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» Abstract

2 The Pleistocene glacial cycles had a profound impact on the ranges and genetic
;3 make-up of organisms. Whilst it is clear that the current contact zones between
2 sister taxa are secondary and have formed during the last interglacial, it is un-
»s  clear when the taxa involved began to diverge. Previous estimates are unreliable
s given the stochasticity of genetic drift and the contrasting effects of incomplete
o7 lineage sorting and gene flow on gene divergence. We use genome-wide tran-
s scriptome data to estimate divergence for 18 sister species pairs of European
2 butterflies showing either sympatric or contact zone distributions. We find that
s in most cases species divergence was initiated before the Pleistocene, substan-
a1 tially earlier than assumed previously, and that post divergence gene flow is
» restricted to contact zone pairs, although they are not systematically younger
;3 than sympatric pairs. This suggests that contact zones are not limited to early

s stages in the speciation process, but can involve notably old taxa.

» Introduction

s Divergence in allopatry provides a simple null model of speciation [1]. Fol-
s lowing geographic isolation and given enough time, reproductive isolation is
s inevitable as incompatibilities will eventually become fixed as a result of genetic
» drift and/or selection [2-4]. Taxa that evolved partial reproductive isolation
2 in allopatry may come into secondary contact as a result of range shifts and —
s depending on their degree of reproductive isolation and niche overlap — either

« form a contact zone or invade each other’s range [5, 6]. If allopatric divergence
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s dominates speciation, then local alpha diversity for a given clade cannot accrue
w until secondary sympatry is achieved [7]. Thus the forces that facilitate or ham-
s per secondary sympatry and the timescale over which this occurs have profound
% consequences both for speciation and the spatial distribution of species diversity.
2 While modern ranges only provide a snapshot of the dynamic history of range
s shifts, understanding the extent to which current range overlap between closely
1 related species can be explained by their speciation history and wvice versa has
so been at the core of speciation research [8].

51 The glacial cycles of the Pleistocene had a profound effect on current diver-
2 sity of temperate ecosystems [9-11]. Populations of temperate taxa in Europe
53 were isolated in ice-free refugia around the Mediterranean basin (Iberia, Italy,
s« the Balkans and the larger Mediterranean islands) as glaciers encroached. The
ss observation that the geographic ranges of many young taxa are restricted to in-
ss  dividual glacial refugia in southern Europe [9, 12-14] suggests that this repeated
s7 separation into and expansion out of glacial refugia has played a major role in
s their origin. The availability of allozyme and mitochondrial (mt) data in the
5o 80s and 90s has spurred an abundance of case studies on intra- and interspecific
o diversity of European taxa including detailed investigations of hybrid zones in
s taxa ranging from fire-bellied toads [15], the house mouse [16], grasshoppers
e [17, 18] to plants [19] and marine mussles [20]. The pervading evidence from
&3 these studies is that genetic diversity within and in, many cases, divergence

s« between species is structured by refugia [9, 21, 22].

s When was divergence between sister species initiated?

e While it is clear that the hybrid zones we observe today are secondary contacts
e that formed after the last glacial maximum and may have formed many times

e over throughout the Pleistocene, it is far from clear when divergence between
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e the sister taxa involved was initiated. One possibility is that the Pleistocene
7 glacial cycles initiated species divergence directly by separating populations into
7 allopatric refugia (i.e. a ’species pump’ [23]). Another possibility is that the
7 initial divergence between sister species predates the Pleistocene, and so, any
73 build-up of reproductive isolation during the Pleistocene (e.g. via the fixation of
7+ intrinsic incompatibilities and/or reinforcement) occurred in populations that
»  were already partially diverged. If the Pleistocene species pump hypothesis
7 is correct, we would expect species divergence times across sister pairs to be
77 concentrated during or at the beginning of the Pleistocene about 2.6 million
7 years ago (MYA). The idea that Pleistocene divergence acted as a species pump
79 was first proposed in the context of American faunas [23-25], but has also
so dominated phylogeographic studies on European sister taxa [e.g. 9, 26-29].
s Other studies including some of the early work on European contact zones [5, 17]
&2 conclude that initial divergence of the taxa involved may substantially predate
&2 the Pleistocene [9, 30-32]. An important question to resolve, then, is whether
s divergence of such sister taxa is the result of a "Pleistocene species pump’ or has
ss an older, deeper origin?

8 A corollary for the hypothesis of allopatric speciation in different refugia
&7 1s that range overlap is secondary. Since species can more easily invade each
ss others ranges once sufficient premating barriers and ecological differentiation
s have developed, we would expect species pairs with overlapping ranges to be
o older overall than those without range overlap, all else being equal [8]. Support
o1 for this prediction comes from comparative studies showing that the proportion
» of range overlap (degree of sympatry [33]) is positively (albeit weakly) corre-
s lated with genetic divergence [6, 34]. However, a recent study in Chorthippus
a grasshoppers shows that subspecies that hybridise across contact zones can be

s older than currently sympatric species [35].
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o Mito-nuclear discordance

o Age estimates for recently diverged taxa have largely relied on single locus phy-
s logenies and ignored incomplete lineage sorting. Hewitt [14] summarises age
o estimates for European hybrid zones taxa including mammals, insects, amphib-
wo ians, and reptiles, which range from hundreds of thousands to several million
w years ago. However, given that these estimates are based on different mark-
12 ers and calibrations, the extent to which glacial cycles have initiated speciation
03 events remains unknown. Estimates based on mitochondrial (mt) data are par-
s ticularly unreliable for at least three reasons. First, the mutation rate of mtDNA
s is highly erratic [36]. Second, given the stochasticity of coalescence, the ances-
ws try of a single locus (however well resolved) is a very poor measure of species
w  divergence. In the absence of gene-flow divergence at a single locus may sub-
s stantially predate the onset of species divergence, while it may be much more
e recent in the presence of gene flow [37, 38]. Mito-nuclear discordance in both
uo directions has been found in a large number of animal systems [39] including
w several closely related species of European butterflies [40-42]. Finally, mtDNA
2 does not evolve neutrally since transmission of mitochondria is completely linked
u3  to maternal inheritance of endosymbionts such as Wolbachia and Spiroplasma
us and, in organisms with Z/W sex determination, of the W chromosome. Thus mt
us  diversity and divergence may be driven largely by selective sweeps (including

us  introgression sweeps) rather than neutral gene flow and genetic drift [36, 43-45].

i European butterflies as a model group

us  Lepidoptera are arguably the best-studied arthropod family: European butter-
no flies provide a unique opportunity to investigate divergence and speciation pro-
o cesses comparatively [22]. Near-complete information on geographic ranges and

m  key life-history traits (e.g. voltinism and host plant range) is available [46, 47].
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122 Additionally, the taxonomy of all 496 European species [48] is well resolved and a
13 complete, multilocus phylogeny of all European taxa exists [22]. This combined
124 with extensive DNA barcode reference libraries [22, 49], facilitates the identifi-
s cation of species (especially in the case of cryptic taxa) and provides extensive
s sampling of sister species pairs, many of which abut at narrow contact zones
27 [12, 50, 51] (Figure 1). Secondary contact zones have been described in detail
s for several European taxa, including the Spialia orbifer and S. sertorius [52],
1o the Italian Pontia hybrid zone [53] and the contact zones between Iphiclides
1o podalirus and I. feisthamelii and between Melanargia galathea and M. lachesis
11 along the Pyrenees [54-56].

132 Testing whether climate-induced Pleistocene range shifts have triggered spe-
133 ciation or patterned older splits between species requires replication both at the
134 level of genetic loci and at the level of speciation events. Although we can now
135 generate WGS data for any species, there are surprisingly few reliable estimates
s for the onset of divergence between European sister species and such estimates
w  are lacking even for well studied (non-Lepidopteran) contact zone taxa [but see
s 35, 57).

139 Here we use European butterflies as a model system to investigate to what
uo extent the divergence times between sister species in this group are concentrated
w1 in the Pleistocene, as predicted by the Pleistocene species pump hypothesis, and
12 test how well recent sister species fit a null model of divergence in allopatry. Al-
w3 though European butterflies have been studied intensively, the robust estimates
us  of divergence required for any systematic comparison of speciation are lacking
us  [but see 58]. Wiemers et al. [59] generated a time-calibrated multilocus phy-
us logeny for all European butterfly species. However, these phylogenetic node
w7 ages do not account for ancestral lineage sorting and are largely informed by

us  mitochondrial data and small numbers of nuclear loci (Fig S5). We generate
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1 RNAseq data for 18 sister species pairs and ask the following specific questions:
150 i) Has speciation been initiated during the Pleistocene as envisaged by the
151 species-pump hypothesis or did the glacial cycles pattern pre-existing, older
12 subdivisions?

153 ii) Are sister species pairs that form contact zones younger than pairs that
1« overlap in range?

155 iii) Is there evidence for gene flow in contact zone species?

156 iv) How strongly correlated are mitochondrial and nuclear divergence and

157 do contact zone pairs show increased mito-nuclear discordance?

= Results

150 We identified true sister species pairs in the European butterfly phylogeny [22].
10 Species pairs involving island and mountain endemics, were excluded, as these
11 cannot achieve secondary sympatry. We also did not consider species pairs
12 that are unlikely to have originated in Europe, e.g. sister pairs involving North
163 American taxa. Following these criteria, we sampled 18 sister species pairs.
1« Our sampling includes 7.3 % of European butterfly species and almost all ’good’
s butterfly sister species pairs in Europe [60]. We quantified relative range overlap
s (degree of sympatry) for each pair using occurrence data (see Methods) and,
17 based on this, classified nine pairs as contact zone taxa.

168 For each species, where possible, we generated RNASeq data for two samples,

1o one male and one female from different localities.
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w Most European butterfly sister species predate the Pleis-

i tocene

12 We assumed a simple null model of divergence without gene flow, neutrality
173 and an infinite sites mutation model and used net mean divergence at fourfold
s degenerate (4D) sites d, = dyy — 7 [61] to estimate species divergence time

— da
175 T— 2/4/-

Here 1 is the de novo mutation rate per generation (per base). We
s assumed g = 2.9%107?, an estimate of the spontaneous mutation rate obtained
17 from parent-offspring trios of South American Heliconius melpomene butterflies
ws  [62]. Since both violations of the mutation model (back-mutations) and the
o demographic model (gene flow) reduce d,, this time estimate is a lower bound
10 of the true species divergence time. We converted estimates of species divergence
w1 time (7") into years (7) using the mean generation time of each pair (Table 1).
182 Species divergence times obtained from d, at fourfold degenerate sites (4D)
3 ranged from 0.47 (Leptidea) to 8.5 (Satyrus) MYA, with a mean of 3.8 MYA,
e (Figure 2). Even though these estimates are lower bounds of species divergence
155 (see Discussion), they not only substantially predate the last glacial cycles but,
s in the majority (11 out of 18) pairs, are older than the entire Quaternary period
w7~ 2.6 MY (Table 1). Three of the seven pairs with a recent, Pleistocene diver-
s gence time estimates fall in the early Pleistocene: Pseudophilotes (1.97 MYA),

o Pontia (2.33 MYA) and Spialia (2.55 MYA).

w0 Sister pairs that form contact zones are not significantly
w  younger than sympatric pairs

w2 Mean gene divergence (d,,) at 4D sites between sister species ranged from 1.5%
13 t0 8.5%, with a mean of 4.7% (Table 1, Figure 2) across the 18 pairs. There are

14 two reasons to expect species pairs that form contact zones to be younger than

15 sympatric pairs: First, if speciation under a null model of divergence in allopatry

10
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Figure 2: Species divergence time estimates plotted against mean genetic di-
vergence (dg,) for 18 European butterfly sister species pairs. Pairs which abut
at contact zones (degree of sympatry < 0.2) are shown in yellow, sympatric
pairs with substantial range overlap (> 0.2) in blue. The vertical dashed line
represents the beginning of the Pleistocene (2.6 MYA).
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s is initiated by periods of vicariance, the formation of a contact zone (parapatry)
17 represents an earlier stage in the transition to complete reproductive isolation
s and substantial range overlap (sympatry) [8]. Second, any gene flow across
199 contact zones would reduce d, and hence our estimate of species divergence.
20 The nine pairs that form contact zones (degree of sympatry < 0.2) have a lower
21 net divergence (d, = 0.0287, SD = 0.00930) than the nine sympatric pairs
20 (degree of sympatry > 0.2, d, = 0.0347, SD = 0.0195 Table 1), however, this
203 difference is not significant (t = -0.82999, df = 11.478, p = 0.210). Additionally,
20 we find no relationship between the degree of sympatry and d, (t = 0.723, df =
205 16, p = 0.480). Similarly, we may expect pairs that are still able to form hybrids
206 (i.e. for which F1s have been observed in the wild) to be younger than those
27 that do not. However, contrary to this expectation, we again find no significant
28 difference in net divergence between pairs which do and do not hybridise (d,

20 0.0293 and 0.0329 respectively, t = -0.582, df = 15.861, p = 0.284).

20 Evidence for recent gene flow in some contact zone pairs

an Rather than fit explicit models of demographic history which is difficult using
212 transcriptome data for minimal samples of individuals, we tested for signals of
a3 post divergence gene flow in the distribution of pairwise differences in sequence
2 blocks of a fixed length. This distribution may differ from analytic expectations
25 under a model of neutral divergence (and assuming no recombination within
z6  blocks [63, 64]) in two ways: while gene flow widens the distribution of pairwise
27 differences, recombination within blocks narrows it [65]. Thus, in the absence
a3 of gene flow, we would expect empirical distributions to be narrower than the
219 analytic expectation while wider distributions are indicative of post-divergence
20 gene flow.

21 The empirical distribution of pairwise differences deviated significantly (see

12
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22 Methods for details) from the expectation in a majority of species pairs (12
23 out of 18) (Figure 3 S6). Of these, eight pairs have narrower distributions
24 than expected, compatible with recombination within blocks and four pairs
»s have wider distributions than expected, compatible with post-divergence gene
»s flow (Pseudophilotes, Pontia, Iphiclides, Zerynthia). While the eight pairs with
27 narrower distributions are equally split between contact and sympatric pairs, all
2  four taxa with wider distributions are contact zone pairs (Figure 3). However,
29 given the limited number of pairs overall, this difference between contact zones

20 and sympatric pairs is not significant (Fisher’s exact test, p = 0.0901).

1 Pervasive mito-nuclear discordance in contact zone species

x  pairs

23 Our estimates of species divergence are based on average net divergence (d,)
24 across many hundreds of genes and are robust to how orthologues are filtered
25 (Figure S1). Given that previous studies on European butterflies have been
26 largely based on mitochondrial (mt) phylogenies, an important question is to
27 what extent mit divergence is correlated with mean nuclear divergence. We find
2 that both d, and d,, at COI are positively but only weakly correlated with mean
2 nuclear divergence (Figure 4). The correlation is weaker for d, than d,, (R?
20 = 0.27 and 0.31 respectively) which is compatible with mitochondrial diversity
21 (and hence d,;) being disproportionately affected by selective sweeps. Similarly,
22 comparing the relation between mt and nuclear d, between contact zone and
23 sympatric pairs, we find a much shallower slope for contact zone pairs (0.29
2 compared to 0.99, Figure 4)). This difference is largely a result of reduced mt
25 diversity in contact zone compared to sympatric pairs (mean 7 = 0.0030, SD =
26 0.0014 and 7 = 0.0047, SD = 0.0031 respectively t = 1.5763, df = 11.324, p =

27 0.0712). This suggests that mt diversity is more strongly affected by selective

13
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Figure 3: The distribution of pairwise differences (in blocks of a fixed length of
4D sites) in contact (upper box) and sympatric (lower box) pairs. The observed
distribution in single copy orthologues is shown in orange, the expectation under
a history of strict divergence (estimated from 7 and d,;) in grey. Pairs that show
wider than expected distributions are marked with an asterisk (*) and species
which show narrower than expected distributions are marked with a plus (+).
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s sweeps in contact zone species than in sympatric pairs. We find no corresponding
220 difference in nuclear diversity between contact zones and sympatric pairs (t =
50 -0.0139, df = 31.539, p = 0.506) and, in general, no correlation between nuclear
21 and mt diversity (Figure SS3 and [66]).

252 Our estimates for the lower bound of sister species divergence differ sub-
253 stantially from the ages of the corresponding nodes in the Wiemers et al. [59]
¢ phylogeny for individual pairs (Fig S4). This is unsurprising given that the lat-
255 ter are largely informed by mtDNA data. However, perhaps surprisingly (given
26 the difference in calibration, data and inference approach) our estimates are not
257 consistently older or younger than the node ages of Wiemers et al. [59] (tpaired
s = -1.105, df = 17, p = 0.285). A standardized major axis regression shows
20 a significant relationship (R squared = 0.3657, p = 0.00780), a slope (1.377)
20 not different from one (r= 0.3786, p = 0.121) and an intercept (-0.5750) not

21 different from zero (Fig S4).

x (Genetic diversity does not correlate with relative range size

3 Genetic diversity at 4D sites within all 36 species ranged from 0.32% to 4.2%
¢ with a mean of 1.5%. Given the H. melpomene mutation rate of p = 2.9 x
s 1072 [62], these correspond to effective population sizes ranging from 280,000
26 t0 3,600,000 with a mean of 1,300,000. Mackintosh et al. [66] tested whether
27 neutral genetic diversity across European butterflies correlates with geographic
s range and found no significant relation across 38 taxa. Our sampling of species
x%0 pairs allows for a simpler, alternative test of the potential relationship between
a0 diversity and range size using sister-clade comparisons which are less sensitive
on to potential phylogenetic correlates and uncertainty in current range estimates.
a2 If diversity is a function of range size, we expect the species in a pair with the

13 larger range to have higher genetic diversity than the species with the smaller
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on range. We indeed find a difference in the expected direction, 0.0167 (SD =
zs 0.0114) vs. 0.0139 (SD = 0.00865), although the effect of relative range size is
2 not significant (tpaireq = 1.127, df = 17, p = 0.138, Figure S2).

- IDiscussion

s We quantify and compare genome-wide divergence across 18 sister species pairs
a9 of European butterfly. Simple estimates for the onset of species divergence based
20 on net gene divergence (d,) and a direct mutation rate estimate for butterflies
s suggest that the majority of pairs have diverged before the onset of Pleistocene
22 glacial cycling. Our results support the notion that the modern contact zones
23 are secondary between species which started diverging earlier, in the Pliocene.
2a Thus, even though the current ranges of many taxon pairs reflect glacial refugia,
s their divergence is unlikely to have been initiated by vicariance into these refugia
2 during the Pleistocene, as envisaged by the species-pump hypothesis and earlier
27 phylogeographic studies based on mt and allozyme data [e.g. 27, 28, 67-69].
s Given the Pliocene age of most of the sister species, it is unsurprising that
20 we do not find any relationship between current range overlap and the time
20 since divergence. Specifically, species pairs which form contact zones are not
20 significantly younger than pairs that broadly overlap in range. However, we do
22 find that strong signals of post-divergence gene flow are restricted to contact-
203 zone pairs. It is likely that the absence of sympatric pairs with significant gene
24 flow reflects a simple survivorship bias: any such pairs with significant gene
2s  flow might have already collapsed. Similarly, we are more likely to observe old
206 contact zones pairs that have survived repeated glacial cycles.

207 Our finding that mt divergence between sister species is only weakly cor-
2 related with mean nuclear divergence and that net mt divergence is greater in

20 contact zone than sympatric species pairs (as a result of reduced genetic di-
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w0 versity), suggests that the former are subject to more frequent selective sweeps
so linked to mitochondria. Such sweeps may be acting on mt variation directly
32 or, indirectly, through maternally inherited genomes or chromosomes (e.g. Wol-
w3 bachia [43] and the W chromosome) and have been documented in a number
s of Lepidopteran systems [45, 70-73]. Our results raise the intriguing possibil-
s ity that such sweeps could play a role in the build-up of reproductive isolation

306 [74776} .

w  Sources of dating uncertainty and bias

w8 Since we have assumed a simple demographic null model of species divergence
0 without gene flow, our estimates of divergence between sister species should be
s interpreted as lower bounds. Any gene flow between sister species would reduce
su  dg and species divergence estimates both by decreasing d., and by potentially
sz increasing 7 (in the recipient species).

313 Calibrating absolute split times involves assumptions about both the gener-
s ation time and the mutation rate. We have assumed that the mutation rate is
a5 the same (per generation) across all species pairs, irrespective of their genera-
a5 tion time and applied a direct lab estimate of the per generation mutation rate
sir - from the tropical butterfly H. melpomene. Whilst there is good evidence for a
as  generation time effect on mutation rates in invertebrates [77], our assumption
a9 of a simple linear relationship between generation time and sequence divergence
20 may be overly simplistic. In particular, if temperate European species, which
a1 have longer average generation times than H. melpomene, have a higher per gen-
s eration mutation rate, we would have overestimated the age of sister species.
23 In contrast, given that generation time varies between populations, species, and
2 likely through time, our use of the average minimum generation time (within

»s each pair) as a proxy for the long term generation time is conservative: assum-
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w6 ing longer average generation times would yield even older estimates species
w7 divergence. Given these uncertainties in calibration and the fact that we have
»s ignored the measurement error in the H. melpomene mutation rate, our ab-
30 solute time estimates should be interpreted with caution until direct mutation
;0 rate estimates for temperate butterflies are available. However, in the absence of
s information on mutation rate heterogeneity across Lepidoptera, our main con-
s clusion that most sister species of European butterflies predate the Pleistocene
;3 would still hold if mutation rates were higher by a factor of two. Given that
s the direct estimate of the de novo mutation rate in H. melpomene is similar
1 to spontaneous mutation rate estimates for other insects [62], this seems ex-
a6 tremely unlikely. While our split time estimates may be surprising in light of
s previous phylogeographic studies on European butterflies based on mt diversity
s [e.g. 27, 28, 67-69], our divergence estimate for Leptidea reali and L. sinapis,
s the youngest and only pair for which divergence has been estimated based on

s genome-wide data before, is lower than previous estimates [58].

s« Glacial cycling and the Messinian salinity crisis

s Taking our estimates of species splits at face value, the species divergence for
a3 10 species pairs predates the onset of Pleistocene glacial cycling > 2.6 MYA
se  [78]. This is not compatible with the idea that, overall, speciation processes in
us Buropean butterflies were initiated by the range shifts into and out of glacial
us refugia during the Pleistocene. However, our age estimates do of course not rule
u7 out that Pleistocene range shifts and vicariance may have played a role in com-
us  pleting speciation processes, e.g. through reinforcement and/or the evolution of
a9 intrinsic incompatibilities.

350 An event which may have contributed to speciation in Europe before the on-

s set of Pleistocene glacial cycling is the Messinian salinity crisis (MSC) ~ 6MYA
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52 during which the Mediterranean greatly reduced in size [79]. As a consequence,
3 Europe and Africa were connected across the strait of Gibraltar until the Zan-
s clean flood when the Atlantic reconnected to the re-expanding Mediterranean
s sea. This must have created a strong dispersal barrier for many species that pre-
36 viously had continuous distributions around the Mediterranean basin and may
s have initiated the divergence into the east and west European/Mediterranean
38 sister taxa. While the MSC has been considered as a plausible trigger of species
30 divergence in amphibians [57] and reptiles [80], it has rarely been invoked
w0 for Lepidopterans (see recent insights into mitochondrial lineages in Melitaea

s1  didyma [41]) which have assumed to have been younger.

w» Do European butterfly species fall within the grey zone of

w speciation?

s« Roux et al. [81] conducted a comparative analysis of divergence and gene flow
s across 61 pairs of sister taxa and found that pairs with net synonymous diver-
6 gence of > 2% rarely show evidence for ongoing gene flow. In contrast, taxa
sev - with d, between 0.5% and 2% may show some evidence for ongoing gene flow
s and ambiguous species status, suggesting that speciation may be incomplete.
30 While our five youngest pairs (Brenthis, Colias, Leptidea, Pseudophilotes, and
s Pyrgus) fall in this “grey zone of speciation”, we only find evidence for gene flow
s in one (Pseudophilotes). In contrast, we find a clear gene flow signal in three
s» more diverged pairs: Iphiclides, d, = 2.09%; Zerynthia, d, = 2.79%; Pontia, d,
s = 4.05%. However, as we have focused sampling on ”good species” sensu Mallet
s [60] we are missing the recent (intraspecific) end of the continuum of divergence
ws described by Roux et al. [81]. It will be interesting to test whether intraspecific
ars  split times between refugial populations of butterflies are concentrated in the

sz mid Pleistocene, a patterns that has been found for other herbivorous insect
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ss  and their parasitoids [82]. Nevertheless, our contrasting finding of both gene
s flow signals in old contact zone pairs (e.g. Pontia) and no evidence for gene
10 flow (and complete sympatry) in the youngest pair (Leptidea) suggests that the

s grey zone of speciation” may be very wide indeed for European butterflies.

s QOutlook

33 Given the challenges of demographic inference from transcriptome data (in par-
s ticular the high relative recombination rate in butterflies), we have deliberately
s resisted the temptation to fit explicit models of demographic history. Our goal
s was instead to establish robust and comparable lower bounds for the age of
7 butterfly sister species in Europe. Being based on mean divergence at 4D sites,
s these lower bounds for species ages make minimal assumptions and unaffected
s by recombination. Likewise, we have decided to focus on a simple and conser-
s0  vative diagnostic for introgression.

301 Delving deeper into the speciation process will require examination of whole-
;2 genome data from larger samples under realistic models of speciation history.
303 Fitting explicit models of speciation, ideally including both selection and gene
s flow, would not only refine estimates for the onset of divergence between re-
35 cent species but also allow us to quantify the likely end-points (if present) of
w6 speciation processes. While it is straightforward to determine lower bounds for
s7  the onset of divergence under simple null models that assume no gene flow,
s as we have done here, estimating upper bounds of species divergence in the
39 presence of gene flow is a much harder inference problem. As pointed out by
wo Barton [5], the initial time of divergence may be unknowable given that post-
a1 divergence gene flow eventually erases all information about this parameter.
a2 Although current and historic levels of gene flow between European butterfly

w03 sister species remain to be determined, our results already suggest that their
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w04 speciation histories are older and potentially slower than had been assumed by
ws  previous phylogeographic studies based on mt data. It will be fascinating to
ws understand the evolutionary forces that drive both this general pattern as well
w7 as its exceptions, in particular, the selection responsible for the origin of very
w8 young but complete (in terms of reproductive isolation) cryptic species such as

wo  Leptidea [83] and the recently discovered Spialia rosae [84].

» Methods

a1 Sampling and molecular work

a2 Field sampling was conducted over multiple seasons (2016-2019) at several lo-
a3 cations across Southern and Central Europe (Portugal, Spain, France, Hungary,
ss  Romania). Samples were hand-netted in the field, flash-frozen in a liquid nitro-
a5 gen dry shipper (Voyageur 12) and stored at -70 °C' shortly after capture (wings
a6 were retained for identification). Specimen identifications were confirmed for 22
a7 samples by DNA barcoding using LepF /R primers [85] and existing reference
s databases [49]. We were unable to obtain fresh material for Erebia euryale and
a0 E. ligea, and Fabriciana adippe and F. niobe (two remaining sister pairs meeting
w20 our sampling criteria).

a1 RNA extractions were prepared by dividing individuals bilaterally and us-
2 ing one side. RNA was extracted following a hybrid protocol by homogenising
w23 samples with TRIzol, then digesting DNA and eluting RNA using the Purelink
w20 RNA Purification kit protocol. Extracted RNA was submitted to Edinburgh
25 Genomics to generate automated TruSeq stranded mRNA-seq libraries. Li-
w6 braries were sequenced on an Illumina NovaSeq platform using 100PE reads
w2 after poly-A selection. Transcriptome data for 66 samples (across 38 species)

w8 were generated and analysed previously by Mackintosh et al. [66]. Of these, 26
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w2 samples from 13 species are included in the present analysis (Table S1).

= (Generating transcriptome assemblies

= Reads were processed following the pipeline developed by [66]. Reads were
a2 trimmed and checked for quality using FastQC v0.11.8 [86] both before and
a3 after trimming with FastP v0.20.0 [87] using MultiQC v1.7 [88] to visualise
s the results. Trimmed reads were assembled into de novo transcriptomes using
.5 Trinity v2.8.5 [89], pooling data-sets by species.

436 Transcriptome completeness was assessed using BUSCO v3 [90] with the in-
wr sectaodb9 database. Transcripts were processed with Transdecoder v5.5 [91],
s and retained based on BLAST [92] and HMMER [93] homology search re-
a0 sults. Read pairs from each sample were mapped against respective species
w0 transcriptome, composed of the longest isoform of each complete protein-coding
w1 transcript, using BWA MEM [94] . Coverage at mapped sites was determined
w2 using GATK CallableLoci v3.5 [95]. Sites with at least 10 fold coverage and
43 a minimum mapping quality of 1 in each sample were considered suitable for
ws variant calling. Callable loci were intersected between individuals using BED-
ws  Tools v2.28 [96], variants were called using FreeBayes v1.3.1 [97] and filtered for
ws  unbalanced SNPs and missing genotypes (RPL >1 RPR>1 SAF>1 SAR>1
wr N_MISSING=0) using BCFtools filter v0.1.19 [98].

418 To generate comparable data-sets across all samples, Orthofinder v2.3.3 [99]
uo  was used to cluster proteins into orthogroups. Orthogroups were labelled single-
w0 copy orthologues (SCOs) if one protein of each taxon was present. Genus single-
s copy orthologues (GSCOs) were diagnosed based on the presence of single copy
w2 proteins within the focal pair. Protein sequences from each orthogroup were
i3 used to align equivalent DNA sequences using Translatorx v12.0 [100].

454 Data were generated for 36 species (18 sister pairs) from five families. For
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ss 16 pairs, data were generated from 665 SCOs from high-quality transcriptomes
w6 (BUSCO scores > 90%). For the pair of Zerynthia species (one of which, Zeryn-
w7 thia polyzena, was sampled as a larva) GSCOs (5000 orthologues) were used to
s avoid restricting the SCOs for other pairs. With the exception of the Zerynthia
w0 pair, all analyses are based on SCO to enforce consistent comparisons across
wo pairs. While the SCO data-set is much smaller than the pair GSCO data-sets
w1 and likely enriched for conserved and highly expressed genes, this has very lit-
w2 tle impact on estimates of divergence and diversity at fourfold degenerate (4D)

w63 sites, as these are highly correlated (>99%, Figure SS1 and [66]).

« Estimating gene and population divergence

a5 For each species pair, we calculated d, at 4D sites using sequence alignments for
w6 one or two diploid samples from each species where available. This calculation is
w7 implemented in the script orthodiver.py (www.github.com/samebdon/orthodiver).
468 Information on generation times was compiled from Collins Butterfly Guide
o [47] (Table 1). For species in which generation times vary with latitude, we as-
a0 sumed the minimum generation time of the southern part of the range. This is
a1 a reasonable long term average, given that European glacial refugia are located
a2 around the Mediterranean, which renders our estimates of divergence conserva-
a3 tive.

474 We considered the distribution of pairwise differences in blocks of a fixed
a5 length of 4D sites. The block size for each pair was selected to give an average
a6 of three pairwise differences between sister species per block. To examine how
a7 well the distribution of pairwise differences of each species pair fits a null model
as of divergence without gene flow, we compared the observed distribution to the
a9 analytic expectation (assuming 7' and ancestral N, estimated from mean =

w0 and dgy). In the absence of recombination within blocks, the distribution of
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w1 pairwise differences has been derived by [63, 64]. However, given the high rate of
sz recombination (relative to mutation) in butterflies [101, 102] and the substantial
s3 span of 4D blocks, we expect the empirical distribution to be narrower than this
s analytic expectation. To test whether species pairs show evidence for gene flow,
a5 we compared the observed distributions to analytic expectations under a model
w6 of strict divergence without gene flow (given estimates of 7' and ancestral N,
w7 obtained from d, and mean m): we re-sampled (without replacement) 10,000
a3 data-sets of equal size as the observed data-sets from the expected distribution of
a0 each species. We then tested whether the likelihood of the observed distribution
a0 of pairwise differences falls within the distribution of likelihoods obtained from

w1 re-sampled data-sets.

« Estimating range size and overlap

w3 Geographic ranges were quantified as follows: we obtained occurrence data over
w4 Furope for all the studied species with a resolution of 60’ latitude and 30’
w5 longitude by critically revising the data from the Distribution Atlas of European
w6 Butterflies and Skippers [103] and by adding data from Roger Vila’s collection
w7 stored at Institut de Biologia Evolutiva (Barcelona). To calculate range overlap
w8 we applied the biodecrypt function [51] of the recluster R package [104]. This
w9 function computes alpha hull with a given concavity («) and evaluates the area
soo of overlap among pairs of species. We used @« = 2 and a = 3 for species
s with discontinuous and continuous distributions in Europe respectively. We
s quantified the range overlap of each species pair and calculated the degree of

53 Sympatry as:

Overlap B
Sympatry = ————— 1
ymparry min(Areaa p) (1)
504 representing the fraction of the distribution area of the less widespread
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sos species which is involved in the overlap. In the following, we consider sister
sos  pairs with a degree of sympatry 0.2 contact zone pairs and those with a degree
sov  of sympatry > 0.2 sympatric. However, since there are only two species pairs
ss  with intermediate levels of sympatry (> 0.2 and < 0.7), our comparisons of

so0 contact zone and sympatric pairs are robust to a wide range of thresholds.

s0 Mitochondrial diversity and divergence

su  Sequence alignments for the COI barcode locus were obtained from the BOLD
sz database [105] for all 18 sister species pairs. Sequence alignments are deposited
s in the dryad repository xxx. For each species, we included all available sequence
s records from Europe. Mean pairwise diversity (7) within species and divergence
sis (dgy) across all sites were computed using DnaSP [106].

516 We obtained the average gene divergence time for each pair from the mul-
sz tilocus calibrated phylogeny of European butterflies of Wiemers et al. [59] as
sie  half of patristic distances calculated with distTips function of the adephylo R
siw  package [107]. The correlation between our estimates of species divergences and
s0 these node ages was explored with standardized major axis (SMA) regression,
s using the ‘sma’ function of the ‘smatr’ R package. SMA estimates slope and

s intercept and tests if slope differs from one.
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Figure S2: Mean diversity () at 4D sites for 18 butterfly species pairs. In most
(10) pairs, the species with the smaller range has lower .
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Mitochondrial Diversity

Figure S3: Mitochondrial diversity against nuclear diversity estimated at 4D
sites for 36 butterfly species. The slope of best fit is positive (0.07, R? =
0.0144) but not significant (t = 1.229, df = 34, p = 0.228).

43


https://doi.org/10.1101/2020.09.04.282962
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.04.282962; this version posted September 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o™ _|
-—
ymelicus
o _| o
-—
@ Satyrus

CO —
<
>
= Satyrium
o
o ©
o
1]
EJ Zerynthia
© _
E =~ Melanarg| r
= Euchloe
w Fol) !
& s @@ Forommate

Fieris (@ Lasiommata
’ Portia
o — Pyrgus Spialia
eudophilotes
Iphiclides
Colias
o ern‘dea
[ [ T I I I l
0 2 4 6 8 10 12

Estimated age (MYA) (Wiemers et al., 2020)

Figure S4: A standardized major axis regression showing a relationship between
the age estimates of sister pair nodes in the time calibrated multilocus phylogeny
of Wiemers et al. [59] and our estimates from nuclear 4D sites. Yellow data
points represent species pairs which abut at contact zones, and blue represents
sympatric pairs.
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Figure S5: Distribution of the number of loci used by Wiemers et al. [59] for
the species used in our study.
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Figure S6: Distribution of log-likelihoods obtained by re-sampling 10,000 data-
sets from the expected distribution of S for each species pair. The red dashed
line is the log-likelihood of the observed data. Data-sets with a Z score greater
than 1.96 show narrower S distributions than expected. Data-sets with a Z score
less than -1.96 show broader S distributions than expected.
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