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Single-cell analysis has become a powerful approach for the molecular characterization of 5 

complex tissues. Methods for quantifying gene expression1 and chromatin accessibility2 of 6 

single cells are now well-established, but analysis of chromatin regions with specific histone 7 

modifications has been technically challenging. Here, we adapt the recently published 8 

CUT&Tag method3 to scalable single-cell platforms to profile chromatin landscapes in single 9 

cells (scCUT&Tag) from complex tissues. We focus on profiling Polycomb Group (PcG) 10 

silenced regions marked by H3K27 trimethylation (H3K27me3) in single cells as an orthogonal 11 

approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag 12 

profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of 13 

cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we use 14 

scCUT&Tag to profile H3K27me3 in a brain tumor patient before and after treatment, 15 

identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the 16 

primary sample and after treatment.   17 

 18 

Significant portions of the genome are actively repressed to create barriers between cell type 19 

lineages during development4. In particular, trimethylation on lysine 27 of histone H3 20 

(H3K27me3) in nucleosomes by PcG proteins is crucial for gene silencing during normal 21 

differentiation and thus for maintaining cell identity5. Conversely, derangements in PcG silencing 22 

permit aberrant gene expression and disease6. Therefore, methods for assaying silenced 23 

chromatin can provide insights into a variety of processes ranging from normal development to 24 

tumorigenesis. 25 
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Scalable methods for assessing silenced chromatin at the single-cell level have not been widely 26 

available. We set out to use chromatin profiling of single cells to assess gene silencing and to 27 

develop a framework for analysis. Our approach builds on Cleavage Under Targets and 28 

Tagmentation (CUT&Tag), which uses specific antibodies to tether a Tn5 transposome at the 29 

sites of chromatin proteins in isolated cells or nuclei. Activation of the transposome then 30 

tagments genomic loci with adapter sequences that are used for library construction and deep 31 

sequencing, thereby identifying binding sites for any protein where a specific antibody is 32 

available3. Our earlier work demonstrated that CUT&Tag profiling of the H3K4me2 histone 33 

modification efficiently detected gene activity, much like ATAC-seq, while H3K27me3 profiling 34 

detected silenced chromatin that may be epigenetically inherited3. 35 

To determine whether single-cell chromatin landscapes were sufficient to distinguish different 36 

cell types, we performed CUT&Tag on H1 human embryonic stem cells (H1 hESCs) using an 37 

anti-H3K27me3-specific antibody in bulk and then distributed single cells for PCR and library 38 

enrichment on the ICELL8 system (Fig. 1a). We compared this to previously published 39 

H3K27me3 scCUT&Tag profiles of K562 cells and hESC3 to determine whether standard 40 

approaches to single-cell clustering could distinguish cell types based on H3K27me3 signal. As 41 

PcG domains typically span >10 kilobases, we grouped read counts in 5 kilobase bins across 42 

the genome and used this for latent sematic indexing (LSI) based dimensional reduction and 43 

UMAP embedding, followed by standard Louvain clustering using the ArchR package7 (see 44 

methods). After quality control filtering (see methods, Supplementary Fig. 1a-g), UMAP 45 

embedding clearly separated 100% of 804 hESC cells with a median of 375 unique fragments 46 

from 908 K562 cells with a median of 6064 unique fragments independent of batch effects (Fig. 47 

1b). Interestingly, hESC had 6% of the number of unique fragments when compared to K562 48 

cells (Supplementary Fig. 1f). This demonstrates that stem cells have lower global H3K27me3 49 

levels than more differentiated cell types8. Despite down-sampling the number of unique 50 

fragments per cell to the same median value for both datasets, H3K27me3 signal still readily 51 

distinguished the two cell types (Supplementary Fig. 1g) confirming that clustering was driven 52 

by differences in H3K27me3 signal and not number of unique fragments.   53 

Cellular determination and differentiation proceed by a controlled sequence of gene activation 54 

and gene repression. To study gene silencing during development, we differentiated hESCs 55 

towards definitive endoderm9. We confirmed differentiation by immunofluorescence staining of 56 

stage-specific transcription factors (Supplementary Fig. 2a). UMAP embedding of 1830 57 
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58 
scCUT&Tag H3K27me3 profiles with a median of 279 fragments revealed a developmental 59 

trajectory, independent of batch effect (Supplementary Fig. 2b), from hESC to definitive 60 

endoderm (Fig. 1c) that was punctuated by stem-like states on days 1-2 followed by a rapid 61 

progression towards differentiation on days 3-5. To determine if changes in chromatin silencing 62 

corresponded to changes in gene expression, we examined known markers of stem cells and 63 

endoderm differentiation in single-cell aggregate profiles from each day. Overall, H3K27me3 64 

signal at a marker gene was inversely correlated with expression based on a published scRNA-65 
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Figure 1: Single-Cell CUT&Tag resolves distinct cell-types and maps repressive chromatin domains in early hESC development. 
a) Schematic of scCUT&Tag applied to nuclei isolated from cell culture, a model endoderm differentiaton system, blood cells, and a human brain 
tumor. Single cells are then partitioned using either the 10X Genomic or iCELL8 microfluidic systems.  b) UMAP embedding of scCUT&Tag for a 
repressive histone modification, H3K27me3, in K562 (n=908) and hESC (n=804) single cells.  c) UMAP embedding of scCUT&Tag for a 
repressive histone modification, H3K27me3, in a 5 day differentiation time course from hESC to definitive endoderm (total n=1830). Cell types 
are colored according to the day along the time course in which they were harvested.  d) A bar plot representing the percent of single cells that 
are repressed at each specific gene. The jitters below depict scRNA-seq for the same timepoint. The upper axis corresponds to scCUT&Tag 
(percent of single cells repressed) and lower axis corresponds to scRNA-seq (normalized mRNA counts). From left to right, well-known TF 
markers for pluripotent, mesendoderm, and definitive endoderm cells.

0.1 0.3 0.12

0.8 1.2
3

            Pluripotent     Mesendoderm           Endoderm

 R
ep

re
ss

ed
 

   
  C

el
ls

  N
or

m
al

iz
ed

 
   

  m
R

N
A

SOX2 KLF4 FOXD3 TBXT MSX2 PDGFRA FOXA2 SOX17 PRDM1

��������
�	�
�	��
���

����

��	�����
�	�
�	��
���

���������	�
�	

��

����� ���
����� ���

��������

��
	�������	����		��

���		��
 ��
!�		������
�����

"#$����
��%��
&�
�	�������
������

��'�"�

��
'�
�(
�

��		)	���*���
������

������
��%�+����%����

��
!��
,�%
���

���

�����"-�
����(-�

����
�����

�����
�'.��/�

�������
%��
�����

,�%
		�

�����0)���

��$�&
�
��
������

a

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.09.04.282418doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.282418


 4 

seq dataset9. Stem cell markers such as SOX2, KLF4, and FOXD3 are expressed in hESCs and 66 

lack H3K27me3 but are silenced as differentiation proceeds (Fig. 1d). Between day 2 and 3, 67 

hESCs transition into a mesendoderm state (characterized by expression of TBXT, MSX2, and 68 

PDGFRA) in which they have the developmental potential to either become mesoderm or 69 

endoderm9. This is illustrated in our data between day 2-3 where chromatin silencing at 70 

mesoderm markers is lower (Fig. 1d). As differentiation proceeds, endoderm markers such as 71 

FOXA2, SOX17, and PRDM1 become active and lose H3K27me3 signal (Fig. 1d). Finally, 72 

markers of ectoderm (PAX6 and LHX2), are not expressed, and accumulated H3K27me3, 73 

consistent with silencing of these loci (Supplementary Fig. 2c). Pseudo-temporal ordering of 74 

single cells recapitulated our real-time results (Supplementary Fig. 2d). 75 

Having established that scCUT&Tag readily identifies dynamic changes in chromatin silencing, 76 

we next sought to determine whether chromatin profiles could distinguish cell types in a more 77 

complex tissue. To do so, we adapted scCUT&Tag to the 10X Genomics microfluidics platform 78 

and profiled H3K27me3 in mixed peripheral blood mononuclear cells (PBMCs) collected from 79 

two healthy donors. Briefly, we performed scCUT&Tag in bulk on 1 million cells and then loaded 80 

two lanes of a 10X Genomics microfluidic chip with 10,000 nuclei each to obtain technical 81 

replicates (Supplementary Fig. 3). We implemented a ‘chromatin silencing score’ (CSS), which 82 

uses the gene activity score (GAS) model in ArchR7 to create a proxy for the overall signal 83 

associated with a given locus. Quality control filtering resulted in 9,917 cells with a median of 84 

1,110 unique fragments per cell for which we performed dimensionality reduction and 85 

embedding as described above (Fig. 2a). The median number of reads falls in the range 86 

expected for cell type variation, in spite of the platform differences in our study. 87 

We then set out to identify the major cell types in the data using two methods. We first down-88 

sampled publicly available bulk H3K27me3 ChIP-seq data (ENCODE) and used the UMAP 89 

transform function to “project” the ChIP-seq data onto our UMAP embedding as previously 90 

described10 (Fig. 2a). We used the CSS score to identify cell-type specific marker genes that 91 

showed a lack of H3K27me3 enrichment because active genes will have a low CSS. Therefore, 92 

we would expect a low CSS for a cell type specific marker gene in the cluster that corresponded 93 

to that cell type (Fig. 2b). Overall, cluster identification by CSS annotation matched our 94 

assignments by ChIP-seq projection (Fig. 2a) and distinguished major cell types in unsorted 95 

PBMCs including those of lymphoid (T cell, NK cell, B cell) and myeloid lineages (monocyte). 96 

We recovered the proportions of major cell types within the range of normal adult blood 97 
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 5 

(Supplementary Table 1). Using this method, we can therefore generate cell type specific PcG 98 

 99 

landscapes across heterogenous cell types within a sample, obviating the need for physical cell 100 

sorting and minimizing confounding effects of batch effect, read depth, or sample heterogeneity 101 

(Supplementary Fig. 3). This allowed us to identify the top differentially PcG-silenced loci across 102 
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Figure 2: scCUT&Tag for H3K27me3 readily identify major subtypes in PBMC
a) Left - UMAP embedding of single cell data from PBMC. Unsupervised clustering revealed 5 clusters.  Right - UMAP projection of downsam-
pled ChIPseq bulk data from primary sorted bulk datasets for major PBMC cell-types (see Supplementary methods for GSE citations) on single 
cell CUT&Tag data on left. b) Heatmap of genes with significantly low (top) or high (bottom) H3K27me3 signal in each cluster (row). Fold change 
< -2 (top) or > 2 (bottom); q-value < 0.05 (both).  Cell type specific genes are highlighted. c) Sparse mixture model clustering (using souporcell) 
of genotype variant calls from the PBMC data colored by genotype assignment (prior to multiplet removal).
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 6 

the major cell types in PBMCs (Fig. 2b). We also profiled PBMCs with the active mark H3K27ac 103 

and recovered the major cell types in a similar proportion as H3K27me3 scCUT&Tag 104 

(Supplementary Fig. 4, Supplementary Table 1).  105 

We next demultiplexed each biological donor using Souporcell. In brief, the algorithm identifies 106 

genotypic differences between single cells by variant calling aligned reads11. The variant calls 107 

can also be used to identify multiplets. Using this method we were able to differentiate cells from 108 

each donor (Fig. 2c). Clustering was not driven by donor specific effects but rather by cell type 109 

differences (Supplementary Fig. 3b).  110 

Having established scCUT&Tag can profile developmental systems and heterogenous tissues, 111 

we used scCUT&Tag to interrogate PcG based clustering in glioblastoma (GBM), a human 112 

central nervous system tumor that is known to have a heterogeneous microenvironment12, 113 

exhibit intratumoral heterogeneity13 and have pseudo-hierarchical organization that mimics 114 

development12, 14, 15. In this tumor type, changes in PcG chromatin silencing can mediate 115 

emergence of resistant cell populations16.  116 

We profiled H3K27me3 in 1,311 single nuclei (3,643 median fragments/cell) using the 10X 117 

scCUT&Tag workflow from a primary glioblastoma which had been snap-frozen shortly after 118 

surgical removal. We distinguished four major cell populations within the sample (Fig. 3a). To 119 

annotate clusters, we constructed CSS of previously-defined marker loci12, and annotated 120 

clusters that correspond to microglia (Cluster 1, low CSS at the PTPRC gene), neurons (Cluster 121 

3, low CSS at RBFOX3), oligodendrocytes (Cluster 4, low CSS at MOBP), and other neural 122 

lineage cells, including tumor cells (Cluster 4, low CSS at SOX2) (Fig. 3b). To confirm cluster 123 

annotations, we projected CUT&RUN bulk data from a glioma stem cell line (UW7gsc) derived 124 

from the same patient, two established neural stem cell lines (U5 and CB660)17, and ENCODE18 125 

ChIP-seq bulk data for monocytes (proxy for microglia) and astrocytes. Projection onto the 126 

scCUT&Tag tumor sample embedding confirmed CSS annotations (Fig. 3c). UW7gsc projected 127 

to the center of the largest cluster, presumably made up of tumor cells. The astrocyte data 128 

projected to a smaller satellite cluster within the neural lineage cells. The neural stem cell line 129 

data localized to both the tumor cell cluster as well as the astrocyte cluster (Supplementary Fig. 130 

5).  This may reflect spontaneous differentiation of neural stem cells towards the astrocyte 131 

lineage in vitro or reflect subtle changes in cell state such as lineage priming19.   132 

To understand how the tumor changed with treatment, we performed scCUT&Tag profiling for 133 

H3K27me3 for a relapse sample obtained via rapid autopsy from the patient 5 months after 134 
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Figure 3: scCUT&Tag data for H3K27me3 for a human glioblastoma primary and relapse sample demonstrates heterogeneity in PcG 
distribution within tumor cell clusters and cluster enrichment after treatment. 
a) UMAP embedding of single cells from a primary human glioblastoma based on H3K27me3 signal. b) Cluster annotation using chromatin 
silencing scores for key markers genes identifies microglia (PTPRC), neurons (RBFOX3), oligodendrocytes (MOBP), and tumor cells (SOX2).  
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co-embedding of tumor cells from primary and relapse sample. Inset highlights locations of cells from relapse sample.  Right - Barplot demon-
strating fraction of cells in each sample (Primary, Relapse) that belong to each cluster.   e) Left - Two pseudotime trajectories starting with 
cluster T1 (presumed stem-like cluster) and ending in either cluster T4 (Trajectory 1) or cluster T2 (Trajectory 2).  Right - Heatmap of 132 
significant motif deviations based on H3K27me3 activity within peaks from aggregated tumor cell ATAC-seq data. Motif deviations are ordered 
by pseudotime.  f) UMAP plots for tumor cells colored by deviation scores for selected motifs. Left column shows early motifs in pseudotime that 
are commonly silenced including NEUROD1, SNAI2, and TCF12. Middle column shows silenced programs that diverge according to trajectory 
(NR1D2 in Trajectory 1 and ETV5 in Trajectory 2) or are common across trajectories (RFX4). Right column shows silenced programs specific to 
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 8 

surgery and radiation therapy. Application of quality control metrics followed by low dimensional 136 

embedding identified 4 distinct cell types in the relapse sample (Supplementary Fig. 6a). 137 

Projection of the 1168 autopsy single cell profiles (16,232 median fragments/cell) onto the 138 

primary tumor UMAP embedding allowed cell type identification, including 71 cells that 139 

colocalized to the tumor cell cluster (Supplementary Fig. 6b). 140 

We focused on the tumor cells, co-embedding the 71 relapse tumor single cells with the 640 141 

primary tumor single cells. After batch correction, we identified 4 clusters within the tumor cell 142 

data with distinct H3K27me3 profiles (Fig. 3d - left). Examining the distribution of cell states 143 

across the two timepoints, we noted an enrichment for Cluster T1 in the relapse specimen (Fig. 144 

3d - right). The relapse tumor cells had higher background signal when compared to the primary 145 

tumor cells as determined by FRiP analysis (Supplementary Fig. 6c). To further confirm that the 146 

relapse cells were most similar to Cluster T1, we characterized reads in relapse cells that were 147 

present in genomic regions that most significantly distinguished the primary tumor clusters 148 

(Supplementary Fig. 6d). This analysis confirmed similarity of the relapse tumor cells to Cluster 149 

T1. Gene set enrichment analysis using the CSS matrix identified potential programs silenced 150 

(positive enrichment scores) and derepressed (negative enrichment score) in this cluster. 151 

Interestingly, the Verhaak_glioblastoma_proneural gene set appears to be silenced in the 152 

resistant cell cluster (Supplementary Fig. 7), consistent with the idea that tumor evolution may 153 

induce a proneural-to-mesenchymal shift20. In contrast, low CSS was observed at 154 

gene sets with high CpG content that are marked by H3K27me3 in whole brain21. The lack of 155 

H3K27me3 signal in this tumor cluster suggests that the PcG landscape of glioblastoma cells 156 

resembles a stem-like state rather than a terminally differentiated state22.  157 

We next wanted to understand the relationship between the cell clusters. Clusters T1, T2 and 158 

T4 exist along a continuum, whereas cluster T3 is separated from the main tumor cell group. 159 

We focused on whether transcription factor programs are differentially silenced across clusters 160 

T1, T2, and T4. H3K27me3 domains are broad, spanning 10-100kb and covering many genes, 161 

enhancers, promoters, and intervening regions. Therefore, to limit motif searching to potential 162 

regulatory elements within H3K27me3 domains, we used single-cell ATAC-seq data 163 

(Supplementary. Fig 8) to annotate enhancers and promoters in tumor cell sub-clusters based 164 

on accessible chromatin. We then calculated TF motif enrichments and depletions in this set of 165 

curated genomic regions based on H3K27me3 signal. We examined motif deviations ordered 166 

over two pseudotime trajectories that started with cluster T1 (presumed stem-like cluster) and 167 

ended in either cluster T4 (Trajectory 1) or cluster T2 (Trajectory 2) (Fig. 3e - left). Motif 168 
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 9 

deviations (n=132) were ordered according to pseudotime, identifying silenced motifs that 169 

spanned cluster T1 to cluster T2 and cluster T4 (Fig. 3e - right). At the apex of the trajectories, 170 

motif silencing was shared and included motifs for TFs such as NEUROD1, SNAI2, and TCF12 171 

(Fig. 3f, left column). At intermediate pseudotime points, there were silenced motifs specific to 172 

Trajectory 1 (NR1DA2) or Trajectory 2 (ETV5) or shared by both (RFX4) (Fig. 3f, middle 173 

column). As pseudotime proceeds, Trajectory 1 showed evidence of HES5 motif silencing, while 174 

Trajectory 2 showed GATA6 motif silencing. Interestingly, the DNMT1 motif was strongly 175 

silenced across both pseudotime endpoints, concordant with the idea that PcG silencing of 176 

DNMT1 enriched promoters and enhancers is a common feature of differentiation23 (Fig. 3f, 177 

right column). 178 

Fundamentally, we have shown here that repressive chromatin can be used to identify cell 179 

states a priori from heterogeneous normal and diseased tissues. This approach has far reaching 180 

applications, including generation of cell type specific chromatin atlases from archival tissue in a 181 

manner that does not require sorting of pure populations. We focused here primarily on a single 182 

chromatin mark, but this method can in theory be applied to any histone modification or DNA 183 

binding protein for which an antibody is available. As such, developing complete chromatin 184 

landscapes of complex tissues and disease states using scCUT&Tag will help decode the 185 

complex epigenetic machinery underlying gene expression. Broadly, our method for performing 186 

histone mark specific single-cell analysis adds to the growing list of single-cell ‘omic’ methods 187 

that can be used to understand heterogeneous cell populations. 188 

Materials & Methods 189 

Biological Material 190 

H1 ES cells were purchased from WiCell (Cat#WA01-lot#WB35186). We used the following 191 

antibodies: Guinea Pig anti-Rabbit IgG (Heavy & Light Chain) antibody (Antibodies-Online 192 

ABIN101961), H3K27me3 (Cell Signaling Technology, cat #9733), H3K27ac (Millipore Sigma, 193 

cat# MABE647), SOX17 (R&D Systems, AF1924, Lot KGA0916121), OCT4 (Abcam, ab109183, 194 

lot gr120970-6), and H3K4me2 (Upstate 07–030, Lot 26335) The fusion enzyme, pA-Tn5 was 195 

generated as previously described3. 196 

hESC culture conditions 197 

H1 ES cells were maintained on Corning Matrigel hESC-qualified Matrix, Corning (#354277), at 198 

37C in mTeSR™1 from STEMCELL Technologies (Catalog #85850) with daily media 199 
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replacement.  When cell aggregates were 80% confluent, they were released using ReLeSR, 200 

STEMCELL Technologies (# 05872), per manufacturer’s instructions and incubated at 37°C for 201 

3-5 minutes.  Cells were released into a small volume of complete media by tapping of growth 202 

plate and aggregates reduced in size by gentle pipetting and passaged to desired ratio.   203 

hESC differentiation protocol  204 

hESC were differentiated to definitive endoderm using the STEMdiff Definitive Endoderm Kit 205 

(cat #05110). The full protocol is available from STEMCELL Tech 206 

(https://cdn.stemcell.com/media/files/pis/29550-207 

PIS_2_1_0.pdf?_ga=2.73376023.564267965.1597964514-138601152.1597964514). Briefly, hESC at 208 

80% confluent were harvested using Gentle Cell Dissociation Reagent (STEMCELL Tech, cat 209 

#07174) and reseeded in a single-cell manner on Matrigel-plates. This was done daily for five 210 

days. Every 24 hours after a new differentiation culture was started and cells were incubated 211 

with DE differentiation medium according to the manufacture's guideline. On the 5th day, all five 212 

timepoints were harvested simultaneously using Accutase (STEMCELL Tech, cat# AT104-500). 213 

Immunofluorescence was used to confirm differentiation as previously described24.  214 

PBMC acquisition and processing 215 

Healthy adult donors at the University of Washington underwent venipuncture and blood was 216 

collected using heparin-containing vacutainer tubes after consenting to participate in our study, 217 

Institutional Review Board protocol (#STUDY00008678). Additional PBMC specimens were 218 

obtained from consented donors at the Fred Hutchinson Cancer Research Center (IRB# 219 

0999.209). Mononuclear cells were harvested from peripheral blood using gradient 220 

centrifugation. Cells were then washed twice with PBS and captured as outlined below. 221 

Brain tumor specimen acquisition, processing and culture 222 

Adult patients at the University of Washington provided preoperative informed consent to take 223 

part in the study in all cases following approved Institutional Review Board protocols (IRB 224 

protocol #STUDY00002162). Fresh tumors were collected directly from the operating room at 225 

the time of surgery and either taken fresh or snap frozen immediately after removal in liquid 226 

nitrogen. Histopathologic diagnosis was confirmed by a board certified neuropathologist. Fresh 227 

tissue was enzymatically dissociated using a papain-based brain tumor dissociation kit (Miltenyi 228 

Biotec) as per manufacturer’s protocol. Cells were then cultured on laminin coated plates in 229 

DMEM/F12 supplemented with 1X N2/B27, 1% Penicillin/Streptomycin. Cultures were passaged 230 
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as needed when confluent and considered stable after 3 serial passages. Cell line UW7gsc was 231 

used for this study at passage number 3. Autopsy tissue was collected with a post-mortem 232 

interval of approximately 8.75 hours after informed consent with a waiver from the University of 233 

Washington IRB. Tissue was snap frozen in liquid-nitrogen cooled isopentane. Tumor regions 234 

were sampled based on gross examination of brain sections and processed as outlined below. 235 

Nuclei preparation from brain tumor specimens 236 

Frozen tissue was processed to nuclei using the ‘Frankenstein’ protocol from Protocols.io. 237 

Briefly, snap frozen tissue glioblastoma tissue was thawed on ice and minced sharply into <1 238 

mm pieces. 500 ul chilled Nuclei EZ Lysis Buffer (Millipore Sigma NUC-101 #N3408) was added 239 

and tissue was homogenized 10-20 times in a Dounce homogenizer. The homogenate was 240 

transferred to a 1.5 ml Eppendorf tube and 1 mL chilled Nuclei EZ Lysis Buffer was added. The 241 

homogenate was mixed gently with a wide bore pipette and incubated for 5 minutes on ice. The 242 

homogenate was then filtered through a 70 um mesh strainer and centrifuged at 500g for 5 243 

minutes at 4°C. Supernatant was removed and nuclei were resuspended in 1.5 mL Nuclei EZ 244 

lysis buffer and incubated for 5 minutes on ice. Nuclei were centrifuged at 500g for 5 min at 4°C. 245 

After carefully removing the supernatant (pellet may be loose), nuclei were washed in Wash 246 

Buffer (1x PBS,1.0% BSA,0.2 U/μl RNase Inhibitor). Nuclei were then centrifuged and 247 

resuspended in 1.4 ml Wash Buffer for two additional washes. Nuclei were then filtered through 248 

a 40 um mesh strainer. Intact nuclei were counted after counterstaining with Trypan blue in a 249 

standard cell counter. 250 

Chromatin Profiling: scCUT&Tag using the ICELL8 system/protocol  251 

scCUT&Tag for the ICELL8 was carried out as previously described3. In brief, approximately 252 

250,000 hESC (for each timepoint) were processed by centrifugation between buffer exchanges 253 

at 600xg for 3 minutes and in low-retention tubes. Cells were collected and washed with 1mL 254 

wash buffer (20 mM HEPES, pH 7.5; 150 mM NaCl; 0.5 mM Spermidine, 1× Protease inhibitor 255 

cocktail) at room temperature. Cells were incubated antibody diluted 1:50 in NP40-Digitonin 256 

Wash Buffer (0.01% NP40, 0.01% Digitonin in wash buffer) overnight. This wash buffer 257 

permeabilized the cells and released nuclei. Permeabilized nuclei were then rinsed once with 258 

NP40-Digitonin Wash buffer and incubated with anti-Rabbit IgG antibody (1:50 dilution) in 1 mL 259 

of NP40-Digitonin Wash buffer on a rotator at room temperature for 30 min. Nuclei were washed 260 

twice with NP40-Digitonin Wash buffer and incubated with 1:100 dilution of pA-Tn5 in NP40-Dig-261 

med-buffer (0.01% NP40, 0.01% Digitonin, 20 mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM 262 
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Spermidine, 1× Protease inhibitor cocktail) for one hour at RT on a rotator. Cells were washed 263 

2x with NP40-Dig-med-buffer and resuspended in 150 µL Tagmentation buffer (10 mM MgCl2 in 264 

NP40-Dig-med-buffer) and incubated at 37 °C for 1 h. Tagmentation was stopped by adding 265 

50 µL of 4× Stop Buffer (40.4 mM EDTA and 2 mg/mL DAPI) and the sample was held on ice for 266 

30 min. Samples were then strained through a 10-micron cell strainer to remove clumps of cells.  267 

The SMARTer ICELL8 single-cell system (Takara Bio USA, Cat. #640000) was used to array 268 

single cells previously described3. Briefly, cells were loaded onto a source plate and dispensed 269 

in to a SMARTer ICELL8 350 v chip (Takara Bio USA, Cat. # 640019) at 35 nanoliter per well. 270 

The chip was then spun down at 300xg for 5 minutes. Imaging on a DAPI-channel confirmed the 271 

presence of single-cells in specific wells. Non-single cell wells were excluded from downstream 272 

reagent dispenses. To index the whole chip, 72x72 i5/i7 unique indices (5184 micro-wells total) 273 

were dispensed at 35nL in wells that contained single cells followed by two dispenses of 50nL 274 

(100nL total) 2x NEBNext High-Fidelity 2X PCR Master Mix (NEB, M0541L). The chip was 275 

sealed and spun down at 2250xg for 3 mins after each dispense. The PCR on the chip was 276 

performed with the following protocol: 5 min at 72 °C and 2 min at 98 °C followed by 15 cycles of 277 

10 s at 98 °C, 30 s at 60 °C, and 5 s at 72 °C, with a final extension at 72 °C for 1 min. 278 

Quality Control (ICELL8): 279 

The ICELL8 has a built-in imaging system which filters out wells that do not contain a single cell. 280 

Thus, empty wells without cells, with more than one single cell, and with doublets, are removed. 281 

Subsequently, we filtered single cells with fewer than 100 unique fragments to remove spurious 282 

barcodes that can be attributed to an overflow of dispensed PCR material.  283 

A drawback of leveraging a hyperactive transposon in a fusion enzyme to target specific 284 

chromatin compartments is that the Tn5 has a high binding affinity for accessible chromatin, the 285 

basis of ATAC-seq. Previously, it was shown that this artifact is highly dependent on the 286 

concentration of salt in subsequent washes post fusion enzyme binding 3.  To identify whether 287 

our single-cell samples exhibited this artifact, we mapped the percent of reads in each single 288 

cell that fell into H3K27me3, H3K4me2, or ATAC specific peaks (Supplementary Fig. 1c). The 289 

degree in which repressive H3K27me3 marked chromatin and active accessible chromatin 290 

ATAC-seq signal overlapped was minimal as expected whereas an active mark, H3K4me2, had 291 

a higher degree of overlap with ATAC-seq data. Correlations of aggregate versus bulk profiles 292 

across the 5 kb genome tiles show similar results (Supplementary Fig. 1b). 293 
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As an initial test, we wanted to evaluate the robustness of scCUT&Tag by comparing it to 294 

scATAC-seq. Therefore, we chose the histone modification K4me2 which was shown to provide 295 

similar output to ATAC-seq. A representative genomic track comparing bulk, aggregate, and 296 

single cell profiles for K4me2 in H1 and K562 cells, reveal the high-quality resulting data 297 

(Supplementary Fig 1a). A low-dimensional embedding, UMAP, clearly separate K562 cells 298 

(n=807) from hESC (n=317) (Supplementary Fig. 1d). Projections of published scATAC-seq 299 

data (GSE99172) onto our scCUT&Tag embedding align with cell-type specific clusters 300 

(Supplementary Fig. 1e).  301 

Chromatin Profiling: scCUT&Tag using the 10X Genomics system 302 

CUT&Tag was performed with an anti-H3K27me3 antibody (CST#9733) or anti-H3K27ac 303 

(MABE647) with 1 million cells as published3. Adaptation to the 10X workflow was performed as 304 

follows: For all samples except PBMC mixing experiment, the nuclei were spun down at 600g 305 

for 3 minutes after the pA-Tn5 binding step. After counting, they were resuspended in 1X 306 

Diluted Nuclei Buffer at 2500 nuclei/ul. The nuclei were then prepared for transposition per as 307 

per the 10X genomics single cell ATAC-seq protocol 308 

(SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevD). All steps beginning with 1.1 ‘Prepare 309 

Transposition Mix’ were performed according to 10X Genomics standard protocol. Libraries 310 

were sequenced using an Illumina NovaSeq 6000.  311 

For PBMC mixing experiment, the nuclei were tagmented in high salt (300 mM) as per 312 

published protocol3. After tagmentation, bovine serum albumin was added to a final 313 

concentration of 1%, nuclei were centrifuged at 600 g for 3 mins and then resuspended in 1X 314 

Diluted Nuclei Buffer (10X Genomics, PN-2000207) at 2500 nuclei/µL. The 10X genomics single 315 

cell ATAC-seq protocol (SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevD) was used with 316 

the following modifications. For step 1.1 ‘Prepare Transposition Mix’, 7 µl ATAC buffer, 3 µl low 317 

TE buffer (10 mM Tris pH 8.0, 0.1 mM EDTA) and 5 µl stock nuclei solution were mixed 318 

together, omitting the ATAC enzyme as tagmentation had already been performed. All 319 

remaining steps beginning with Step 2.0 ‘GEM generation and barcoding’ were performed 320 

according to 10X Genomics standard protocol. Libraries were sequenced using an Illumina 321 

NovaSeq 6000. 322 

Data processing 323 

Illumina .bcl files were demultiplexed and converted to fastq format using the cellranger mkfastq 324 

function.  Resulting fastq files were aligned to the hg38 genome, filtered for duplicates and 325 
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counted using cellranger atac.  An output BED file of filtered fragment data containing the cell 326 

barcode was then read into ArchR7 as fragment counts in 5kb genome windows which was used 327 

in all dimensionality reduction steps across all experiments.  We used the ArchR7 gene activity 328 

score to calculate our CSS as described above.  We used LSI dimensionality reduction7 using a 329 

TFIDF normalization function25, UMAP26 low dimensional embedding, and clustering using a 330 

nearest neighbor graph25 performed on data in LSI space.   331 

As the cell line/differentiation experiments used the ICELL8 platform, we did not remove 332 

multiplets as this platform uses microscopic imaging to ensure single-cell capture.  For droplet 333 

partitioning data, we used the following methods to ensure data quality:  1) We first visualized 334 

fragment length distribution across clusters.  We identified 3 clusters with nucleosomal banding 335 

distribution that was consistent with untethered transposition events (Supplementary Fig 3b).  2) 336 

We then removed two clusters with high mean fragment counts.  3) We iteratively removed 337 

clusters which exhibited non-specific CSS.  We accomplished this by calculating CSS 338 

significance across clusters using ArchR7.  Any cluster that did not have any genes that were 339 

significantly over-represented or under-represented using significance thresholds of fdr < 0.01 340 

and absolute fold-change > 3 was removed.  Bulk projection of down-sampled ChIP-seq data 341 

was performed as follows.  Raw sequence data aligned to hg38 (BAM files) were downloaded 342 

from ENCODE18.  Data was processed using ChomVAR27 by counting reads in 5kb tiled 343 

genomes and subsequently used in the bulk projection function in ArchR.  Single cell projection 344 

was performed using a modified ArchR projection function which did not perform any 345 

manipulation of the input data prior to projection. Marker regions/genes for each group were 346 

calculated using the getMarkerFeatures function in ArchR. Preranked GSEA (fgsea28) was 347 

performed using the entire list of marker genes ranked by -log10(pvalue)/sign(foldchange) with 348 

the complete MSigDB29 set of gene lists. Peak set from scATAC-seq data (see below) was used 349 

as a custom annotation set and motif deviations were calculated using addDeviationsMatrix 350 

function in ArchR. Pseudotime trajectory was assigned with T1 as a root and Clusters T2 and 351 

T4 as an endpoint. 352 

To perform variant calling, we first merged bam output from cellranger-atac using a custom 353 

script (https://github.com/scfurl/mergeBams). We then used souporcell11 on the merged bam 354 

invoking the ‘no_umi’ and ‘skip_remap’ options. Sparse mixture model output from souporcell 355 

was log-normalized and colored by the genotype assignment. 356 

Quality control and data processing for brain tumor ATAC-seq 357 
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Nuclei preparation from snap frozen brain tumor tissue was performed as described above and 358 

standard single cell ATAC-seq workflow was performed as per manufacturer guidelines (10X 359 

Genomics). Sequencing data was processed using the cell ranger atac package. An output BED 360 

file of filtered fragment data containing the cell barcode was then read into ArchR7 using 500 bp 361 

genome windows. We used LSI dimensionality reduction7 using a TFIDF normalization 362 

function25, UMAP26 low dimensional embedding, and clustering using a nearest neighbor 363 

graph25 performed on data in LSI space. Tumor cells were identified as the largest cluster 364 

containing high gene activity scores for marker genes SOX2 and PTPRZ1. This cluster was 365 

used for peak calling using the MACS2 wrapper in ArchR with standard parameters.  366 

External Data 367 

Data from the following identifiers were downloaded from the ENCODE portal  368 

(https://www.encodeproject.org”) and Gene Expression Omnibus 369 

(https://www.ncbi.nlm.nih.gov/geo/). For figure 1b and supplementary figure 1a, 1f, and 1g: 370 

GSE124557. For figure 1d and supplementary figure 2c: GSE75748. In addition, for the 371 

purposes of this study hESC differentiated timepoint 1.5 (scRNA-seq) is approximated to be day 372 

2 in the GSE75748 dataset. For supplementary figure 2b, 2c, and 2e: GSE99172, GSE99173, 373 

GSE124557, and GSE85330. For figure 2b: ENCSR000ASK, ENCSR043SBG, 374 

ENCSR103GGR, ENCSR404MOX, and ENCSR939JZW. For figure 3c, the following data sets 375 

were used: ENCFF363TCY, ENCFF911MNN. 376 

Data Availability 377 

Sequencing data are deposited in the Gene Expression Omnibus (GEO) with accession code 378 

(pending). There are no restrictions on data use.  379 

Code Availability 380 

Code used in this study can be found on Github at https://github.com/Henikoff/scCUT-Tag. 381 
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