - semantic memory; EP -               |  |  |
| 625 | episodic memory; Global – global cognition.                                                       |  |  |


626


Figure 3: Least square regression model of perceptual speed. A) Actual by predicted plot of a
whole model and leverage plots of model components. B) Model cross-validation statistics using
training set (60%, n =44) and validation set (40%, n =33). C) Model components of soluble
epoxide hydrolase metabolism projected onto their metabolic pathway. Metabolic pathway starts
with the fatty acids on the left, farther, metabolizing enzymes are indicated on the arrows.
Multiple possible metabolites of the pathway are indicated. Metabolites of sEH used for the
model are highlighted. Color of the metabolites as well as an arrow next to the metabolic

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.282343; this version posted September 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 634 pathway represents directionality of the correlation with perceptual speed (orange positive,
- 635 blue negative). RMSE root mean squared error, LA linoleic acid, CYP 450 cytochrome
- 636 p450, sEH soluble epoxide hydrolase, EpOME epoxy octadecanoic acid, DiHOME –
- 637 dihydroxy octadecanoic acid, EpETE epoxy eicosatrienoic acid, DiHETE dihydroxy
- 638 eicosatrienoic acid, EpDPE epoxy docosapentaenoic acid, DiHDoPE dihydroxy
- 639 docosapentaenoic acid.








B) Crossvalidation

| Source                        | RSquare | RASE | Freq |
|-------------------------------|---------|------|------|
| Training Set<br>Validation Se | 0.44    | 0.54 | 44   |
| Validation Se                 | t 0.23  | 0.58 | 24   |

