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Abstract 

Single-cell analysis has become a powerful approach for the molecular characterization of 

complex tissues. Methods for quantifying gene expression and DNA accessibility of single 

cells are now well-established, but analysis of chromatin regions with specific histone 

modifications has been technically challenging.  Here, we adapt the recently published 

CUT&Tag method to scalable single-cell platforms to profile chromatin landscapes in single 

cells (scCUT&Tag) from complex tissues. We focus on profiling Polycomb Group (PcG) 

silenced regions marked by H3K27 trimethylation (H3K27me3) in single cells as an orthogonal 

approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag 

profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of 

cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we use 

scCUT&Tag to profile H3K27me3 in a brain tumor patient before and after treatment, 

identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the 

primary sample and after treatment.   
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Main text  

Significant portions of the genome are actively repressed to create barriers between cell type 

lineages during development1. In particular, trimethylation on lysine 27 of histone H3 

(H3K27me3) in nucleosomes by PcG proteins is crucial for gene silencing during normal 

differentiation and thus for maintaining cell identity2-4. Conversely, derangements in PcG 

silencing permit aberrant gene expression and disease5. Therefore, methods for assaying 

silenced chromatin can provide insights into a variety of processes ranging from normal 

development to tumorigenesis. 

Currently, methods for analyzing single-cell gene expression6 and chromatin accessibility7 are 

widespread. While single-cell ChIP-seq has been attempted8, 9, scalable methods for assessing 

silenced chromatin at the single-cell level have not become widely available. We set out to use 

chromatin profiling of single cells to assess gene silencing and to develop a framework for 

analysis. Our approach builds on Cleavage Under Targets and Tagmentation (CUT&Tag), 

which uses specific antibodies to tether a Tn5 transposome at the sites of chromatin proteins in 

isolated cells or nuclei. Activation of the transposome then tagments genomic loci with adapter 

sequences that are used for library construction and deep sequencing, thereby identifying 

binding sites for any protein where a specific antibody is available6-10. Our earlier work 

demonstrated that CUT&Tag profiling of the H3K4me2 histone modification efficiently detected 

gene activity, much like ATAC-seq, while H3K27me3 profiling detected silenced chromatin that 

may be epigenetically inherited10. 

To determine whether single-cell chromatin landscapes were sufficient to distinguish different 

cell types, we performed CUT&Tag on H1 human embryonic stem cells (H1 hESCs) using an 

anti-H3K27me3-specific antibody in bulk and then distributed single cells for PCR and library 

enrichment on the ICELL8 system (Fig 1a). We compared this to H3K27me3 scCUT&Tag 

profiles of K562 cells10 to determine whether standard approaches to single-cell clustering could 

distinguish cell types based on H3K27me3 signal. As PcG domains typically span >10 

kilobases, we grouped read counts in 5 kilobase bins across the genome and used this for 

latent sematic indexing (LSI) based dimensional reduction and UMAP embedding, followed by 

standard Louvain clustering using the ArchR package11 (see methods). After quality control 

filtering (see methods, Supplementary Fig 1a-g), UMAP embedding clearly separated 100% 

(804) hESC cells from (908) K562 cells independent of batch effects (Fig 1b).  Interestingly, 

hESC had approximately 10% of the number of unique fragments when compared to K562 cells 

(Supplementary Fig 1f). This is consistent with the notion that stem cells have lower global 
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Figure 1: Single-Cell CUT&Tag resolves distinct cell-types and maps repressive chromatin domains in early hESC 
development. 
a) Schematic of scCUT&Tag applied to nuclei isolated from cell culture, a model endoderm differentiaton system, blood 
cells, and a human brain tumor. Single cells are then partitioned using either the 10X Genomic or iCELL8 microfluidic 
systems.  b) UMAP embedding of scCUT&Tag for a repressive histone modification, H3K27me3, in K562 (n=908) and hESC 
(n=804) single cells.  c) UMAP embedding of scCUT&Tag for a repressive histone modification, H3K27me3, in a 5 day 
differentiation time course from hESC to definitive endoderm (total n=1830). Cell types are colored according to the day 
along the time course in which they were harvested.  d) A bar plot and a fitted curve representing the percent of single cells 
that are repressed at each specific gene. The superimposed jitters depict scRNA-seq for the same timepoint. The left axis 
corresponds to scCUT&Tag (percent of single cells repressed) and right corresponds to scRNA-seq (normalized mRNA 
counts). From top to bottom, well-known TF markers for pluripotent, mesendoderm, and definitive endoderm cells.
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H3K27me3 levels than more differentiated cell types12. Despite down-sampling the number of 

unique fragments per cell to the same median value for both datasets, H3K27me3 signal still 

readily distinguished the two cell types (Supplementary Fig 1g) confirming that clustering was 

driven by differences in H3K27me3 signal and not number of unique fragments.   

Cellular determination and differentiation proceed by a controlled sequence of gene activation 

and gene repression. To study gene silencing during development, we differentiated hESCs 

towards definitive endoderm13. We confirmed differentiation by immunofluorescence staining of 

stage-specific transcription factors (Supplementary Fig 2a). UMAP embedding of scCUT&Tag 

H3K27me3 profiling revealed a developmental trajectory, independent of batch effect 

(Supplementary Fig 2b), from hESC to definitive endoderm (Fig 1c) that was punctuated by 

stem-like states on days 1-2 followed by a rapid progression towards differentiation on days 3-5. 

To determine if changes in chromatin silencing corresponded to changes in gene expression, 

we examined known markers of stem cells and endoderm differentiation in single-cell aggregate 

profiles from each day. Overall, H3K27me3 signal at a marker gene was inversely correlated 

with its expression13. Stem cell markers such as SOX2, KLF4, and FOXD3 are expressed in 

hESCs and lack H3K27me3 but are silenced as differentiation proceeds (Fig 1d). Between day 

2 and 3, hESCs transition into a mesendoderm state (characterized by expression of TBXT, 

MSX2, and PDGFRA) in which they have the developmental potential to either become 

mesoderm or endoderm13. This is illustrated in our data between day 2-3 where chromatin 

silencing at mesoderm markers is lower (Fig 1d). As differentiation proceeds, endoderm 

markers such as FOXA2, SOX17, and PRDM1 become active and lose H3K27me3 signal (Fig 

1d). Finally, markers of ectoderm (PAX6 and LHX2), are not expressed, and accumulated 

H3K27me3, consistent with silencing of these loci (Supplementary Fig 2c). Pseudo-temporal 

ordering of single cells recapitulated our real-time results (Supplementary Fig 2d). 

Having established that scCUT&Tag readily identifies dynamic changes in chromatin silencing, 

we next sought to determine whether chromatin profiles could distinguish cell types in a more 

complex tissue. To do so, we adapted scCUT&Tag to the 10X Genomics microfluidics platform 

and profiled peripheral blood mononuclear cells (PBMCs) collected from a healthy donor. 

Briefly, we performed scCUT&Tag in bulk on 1 million cells and then “super-loaded” a 10X 

Genomics microfluidic controller device with 15,400 nuclei. Per manufacturer, this would be 

expected to yield approximately 10,000 cells with a multiplet rate of 7.7%.  The processed 

single-cell data did not show clear delineation between empty droplets and cells 

(Supplementary Fig 3a), so we imposed thresholds of 600 and 20000 as the upper and lower 
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limits of unique fragments per cell.  We performed additional QC as follows:  First, we removed 

clusters of cells that showed altered nucleosomal banding (Supplementary Fig 3b-d). Second, 

we implemented a ‘chromatin silencing score’ (CSS), which uses the gene activity score (GAS) 

model in ArchR11 to create a proxy for the overall signal associated with a given locus. We then 

used the CSS to exclude clusters that did not have any specific and significant enrichment using 

thresholds outlined in the methods.  This resulted in 2,794 cells with a median of 1721 unique 

fragments per cell for which we performed dimensionality reduction and embedding as 

described above (Fig 2a). 

We then set out to identify the major cell types in the data using two methods. We first down-

sampled publicly available bulk H3K27me3 ChIP-seq data (ENCODE) and used the UMAP 

transform function to “project” the ChIP-seq data onto our UMAP embedding as previously 
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Figure 2: scCUT&Tag for H3K27me3 readily identify major subtypes in PBMC
a) Left - UMAP embedding of single cell data from PBMC, unsupervised clustering revealed 6 clusters.  Right - 
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cell-types (see Supplementary methods for GSE citations) on single cell CUT&Tag data on left. b) Heatmap of 
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described14 (Fig 2a).  Briefly, this approach embeds new data (down-sampled ChIP) using an 

existing model learned on preexisting data (scCUT&Tag) to create a unified low dimensional 

embedding. Secondly, we used the CSS score to identify cell-type specific marker genes that 

showed a lack of H3K27me3 enrichment. Logically, a silenced gene will have a high CSS and a 

low GAS, while active genes a low CSS and a high GAS. Therefore, we would expect a low 

CSS for a cell type specific marker gene in the cluster that corresponded to that cell type (Fig 

2b). Overall, cluster identification by CSS annotation matched our assignments by ChIP-seq 

projection (Supplementary Fig 2a), and distinguished major cell types in unsorted PBMCs 

including those of lymphoid (T cell, NK cell, B cell) and myeloid lineages (monocyte). From 

these data, we can generate cell type specific PcG landscapes across heterogenous cell types 

within a sample, obviating the need for physical cell sorting and minimizing confounding effects 

of batch effect, read depth, or sample heterogeneity. This allowed us to identify the top 

differentially PcG-silenced loci across the major cell types in PBMCs (Fig 2b and Supplementary 

Fig 3e) 

Having established scCUT&Tag can profile developmental systems and heterogenous tissues, 

we used scCUT&Tag to interrogate PcG based clustering in glioblastoma (GBM), a human 

central nervous system tumor that is known to have a heterogeneous microenvironment15, 

exhibit intratumoral heterogeneity16 and have pseudo-hierarchical organization that mimics 

development15, 17, 18. In this tumor type, changes in PcG chromatin silencing can mediate 

emergence of resistant cell populations19.  

We profiled H3K27me3 in 1,311 single nuclei using the 10X scCUT&Tag workflow from a 

primary glioblastoma which had been snap-frozen shortly after surgical removal. After data 

processing and QC (see methods), we distinguished four major cell populations within the 

sample (Fig 3a). To annotate clusters, we constructed chromatin silencing scores of previously-

defined marker loci15, and annotated clusters that correspond to microglia (Cluster 1, low CSS 

at the PTPRC gene), neurons (Cluster 3, low CSS at RBFOX3), oligodendrocytes (Cluster 4, 

low CSS at MOBP), and other neural lineage cells, including tumor cells (Cluster 4, low CSS at 

SOX2) (Fig 3b). To confirm cluster annotations, we projected CUT&RUN bulk data from a 

glioma stem cell line (UW7gsc) derived from the same patient, two established neural stem cell 

lines (U5 and CB660)20, and ENCODE21 ChIP-seq bulk data for monocytes (proxy for microglia) 

and astrocytes. Projection onto the scCUT&Tag tumor sample embedding 
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Figure 3: scCUT&Tag data for H3K27me3 for a human glioblastoma primary and relapse sample demonstrates heteroge-
neity in PcG distribution within tumor cell clusters and cluster enrichment after treatment. 
a) UMAP embedding of single cells from a primary human glioblastoma based on H3K27me3 signal. b) Cluster annotation using 
chromatin silencing scores for key markers genes identifies microglia (PTPRC), neurons (RBFOX3), oligodendrocytes (MOBP), 
and tumor cells (SOX2).  c) UMAP transform and projection of bulk ChIP seq (monocytes, astrocytes) or bulk Cut&Run (UW7gsc) 
onto patient sample. d) Left - UMAP co-embedding of tumor cells from primary and relapse sample. Inset highlights locations of 
cells from relapse sample.  Right - Barplot demonstrating fraction of cells in each sample (Primary, Relapse) that belong to each 
cluster.   e) Left - Two pseudotime trajectories starting with cluster T1 (presumed stem-like cluster) and ending in either cluster 
T4 (Trajectory 1) or cluster T2 (Trajectory 2).  Right - Heatmap of 132 significant motif deviations based on H3K27me3 activity 
within peaks from aggregated tumor cell ATAC-seq data. Motif deviations are ordered by pseudotime.  f) UMAP plots for tumor 
cells colored by deviation scores for selected motifs. Left column shows early motifs in pseudotime that are commonly silenced 
including NEUROD1, SNAI2, and TCF12. Middle column shows silenced programs that diverge according to trajectory (NR1D2 
in Trajectory 1 and ETV5 in Trajectory 2) or are common across trajectories (RFX4). Right column shows silenced programs 
specific to terminal pseudotime for Trajectory 1 (HES5), Trajectory 2 (GATA6) or both (DNMT1).
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confirmed CSS annotations (Fig 3c). UW7gsc projected to the center of the largest cluster, 

presumably made up of tumor cells. The astrocyte data projected to a smaller satellite cluster 

within the neural lineage cells. The neural stem cell line data localized to both the tumor cell 

cluster as well as the astrocyte cluster (Supplementary Fig 4).  This may reflect spontaneous 

differentiation of neural stem cells towards the astrocyte lineage in vitro or reflect subtle 

changes in cell state such as lineage priming22.   

To understand how the tumor changed with treatment, we performed scCUT&Tag profiling for 

H3K27me3 for a relapse sample obtained via rapid autopsy from the patient 5 months after 

surgery and radiation therapy. Chromatin profiles of this sample had increased background 

attributed to tissue degradation postmortem (Supplementary Fig 5a), but data quality was 

sufficient to project onto the primary tumor UMAP embedding. This identified 4 distinct cell types 

in the relapse sample (Supplementary Fig 5b, including cells 71 that colocalized to the tumor 

cell cluster (Supplementary Fig 5b). 

We focused on the tumor cells, co-embedding the 71 relapse tumor single cells with the 640 

primary tumor single cells. After batch correction, we identified 4 clusters within the tumor cell 

data with distinct H3K27me3 profiles (Fig 3d - left). Examining the distribution of cell states 

across the two timepoints, we noted an enrichment for Cluster T1 in the relapse specimen (Fig 

3d - right).  Given that this cluster could represent a treatment-resistant cell population, we 

further characterized its chromatin landscape. Gene set enrichment analysis using the CSS 

matrix identified potential programs silenced (positive enrichment scores) and derepressed 

(negative enrichment score) in this cluster. Interestingly, the Verhaak_glioblastoma_proneural 

gene set appears to be silenced in the resistant cell cluster (Supplementary Fig 6), consistent 

with the idea that tumor evolution may induce a proneural-to-mesenchymal shift23, 24. In 

contrast, low CSS was observed at gene sets with high CpG content that are marked by 

H3K27me3 in whole brain25. The lack of H3K27me3 signal in this tumor cluster suggests that 

the PcG landscape of glioblastoma cells resembles a stem-like state rather than a terminally-

differentiated state26.  

We next wanted to understand the relationship between the cell clusters. Clusters T1, T2 and 

T4 exist along a continuum, whereas cluster T3 is separated from the main tumor cell group. It 

is unclear whether cluster T3 represents a tumor cell cluster or a normal cell type that closely 

resembles tumor cells based on H3K27me3. Further study is needed to determine this. Given 

the ambiguity regarding cluster T3, we then chose to focus on whether transcription factor 

programs were differentially silenced across clusters T1, T2, and T4. Typically, this is done by 
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performing motif enrichment analysis27 in annotated enhancers and promoters. However, 

H3K27me3 domains are broad, spanning 10-100kb and covering many genes, enhancers, 

promoters, and intervening regions. Therefore, to limit motif searching to potential regulatory 

elements within H3K27me3 domains, we used single-cell ATAC-seq data (Supplementary Fig 7) 

to annotate enhancers and promoters in tumor cell sub-clusters based on accessible chromatin. 

We then calculated TF motif enrichments and depletions in this set of curated genomic regions 

based on H3K27me3 signal. We examined motif deviations ordered over two pseudotime 

trajectories that started with cluster T1 (presumed stem-like cluster) and ended in either cluster 

T4 (Trajectory 1) or cluster T2 (Trajectory 2) (Fig 3e - left). Motif deviations (n=132) were 

ordered according to pseudotime, identifying silenced motifs that spanned cluster T1 to cluster 

T2 and cluster T4 (Fig 3e - right). At the apex of the trajectories, motif silencing was shared and 

included motifs for TFs such as NEUROD1, SNAI2, and TCF12 (Fig 3f, left column). At 

intermediate pseudotime points, there were silenced motifs specific to Trajectory 1 (NR1DA2) or 

Trajectory 2 (ETV5) or shared by both (RFX4) (Fig 3f, middle column). As pseudotime 

proceeds, Trajectory 1 showed evidence of HES5 motif silencing, while Trajectory 2 showed 

GATA6 motif silencing. Interestingly, the DNMT1 motif was strongly silenced across both 

pseudotime endpoints, concordant with the idea that PcG silencing of DNMT1 enriched 

promoters and enhancers is a common feature of differentiation28 (Fig 3f, right column). 

Fundamentally, we have shown here that repressive chromatin can be used to identify cell 

states a priori from heterogeneous normal and diseased tissues. This approach has far reaching 

applications, including generation of cell type specific chromatin atlases from archival tissue in a 

manner that does not require sorting of pure populations. We focused here primarily on a single 

chromatin mark, but this method can in theory be applied to any histone modification or DNA 

binding protein for which an antibody is available. As such, developing complete chromatin 

landscapes of complex tissues and disease states using scCUT&Tag will help decode the 

complex epigenetic machinery underlying gene expression. Broadly, our method for performing 

histone mark specific single-cell analysis adds to the growing list of single-cell ‘omic’ methods 

that can be used to understand heterogeneous cell populations in complex tissues and disease 

states.  
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Materials & Methods 

Biological Material 

H1 ES cells were purchased from WiCell (Cat#WA01-lot#WB35186). We used the following 

antibodies: Guinea Pig anti-Rabbit IgG (Heavy & Light Chain) antibody (Antibodies-Online 

ABIN101961), H3K27me3 (Cell Signaling Technology, cat #9733), SOX17 (R&D Systems, 

AF1924, Lot KGA0916121), OCT4 (Abcam, ab109183, lot gr120970-6), and H3K4me2 (Upstate 

07–030, Lot 26335) The fusion enzyme, pA-Tn5 was generated as previously described10. 

hESC culture conditions 

H1 ES cells were maintained on Corning Matrigel hESC-qualified Matrix, Corning (#354277), at 

37C in mTeSR™1 from STEMCELL Technologies (Catalog #85850) with daily media 

replacement.  When cell aggregates were 80% confluent, they were released using ReLeSR, 

STEMCELL Technologies (# 05872), per manufacturer’s instructions and incubated at 37°C for 

3-5 minutes.  Cells were released into a small volume of complete media by tapping of growth 

plate and aggregates reduced in size by gentle pipetting and passaged to desired ratio.   

hESC differentiation protocol  

hESC were differentiated to definitive endoderm using the STEMdiff Definitive Endoderm Kit 

(cat #05110). The full protocol is available from STEMCELL Tech 

(https://cdn.stemcell.com/media/files/pis/29550-

PIS_2_1_0.pdf?_ga=2.73376023.564267965.1597964514-138601152.1597964514). Briefly, hESC at 

80% confluent were harvested using Gentle Cell Dissociation Reagent (STEMCELL Tech, cat 

#07174) and reseeded in a single-cell manner on Matrigel-plates. This was done daily for five 

days. Every 24 hours after a new differentiation culture was started and cells were incubated 

with DE differentiation medium according to the manufacture's guideline. On the 5th day, all five 

timepoints were harvested simultaneously using Accutase (STEMCELL Tech, cat# AT104-500). 

Immunofluorescence was used to confirm differentiation as previously described29.  

PBMC acquisition and processing 

Healthy adult donors at the University of Washington underwent venipuncture and blood was 

collected using heparin-containing vacutainer tubes after consenting to participate in our study, 

Institutional Review Board protocol (#STUDY00008678).  Mononuclear cells were harvested 
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from peripheral blood using gradient centrifugation.  Cells were then washed twice with PBS 

and captured as outlined below. 

Brain tumor specimen acquisition, processing and culture 

Adult patients at the University of Washington provided preoperative informed consent to take 

part in the study in all cases following approved Institutional Review Board protocols (IRB 

protocol #STUDY00002162). Fresh tumors were collected directly from the operating room at 

the time of surgery and either taken fresh or snap frozen immediately after removal in liquid 

nitrogen. Histopathologic diagnosis was confirmed by neuropathology as part of routine clinical 

care. Fresh tissue was enzymatically dissociated using a papain-based brain tumor dissociation 

kit (Miltenyi Biotec) as per manufacturer’s protocol. Cells were then cultured on laminin coated 

plates in DMEM/F12 supplemented with 1X N2/B27, 1% Penicillin/Streptomycin. Cultures were 

passaged as needed when confluent and considered stable after 3 serial passages. Cell line 

UW7gsc was used for this study at passage number 3. Autopsy tissue was collected after 

informed consent. Tissue was snap frozen and captured as outlined below.  

Nuclei preparation from brain tumor specimens 

Frozen tissue was processed to nuclei using the ‘Frankenstein’ protocol from Protocols.io. 

Briefly, snap frozen tissue glioblastoma tissue was thawed on ice and minced sharply into <1 

mm pieces. 500 ul chilled Nuclei EZ Lysis Buffer (Millipore Sigma NUC-101 #N3408) was added 

and tissue was homogenized 10-20 times in a Dounce homogenizer. The homogenate was 

transferred to a 1.5 ml Eppendorf tube and 1 mL chilled Nuclei EZ Lysis Buffer was added. The 

homogenate was mixed gently with a wide bore pipette and incubated for 5 minutes on ice. The 

homogenate was then filtered through a 70 um mesh strainer and centrifuged at 500g for 5 

minutes at 4°C. Supernatant was removed and nuclei were resuspended in 1.5 mL Nuclei EZ 

lysis buffer and incubated for 5 minutes on ice. Nuclei were centrifuged at 500g for 5 min at 4°C. 

After carefully removing the supernatant (pellet may be loose), nuclei were washed in Wash 

Buffer (1x PBS,1.0% BSA,0.2 U/μl RNase Inhibitor). Nuclei were then centrifuged and 

resuspended in 1.4 ml Wash Buffer for two additional washes. Nuclei were then filtered through 

a 40 um mesh strainer. Intact nuclei were counted after counterstaining with Trypan blue in a 

standard cell counter. 

Chromatin Profiling: scCUT&Tag using the ICELL8 system/protocol  
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scCUT&Tag for the ICELL8 was carried out as previously described10. In brief, approximately 

250,000 hESC (for each timepoint) were processed by centrifugation between buffer exchanges 

at 600xg for 3 minutes and in low-retention tubes. Cells were collected and washed with 1mL 

wash buffer (20 mM HEPES, pH 7.5; 150 mM NaCl; 0.5 mM Spermidine, 1× Protease inhibitor 

cocktail) at room temperature. Cells were incubated antibody diluted 1:50 in NP40-Digitonin 

Wash Buffer (0.01% NP40, 0.01% Digitonin in wash buffer) overnight. This wash buffer 

permeabilized the cells and released nuclei. Permeabilized nuclei were then rinsed once with 

NP40-Digitonin Wash buffer and incubated with anti-Rabbit IgG antibody (1:50 dilution) in 1 mL 

of NP40-Digitonin Wash buffer on a rotator at room temperature for 30 min. Nuclei were washed 

twice with NP40-Digitonin Wash buffer and incubated with 1:100 dilution of pA-Tn5 in NP40-Dig-

med-buffer (0.01% NP40, 0.01% Digitonin, 20 mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM 

Spermidine, 1× Protease inhibitor cocktail) for one hour at RT on a rotator. Cells were washed 

2x with NP40-Dig-med-buffer and resuspended in 150 µL Tagmentation buffer (10 mM MgCl2 in 

NP40-Dig-med-buffer) and incubated at 37 °C for 1 h. Tagmentation was stopped by adding 

50 µL of 4× Stop Buffer (40.4 mM EDTA and 2 mg/mL DAPI) and the sample was held on ice for 

30 min. Samples were then strained through a 10-micron cell strainer to remove clumps of cells.  

The SMARTer ICELL8 single-cell system (Takara Bio USA, Cat. #640000) was used to array 

single cells previously described10. Briefly, cells were loaded onto a source plate and dispensed 

in to a SMARTer ICELL8 350 v chip (Takara Bio USA, Cat. # 640019) at 35 nanoliter per well. 

The chip was then spun down at 300xg for 5 minutes. Imaging on a DAPI-channel confirmed the 

presence of single-cells in specific wells. Non-single cell wells were excluded from downstream 

reagent dispenses. To index the whole chip, 72x72 i5/i7 unique indices (5184 micro-wells total) 

were dispensed at 35nL in wells that contained single cells followed by two dispenses of 50nL 

(100nL total) 2x NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L). The chip was 

sealed and spun down at 2250xg for 3 mins after each dispense. The PCR on the chip was 

performed with the following protocol: 5 min at 72 °C and 2 min at 98 °C followed by 15 cycles of 

10 s at 98 °C, 30 s at 60 °C, and 5 s at 72 °C, with a final extension at 72 °C for 1 min. 

Quality Control (ICELL8): 

The ICELL8 has a built-in imaging system which filters out wells that do not contain a single cell. 

Thus, empty wells without cells, with more than one single cell, and with doublets, are removed. 

Subsequently, we filtered single cells with fewer than 100 unique fragments to remove spurious 

barcodes that can be attributed to an overflow of dispensed PCR material. The overflow occurs 
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due to surface adhesion, rather than a filled well, thus in the experimental protocol we blot the 

microchip after every dispense.  

A drawback of leveraging a hyperactive transposon in a fusion enzyme to target specific 

chromatin compartments is that the Tn5 has a high binding affinity for accessible chromatin, the 

basis of ATAC-seq. Previously, it was shown that this artifact is highly dependent on the 

concentration of salt in subsequent washes post fusion enzyme binding 10.  To identify whether 

our single-cell samples exhibited this artifact, we mapped the percent of reads in each single 

cell that fell into H3K27me3, H3K4me2, or ATAC specific peaks (Supplementary Fig 1c). The 

degree in which repressive H3K27me3 marked chromatin and active accessible chromatin 

ATAC-seq signal overlapped was minimal as expected whereas an active mark, H3K4me2, had 

a higher degree of overlap with ATAC-seq data. Correlations of aggregate versus bulk profiles 

across the 5 kb genome tiles show similar results (Supplementary Fig 1b). 

As an initial test, we want to evaluate the robustness of scCUT&Tag by comparing it to scATAC-

seq. Therefore, we chose the histone modification K4me2 which was shown to provide similar 

output to ATAC-seq. A representative genomic track comparing bulk, aggregate, and single cell 

profiles for K4me2 in H1 and K562 cells, reveal the high-quality resulting data (Supplementary 

Fig 1a). A low-dimensional embedding, UMAP, clearly separate K562 cells (n=807) from hESC 

(n=317) (Supplementary Fig 1d). Projections of published scATAC-seq data (GSE99172) onto 

our scCUT&Tag embedding align with cell-type specific clusters (Supplementary Fig 1e).  

Chromatin Profiling: scCUT&Tag using the 10X Genomics system 

CUT&Tag was performed with an anti-H3K27me3 antibody (CST#9733) with 1 million cells as 

published10. After tagmentation, nuclei were counted, centrifuged at 600 g for 3 mins and then 

resuspended in 1X Diluted Nuclei Buffer (10X Genomics, PN-2000207) at 2500 nuclei/µL. We 

then mixed 5 µL of diluted nuclei with 7 µL ATAC buffer, 3µL low TE buffer (10 mM Tris pH 8.0, 

0.1 mM EDTA), We omitted the isothermal incubation, and loaded this material onto a 10X 

controller following the 10X Genomics scATAC protocol. Libraries were sequenced using an 

Illumina NovaSeq 6000. 

Data processing 

Illumina .bcl files were demultiplexed and converted to fastq format using the cellranger mkfastq 

function.  Resulting fastq files were aligned to the hg38 genome, filtered for duplicates and 

counted using cellranger atac.  An output BED file of filtered fragment data containing the cell 
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barcode was then read into ArchR11.  We used a 5kb genome windows which was used in all 

dimensionality reduction methods steps across all experiment.  We used the ArchR11 gene 

activity score to calculate our CSS as described above.  We used LSI dimensionality reduction11 

using a TFIDF normalization function30, UMAP31 low dimensional embedding, and clustering 

using a nearest neighbor graph30 performed on data in LSI space.  As the cell line/differentiation 

experiments used the ICELL8 platform, we did not remove multiplets as this platform uses 

microscopic imaging to ensure single-cell capture.  For droplet partitioning data, we used the 

following methods to ensure data quality:  1) We first visualized fragment length distribution 

across clusters.  We identified 3 clusters with nucleosomal banding distribution that was 

consistent with untethered transposition events (Supplementary Fig 3b).  2) We then removed 

two clusters with high mean fragment counts.  3) We iteratively removed clusters which 

exhibited non-specific CSS.  We accomplished this by calculating CSS significance across 

clusters using ArchR11.  Any cluster that did not have any genes that were significantly over-

represented or under-represented using significance thresholds of fdr < 0.01 and absolute fold-

change > 3 was removed.  Bulk projection of down-sampled ChIP-seq data was performed as 

follows.  Raw sequence data aligned to hg38 (BAM files) were downloaded from ENCODE21.  

Data was processed using ChomVAR32 by counting reads in 5kb tiled genomes and 

subsequently used in the bulk projection function in ArchR.  Single cell projection was 

performed using a modified ArchR projection function which did not perform any manipulation of 

the input data prior to projection. 

Postprocessing for brain tumor samples 

Peak calling for scATAC-seq data was performed in ArchR using the MACS2 wrapper. Peak set 

from scATAC-seq data was added to the UW7 H3K27me3 ArchR object and motif deviations 

were calculated using the addMotifDeviations function in ArchR. Pseudotime trajectory was 

assigned with Cluster 3 as a root and Cluster 2 as an endpoint.  
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