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Abstract 33 

The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary 34 

epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-35 

transplantation in kidney (KTR) and hematopoietic stem cell transplant recipients. In KTR, 36 

persistent DNAemia has been correlated to the occurrence of polyomavirus-associated 37 

nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent 38 

observations that conventional dendritic cells (cDC) specifically infiltrate PVAN lesions, we 39 

hypothesized that those cells could play a role in  BKPyV infection. We first demonstrated that 40 

monocyte-derived DC (MDDC), an in vitro model for mDC, captured BKPyV particles through 41 

an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected 42 

cells were shown to activate MDDC. Endocytosed virions were efficiently transmitted to 43 

permissive cells and shown to be protected from the antibody-mediated neutralization. Finally, 44 

we demonstrated that freshly isolated CD1c+ mDC from the blood and kidney parenchyma 45 

behaved similarly to MDDC thus extending our results to cells of clinical relevance. This study 46 

sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as 47 

a promoter of viral spreading. 48 

  49 

Introduction 50 

The BK polyomavirus (BKPyV) is a small non-enveloped DNA virus. Its icosahedral capsid is 51 

mainly composed of the major capsid protein VP1(1-3). Its prevalence in the worldwide 52 

population ranges from 80 to 90%(4, 5). Asymptomatic primary infection mostly occurs during 53 

childhood(6, 7) followed by a persistent infection in the renourinary epithelium(8). Evidence 54 

of BKPyV reactivation was mainly reported in kidney and hematopoietic stem cell allografts(9-55 

12) first marked by viral shedding in urine possibly progressing to BKPyV-DNAemia. 56 
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Persistent BKPyV-DNAemia above 104 DNA copies/ml has been correlated to PVAN (overall 57 

1-5% of KTR)(13-15). To date, BKPyV remains a significant cause of kidney failure(11, 16). 58 

Over the last ten years, anti-BKPyV cellular and humoral immune responses have been 59 

investigated demonstrating a prominent role of both specific CD4+ and CD8+ cytotoxic T 60 

lymphocytes (CTL), mainly recognizing the large T antigen (LTAg)- and VP1-derived peptides 61 

associated with various HLA molecules(17-20). Although anti-BKPyV responses are likely to 62 

be protective enough in healthy individuals, only ten percent of those shed virions in urine 63 

suggesting a limited impact of escape mechanisms(5). DC are known to orchestrate anti-viral 64 

immune responses mainly through their ability to cross-present viral antigens, thus efficiently 65 

priming or activating naïve or memory specific T cells respectively(21). To date, anti-66 

polyomavirus (PyV) CTL responses in mice and humans were analyzed on autologous PBMC 67 

or DC stimulation using viral peptide pools thus bypassing the requirement for antigen 68 

processing, including endocytosis, and presentation by HLA class I molecules(18, 21, 22). Only 69 

few studies addressed the ability of PyV to bind to, promote maturation or infect DC. In mice, 70 

Drake and colleagues showed that splenic DC are activated following infection by a murine 71 

PyV (MuPyV) strain thus allowing them to prime a CTL response(22). Using another 72 

experimental setup, Lenz et al demonstrated that although HPV16, a carcinogenic 73 

papillomavirus, and bovine PyV virus-like particles (VLP) enabled bone marrow-derived DC 74 

maturation, BKPyV or JCPyV VLP did not(23). More recently, hamster PyV (HaPyV)- and 75 

Trichodysplasia Spinulosa-associated PyV-derived VLP were shown to moderately activate 76 

murine splenocytes(24). Similarly, SV40 was shown to infect and activate MDDC from rhesus 77 

macaques(25). Human MDDC were shown to support β-propiolactone-inactivated BKPyV-78 

derived antigen presentation while remaining unresponsive to native BK- and JCPyV 79 

particles(26) possibly due to distinct viral antigen processing induced by inactivation(27). 80 

Gedvilaite and colleagues also reported that human MDDC were responsive to MuPyV and 81 
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HaPyV VLP(26). Mostly, DC, although limited to in vitro generated cells, seemed to be 82 

unresponsive to BK- or JC PyV direct exposure and poorly responsive to BKPyV-derived 83 

antigens in KTR and immunocompetent individuals, as recently proposed by Kaur et al(28). 84 

The mechanisms behind such DC unresponsiveness remain to be explored regardless of the 85 

presence of immunosuppressive drugs. 86 

In the healthy kidney, cDC, including the CD1c+ DC subset, are located within the 87 

interstitium(29), close to the renal proximal tubular epithelial cells (hRPTEC), a host cell for 88 

BKPyV(30). HRPTEC were shown to negatively regulate cDC activation subsequently leading 89 

to the retention of cDC in renal tissues as immature cells(31-33) putatively decreasing antigen 90 

presentation by DC. Early stage PVAN is marked by a CD1c+ cDC infiltrate(34) and mild 91 

inflammation(30, 35, 36). Whether cDC play a role in the pathophysiology of the BKPyV 92 

infection apart from their ability to trigger and sustain specific immune responses is still 93 

unclear.   94 

Here, we demonstrate for the first time that myeloid DC, ie MDDC and freshly isolated CD1c+ 95 

cDC from the blood and the kidney of healthy donors, but not plasmacytoid DC were capable 96 

of capturing BKPyV particles through the CLIC/GEEC endocytic pathway and transmitting 97 

them to hRPTEC without getting activated or infected. We also showed that endocytosed 98 

BKPyV particles were protected from antibody-mediated neutralization offering to cDC subsets 99 

the possibility to participate in BKPyV spreading in the kidney at least in early steps of the 100 

reactivation. 101 

 102 

Methods 103 

Ethic statements 104 
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Biopsies from healthy parts of primitive renal carcinoma patients and blood samples from KTR 105 

were collected according to institutional guidelines (CPP Ouest authorization, 11/08/2011) and 106 

under patients’ informed consent. All samples are conserved in the ITUN bio collection 107 

declared at the french Ministère de l’Enseignement Supérieur et de la Recherche under the 108 

reference DC-2011-1399 (09/05/2011).  109 

 110 

Cell isolation and culture 111 

Elutriated blood monocytes were obtained from healthy volunteers (DTC cell-sorting facility, 112 

CHU Nantes, France) and differentiated into monocyte derived-dendritic cells (MDDC) as 113 

described by Sallusto et al(37). Human myeloid CD1c+ DC were isolated from blood and 114 

kidney by positive immuno-magnetic selection using anti-CD1c/BDCA-1 microbeads 115 

according to the manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany) 116 

or on a FACS ARIA (BD Biosciences, Franklin Lakes, NJ), respectively. CD1c+ DC were 117 

recovered from renal cell suspensions of enzymatically digested macroscopically healthy parts 118 

of tumor-bearing kidneys (10-15g). Cell purity typically yielded more than 95%. HRPTEC 119 

(Sciencell Research Laboratories, Carlsbad, CA) were cultured in complete EpiCM medium 120 

(Sciencell Research Laboratories). LNCaP cells (Caliper LifeSciences, Hopkinton, MA) and 121 

HEK 293 TT cells (NCI, Frederick, MD) were cultured in RPMI 1640 or DMEM media 122 

respectively, both complemented with 2mM L-glutamine and 10% FBS.   123 

 124 

Virus and virus-like particle preparation 125 

The BKPyV Dunlop strain was a kind gift by Dr Christine H Rinaldo (UiT, Norway). The gIa, 126 

gIb2 and gIVb1 VP1 expression vectors were kindly provided by Dr Christopher Buck (NCI, 127 
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USA)(38). Preparation and titration of the Dunlop strain were performed as described 128 

elsewhere(39). Virus-like particles (VLP) were purified on an iodixanol gradient(40). VLP 129 

physical titers were determined on a qNano device using NP100 nanopores (detection range 130 

from 50 to 330 nm) and CPC70 calibration particles (Izon Science Ltd, Oxford, UK). Both viral 131 

particles and VLP were labelled with Alexa Fluor®647 protein labelling kit according to 132 

manufacturer’s instructions (Molecular Probes, Eugene, OR). Modified-vaccinia Ankara virus 133 

(MVA) was kindly provided by Pr Don Diamon (CoH, Los Angeles, CA).  134 

 135 

Cis and Trans-infection assays 136 

Cis- and trans-infection experiments were performed as described previously(41, 42). DC and 137 

hRPTEC were infected with BKPyV at MOI 0.1 (Dunlop strain). For trans-infection, BKPyV-138 

loaded DC were washed in PBS after two hours at 37°C then put in contact with a subconfluent 139 

hRPTEC monolayer. Controls were prepared similarly. After three to seven days post-infection 140 

(dpi), LTAg staining was performed to evaluate infection rates as described before (Moriyama 141 

and Sorokin, 2009) and imaged on an Axiovert A1 epifluorescence microscope (Carl Zeiss 142 

Microscopy GmbH, Germany) or on a Cellomics ArrayScan VTI HCS Reader (Thermo 143 

Scientific) for quantification. 25-50 fields, containing 5000-10000 cells were acquired for each 144 

well using HCS Studio Cellomics Scan Version 6.5.0 software at various time points pi. VP1 145 

expression was assessed by western blot (ab53977; Abcam) against β-actin (clone C4; Santa 146 

Cruz Biotechnology Inc., Dallas, Texas).   147 

 148 

Quantitative RT-PCR analyses 149 
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Total RNA was isolated using the TRIzol reagent (Invitrogen) according to the manufacturers’ 150 

instructions. Reverse transcription was performed using M-MLV Reverse Transcriptase and 151 

random primers following manufacturer's instructions (Invitrogen, USA). Quantitative PCR on 152 

reverse transcribed mRNA was performed using Mastermix (Applied Biosystems) or Premix 153 

ExTaq 2x (Takara) reagents and the StepOne Plus (Applied Biosystems) or Rotor-Gene 154 

(Qiagen) devices. Primers and probe used to detect LTAg mRNA were the following: AgT1 5’-155 

ACTCCCACTCTTCTGTTCCATAGG-3’, AgT2 5’-TCATCAGCCTGATTTTGGAACCT-3’ 156 

and AGTS 5’-FAM-TTGGCACCTCTGAGCTAC-BHQ1-3’. Expression levels were 157 

normalized to GAPDH using the 2-ΔΔ cycle threshold method. 158 

 159 

Gene expression profiling and datasets deposition 160 

BKPyV-mediated cell reprogramming was analysed after 24 hours by 3′digital gene expression 161 

(DGE) RNAseq according to Kilens et al.(43). DGE profiles were generated by counting for 162 

each sample the number of unique UMIs associated with each RefSeq genes. DESeq 2 was used 163 

to normalize expression with the DESeq function. The analysis design used to perform 164 

differential expression with DESeq2 between the infected vs non-infected conditions took into 165 

account the individual DC donors as a confounding variable. Data supporting our results are 166 

openly available in the GEO repository under the following ID: GSE154810. 167 

 168 

Flow cytometry analyses 169 

Titrated Alexa Fluor®647 labelled-VLP were used to stain cDC, LNCaP and HEK 293 TT cells 170 

at the indicated concentration. VLP attachment was detected by flow cytometry gated on DAPI 171 

negative cells. To assess DC activation, cells were incubated for 24 hours with 103 VLP/cell, 172 
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103 BKPyV particles/cell or with 100ng/mL LPS and 1µg/mL R848 (Invivogen, San Diego, 173 

CA). Antibodies to CD40 (clone 5C3; BD Biosciences), CD80 (clone L307, BD Biosciences), 174 

CD83 (clone HB15e, BD Biosciences), CD86 (clone IT2.2, BD Biosciences), CCR6 (clone 175 

11A9, BD Biosciences), CCR7 (clone 3D12, BD Biosciences) and HLA-DR (clone G46-6, BD 176 

Biosciences) were used to monitor DC maturation. Whole blood staining was performed on 177 

500µl blood samples from healthy donors with or without Fc fragment receptor blockers 178 

(Miltenyi Biotec). Whole blood staining was done with Alexa Fluor®647 labelled-VLP 179 

(2.5µg/ml) and cell subsets were discriminated using the following antibody panel : CD45 180 

(Clone J33; Beckman Coulter, Brea, CA), CD11c (Clone BU15; Beckman Coulter), HLA-DR 181 

(Clone L243; BD Biosciences), CD123 (Clone 9F5; BD Biosciences) and Lineage (Lin 1; BD 182 

Biosciences). FACS analyses were mainly performed on a LSR II flow cytometer (BD 183 

Biosciences).  184 

 185 

Fluorescence microscopy 186 

MDDC were distinguished from hRPTEC by DC-SIGN staining (clone DCN46; BD 187 

Biosciences) when required. High-resolution confocal microscopy by structured illumination 188 

was performed to assess BKPyV entry into MDDC. Cells were incubated with determined VLP 189 

concentrations for one hour at 37°C in culture medium, washed and fixed with 3.7% PFA (PFA; 190 

Electron Microscopy Sciences, Hatfield, PA). Plasma membrane (PM) was stained with 191 

5µg/mL Alexa Fluor®488-conjugated WGA (Thermo Fisher Scientific). Images were acquired 192 

on a Nikon N-SIM microscope with a dedicated oil immersion objective (x100, NA 1.49 Plan 193 

Apo). Three dimensional optical sectioning was done respecting Nyquist sampling rate (15 194 

structure illuminations per plane, per channel), and super resolution image reconstruction was 195 

performed using Nikon Imaging Software algorithms. BKPyV particle colocalization with 196 
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CTxB, GRAF-1 and EEA-1 markers was performed as described above with or w/o 2µg/mL 197 

Alexa Fluor®555 conjugated CTxB (Thermo Fisher Scientific), and with anti-GRAF1 198 

(4µg/mL; Novus Biological, Littleton, CO) or anti-EEA1 antibody (BD Biosciences) antibodies 199 

in 0.1% BSA PBS O/N at 4°C. Nuclei were counterstained with DAPI. Cells were mounted in 200 

ProLongTM mounting medium (Thermo Fisher Scientific) and observed on a LSM Nikon 201 

A1RSi microscope (Nikon, Tokyo, Japan) at x60 (NA 1.4). 3D reconstruction was done using 202 

the Imaris software (Bitplane, Zurich, Switzerland).  203 

 204 

Transmission electron microscopy 205 

MDDC were prepared for transmission electron microscopy as described elsewhere(42). 206 

Ultrathin sections were observed on a JEM 1010 microscope (Jeol Europe SAS, Croissy Sur 207 

Seine, France). TEM images of BKPyV particle preparations in negative contrast were obtained 208 

as described previously(44, 45). 209 

 210 

ELISA 211 

Supernatants from various MDDC cultures were harvested at indicated times and frozen at -212 

80°C until being analyzed. IL-10 and IL-12p70 were quantified in those culture supernatants 213 

by ELISA with BD OptEIATM human IL-10 and IL-12p70 sets following the manufacturer's 214 

instructions (BD Bioscience).    215 

 216 

Statistics 217 
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Statistical analyses were performed with the PRISM software (GraphPad Software Inc., version 218 

5.04, La Jolla, CA). Almost exclusively one-way ANOVA with multiple comparison tests were 219 

performed to assess significance in this study. Exceptionally, correlation and linear regression 220 

studies, Mann-Whitney or Friedman tests were also applied to some data sets. P-values lower 221 

than 0.05 were considered significant. 222 

 223 

Results 224 

Human monocyte-derived dendritic cells bind BKPyV particles in a dose- and sialic acid-225 

dependent manner 226 

First, we assessed whether MDDC could bind BKPyV particles using fluorescent-labelled 227 

genotype Ib2 (gIb2) BKPyV VLP. VLP integrity was checked by negative contrast TEM 228 

(Figure 1A). GIb2 VLP binding was then tested with two BKPyV permissive cell types, namely 229 

hRPTEC and HEK293TT but also to MDDC and LNCaP, a BKPyV non-permissive prostatic 230 

cancer cell line(46) at various VLP/cell ratios.  MDDC effectively bound gIb2 VLP in a dose-231 

dependent manner but to a lesser extent compared to hRPTEC or HEK293TT (Figure 1B), and 232 

as expected BKPyV particles were unable to attach to LNCaP cells. MDDC were also shown 233 

to bind gIa infectious particles (Dunlop strain; (47)) and VLP at comparable levels (Figure 1C). 234 

We further demonstrated that genotypes Ia, Ib2 and IVb1 VLP had similar binding properties 235 

to MDDC (Figure 1D). Sialic acids decorating b-series gangliosides are known as crucial 236 

components for BKPyV infection of hRPTEC and HEK293TT(46). Then, we demonstrated that 237 

when MDDC are treated with an appropriate neuraminidase, an enzyme known to specifically 238 

remove sialic acid moieties from the PM, gIa, gIb2 and gIVb1 VLP binding was strongly 239 

impaired (Figure 1E).  Altogether, these results clearly established that MDDC could bind 240 
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BKPyV from the most frequent genotypes in Europe and Asia in a dose and sialic acid-241 

dependent manner. 242 

 243 

BKPyV particles are endocytosed in pleiomorphous tubular and macropinosome-like 244 

endosomes in MDDC 245 

Immature MDDC exhibit high endocytic properties for soluble and particulate antigens (37). 246 

Therefore, we hypothesized that BKPyV could be endocytosed following attachment to sialic 247 

acid residues on PM. High-resolution confocal imaging showed that fluorescent spots 248 

representing VLP or virions were found in cytoplasmic structures (Figures 2A and 2B), 249 

confirming that MDDC endocytosed BKPyV following surface attachment. VLP were either 250 

located in round-shaped or pleiomorphous tubular structures (Figures 2A and 2C). This was 251 

confirmed by 3D cell reconstruction (Figure 2D). Then, we performed TEM imaging and 252 

confirmed that VLP and virions were mostly internalized after 30 minutes. Indeed VLP were 253 

mainly endocytosed into tubular vesicles (40-60nm width) and to a much lower extent in large 254 

round-shaped uncoated endosomes (up to approximately 1µm in diameter) by MDDC (Figures 255 

3A, 3B, 3C, 3D3E and 3G). Moreover, these BKPyV-containing tubular vesicles were shown 256 

to originate from PM invaginations (Figures 3D and 3E). Some of these vesicles closely 257 

resembled sorting endosomes (Figure 3C). Higher magnifications micrographs confirmed that 258 

BKPyV virions behaved similarly to VLP (Figure 3F) did not reveal PM curvature upon viral 259 

attachment as previously reported for SV40 (Figure 3G; (48)). We concluded that BKPyV was 260 

mainly endocytosed into tubular vesicles evoking an uncommon endocytic pathway for viral 261 

particles in MDDC.   262 

 263 

BKPyV colocalizes with GRAF-1+ and cholera toxin B+ compartments in MDDC 264 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 4, 2020. ; https://doi.org/10.1101/2020.09.04.282426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.282426
http://creativecommons.org/licenses/by-nc-nd/4.0/


To characterize BKPyV containing vesicles in MDDC we used high-resolution confocal 265 

microscopy to identify markers co-localizing with BKPyV in MDDC. Early Endosome 266 

Antigen-1 (EEA-1), a marker of early endosomes and macropinosomes, was associated with 267 

BKPyV in structures with size ranging from 100nm, the detection limit with this technique, to 268 

roughly 1µm in diameter (Figures 4A and 4B). The clathrin-independent carriers (CLIC) or 269 

GPI-anchored protein-enriched compartments (GEEC) endocytic pathway(49, 50) known to 270 

form tubular vesicles has been recently associated with the protein GTPase Regulator 271 

Associated with Focal Adhesion Kinase-1 (GRAF1) (51). BKPyV colocalized with GRAF-1 at 272 

the PM and in the cytosol (Figure 4C). Cholera toxin B subunit (CTxB) uses GRAF-1 vesicles 273 

to enter cells (51) and we observed a partial VLP/CTxB colocalization in MDDC (Figure 4D). 274 

Altogether, our results showed for the first time in MDDC a major BKPyV endocytosis into 275 

GRAF-1+ and CTxB+ compartments, two hallmarks of the CLIC/GEEC pathway. 276 

 277 

MDDC can transfer virions to renal epithelial cells but are refractory to BKPyV infection 278 

Next, we wondered whether BKPyV-pulsed MDDC, hereafter termed “BKPyV-infected 279 

MDDC”, could transfer the virus to a permissive cellular third party in trans. Here, we took 280 

advantage of a trans-infection assay previously set up in our laboratory(41, 52). It assesses the 281 

ability of a cell type to capture and transfer virions to permissive cells in its vicinity after 282 

removing excess unbound/non-internalized virions. LTAg expression was analyzed in these 283 

conditions at defined time points (Figure 5A). Infection of hRPTEC, termed cis-infection, was 284 

estimated between 10 to 18% in all experiments at seven days pi (Figure 5A). No LTAg was 285 

detected in BKPyV-infected MDDC suggesting that BKPyV infection is not initiated in MDDC 286 

(Figure 5A). To confirm these results with a more sensitive technique, we analyzed LTAg 287 

expression by RT-qPCR in a similar experimental design. Quantitative results are shown in 288 
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Figure 5B. As expected, no LTAg mRNA was detected in BKPyV-infected MDDC whereas 289 

the cis-infection of hRPTEC or the trans-infection conditions displayed high amounts of LTAg 290 

mRNA. These results were confirmed by assessing the expression of the major capsid protein 291 

VP1, a late infection marker (Figure 5C). To confirm the CLIC/GEEC pathway involvement in 292 

the BKPyV trans-infection process, we finally tested the effect of the ciliobrevin D (CBD), a 293 

cytoplasmic dynein inhibitor(53), on MDDC during virus loading. Noticeably, a 50µM dose of 294 

CBD significantly decreased trans-infection with no measurable MDDC cytotoxicity (Figure 295 

5D). Altogether, these results demonstrated that MDDC, while non-permissive to BKPyV, 296 

capture BKPyV virions and can transfer them to permissive cells like hRPTEC in a dynein-297 

dependent manner. 298 

 299 

Human MDDC are neither activated by BKPyV particles nor BKPyV-infected hRPTEC   300 

MDDC can sense danger signals through various pattern-recognition receptors (PRR) including 301 

toll-like receptors (TLR) thus leading to MDDC maturation(54, 55). Conflicting results on DC 302 

activation by BKPyV in the literature prompted us to ask whether BKPyV attachment would 303 

lead to MDDC activation.  Twenty-four hour MDDC cultures with VLP or virions were 304 

analyzed by flow cytometry to assess the acquisition or up-regulation of known DC maturation 305 

markers. A maturation enabling dose of LPS and R848(56), two TLR agonists, and a Modified 306 

Vaccinia Ankara (MVA) attenuated poxvirus known to activate MDDC were added as positive 307 

controls of maturation when necessary. First, expression of CD86, a sensitive and reliable 308 

marker of DC maturation (57), was assessed. Only exposure to TLR agonists or to the Modified 309 

Vaccinia Ankara attenuated poxvirus known to activate MDDC induced  CD86 upregulation 310 

((58-61); Figure 6A). Accordingly, no IL-12p70, a T helper type 1 cytokine, IL-10 or IL-8 were 311 

detected in MDDC culture supernatants cultivated with BKPyV (Figure 6B). Expression of the 312 
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CD80, CD83, CD40, CCR7 and HLA-DR on MDDC gave consistent results (Figure 6C). Then 313 

we hypothesized that MDDC could be activated not by BKPyV particles per se but by BKPyV-314 

infected hRPTEC. HRPTEC infection was monitored by RT-qPCR for LTAg mRNA expression 315 

(data not shown). In that setting, MDDC CD86 expression did not vary upon cultivation with 316 

BKPyV-infected cells (Figure 6D). To exclude “under the radar” activation signals, we finally 317 

performed a digital RNA sequencing (DGEseq; REF) of BKPyV-infected MDDC compared to 318 

non-infected cells. In line with previous experiments, no difference was observed between 319 

BKPyV-infected and non-infected MDDC in terms of mRNA profile reprogramming at one dpi 320 

(Figure 6E). These results confirmed that MDDC were unresponsive to BKPyV and BKPyV-321 

infected hRPTEC.    322 

 323 

Internalized BKPyV is protected from neutralization 324 

Together with cellular immune responses, neutralizing anti-BKPyV antibodies (NAbs) are 325 

required to control infection or reactivation in KTR(17, 62-66) and healthy donors(67). Here 326 

we wondered whether BKPyV could be protected from neutralization when internalized by 327 

MDDC. To address this point, trans-infection was performed in the presence of neutralizing 328 

and control sera from BKPyV reactivating or non-reactivating KTR respectively. Neutralizing 329 

antibodies completely blocked hRPTEC cis-infection whereas the control serum had no effect 330 

(Figure 7). When virions were pre-incubated with NAbs prior to MDDC loading, a significant 331 

loss in trans-infection was observed compared to controls. As a conclusion, NAbs were 332 

ineffective when used after BKPyV loading of MDDC suggesting virions were protected from 333 

neutralization once internalized. 334 

 335 
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Blood and kidney CD1c+ cDC display similar BKPyV trans-infection abilities and non-336 

permissiveness to MDDC 337 

MDDC were shown to be closely related to inflammatory DC in humans(68, 69) so to ensure 338 

our observations were not biased by the DC generation protocol, we first wondered whether 339 

cDC, the most abundant tissue and blood DC subset under non-inflammatory conditions, could 340 

behave like MDDC. First, VLP were incubated with whole blood of healthy volunteers and 341 

VLP staining was further analyzed by flow cytometry on both cDC (CD11c+) and plasmacytoid 342 

(pDC; CD123+) DC among HLA-DR+ Lin- cells (Supplemental Figure 1). A significant 343 

proportion of cDC bound VLP whereas no binding was detected on pDC (Supplemental Figure 344 

1 and Figure 8A). Importantly, binding to cDC was not affected by Fc receptor blockade 345 

suggesting that VLP attachment did not depend on anti-VP1 antibodies in whole blood of 346 

healthy donors (Figure 8B). To avoid any interference due to the whole blood environment, 347 

CD1c+ DC, representing the main myeloid DC subset in blood(70) and kidney(71) were sorted 348 

according to the gating strategy displayed in Supplemental Figure 2, incubated with VLP and 349 

analyzed by flow cytometry. Blood and kidney CD1c+ cDC were clearly capable of binding 350 

VLP as well as virions in a dose-dependent manner (Figures 8C and 8D, respectively). Then, 351 

we showed that like MDDC, CD1c+ cDC were unresponsive to BKPyV particles (Figure 8E). 352 

We finally demonstrated that sorted CD1c+ cDC enabled BKPyV trans-infection to permissive 353 

cells while being resistant to infection themselves (Figure 8F). Taken together our results 354 

demonstrate that biologically relevant blood and renal CD1c+ cDC behave similarly to MDDC 355 

with respect to BKPyV infection. 356 

 357 

Discussion 358 
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In this study, cDC, either generated in vitro or isolated from human blood and kidney, were 359 

shown to support BKPyV attachment in a sialic acid-dependent manner and subsequent 360 

clathrin-independent endocytosis through two distinct pathways, the first involving  GRAF-1+ 361 

CLIC/GEEC and the second, minor pathway dependent on  EEA1+ macropinocytic 362 

endocytosis. However, we did not provide evidence on potential spatio-temporal connections 363 

between both compartments. Upon contact, cDC were not activated by viral particles or 364 

BKPyV-infected cells. Moreover, we showed that MDDC and CD1c+ cDC were non-365 

permissive to BKPyV infection. Internalized or membrane-bound BKPyV virions kept their 366 

ability to trans-infect permissive cells like hRPTEC and were also shown to be protected from 367 

neutralization by sera of BKPyV reactivating KTR. 368 

We demonstrated that BKPyV interacts with human MDDC in a dose- and sialic acid-369 

dependent manner suggesting these cells are equipped with BKPyV receptors, likely GD1b and 370 

GT1b(46). Upon attachment, BKPyV was shown to massively accumulate in pleiomorphous 371 

GRAF-1+ endocytic vesicles originating from the PM and partially overlapping with CTxB 372 

containing vesicles in MDDC. Although not proven here, it is tempting to speculate that a 373 

similar entry pathway for BKPyV occurs in CD1c-sorted cDC. This compartment was 374 

identified as CLIC/GEEC vesicles whose formation is clathrin-independent (see for review 375 

(72)). Interestingly, BKPyV was shown to infect hRPTEC in a clathrin- and caveolin-376 

independent manner indicating that some BKPyV entry steps might be common between those 377 

cells and cDC(73, 74).  Ewers and colleagues demonstrated that SV40 triggers the formation of 378 

PM invaginations related to CLIC/GEEC endocytosis after binding to GM1 in caveolin-1 379 

deficient or energy-depleted cells(48). Multiple interactions between chemically defined GM1 380 

PM clusters and SV40 capsomers were demonstrated to promote PM curvature and the 381 

formation of pleiomorphous tubules containing viral particles. CLIC/GEEC endocytosis has 382 

not been thoroughly documented for BKPyV before our results, even though Drachenberg et al 383 
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observed BKPyV virions within tubular structures in hRPTEC from PVAN biopsies(30). 384 

Whether these tubular vesicles result from early endocytosis or from viral progeny remains to 385 

be clarified. Although the microtubule-associated motor protein, dynein 1, was shown not to 386 

play a role in BKPyV(75), JCPyV and SV40 infection(76), here we demonstrated that a specific 387 

chemical inhibitor of the dynein protein family caused a measurable reduction of the trans-388 

infection process by MDDC indicating distinct cell-specific requirements for BKPyV entry. 389 

After  internalization, BKPyV(77), JCPyV(77, 78), SV40(77, 79) and MuPyV(80) were shown 390 

to reach the ER within the first ten hours after cell attachment to hRPTEC(46, 75). This step is 391 

crucial for the infection(46, 75, 81, 82) since it is followed by the release of partially uncoated 392 

virions in the cytosol and import of viral genomes to the nucleus to initiate replication. This 393 

question was not directly addressed in the present study but the absence of LTAg in MDDC 394 

after several days pi strongly suggests either BKPyV does not undergo uncoating or that the 395 

CLIC/GEEC endocytosis does not lead to productive infection. In non-immune cells, 396 

CLIC/GEEC was shown as the main productive AAV2 infection route, invalidating the second 397 

possibility(83). These discrepancies between our results and former studies might reflect 398 

multiple common as well as distinct BKPyV entry steps according to the cell type studied. 399 

Further work is needed to establish the molecular determinants of such differences between 400 

non-immune and immune cells like cDC. A recent review pointed out the link between the 401 

CLIC/GEEC endocytosis and glycosphingolipids (GSL) which encompass gangliosides in the 402 

establishment of cell polarity(72). DC polarization leading to the formation of a synapse is an 403 

important event in T cell priming (see for review(84)) but might also be crucial in the BKPyV 404 

trans-infection process we described here. GSL are known to form lipid rafts on the PM (see 405 

for review(85)). Such micro domains function as a platform to segregate a wide range of 406 

effector molecules including GPI-anchored cargos(86). Wang and colleagues demonstrated that 407 

GPI-anchored molecules, which utilize the CLIC/GEEC endocytic pathway upon ligand 408 
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binding, share biosynthetic pathways and common cellular locations with GSL(87). Such 409 

findings could link the ganglioside-mediated BKPyV attachment to viral endocytosis even in 410 

immune cells.  411 

An important DC function is the ability to sense microbes through the recognition of conserved 412 

pathogen-associated molecular patterns (PAMP) by PM-bound (toll-like and C-type lectin 413 

receptors, TLR and CLR respectively), endosomal (TLR) or modified DNA/RNA cytoplasmic 414 

receptors altogether termed PRR(88). Viral particles as supramolecular arrangements of 415 

proteins and nucleic acids can be considered as PAMPs. Zepeda-Cervantes et al (Frontiers 416 

Immunol, 2020) have recently discussed numerous examples of VLP sensing leading to 417 

activation of human DC in a review(89). In contrast, both in vitro-generated murine and human 418 

DC were shown to remain unresponsive to BK- and JCPyV VLP(23, 26). Our results with 419 

human MDDC as well as freshly isolated blood and renal CD1c+ cDC confirm these 420 

observations and extend them to bona fide DC subsets supporting that such an immune 421 

ignorance towards BKPyV could exist in vivo. Two recent comprehensive studies demonstrated 422 

that hRPTEC fail to sense BKPyV(90, 91). This was shown to be partly dependent on the 423 

expression of the agnoprotein, a viral factor whose function has remained unclear so far(91). 424 

While BKPyV escape mechanisms seem to depend on viral gene expression in hRPTEC, we 425 

consider that different escape mechanisms are at work in BKPyV refractory cDC. The observed 426 

accumulation of BKPyV into CLIC/GEEC vesicles in MDDC after two hours might lead to 427 

their segregation in a PRR-free compartment. Unfortunately, whether PRR are present in the 428 

CLIC/GEEC compartment is unknown.  429 

We demonstrated that although renal CD1c+ DC are refractory to BKPyV infection they remain 430 

able to capture virions and trans-infect hRPTEC in vitro. CD1c+ DC are normally present in 431 

the human renal interstitium surrounding the proximal tubules and glomeruli(29, 34, 71) but in 432 

PVAN lesions, a significant increase in infiltrating CD1c+ DC is documented(34). Whether the 433 
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CD1c+ DC infiltrate has a key role in viral spreading in vivo deserves to be investigated through 434 

combined multidimensional imaging techniques and spatial RNA/DNA sequencing. Upon 435 

inflammation, monocytes are recruited in tissues where they differentiate in inflammatory DC 436 

with transcriptomic profiles closely related to those observed in MDDC(68, 69). PVAN 437 

develops in an inflammatory context. Therefore, it is tempting to speculate that along with 438 

resident CD1c+ DC, inflammatory DC could participate in the potentiation of BKPyV 439 

infection.  440 

In this study, we demonstrated that cDC, namely MDDC and blood or kidney CD1c+ resident 441 

DC can capture infectious BKPyV through an unprecedented endocytic pathway in cDC and 442 

for BKPyV, and transfer the virus to permissive cells like hRPTEC without DC activation or 443 

infection, suggesting a role for cDC in BKPyV spreading. Moreover, we showed that 444 

internalized virions were protected from neutralization by serum from KTR. Taken together our 445 

results support the idea that cDC could facilitate BKPyV infection by favoring its spreading 446 

and limiting specific T lymphocyte activation due to the cDC ignorance towards BKPyV 447 

antigens and the circumvention of neutralization by specific antibodies. Hence, this work could 448 

help to understand how cDC could aggravate BKPyV infection in KTR. 449 
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 779 

Figure legends 780 

Figure 1: MDDC bind BKPyV particles in a dose- and sialic acid-dependent manner. (A) 781 

Negative contrast TEM picture of genotype Ib2 (gIb2) VLP. A 200nm scale bar is represented 782 

on the micrograph. (B) Fluorescent-labelled gIb2 VLP binding to hRPTEC, HEK293TT, 783 

MDDC and LNCaP (n=3) assessed by flow cytometry. Mean Fluorescence Intensities (MFI) 784 

are displayed (n=5; n=3 for LNCaP only). . (C)  Alexa Fluor®647-conjugated infectious 785 

particles (Dunlop strain) gIb2 VLP binding to MDDC (n=5). (D) Dose dependent binding of 786 

genotypes Ia (circle), Ib2 (square) and IVb1 (triangle) VLP to MDDC (n=5). (E) Alexa 787 

Fluor®647-conjugated genotypes Ia, Ib2 and IVb1 VLP (104 VLP/cell) binding to MDDC with 788 

(empty circles) or w/o (closed circles) treatment with 0.2U/mL neuraminidase from Clostridium 789 

perfringens, specifically cleaving α(2,3/6/8)-linked sialic acid. Data are represented as MFI ± 790 

SEM. Statistically significant results were marked by one or several asterisks according to the 791 

level of significance: *=p<0.05, **=p<0.01, ****=p<0.0001; one-way ANOVA with Tukey’s 792 

multiple comparison tests. 793 
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Figure 2: High-resolution confocal images of genotype Ia BKPyV particles endocytosed in 795 

MDDC. Three panels showing independent cells that contain intracellular dot-like or 796 

amorphous tube-shaped (white asterisk) accumulations of Alexa Fluor®647-conjugated gIa 797 

VLP (A) or BKPyV infectious particles (B; Dunlop strain). Images show focal planes extracted 798 

from six different cells stacks (104 VLP/cell or 1FFU/cell respectively for VLP and infectious 799 

particles; magenta). (C) Two distinct focal planes extracted from the cell stack from which the 800 

image in the center of Figure 2A is shown. “1” and “2” indicate the tube-shaped structures 801 

marked by asterisks in Figure 2A. (D) Amira 3D reconstruction of the cell represented in Figure 802 

2A (center) showing round-shaped and pleiomorphous tube-shaped intracellular structures 803 

containing Alexa Fluor®647-conjugated gIa VLP. Cell membranes were stained with 804 

fluorescence-labelled WGA (Alexa Fluor®488 displayed in light blue) and nuclei were 805 

counterstained with DAPI. High-resolution confocal images were obtained from the A1 Nikon 806 

microscope equipped with a SIM module.  807 

 808 

Figure 3: TEM reveals unlabeled BKPyV endocytosis into large round- and tube-shaped 809 

vesicles in MDDC. (A) Micrograph showing a general view of a representative MDDC 810 

incubated for 30 minutes at 37°C with 104 VLP/cell (gIb2). Noticeably, the cell contains 811 

abundant tube-shaped structures. (B, C, D, E and G) Pleiomorphous or large round vesicles 812 

containing VLP are shown at a higher magnification (G: x100,000-120,000). (F) This image 813 

represents infectious BKPyV particles into macropinosome-like (round-shaped) and tube-814 

shaped vesicles (1FFU/cell). (D) and (E) Micrographs showing VLP internalization from the 815 

cell surface into tube-shaped endosomes. Thin and bold arrows indicate particles and tube 816 

formation respectively; asterisk indicate large vesicles resembling macropinosomes. 817 

N=nucleus; mt=mitochondria. Scale bars are indicated for each micrograph. 818 
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Figure 4: BKPyV particles colocalize with EEA-1, GRAF-1 and CTxB in MDDC revealing an 820 

unconventional endocytic pathway. (A) Confocal sections of MDDC incubated for 30 minutes 821 

at 37°C with 104 fluorescent VLP/cell (magenta). EEA-1-positive endocytic vesicles were 822 

stained after fixation (green). Nuclei were counterstained with DAPI (light blue). The 823 

colocalization between VLP and EEA-1 is shown in white. (B) RGB profiles along two 824 

measurement lines (1 and 2, showed in Figure 3A) analyzed with  ImageJ software. 825 

Colocalization is represented by merging blue and red (=magenta) representing VLP and green 826 

histograms (1 pixel=88nm). (C) and (D) show respectively colocalization of BKPyV VLP with 827 

GRAF-1 (bold white arrows) and Alexa Fluor®555-conjugated cholera toxin subunit B (CTxB; 828 

2µg/mL; thin white arrows). Deconvoluted images are presented. Displayed data are 829 

representative of three independent experiments. 830 

 831 

Figure 5: MDDC do not support BKPyV infection but mediate its transmission to primary 832 

hRPTEC. (A) Epifluorescence microscope images (x10 magnification) showing large T antigen 833 

(LTAg) immunostaining (green) of hRPTEC and/or MDDC in various conditions indicated on 834 

top of rows, respectively: hRPTEC alone (medium), MDDC alone (medium), BKPyV-infected 835 

hRPTEC (MOI=0.1; approximately 200 particles/cell), non-infected hRPTEC layered with 836 

BKPyV-infected MDDC (excess of virus, i.e. unbound virus, was removed by extensive washes 837 

after a 2 hour-incubation of MDDC with virus) and BKPyV-infected MDDC (idem previous 838 

condition). LTAg is revealed at seven days dpi. Brightfield images of the immunostaining are 839 

shown in the first column. DC-SIGN (red) is a marker allowing to discriminate MDDC from 840 

hRPTEC when necessary. Nuclei were counterstained with DAPI. (B) RT-qPCR data showing 841 

the amplification of LTAg mRNA seven dpi in various conditions (similar to those presented 842 

in Figure 6A; n=6). Of note, a condition with uninfected MDDC with uninfected hRPTEC has 843 

been added here. (C) Western blot analysis of VP1 expression, as a late BKPyV infection event, 844 
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in cell lysates after three, five, and seven days post-infection. β actin was revealed similarly 845 

after membrane stripping as a loading control. Figures 5A and 5C are representative of three 846 

independent experiments. 847 

 848 

Figure 6: BKPyV virions or BKPyV-infected cells fail to activate MDDC. (A) CD86 cell 849 

surface expression was assessed by flow cytometry on immature MDDC alone (circles) or 850 

cultured with VLP (squares; 103 particles/cell), BKPyV particles (triangles; 103 particles/cell) 851 

MVA (inverted triangles) or a TLR agonist cocktail (diamonds; 100ng/mL LPS and 1µg/mL 852 

R848 after 24 hours (n=6). (B) ELISA titration of IL-10, IL-12p70 and IL-8 in the supernatants 853 

of untreated or MDDC cultivated with VLP, BKPyV particles or R848/LPS (doses were similar 854 

to those employed in Figure 4a). (C) Cell surface expression of CD80, CD83, CD40, CCR6, 855 

CCR7 and the HLA-DR on MDDC alone (empty bars) or cultured for 24 hours with VLP (grey 856 

bars; 103 particles/cell) or LPS/R848 (black bars). Data are represented as MFI ± SEM. For 857 

each MFI, background, i.e. autofluorescence, is subtracted to calculate ΔMFI values displayed 858 

in this figure (n=4). (D) Similar to experiments in A. Apop=apoptotic cells. Apoptosis was 859 

induced by UVB-irradiation and apoptotic cell fragments were collected by centrifugation and 860 

extensive washing in PBS. (E) RNAseq analysis of differentially expressed genes between 861 

infected (one dpi) and non-infected MDDC. The dashed line represents a “ten counts per gene” 862 

limit above which gene expression is considered as robust. The Y axis represents the Log2 fold 863 

change in gene expression. Statistically significant results were marked by one or several 864 

asterisks according to the level of significance: ns=non-significant, *=p<0.05, **=p<0.01, 865 

***=p<0.001, ****=p<0.0001; one-way ANOVA with Tukey’s multiple comparison tests. 866 

 867 

Figure 7: Endocytosed BKPyV particles into MDDC are protected from serum neutralization. 868 

HCS automated counting to evaluate percentages of BKPyV-infected hRPTEC (=LTAg+ cells) 869 
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in various conditions including cis- and trans-infection experiments but with or w/o sera from 870 

a non-controller patient (=control serum) or a controller patient (=neutralizing serum). 871 

Neutralizing antibody titers in this serum had been previously determined: between 1/200.000, 872 

1/500.000 and 1/20.000 for genotypes Ia, Ib2 and IVc2 respectively (see the Materials and 873 

Methods section). Here, both sera were x1000-diluted. Sera were either added before or after 874 

incubation of the BKPyV suspension (Dunlop strain at MOI=0.1) with MDDC. Results 875 

represent mean values of the percentage of LTAg+ hRPTEC ± SEM. Statistically significant 876 

results are marked by an asterisk; *=p<0.05; one-way ANOVA with Tukey’s multiple 877 

comparison tests.    878 

 879 

Figure 8: Blood and kidney CD1c+ myeloid DC bind and transmit BKPyV to primary hRPTEC 880 

without getting infected. (A) Quantitative measurement of VLP positive cDC and plasmacytoid 881 

(pDC) DC in whole blood of healthy volunteers  according to the gating strategy shown in 882 

Supplemental Figure 1. (B) Quantitative analysis of VLP binding to cDC with (closed squares) 883 

or w/o (closed circles) Fc receptor blockade. Dose-dependent BKPyV VLP (C) or infectious 884 

particles (D) binding to purified CD1c+ cDC from blood or kidney of healthy individuals; the 885 

“control” condition means no VLP (grey circles). Black closed and empty circles represent 103 886 

and 104 particles/cell respectively. The immunomagnetic cell sorting strategy is shown in 887 

Supplemental Figure 1. (E) CD86 cell surface expression assessed by flow cytometry on freshly 888 

isolated blood CD1c+ DC cultured for 24 hours in medium alone (squares) or with VLP 889 

(triangles; 103 particles per cells), BKPyV particles (inverted triangles; ibid) or with LPS/R848 890 

(diamonds; 100ng/mL LPS and 1µg/mL R848); n=4 distinct blood donors. (F) Quantitative 891 

assessment of the ability of CD1c+ mDC from blood (grey dots) or kidney (black dots), ie from 892 

healthy blood donors and macroscopically healthy parts  of resected human tumor-bearing 893 

kidneys, to capture and transfer BKPyV to hRPTEC as shown in Figure 6A. The percentage of 894 
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infected hRPTEC corresponds to the percentage of LTAg+ hRPTEC within total cells, ie DAPI 895 

counterstained nuclei (42), based on an automated counting on a HCS device. Data are 896 

represented as percentage of infection. Statistical analyses have been applied to comparisons 897 

between % of infected hRPTEC in coculture with cDC with or w/o cDC preincubation with the 898 

Dunlop strain. Statistically significant results are marked by an asterisk; *=p<0.05, **=p<0.01, 899 

***=p<0.001; one-way ANOVA with Tukey’s multiple comparison tests. 900 

 901 

Supplemental material 902 

Supplemental Figure 1: Gating strategy of myeloid (CD11c+ in CD45+, HLA-DR+, Lin- 903 

cells) and plasmacytoid DC (CD123+ in CD45+, HLA-DR+, Lin- cells) in whole blood of 904 

healthy volunteers. Cells were incubated with 2.5µg/mL of Alexa Fluor®647 coupled-VLP or 905 

the same volume of PBS (no VLP; 45 minutes at 4°C) and representative dot plots showing the 906 

percentage of VLP+ cells.   907 

 908 

Supplemental Figure 2: Assessment of purity of freshly isolated CD1c+ DC from blood and 909 

kidney. (A) Gating and enrichment evaluation before and after immunomagnetic cell sorting of 910 

CD19- CD1c+ myeloid blood DC. (B) Similar dot plots showing the purity of CD1c+ myeloid 911 

DC from resected human kidneys before and after the FACS-assisted sorting.  These results are 912 

representative of five different cell isolations from both blood and kidney compartments.  913 
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