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Abstract 
Transcription factor (TF) proteins play a critical role in the regulation of eukaryote gene expression 

by sequence-specific binding to genomic locations known as transcription factor binding sites. 

Here we present the TFBSFootprinter tool which has been created to combine transcription-

relevant data from six large empirical datasets: Ensembl, JASPAR, FANTOM5, ENCODE, GTEX, and 

GTRD to more accurately predict functional sites. A complete analysis integrating all experimental 

datasets can be performed on genes in the human genome, and a limited analysis can be done on a 

total of 125 vertebrate species. 

As a use-case, we have used TFBSFootprinter to study sites of genomic variation between modern 

humans and Neanderthal promoters. We found significant differences in binding affinity for 86 

transcription factors, groups of which are both highly expressed, and show correlation of 

expression, in immune cells and adult and developing neural tissues. 
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Introduction 

North of Eden 
Humans and their hominin relatives have been leaving Africa in waves for the past two million plus 

years. Various environmental and cultural pressures have impacted each diaspora in different ways, 

subsequently producing adaptations reflected in physiology, immunity, and brain size. In relatively 

recent history, the discovery and sequencing of DNA from remains of Neanderthal[1-5] and 

Denisovan[6, 7] has now allowed direct comparison of DNA from modern and ancient hominids. In 

the observed genomic variations between modern humans and Neanderthals, a limited number 

have been identified which occur in gene coding regions. Some of these are found in genes known 

to affect cognition and morphology (cranium, rib, dentition, shoulder joint)[1], pigmentation and 

behavioral traits[2], and brain development[3].  However, as has been noted before, there is a 

paucity of coding variations to explain the differences between related species; the genome of the 

Altai Neanderthal reveals just 96 fixed amino acid substitutions, occurring in 87 proteins. 

Unsurprisingly, a much larger set of variants are observed in intergenic regions, owing not only to 

the fact that these are comparatively much larger regions but also to the expectation of lesser 

conservation in what until recently was often termed "junk DNA". While variants in coding regions 

can directly affect protein structure, those found in intergenic regions may affect regulation of gene 

expression, through alternative binding of transcription factors in promoters and enhancers and 

expression of non-coding RNAs. What may surprise some, is the cumulative effect of numerous 

small – and large – changes to gene expression arising due to these manifold intergenic changes, 

and which may ultimately serve as the engine of speciation. Using a new computational tool we 

have created, which incorporates numerous transcription-relevant genomic features, we sought to 

reveal how the comparative differences in these regions may effect regulatory differences between 

modern human and Neanderthals. Specifically, our aim is to identify those gene-regulating 

transcription factors whose binding to DNA may vary between these species of hominid and thus 

drive the differences between them. 

Transcription factors drive gene regulation 
As early as 1963, Zuckerkandl and Pauling began addressing the apparent disparity in the fact that 

species with obvious differences could have proteins which look so similar. At the time they posited 

that it could be explained by the idea that "in some species certain products of structural genes 

inhibit certain sets of other genes for a longer time during development than in other species."[8]. 

Since this early exposition, the idea was more formally proposed in a publication by King and 

Wilson[9], and now the importance of regulatory regions in evolutionary adaptation has been 

further explored and accepted[10, 11]. 

Transcription factor (TF) proteins play a critical role in the regulation of eukaryote gene expression 

by sequence-specific binding to genomic locations known as cis-regulatory elements (CREs) or, more 

simply, transcription factor binding sites (TFBSs). TFBSs can be found both proximal and distal to 

gene transcription start sites (TSSs), and multiple TFs often bind cooperatively towards promotion 

or inhibition of gene transcription, in what is known as a cis-regulatory module (CRM). Because of 

the role these proteins play in transcription, discovery of TFBSs greatly furthers understanding of 

many, if not all, biological processes. As a result, many tools have been created to identify TFBSs. 

Owing to the time and material requirements of individual mutation studies needed for 
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experimental verification, many of these tools are computational. However, at issue in both the 

synthetic and experimental approach are two distinct problems. First is identification of where TF 

proteins bind to DNA. Experimental tools like ChIP-Seq are rapidly revealing the landscape of TFBSs 

for individual TFs in various cell types, and under various conditions. Computational tools often 

leverage this new data to build TFBS models which are increasingly accurate at making those 

predictions in silico. The second issue is how to determine if an experimental site (ChIP-Seq peak) 

or putative computational prediction (statistically likely) are actually biologically relevant, such as 

contributing to gene expression/repression, chromatin conformation, or otherwise. This second 

problem is by far the more demanding of the two, and it is here where we seek to levy the inclusion 

of transcription-relevant data. 

The law of large numbers 
Computational prediction of TFBSs seeks to enlist experimental data in the quest for the best 

possible specificity and sensitivity. However, computational modeling has deficits rooted in the law 

of large numbers; that is, because of the large size of a target genome, any method of prediction is 

bound to produce a large number of spurious results and filtering or thresholding results often 

means lost true positives. This can be compounded by the fact that biologically relevant TFBSs can 

be weakly binding [12]. 

Depending on the approach, the extent of incorporation of relevant experimental data varies 

widely. From very early on, the position weight matrix (PWM) has been used to represent and 

predict the binding of proteins to DNA. PWMs use a single, but very relevant, type of experimental 

data, that derived from observed binding events [13]. To create a PWM, a count is made of each of 

the four nucleotides at each position in the experimentally determined binding sites, known as a 

position frequency matrix (PFM). With the PFM, and using some contextual information about the 

target genome, a PWM probability model is generated which represents the binding preferences of 

a TF (detailed in Supplementary Methods). The PWM can then be used to arrive at a likelihood score 

for a target DNA region, which thus represents the likelihood of a TF binding to that DNA sequence. 

The accuracy of this method can continue to improve solely due to the large, and increasing, 

amounts of TFBS sequencing data provided by newer experimental technologies; like chromatin 

immunoprecipitation with massively parallel DNA sequencing (ChIP-Seq)[14], high-throughput 

systematic evolution of ligands by exponential enrichment (HT-SELEX)[15, 16], and protein binding 

microrarrays (PBMs)[17]. 

Old game new tricks 
Updates to the traditional PWM have appeared over the years. One addresses the fact that 

traditional PWMs assume that the binding preference of a TF is independent at each position of the 

sequence it binds, resulting in both dinucleotide[18, 19] and position flexible[20-22] models. These 

become relevant when a TF has significantly different binding modes due to changes in 

conformation, structure, or splicing[23]. Ultimately, however, the difference between position 

independent and dependent models has been shown to be minimal, and TFs with more complex 

binding specificities can be accounted for using multiple position-independent PWMs[24, 25]. 

New statistical and computational algorithms, as they have come in vogue, have been brought to 

bear on the problem of TF-DNA binding: regression, Monte Carlo simulations, Markov models, 

machine learning, and deep learning, to name the most prominent. An important distinction is that 
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these, and many other, approaches seek to improve what their creators viewed as the primary 

aspect of prediction of TFBSs, the binding model itself. There has been great success in targeting 

this aspect, and while it is critical to know, the location of binding alone is not indicative of 

function[26]. Because of the incremental gains which have been achieved with new computational 

modelling of TF-DNA binding events, it can be argued that further work in this space is best served 

in discovery of binding sites for TFs which are not currently cataloged or modeled. Indeed, this is 

often a key difference to be noted when choosing between traditional PWMs and some of the later 

computational tools/models. The existence of a greater number of TF binding models is a strong 

reason to choose to incorporate the more extensively used traditional PWMs in binding prediction. 

In the search for increased accuracy, other new models have improved TFBS prediction by instead 

incorporating other relevant biological data, for example: 3D structure of DNA [27-31], chromatin 

accessibility/DNAse hypersensitivity sites[32, 33], overlap in gene ontology[34], amino acid 

physicochemical properties[35], and gene expression and chromatin accessibility[36, 37]. These 

alternative models often match or outperform strictly sequence-based models[22, 31]. 

TFBSFootprinter incorporates transcription-relevant data 
We sought to identify multiple sources of experimental data relevant to gene expression and 

transcription factor binding, and to incorporate it into a comprehensive model in order to improve 

prediction of functional TFBSs. Specifically, clustering of TFBSs has been shown to be an indicator of 

functionality[26, 38, 39]; conservation of genetic sequence across genomes of related species is one 

of the most successfully used attributes in identification of TFBSs[39, 40]; proximity to TSS is strongly 

linked to TFBS functionality[41]; correlation of expression between a transcription factor and 

another gene is an indication of a functional relationship[36, 42, 43]; variants in non-coding regions 

have a demonstrated effect on gene expression[44-46] and variants affecting gene expression are 

enriched in TFBSs[47]; open chromatin regions (ascertained by ATAC-Seq or DNAse-sensitivity) 

correlate with TF binding[48]; and finally, as previously mentioned, significant effort has gone into 

identifying the actual composition of the binding sites themselves through the use of sequencing of 

TFBSs (e.g., ChIP-Seq and HT-SELEX)[15, 21, 49]. 

Ensembl identifier-oriented system of analyses 
For our tool, instead of using simple absolute genomic coordinates, the Ensembl transcript ID was 

chosen as the basic unit of reference. This is useful for several reasons. First, the Ensembl database 

is one of the most well-maintained biological databases in existence. It is continually updated and 

expanded and contains a wealth of sequence and regulatory information on a large number of 

vertebrate species. As a result, the tool we present here - TFBSFootprinter - can offer predictions in 

270 vertebrates at the time of writing, from human to humpback whale, which will increase as the 

Ensembl database itself expands. Second, it allows the inclusion of important datasets which are 

gene-centric, such as FANTOM TSSs and expression data, GTEx eQTLs, and all annotations which are 

compiled within Ensembl itself. Finally, the Ensembl transcript ID provides an easy point of reference 

for a greater audience of scientists, thus increasing the accessibility and utility of the tool. 

Non sum qualis eram 
This study supports the hypothesis that future advances in prediction offered by incorporation of 

transcription-related biological data will outshine that which can be achieved by improvements in 
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modeling of TF-DNA binding alone. We show here that the TFBSFootprinter tool provides a good 

way to predict TFBSs based on incorporation of a variety of relevant biological data. As a proof of 

usage, we apply TFBSFootprinter in a comparative analysis of locations of variation in the promoters 

of modern humans and Neanderthal genomes. 

Results 

High-scoring TFBSs differ between modern human and Neanderthals 
In analysis of 13,233 SNPs occurring in comparison of the modern human and Neanderthal 

promoteromes – the collection of all human/Neanderthal proximal promoters of protein-coding 

genes – a total of 85 TF models, representing 86 unique TF proteins, showed a significant difference 

in scoring between the two human species (Supplementary Table 1). Altogether 50 of the 86 

differentially binding (DB) TFs are homeobox genes[50] and a further 8 are forkhead box genes, both 

of which are TF families well-established as drivers of development (Table 1). 

Table 1. Homeobox TFs with differential binding affinity in modern human vs. Neanderthal 

proximal and semi-distal promoter regions 

diff expressed tf gene name homeobox family 

BARHL2 BarH-like homeobox 2 Barhl 

CDX1 caudal type homeobox 1 Cdx 

CUX1 cut-like homeobox 1 Cux 

EVX1 even-skipped homeobox 1 Evx 

HESX1 HESX homeobox 1 Hesx 

HNF1A HNF1 homeobox A Hnf1 

HNF1B HNF1 homeobox B Hnf1 

HOXB5 homeobox B5 Hox5 

HOXD8 homeobox D8 Hox6-8 

HOXA10 homeobox A10 Hox9-13 

HOXA13 homeobox A13 Hox9-13 

HOXC10 homeobox C10 Hox9-13 

HOXD11 homeobox D11 Hox9-13 

HOXD13 homeobox D13 Hox9-13 

HOXD9 homeobox D9 Hox9-13 

ISL2 ISL LIM homeobox 2 Isl 

LHX3 LIM homeobox 3 Lhx3/4 

LMX1B LMX LIM homeobox 1B Lmx 

NKX2-5 NK2 homeobox 5 Nk4 

HMX2 H6 family homeobox 2 Nk5/Hmx 

HMX3 H6 family homeobox 3 Nk5/Hmx 

NKX6-2 NK6 homeobox 2 Nk6 

ONECUT1 one cut homeobox 1 Onecut 

ONECUT2 one cut homeobox 2 Onecut 

ONECUT3 one cut homeobox 3 Onecut 

OTX1 orthodenticle homeobox 1 Otx 

OTX2 orthodenticle homeobox 2 Otx 

PAX3 paired box 3 Pax3/7 

PAX7 paired box 7 Pax3/7 

PBX3 pre-B-cell leukemia homeobox 3 Pbx 

PHOX2A paired-like homeobox 2a Phox 

PHOX2B paired-like homeobox 2b Phox 

PITX1 pituitary homeobox 1 Pitx 
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POU1F1 POU class 1 homeobox 1 Pou1 

POU2F1 POU class 2 homeobox 1 Pou2 

POU2F2 POU class 2 homeobox 2 Pou2 

POU2F3 POU class 2 homeobox 3 Pou2 

POU3F1 POU class 3 homeobox 1 Pou3 

POU3F2 POU class 3 homeobox 2 Pou3 

POU3F3 POU class 3 homeobox 3 Pou3 

POU3F4 POU class 3 homeobox 4 Pou3 

POU4F1 POU class 4 homeobox 1 Pou4 

POU4F2 POU class 4 homeobox 2 Pou4 

POU4F3 POU class 4 homeobox 3 Pou4 

POU5F1 POU class 5 homeobox 1 Pou5 

POU5F1B POU class 5 homeobox 1B Pou5 

POU6F1 POU class 6 homeobox 1 Pou6 

SIX3 SIX homeobox 3 Six3/6 

UNCX UNC homeobox Uncx 

VENTX VENT homeobox Ventx 

 

DB TFs are highly expressed in immune cells 
Data derived from the RNA-Seq experiments of the FANTOM5 project was used to generate a cluster 

map of DB TF expression within the 100 tissues with the highest aggregate expression, presented as 

Figure 1A. Relative aggregate expression for individual tissues is presented as bars in Figure 1B and 

shows that within the 100 tissues, the DB TFs have the highest expression in immune cells/tissues. 

The immune cell types with highest aggregate DB TF expression are eosinophils, mast cells, 

CD14+/CD16- monocytes, and CD8+ T cells (Supplementary Figure 1). 

DB TFs coexpress in neural and immune tissues 

Tissues from several tissue types cluster together by their expression of DB TFs, with the largest 

clusters being neural (30 brain and eye/retinal tissues) and immune (29 immune cells/tissues). In 

the brain tissues cluster (Figure 1B) there are a corresponding 12 TF genes with high expression in 

brain tissues of the FANTOM5 dataset: SIX3, NR2E1, OTX2, ONECUT2, POU3F1, OTX1, POU3F2, 

POU3F4, OLIG2, NKX6-2, POU3F3, and SOX2. All of these genes, except OTX1, are identified in the 

ProteinAtlas as being enriched or enhanced in brain. GO analysis of the 12 genes by g:Profiler[51] 

webserver shows enrichment for biological process GO terms 'forebrain development', 'head 

development, 'brain development', 'central nervous system development', 'nervous system 

development', 'glial cell differentiation', 'ensheathment of neurons', 'axon ensheathment', and 

'myelination'. Additionally, within the brain tissues cluster we observe sub-clusters of fetal and 

newborn tissues (Figure 1D). Overall, DB TFs show the highest expression in medial frontal gyrus 

(newborn), medial temporal gyrus (adult), parietal lobe (fetal), and occipital lobe (fetal) 

(Supplementary Figure 1). 

In a similar fashion, the cluster of immune cells/tissues has corresponding high expression in a 

cluster of 27 TF genes: ARID3B, ARID3A, POU2F2, POU6F1, NR1H3, LIN54, MAFG, MAFK, PBX3, 

POU2F1, CEBPA, IRF9, STAT6, ARID5A, IRF2, ZNF384, MAFF, CUX1, MEF2A, MEF2D, JUN, RXRA, 

TCF7L2, IRF1, CEBPB, MEF2C, FOS. All of these genes, except NR1H3 and CEBPA, have above average 

expression (greater than ~18 TPM), in at least one immune cell type as cataloged in the Database of 

Immune Cell eQTLs (DICE) [52]. GO analysis of the 27 genes (g:profiler webserver) shows enrichment 
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for REACTOME pathways 'cytokine signaling in immune system', 'MAPK targets', and 'immune 

system'. 

 

Figure 1. Cluster map of expression of transcription factors displaying variable binding in modern human vs. Neanderthal. 

(A) Expression data derived from the FANTOM 5 dataset is used to cluster 86 DB transcription factors in 100 tissues. (B) 

Aggregate expression for each tissue across all genes is presented as bars, and bars/tissues are colored by tissue family. 

Distinct clusters of brain and eye/retina tissues as well as immune cells/tissues are observed. (C) TF genes are labeled 

with colored bars corresponding to their identification as homeobox[50], above average expression in an immune cell 

type as defined by DICE database [52], or to have enriched or enhanced expression by tissue as defined by proteinatlas.org 

[53]. (D) Life stage for each tissue is described, where white and pink represents adult and fetal/newborn tissues, 

respectively. Expression values (TPM) have been normalized by log transformation and each tissue column has been 

adjusted on a zero to one scale. 

 

DB TFs have developmental time-point related expression profiles in brain 
Analysis of Allen Brain Atlas RNA-Seq expression data for DB TF genes revealed distinct clusters of 

time-point specific expression. Specifically, we observe clusters of expression for brain tissues at 

different grouped time points: pcw (8 to 37 weeks post conception), early (4 months to 4 years), 
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and late (8 years to 40 years). All of the pre-birth brain tissues cluster together, without admixture 

with the other grouped timepoints. The exception is a small cluster where 'cerebellar cortex' from 

all three groups is joined with 'pcw cerebellum' and 'pcw upper (rostral) rhombic lip'. All 15 pre-

birth cortical brain tissues form a cluster. Similarly, a large cluster contains all of the other early and 

late tissues which primarily segregate into three age-related subclusters: D) late tissues, E) early 

tissues, and F) paired early/late tissues (amygdaloid, hippocampus, mediodorsal nucleus thalamus, 

and striatum). 
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Figure 2. Cluster map of brain tissue expression of modern human vs Neanderthal DB TFs. Expression data from Allen 

Brain Atlas[54] was extracted as RPKM values for 26 unique tissues across 31 timepoints, converted to TPM and log 

transformed, and used to calculate the cluster map. Colors represent development stages: 8 to 37 weeks post conception 

(magenta), 4 months to 4 years (pink), and 8 years to 40 years (white). 

 

Single-nucleus RNA-Seq of cortical cells reveals DB TF marker genes 
Analysis of Allen Brain Atlas single-nucleus RNA-Seq data from 49,494 cortical brain cells was 

performed to identify which of the MH-Neanderthal DB TF genes may play a functional role in 

specific brain cell types. The clustering analysis identified 29 cell types which were stratified by brain 

region, cortical layer, and inhibitory/excitatory class (Figure 3A). Marker genes were identified for 

each of the cell type clusters and those clusters which had a MH-Neanderthal divergent binding TF 

as a marker gene were taken for further analysis. Clusters 9 and 24 each possessed 4 DB TFs as 

marker genes: CUX1, CUX2, POU6F2, and MEF2C. Analysis of these two clusters showed that the 

nuclei composing them primarily came from glutamatergic neurons of the L4c and L5 cortical layers 

of the primary visual cortex (V1C) (Figure 3A, 3G). Incorporation of cell type marker gene list from a 

classifier trained on mouse neurons [55] suggests that these two clusters contain cells of the types 

'projecting neurons', granule neurons', and 'granule neuroblasts' (Figure 3B). 
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Figure 3. Analysis of single nucleus RNA-Seq data from brain cortical regions. A) tSNE, UMAP, and force-directed graph 

visualization of Allen Brain Atlas single nucleus RNA-Seq data from 49,494 brain cortex cells. Clustering was performed 

using Louvain community detection; brain region, cortical layer and excitatory/inhibitory status are mapped from 

annotations in the Allen Brain Atlas sample data. B) Presence of brain cell-type marker mouse gene orthologs, as 

classified previously, across the 29 Louvain-derived cell-type clusters. C) DisGeNET disease ontology terms enriched for 

the top 100 marker genes for cluster 9 (top) and cluster 24 (bottom). D) Location of clusters 9 and 24 in the UMAP 

visualization. These two clusters contain the most marker genes overlapping the TFs differentially binding in MH vs. 

Neanderthal. E) Visualization of the primary visual cortex, where the cells from clusters 9 and 24 predominantly 

originate. F) Dot matrix depicts expression of the top 20 marker genes for clusters 9 and 24, across all clusters. 

Dendrogram presents relationships of all cell-type clusters. G) Track plots of the six DB TFs which are marker genes in 

at least one cluster. Expression of these six genes is higher in primary visual cortex (V1C) and L4c and L5 cortical layers. 

 

Gene ontology analysis of cell-type cluster marker genes 
Gene ontology analysis of the top 100 marker genes from clusters 9 and 24 revealed associated 

diseases related to autism, bipolar disorder, and schizophrenia, among others (Figure 3C). The top 

three gene ontology analysis 'biological process' terms for cell type cluster 9 were "corticospinal 

neuron axon guidance (GO:0021966)" (>100-fold enrichment), "synaptic membrane adhesion 

(GO:0099560)" (~37-fold), and "glutamate receptor signaling pathway (GO:0007215)" (~19-fold). 

For 'cellular component' these terms were: "anchored component of presynaptic membrane 

(GO:0099026)" (~49-fold), "NMDA selective glutamate receptor complex (GO:0017146)" (~40-fold), 

and "intrinsic component of presynaptic active zone membrane (GO:0098945)" (~33-fold). For 

'molecular function' these terms were: "transmembrane receptor protein tyrosine phosphatase 

activity (GO:0005001)" (52-fold), "calcium ion transmembrane transporter activity (GO:0015085)" 

(~9.5 fold), "calmodulin binding (GO:0005516)" (~8-fold). The full lists of ontology terms are 

included in Supplementary Table 2. 

Likewise analysis of the top 100 marker genes from cluster 24 revealed 'biological process' terms: 

"synaptic transmission, glutamatergic (GO:0035249)" (~31-fold enrichment), "cell-cell adhesion via 

plasma-membrane adhesion molecules (GO:0098742)" (~9-fold), and "calcium ion transmembrane 

transport (GO:0070588)" (~8-fold). For 'cellular component' these terms were: "anchored 

component of presynaptic membrane (GO:0099026)" (~52-fold), "intrinsic component of synaptic 

membrane (GO:0099240)" (~15-fold), and "postsynaptic density membrane (GO:0098839)" (~15-

fold). For 'molecular function' these terms were: "calcium ion binding (GO:0005509)" (~4.5-fold). 

The full lists of ontology terms are included in Supplementary Table 2. 

TFBSFootprinter availability 
The tfbs_footprinter tool is available for use as a Python library (https://pypi.org/project/TFBS-

footprinting/) and subsequently can be easily installed to a Linux system using a single command 

"pip install TFBS-footprinting". Due to size considerations, supporting experimental data for both 

human and non-human species is downloaded on demand on first usage. For Windows and Mac 

users (as well as those on Linux), a Docker image has been created 

(https://hub.docker.com/r/thirtysix/tfbs_footprinting) which includes all of the required 

dependencies and datasets for human, and can be installed with the docker command "docker pull 

thirtysix/tfbs_footprinting". Documentation on background, usage, and options is available both 

within the program and more extensively online (tfbs-footprinting.readthedocs.io). 
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Experimental Datasets 
Experimental data from a total of six databases were incorporated into the TFBSFootprinter 

algorithm (Figure 4A). Data from the relevant datasets were pre-processed to generate score 

distributions with which putative TFBS predictions could later be compared, as described in the 

Supplementary Methods. Each dataset allows for scoring of transcription-relevant markers in or 

near putative regulatory elements identified by PWM analysis: co-localization with ChIP-Seq 

metacluster, CAGE peak, ATAC-Seq peak, or CpG island; correlation of expression between predicted 

TF and gene of interest; co-localization of eQTL and effect on expression of target gene; measure of 

conservation in related vertebrate species (Figure 4C). The simplicity of this piece-wise approach 

allows for easy inclusion of additional TFBS relevant data in the future. 
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Figure 4. Outline of the datasets used in TFBS_footprinter. (A) A total of six empirical datasets are used to support 
computational prediction of TFBSs in the TFBSFootprinter tool. Experimental data is pre-processed to generate score 
distributions from which probability scores can be applied to putative TFBSs (n values indicate number of elements used 
to compute distributions). PWMs are created from JASPAR PFMs, and a segment of DNA is extracted from the Ensembl 
database for a region surrounding a target TSS of an Ensembl annotated transcript ID. Log-likelihood scoring is 
performed for six parameters on the target sequence. (B) A user-defined target promoter sequence and annotation 
data are downloaded, and JASPAR PWMs are created on-demand. PWM analysis of the promoter sequence generates 
putative TFBSs hits which are then compared with elements from pre-processed experimental datasets and scored using 
pre-generated probability scores relevant for the target genome. (C) The outputs of the TFBSFootprinter analysis are a 
publication-ready scalable vector graphics file (.svg), a table of results including predicted TFBSs names, locations, and 
scoring for each metric (not pictured), as well as individual files containing sequences and annotations. (C1) HUGO Gene 
Nomenclature Committee (HGNC)-based identifier + Ensembl transcript ID. (C2) Color coded legend of the top 10 
transcription factors predicted to bind to this promoter. (C3) Graphical representation of promoter of transcript, 
predicted binding sites are indicated by bars. Bar height represents the combined affinity score (by default, a summation 
of log-likelihood scores from each transcription-relevant dataset, or alternatively a subset of datasets defined by user). 
Positive y-axis indicates binding on the positive (sense) strand and negative y-axis represents negative (anti-sense) 
strand. (C4) Score of the correlation of expression between each top predicted TF and the target gene. (C5) Highly 
conserved regions of 70-mammal alignment analyzed as determined by GERP analysis (black bars). (C6) Vertical lines 
represent CpG locations. The red line describes CpG ratio of human promoter sequence over a 100 nt window. (C7) 
Genetic variants identified in the GTEx database to have an effect on the target gene's expression (eQTLs). Green 
indicates positive impact on expression (positive y-axis) and red indicates negative (negative y-axis). (C8) TFBS 
metaclusters identified in the GTRD database (grey bars). (C9) Cell-type agnostic ATAC-Seq peaks (open chromatin) 
retrieved from the ENCODE database (grey bars). (C10) CAGE peaks indicating TSSs identified in the FANTOM database 
(black bars). Nucleotide positions at the bottom are relative to Ensembl defined transcription start site of the target 
transcript, and apply to C3 and C5-C10. 

 

Inclusion of empirical datasets improves TFBSFootprinter accuracy 
The performance of both individual datasets and combinations of datasets, in the identification of 

experimentally verified functional TFBSs and TFBS ChIP-Seq peaks, was tested by receiver operating 

characteristic (ROC) analysis (Figure 5, Figure 6; Supplementary Figures 2–3). Four different 

benchmarking approaches were used. The selection of true positives and true negatives is discussed 

in detail in the Supplementary Materials. Depending on the benchmarking approach used, different 

combinations of transcription-relevant features produced the best ROC scores. We observed that 

when using all available features TFBSFootprinter consistently outperformed the PWM, and that for 

the greater majority of TFs tested the best TFBSFootprinter model outperformed the best DeepBind 

model (benchmark 1, 60/65; benchmark 2, 28/40; benchmark 3, 13/14; and benchmark 4, 11/14). 

In the majority of cases a subset of the available transcription-relevant data produced the optimal 

model (Supplementary Figures 4–5). In addition, the features which were most frequently observed 

as components of the best models (Figure 5A, Figure 6A, Supplementary Figure 2A, Supplementary 

Figure 3A) varied by benchmark. 
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Figure 5. ROC Analysis model performance in the identification of TFBS ChIP-Seq peaks – strong and distal binding. 

ROC analysis was performed for TFs modeled by both JASPAR and DeepBind using associated GTRD ChIP-Seq peaks. 

Peaks with fold-enrichment ≥50x located within -900 and +200 bp relative to an Ensembl-defined protein-coding 

transcript as true positives, and paired sites 1,000 bp upstream as true negatives. ROC analysis was only performed on 

TFs which had at least 100 true positives and 100 true negatives. Each true positive/negative segment analyzed was 50 

nucleotides long, with the highest TFBS score kept as representative. (A) Barplot of the frequency of experimental data 

type in the top 20 performing TFBSFootprinter models. (B) Boxplot of ROC scores for TFBSFootprinter and DeepBind for 

40 TFs (left). ROC scores were also calculated based on using individual experimental metrics to show how well each 

contributes to accuracy of the combined model. (C) ROC scores for each individual TF tested, for each primary TFBS 

prediction model under study. The best scoring model among all is named for each TF (right). TFBSFootprinter best by 

TF, based on using the highest ROC score achieved by some combination of experimental data models; TFBSFootprinter 

overall best, based on using the combination of experimental data models which had the best average ROC score across 

all TFs analyzed; DeepBind best by TF, based on using the higher ROC score of the SELEX or ChIP-Seq DeepBind models. 

Black asterisks denote significant difference of first four models with 'pwm' model and gray asterisks denote significant 

difference between TFBSFootprinter-based models and DeepBind model, as determined by related t-test; * p-

value<0.05, ** p-value <0.005, and *** p-value <0.0005. 
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Figure 6. ROC Analysis model performance in the identification of TFBS ChIP-Seq peaks – strong and weak binding. 

ROC analysis was performed for TFs modeled by both JASPAR and DeepBind using associated GTRD ChIP-Seq peaks 

located within -900 and +200 bp relative to an Ensembl-defined protein-coding transcript, with fold-enrichment ≥50x 

as true positives, and those with fold-enrichment ≤2x as true negatives. ROC analysis was only performed on TFs which 

had at least 100 true positives and 100 true negatives. Each true positive/negative segment analyzed was 50 nucleotides 

long, with the highest TFBS score kept as representative. (A) Barplot of the frequency of experimental data type in the 

top 20 performing TFBSFootprinter models. (B) Boxplot of ROC scores for TFBSFootprinter and DeepBind for 40 TFs 

(left). ROC scores were also calculated based on using individual experimental metrics to show how well each 

contributes to accuracy of the combined model. (C) ROC scores for each individual TF tested, for each primary TFBS 

prediction model under study. The best scoring model among all is named for each TF (right). TFBSFootprinter best by 

TF, based on using the highest ROC score achieved by some combination of experimental data models; TFBSFootprinter 

overall best, based on using the combination of experimental data models which had the best average ROC score across 

all TFs analyzed; DeepBind best by TF, based on using the higher ROC score of the SELEX or ChIP-Seq DeepBind models. 

Black asterisks denote significant difference of first four models with 'pwm' model and gray asterisks denote significant 

difference between TFBSFootprinter-based models and DeepBind model, as determined by related t-test; * p-

value<0.05, ** p-value <0.005, and *** p-value <0.0005. 

Methods 

Analysis of modern human vs. Neanderthal genetic variation 
The Neanderthal Genome Project has cataloged total of 388,388 modern human vs. Neanderthal 

genomes SNPs [1]. These were reduced to 32,953 which occur in promoter regions (-900 to +100 
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nts relative to the TSS) of Ensembl-defined human transcripts. These were further reduced to 13,233 

SNPs in the proximal promoters of those transcripts which are a defined by Ensembl as "protein-

coding". Using the TFBSFootprinter tool, a 50bp region centered on each SNP was analyzed for 

binding of 575 TFs, for both for the modern human version and the Neanderthal version of the 

variant. TFBSFootprinter automatically retrieves the human sequences at a target region, and 

custom Python scripts were used to modify these sequences for analysis of the Neanderthal 

genome. All TFBS predictions which overlap the target SNP position were kept and the complete 

result set reduced using a Benjamini-Hochberg derived critical p-value corresponding to a false 

discovery rate cutoff of 0.01. For each putative TFBS meeting the cutoff in either subspecies, the 

corresponding matched pair of scores was kept. For each TF, using the compiled matched scores, 

the Wilcoxon rank statistical test was performed using the SciPy stats Python library[56] with a p-

value cutoff of 0.01 used to identify statistically different scoring between subspecies. 

 
 

Figure 7. Modern human and Neanderthal variants used in analysis. A) Incidence rate of SNPs/nt in human promoters, 

of the various transcript classes, as defined by Ensembl. Bars are colored by transcript class, correspondent with panel 

B. B) Number of observed modern human/Neanderthal SNPs at each nt location in the promoters of various transcript 

types. A visible depletion of SNPs is observed for the promoters of protein-coding transcripts corresponding with 

increasing proximity to the TSS (nt position 0). C) Counts of total SNPs and indels in promoters of protein-coding 

transcripts, between the three species cataloged in the Neanderthal Genome Project. D) Comparison of counts of 
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human vs. chimp SNPs in promoters of protein-coding vs RNA transcripts. (IG J), immunoglobulin joining chain; (TR J), T-

cell receptor joining chain; (TR D), T-cell receptor diversity chain; (TR V), T-cell receptor variable chain; (IG C), 

immunoglobulin constant chain; (IG V), immunoglobulin variable chain; (IG D), immunoglobulin diversity chain. 

 

A total of 85 TF models were identified as scoring differently across human vs. Neanderthal SNP 

locations. For each of these we extracted RNA-Seq data from the FANTOM data set (across all CAGE 

peaks associated with that TF) and kept the data for the 100 tissues with the highest aggregate 

expression across all of the target TF genes. In the case of hetero-dimer JASPAR TF models (e.g., 

FOS::JUN, NR1H3::RXRA, and POU5F1::SOX2) the expression of each TF component gene was used. 

Expression was extracted as transcripts per million transcripts (TPM) and was normalized by log2 

transformation. From the subsequent normalized expression data values, hierarchical clustering 

was performed and visualized using SciPy, Matplotlib, and Seaborn Python libraries[56-58]. 

The results of hierarchical clustering revealed a cluster of TF genes which showed unique expression 

in neural and immune tissues. These gene sets were used to perform PANTHER-based gene ontology 

enrichment analysis using the www.geneontology.com webserver[59, 60], with the default 

statistical settings using the Fisher's Exact test method and a FDR threshold of p<0.05. 

Analysis of brain expression of differentially binding TFs 
Expression data in the form of reads per kilobase per million reads (RPKM) were extracted for 26 

unique tissues across 31 timepoints (from 8 weeks post-conception to 40 years after birth) from the 

Allen Brain Atlas (brainspan.org). RPKM values were then converted to TPM and log2 transformed. 

Ages were grouped into three phases of growth for simplicity of analysis and interpretation: pcw (8 

to 37 weeks post conception), early (4 months to 4 years), and late (8 years to 40 years). 

Correspondingly, log-transformed TPM values were grouped and averaged and used to perform 

clustermap analysis to identify groupings tissues at time phases with similar expression profiles. 

Analysis of brain sample scRNA-Seq 
The Allen Brain Atlas has performed single-nucleus RNA-Seq analysis of 49,494 nuclei derived from 

8 brain cortex regions within the middle temporal gyrus (MTG), anterior cingulate gyrus (CgGr), 

primary visual cortex (V1C), primary motor cortex (M1C), primary somatosensory cortex (S1C) and 

primary auditory cortex (A1C) [61]. These data were downloaded in the proprietary Allen Brain Atlas 

“.tome” format from the data portal (https://portal.brain-map.org/atlases-and-data/rnaseq). Exon 

and intron read counts were extracted using R library ‘scrattch.io’ 

(https://github.com/AllenInstitute/scrattch/) and loaded into Python library SCANPY [62]. Using a 

modified workflow described previously in [63], samples were filtered by Gaussian fit of read count 

(75,000<x<1,600,000), expressed gene count (2,250<x), and number of cells in which a gene is 

expressed (>50), resulting in a final count of 48,814 cells and 24,615 genes for further analysis. 

Counts were normalized by cell, log transformed, principle component analysis performed with 15 

components, and k-nearest neighbors computed using SCANPY, and then the full data set 

normalized with R package ‘scran’ [64]. Batch correction by individual and sample region was 

performed with SCANPY. The top 4,000 genes with highly differential expression were identified for 

cluster analysis which was performed with three models for comparison: T-distributed stochastic 

neighbor embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and force 

directed graph models. The top 100 marker genes were identified as those with higher expression 
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unique to each cluster by Welch t-test in SCANPY. Expression of the DB TF list genes which were 

identified as a marker gene in a cluster was mapped onto cluster figures. Previously identified mouse 

brain cell type marker genes were extracted from a pre-trained classifier based on scRNA-Seq [55] 

to aid in identification of cell type clusters. Annotation data regarding brain region, cortical layer, 

and GABAergic/glutamatergic/non-neuronal cell type features were extracted from Allen Brain Atlas 

sample data for mapping onto derived cell type clusters. Imaging related to visualization of primary 

visual cortex (Figure 3E) were downloaded using the Allen Brain Atlas API [54]. 

Gene ontology analysis of target cluster marker genes was performed using the Protein Analysis 

Through Evolutionary Relationships (PANTHER) tool at the geneontology.org webserver [60]. 

Ontological term overabundance among cluster marker gene lists were established by Fisher’s exact 

test and results were filtered by FDR<0.05; analyses were performed for 'biological process', 

'molecular function', and 'cellular component' terms. Disease term gene ontology analysis was 

performed using Enrichr [65, 66] based on ontology compiled by DisGeNET [67]. 

TFBSFootprinter Methodology and Scoring 
A computational pipeline was created in Python to allow for automated vertebrate promoter 
sequence retrieval from the Ensembl database (Ensembl version 94 was used in this analysis). The 
user-defined target sequence is then analyzed using 575 different transcription factor position 
weight matrices (PWMs), or a user-defined subset, derived from PFMs taken from the JASPAR 
database. Each TFBS prediction results in a log-likelihood score indicating the likelihood of a 
particular TF binding the DNA at that location. After this initial step, seven additional gene 
transcription related features are assessed for each TFBS prediction, each of which generate their 
own log-likelihood score based on proximity or overlap with these features. The features which may 
be considered for each TFBS prediction are: vertebrate sequence conservation (GERP), proximity to 
CAGE peaks (FANTOM5), correlation of expression between target gene and TF predicted to bind 
promoter (FANTOM5), overlap with ChIP-Seq TF metaclusters (GTRD), overlap with ATAC-Seq peaks 
(ENCODE), eQTLs (GTEx), and observed/expected CpG ratio (Ensembl). A summation of these scores, 
for each putative TFBS, then equals a value which we describe as the ‘combined affinity score’. In 
this way the model’s parameters are significantly more empirically flexible and therefore robust, 
and ultimately generate a more complete picture of a binding site instead of just computational 
prediction of binding affinity to a static set of nucleotides. In the Supplementary Materials are 
described the derivation of the log-likelihood scores for each component of the TFBS footprinting 
tool. A flowchart describing the steps involved in TFBS footprinter analysis is included as 
Supplementary figure 6. 

Analyzing effect of feature combinations on TFBSFootprinter accuracy 
Subsequently, for each method, and for each TF, the correlating true positive and true negative 

scores were used to generate receiver operator characteristic (ROC) curves using the ‘roc_curve’ 

module of the scikit-learn Python library [68]. 

Using the TFBSFootprinter tool, all 128 possible combinations of transcription-relevant features 

(PWM, CAGE, eQTL, metaclusters, ATAC-Seq, CpG, sequence conservation, expression correlation) 

which include PWM as a component were used in scoring of the true positives and true negatives. 

This allowed identification of the best possible feature-combination TFBSFootprinter model for each 

TF, which is described as 'TFBSFootprinter best by TF', as well as the TFBSFootprinter model which 

performed best on average across all TFs, named as 'TFBSFootprinter best overall'. In assessment of 
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the DeepBind tool both available models, based on SELEX or ChIP-Seq data, were used. Using related 

T-test, comparisons of ROC scores were made between PWM and each of TFBSFootprinter best by 

TF, TFBSFootprinter overall best, TFBSFootprinter all features, and DeepBind best by TF. Similarly, 

comparisons were made between DeepBind and each of TFBSFootprinter best by TF, 

TFBSFootprinter overall best, TFBSFootprinter. 

 

Discussion 

Regulatory changes drive evolution 
Current knowledge points to the fact that, across the tree of life, prior to and during major radiations 

of new species, there comes a commensurate increase in the number of regulatory genes. 

Comparative genomic analyses suggest that at the time of eurkaryogenesis, or the origin of the last 

eukaryotic ancestor (LECA), a significant increase in novel TF classes occurred[69]. Eukaryogenesis 

is one of the major transitions of life on Earth, with an explosion of diversity owing to the 

endosymbiotic synthesis of an energy producing α-proteobacteria mitochondrion-progenitor within 

an archaeon[70]. If the new inhouse energy source could be described as the engine driving the 

diversity arising from LECA, the complementary argument could be made that TFs did the steering. 

Later, prior to the colonization of land by plants, there was an increase in the TF families of the 

ancestral aquatic streptophytes which were then already present in the first land plants[71]. Again, 

prior to the radiation of bilaterian (multicellular) metazoans an increase in transcription factor 

families occurred [72], roughly quadrupling in ratio [73]. Arguably, these increases in TF family 

numbers immediately prior to major transitions in life could be pointed to as evidence of the critical 

role of TFs in the rise and adaptation of eukaryotes and the complexity arising from their 

progenitors. 

Far more recently, a transposon-mediated shift in regulatory signaling in mammalian pregnancy has 

led to the endometrial stromal cell type[74] and rewiring of a stress response producing the decidual 

stromal cell type[75]. In humans, the development of our cognitive skills is possibly due to a delay 

of synaptic-function gene expression and corresponding synaptogenesis in the pre-frontal cortex, 

owing to transcription factors such as myocyte enhancer factor 2A (MEF2A) [76-79]. At the same 

time, evidence is accumulating that maturation occurred earlier in the closely-related Neanderthal, 

as it does in chimpanzee [80], which is supported by samples of jaw [81], tooth [82], and, most 

importantly, cranium [83]. A number of SNPs have been identified in the promoter of MEF2A that 

have become fixed since separation of human and Neanderthal lineages [76], and its inclusion as a 

DB TF in our results, and as a marker gene in various cortical cell types, is exciting and warrants 

deeper investigation. Furthermore, development of globular brain structure was not present in 

modern humans at the time of divergence with Neanderthal and Denisovan lineages but has been 

a unique product of modern human development within the last 35,000–100,000 years[84] making 

it also particularly attractive for further analyses. 

Modern human brain and immune regulatory changes 
Hierarchical clustering of TF expression revealed that TF genes associated with neural and immune 

function formed distinct groups. Within the tissue clustering axis, in the neural cluster, adult and 

fetal/newborn neural tissues cluster separately. From this discovery in a broader set of data it 
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became important to focus more closely on the expression of these DB TFs in neural tissues 

specifically. Analysis of RNA-Seq data from whole brain tissues further revealed differences in 

expression of these genes in a chrono, and likely developmentally, dependent manner. Specifically, 

expression of DB TFs in all tissues for the two groups occurring within 8 weeks post conception to 4 

years post birth segregated from all tissues for the group defined by 8 years to 40 years of age. 

Recent proliferation of single-cell transcriptomics has begun to clarify the direct role of transcription 

factors in cell-type determination and identity [85]. To determine in which cell types DB TFs are 

expressed in adult brain, single-nucleus data for 49,494 cortical cells was examined. A subset of the 

DB TFs were annotated as marker genes in some of the 29 cell types identified by Louvain clustering: 

POU Class 6 Homeobox 2 (POU6F2), cut-like homeobox 2 (CUX2), cut-like homeobox 1 (CUX1), 

Myocyte Enhancer Factor 2A (MEF2A), MDS1 and EVI1 complex locus (MECOM), Myocyte Enhancer 

Factor 2C (MEF2C), POU class 3 homeobox 1 (POU3F1), SRY-box 2 (SOX2), and SRY-box 13 (SOX13). 

Human-accelerated regions (HARs) are locations in the genome where the rate of evolutionary 

change has accelerated since divergence with chimpanzee. A study of HARs has shown that they are 

enriched for TFBSs generally, and for TFs associated with neural development specifically. The DB 

TFs identified in our study show significant overlap with TFs which have been revealed to be active 

in HAR regions and whose dysregulation is associated with mental disorder. POU6F2 possesses an 

intronic HAR where a mutant allele (GRCH38:chr7:39,033,595) is associated with ASD [86]. The 

promoter of the CUX1 gene has been determined by ChIA-Pet analysis of chromatin to interact with 

HAR426, located ~200kb away. Unrelated individuals with intellectual disability (ID) (IQ<40) and 

autism spectrum disorder (ASD) have been identified with a homozygous mutation 

(GRCh38:chr7:101,606,361) in this HAR. Luciferase reporter assay indicates that when the mutant 

version of this HAR interacts with the promoter of the CUX1 gene expression is increased by three-

fold, while cultured differentiated neurons with enhanced CUX1 expression produced an increased 

synaptic spine density. Similarly, another HAR is shown to interact with the promoter of MEF2C, and 

a mutation in this HAR (GRCh38:chr5: 88,480,873) creates a putative MEF2A binding site, reducing 

expression by ~50%. Mutations in the MEF2C gene are associated with autism[87, 88], mental 

retardation[87-89], schizophrenia[90, 91], epilepsy[87, 88], and speech abnormalities[87]. 

It has been shown that for the early postnatal period of mouse, FOXP2 is a negative regulator of 

MEF2C, and that the likely result is promotion of synaptogenesis of cortical striatum[92]. 

Interestingly, the FOXP2 gene, perhaps most noted as a "speech" gene, does not show a significant 

difference in binding between modern human and Neanderthal in our results. However, in addition 

to the interaction with MEF2C mentioned, there is a POU3F2 (which our results show is a DB TF) 

binding site within the FOXP2 gene which has been shown to affect FOXP2 expression and which is 

associated with a selective sweep occurring since the divergence of humans and Neanderthal [93]. 

Further analysis is warranted to discover if a difference in FOXP2 binding is observed when analyzing 

other relevant areas, such as introns, 3' UTR, enhancers, etc. 

Lots of work left to do 
These and related questions led us to wonder what are the broader regulatory disparities between 

modern humans and Neanderthal. Using our novel tool TFBSFootprinter, which utilizes several 

transcription-relevant datasets to augment classical PWM scoring, we analyzed 13,233 

promoterome SNPs occurring between the two species. What we have found is that developmental 
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homeobox and forkhead box genes dominate among those TFs which bind differentially among 

modern humans vs. Neanderthal, that for most TFs the strength of binding is more often increased 

in MH, that differentially-binding TFs are most strongly expressed in immunological cell types, and 

that DB TFs appear to coexpress in immune and neural tissues. 

These observations are interesting as they appear to align with what is known already, or assumed, 

about the differences between modern human and Neanderthal, but also provide novel information 

for extended research. 

 

Limitations 
We have not included analyses of 3' UTR, introns, or enhancers. The SNP dataset we used for 

analysis is based on multiple Neanderthal individuals and has a lower sequencing coverage than 

newer datasets. The inclusion of multiple individuals is useful for comparing modern humans to 

Neanderthals as a group, but can only provide a more general comparison. Using a higher coverage 

dataset would allow greater assurance that SNPs under inquiry are legitimate. We chose to perform 

the TFBSFootprinter analysis using all transcription-relevant features available, in the future we plan 

to expand testing and assessment of empirical datasets and incorporate an option to use the 

combination of features which is proven best for each individual TF. 

TFBSFootprinter 
The TFBSFootprinter tool incorporates 7 different transcription-relevant empirical data features in 

the prediction of TFBSs. It can take as input any Ensembl transcript ID from any of 125 vertebrate 

species available in the Ensembl database. Starting with a list of Ensembl transcript ids for a target 

species (e.g., Homo sapiens) TFBSFootprinter will retrieve from the Ensembl REST server, a user-

defined region of DNA sequence surrounding each transcription start site (TSS). The sequence is 

then scored using up to 575 JASPAR TFBS profiles. User-defined p-values may be used to filter 

results; and the corresponding score thresholds have been determined by scoring each JASPAR TFBS 

profile on the complete human genome. Each putative TFBS is then additionally scored based on 

proximity/overlap with TSS, TFBS metaclusters, open chromatin, and eQTLs which affect expression 

levels of the proximal gene, as well as conservation of sequence, correlation of expression with 

proximal (target) gene, and CpG content. Additional transcription-relevant data can be added easily 

in the future as is appropriate. 

We believe that TFBSFootprinter provides an excellent way to predict TFBSs, thus easily 

supplementing current investigations into gene function or providing a means to perform larger 

scale analyses of groups of related target genes. The ability to identify conserved binding sites in a 

large number of species particularly widens its applicability to researchers studying various 

vertebrates. After completion of analysis a publication ready figure depicting the top scoring TFBS 

candidates is produced. Additionally, a number of tables (.csv) and JavaScript Object Notation (.json) 

files presenting various aspects of the results are output. Primary among these is a list of 

computational predictions in the target species which are supported by empirical data, sorted by a 

sum of the combined log likelihood scores (the combined affinity score). Importantly, scoring of 

non-human species becomes limited by the availability of external data for that species; at this time 

the only data available for non-human species are sequence conservation, CpG, and JASPAR motifs. 
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