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ABSTRACT 25 

 26 

A large part of a plants’ developmental plasticity relies on the activities of the phytohormone auxin 27 

and the regulation of its own distribution. This process involves a cohort of transcriptional and non-28 

transcriptional effects of auxin on polar auxin transport, regulating the abundancy, biochemical 29 

activity and polar localization of the molecular components, predominantly PIN auxin exporters. 30 

While the transcriptional auxin signaling cascade has been well characterized, the mechanism and role 31 

of non-transcriptional auxin signaling remains largely elusive. Here, we addressed the potential 32 

involvement of auxin-induced Ca2+ signaling in auxin’s inhibitory effect on PIN endocytic trafficking. 33 

On the one hand, exogenous manipulations of Ca2+ availability and signaling effectively antagonized 34 

auxin effects suggesting that auxin-induced Ca2+ signaling is required for inhibition of internalization. 35 

On the other hand, we addressed the auxin-mediated inhibition of PIN internalization in the auxin 36 

signaling (tir1afb2,3) or Ca2+  channel (cngc14) mutants. These mutants were strongly defective in 37 

auxin-triggered Ca2+ signaling, but not in auxin-inhibited internalization. These data imply that, while 38 

Ca2+ signaling may be required for normal PIN trafficking, auxin-mediated increase in Ca2+ signaling is 39 

not a direct part of a downstream mechanism that mediates auxin effects on Brefeldin A-visualized 40 

PIN intercellular aggregation. These contrasting results obtained by comparing the mutant analysis 41 

versus the exogenous manipulations of Ca2+ availability and signaling illustrate the critical importance 42 

of genetics to unravel the role of Ca2+ in a process of interest. 43 

 44 
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INTRODUCTION 48 

 49 

Calcium cross-links pectinate polymers and is therefore an important structural determinant of the cell 50 

wall (Feng et al., 2018; Cosgrove and Anderson, 2020), and inside the cell it directly modulates the 51 

biochemical activities of proteins, Ca2+ sensors (relays and responders) and phospholipids, impacting on 52 

numerous cellular processes (Himschoot et al., 2017; Kudla et al., 2018). The pleiotropic activities of Ca2+ 53 

necessitate submicromolar range Ca2+ levels in the cytoplasm, while in the apoplast and in the lumen of 54 

organelles, Ca2+ levels are several orders of magnitude higher (Stael et al., 2012; Costa et al., 2018). Such 55 

steep concentration gradients allow to trigger a local significant increase in Ca2+ levels by the simple 56 

opening of a few channels in response to a specific stimulus (Demidchik et al., 2018). In a typical 57 

signaling cascade, the cytoplasmic increase of Ca2+ is decoded by specialized proteins that translate the 58 

Ca2+ signal into defined cellular responses, such as the modulation of channels or kinases (Kudla et al., 59 

2018).  60 

The plant Ca2+ signaling toolkit is strongly diversified in comparison to the one in animals (Edel et 61 

al., 2017), most prominently reflected in the existence of plant and animal specific Ca2+ signaling 62 

components, such as  inositol (1,4,5)-triphosphate receptors, and ryanodine receptors. Despite this 63 

important diversification, the current commonly used Ca2+ pharmacology consists of very general 64 

inhibitors or chelators, or inhibitors that were designed to target mammalian Ca2+ channels and signaling 65 

components (De Vriese et al., 2018). In most cases, the molecular targets of the inhibitors are not well 66 

enough conserved or even absent in plants, making it difficult to make strong claims based on inhibitor 67 

studies.  68 

The signaling function of Ca2+ is currently best understood in the context of abiotic and biotic 69 

stress responses (Kudla et al., 2018), guard cell movement (Konrad et al., 2018) and in pollen tubes (Guo 70 

and Yang, 2020). In contrast, the function of the since long described auxin-induced Ca2+ response 71 
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remains largely elusive (Vanneste and Friml, 2013; Shih et al., 2015; Dindas et al., 2018). Only recently, 72 

this for long overlooked aspect of auxin signaling regained attention with the identification of the non-73 

selective cation channel CNGC14 as a critical component of auxin-induced Ca2+ entry (Shih et al., 2015; 74 

Dindas et al., 2018). CNGC14 activity was proposed to participate in root gravitropism (Shih et al., 2015) 75 

and root hair development (Dindas et al., 2018; Brost et al., 2019). Additionally, manipulations of Ca2+ 76 

availability and channels revealed connections to polar auxin transport (Dela Fuente and Leopold, 1973) 77 

and polarization of auxin transporters (Zhang et al., 2011; Li et al., 2019), indicating an important 78 

interplay between auxin and Ca2+. 79 

 In contrast to our poor understanding of auxin-induced Ca2+ signaling, the mechanism of auxin-80 

induced transcriptional changes has been characterized in great detail (Lavy and Estelle, 2016; Roosjen 81 

et al., 2018; Powers and Strader, 2020). The canonical pathway for auxin-induced transcription involves 82 

the auxin-stabilized interaction between TIR1/AFB F-box proteins and Aux/IAA transcriptional co-83 

repressors (Dharmasiri et al., 2005; Kepinski and Leyser, 2005). This results in the ubiquitination and 84 

proteolysis of the latter (Nemhauser, 2018). Consequently, the transcriptional repressive effect imposed 85 

by Aux/IAA on ARF transcription factors is released, and auxin-induced transcription can proceed 86 

(Pierre-Jerome et al., 2016; Roosjen et al., 2018). Recently, a non-transcriptional branch of TIR1-based 87 

auxin signaling was demonstrated to effect acute inhibition of elongation (Fendrych et al., 2018; Gallei 88 

et al., 2020). Moreover, the non-transcriptional repertoire of TIR1/AFBs was recently further expanded 89 

by the observation that tir1/afb2,3 mutants are defective in auxin-induced Ca2+ signaling (Dindas et al., 90 

2018). Additionally, auxin signals converging on pavement cell morphogenesis (Xu et al., 2010), lipid 91 

composition and distribution (Pan et al., 2009; Li et al., 2015; Platre et al., 2019), cell division during 92 

lateral root formation (Huang et al., 2019), suppression of auxin biosynthesis (Wang et al., 2020), 93 

stability and polarity of PIN proteins (Abas et al., 2006; Sauer et al., 2006; Baster et al., 2013; Prat et al., 94 

2018; Mazur et al., 2020), and their internalization (Paciorek et al., 2005; Robert et al., 2010; Platre et 95 
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al., 2019), possibly act via alternative auxin perception mechanisms, such as the receptor like kinase 96 

family TRANSMEMBRANE KINASE1-4 (Cao et al., 2019; Huang et al., 2019; Platre et al., 2019). 97 

Based on the non-transcriptional character of the inhibition of internalization by NAA (Robert et 98 

al., 2010; Zhang et al., 2020), we postulated that auxin-induced Ca2+ signaling could be a signaling 99 

component in this response to NAA. Therefore, followed two strategies. On the one hand, we 100 

manipulated NAA-induced Ca2+ signaling using inhibitors or washing seedlings in Ca2+ free medium. We 101 

validated their effects on NAA-induced Ca2+ signaling, and assessed their impact on NAA-inhibited 102 

internalization. This approach provided a convincing and tight correlation between NAA-induced Ca2+ 103 

signaling and NAA’s ability to inhibit internalization. However, this correlation between Ca2+ signaling 104 

and inhibition of internalization could not be confirmed in tir1/afb and cngc14, two mutants that are 105 

specifically defective auxin-induced Ca2+ signaling. This discrepancy in outcome between both 106 

approaches calls for extreme caution when analyzing the role of Ca2+ in a process of interest as current 107 

pharmacology or manipulations of Ca2+ availability are prone to pleiotropic, misleading effects. 108 

 109 

RESULTS 110 

Characterization of NAA-induced Ca2+ signaling. 111 

The synthetic auxin, 1-naphthaleneacetic acid (NAA) is widely used in auxin biology as a proxy for the 112 

endogenous auxin indole-3-acetic acid (IAA) and is a more potent inhibitor of internalization than IAA 113 

(Paciorek et al., 2005). Because we wanted to evaluate the role of Ca2+ signaling in inhibition of 114 

internalization, we set out to characterize the NAA-induced Ca2+ response in Arabidopsis root meristems 115 

in more detail. The cytoplasmic, intensiometric Ca2+ indicator R-GECO1 (Keinath et al., 2015) reported an 116 

instant cytosolic Ca2+ elevation in response to 10µM NAA application (Figure 1A,B; Supplemental Movie 117 

S1). Also at lower concentrations (1µM and 0.1µM), NAA triggered rapid Ca2+ signaling, albeit with 118 

smaller amplitude (Figure 1B), illustrating a dose-dependence of the maximal response, similar to the 119 
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one reported for the natural auxin indole-3-acetic acid (IAA) (Dindas et al., 2018). The onset of the Ca2+ 120 

increase started within seconds after NAA application, and reached a maximum after ±70 sec, followed 121 

by a gradual attenuation response. Similarly, subcellular targeting of ratiometric Ca2+ sensors revealed a 122 

rise in Ca2+ concentrations in the cytoplasm (visualized with NES-YC3.6 (Krebs et al., 2012)), in the 123 

cytosol near the plasma membrane (visualized with PM-YC3.6-Lti6b (Krebs et al., 2012)), in the 124 

endoplasmic reticulum lumen (visualized with CRT-D4ER (Bonza et al., 2013)) and in mitochondria 125 

(visualized with 4mt-YC3.6 (Loro et al., 2012)) (Supplemental Figure S1A-D). The signals in the ER and 126 

mitochondria were slightly delayed compared to the other reporters (Supplemental Figure S1C,D), 127 

suggesting that these organelles may act as Ca2+ sinks for attenuation of the cytoplasmic Ca2+ signal. The 128 

lack of Ca2+ response after benzoic acid (BA) treatment (Supplemental Figure S1E,G), shows that the Ca2+ 129 

response to NAA was not a response to acidification associated with NAA treatment. The NAA-induced 130 

Ca2+ response could be inhibited pharmacologically by the Ca2+ channel inhibitors Bepridil and Nifedipine 131 

(De Vriese et al., 2018; De Vriese et al., 2019) (Supplemental Figure S1F,G; Supplementary Movies 132 

S2,S3).  133 

Additionally, we modulated the available extracellular Ca2+ by washing the seedlings with 134 

0.5xMS medium that lacked CaCl2 (hereafter referred to as CaMIN). This simple treatment was sufficient 135 

to reduce the NAA-induced Ca2+ response in comparison to normal 0.5xMS medium (≈1.5mM CaCl2, 136 

hereafter CaPLUS) (Figure 1C). Jointly, these data suggest that NAA triggers a complex Ca2+ response that 137 

largely depends on extracellular Ca2+. 138 
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 139 

Figure 1. Apoplastic Ca2+ determines the amplitude of auxin-induced cytosolic Ca2+ dynamics. 140 

A. Single frames of the dynamic response of the Ca2+ sensor, R-GECO1, at indicated time points after 141 

10µM NAA treatment. Scale bar = 20 µm.  142 

B. Averaged and normalized R-GECO1 fluorescence intensities over time upon treatment with 0.1% 143 

DMSO, 10μM NAA, 1μM NAA, or 100nM NAA. (nr of seedlings = 3, 12, 10, 12 respectively, 144 

means +s.e.m.). DMSO and NAA treatments were applied at time point 0.  145 

C. Boxplot representation of the maximal amplitude of the treatments described in B.  146 

D. The averaged normalized R-GECO1 fluorescence intensities over time upon treatment with 10μM 147 

NAA following a 30min pretreatment with CaPLUS or CaMIN (nr of seedlings = 11; 3 repeats; 148 

means +s.e.m.). NAA treatments were applied at time point 0s.  149 

E. Boxplot representation of the maximal amplitude of the treatments described in D.  150 

For all box plots, the central line indicates the median, the bottom and top edges of the box indicate the 151 

interquartile range. The box plot whiskers are plotted down to the minimum and up to the maximum 152 

value. Data were analyzed by an unpaired two-tailed t-test with Welch correction. **P < 0.01, ***P < 153 

0.001. 154 
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 155 

NAA-mediated Inhibition of internalization correlates with Ca2+ signaling 156 

The synthetic auxin NAA interferes rapidly via a non-transcriptional pathway with the internal 157 

accumulation of plasma membrane proteins (hereafter referred to as internalization) in Brefeldin A 158 

(BFA)-induced intracellular endosomal aggregates (so-called BFA bodies) (Paciorek et al., 2005; Robert et 159 

al., 2010). This effect of NAA was concentration dependent, showing the maximum inhibitory effect at 160 

10µM (Supplemental Figure S2A,B), correlating with the dose-dependence of the maximal NAA-induced 161 

Ca2+ response (Figure 1C,D). Given the immediacy of both processes, we postulated that auxin-induced 162 

Ca2+ responses reflects an auxin signaling cascade involved in NAA-regulated internalization.  163 

Indeed, when we used the organic Ca2+ channel blockers Nifedipine and Bepridil at 164 

concentrations that interfered with NAA-induced Ca2+ entry (Supplemental Figure 1F,G), PIN1 165 

internalization was restored in BFA/NAA co-treated roots (Supplemental Figure S2C). A similar 166 

nullification on NAA-inhibited PIN1 internalization was achieved using the membrane-permeable 167 

calmodulin inhibitor W-7 (Supplemental Figure S2C). This suggests that Ca2+ increase and its 168 

downstream signaling is required for NAA’s inhibitory effect on PIN1 internalization. Given the potential 169 

off-target effects of the Ca2+ channel inhibitors (De Vriese et al., 2018), we also evaluated the effect of 170 

CaMIN on NAA-inhibited PIN1 internalization. Similarly to Bepridil, Nifedipine and W-7, a 30min CaMIN 171 

pretreatment was sufficient to restore PIN internalization in BFA/NAA co-treated roots (Figure 2A,B). To 172 

evaluate the specificity of the treatment to Ca2+ availability, we analyzed PIN1 internalization in CaMIN 173 

supplemented with either 1.5mM CaCl2 (comparable to 0.5xMS) or 1.5mM MgCl2 (Figure 2A,B). The 174 

addition of CaCl2 fully restored the NAA sensitivity of PIN1 internalization. In contrast, the internalization 175 

in roots treated with MgCl2 supplemented CaMIN could not restore the NAA sensitivity, indicating the 176 

specificity of Ca2+ in this process. This effect of CaMIN on NAA-inhibited internalization could also be 177 

observed for other plasma membrane cargoes such as PIN2, AUX1 in the protophloem and NPSN12 178 
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(WAVE131-YFP) (Figure 2C-F). Jointly, these findings strongly support a notion that Ca2+ is required for 179 

NAA’s inhibitory effect on internalization of plasma membrane proteins.  180 

 181 

Figure 2. NAA inhibition of internalization requires extracellular Ca2+ 182 
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A. Immunolocalisation of PIN1 in 3 day-old seedling roots pretreated with CaMIN (30min), followed by 183 

BFA and NAA (co)treatment (1h), in CaMIN, and in CaMIN supplemented with either 1.5 mM CaCl2 and 184 

CaMIN supplemented with 1.5mM MgCl2. Scale bar = 20μm.  185 

B. Quantification of the proportion of cells that have PIN1 in BFA bodies for the conditions in A, and 186 

corresponding controls in CaPLUS.(n ≥ 3 per treatment per repeat; 2 independent repeats). For all box 187 

plots, the central line indicates the median, the bottom and top edges of the box the interquartile range, 188 

and the box plot whiskers are plotted down to the minimum and up to the maximum value. Data were 189 

analyzed using a logistic regression model. * indicates P ≤ 0.05, Wald-type test. 190 

C. Immunolocalization of PIN2 in 3 day-old seedling roots after BFA or BFA/NAA treatments in CaPLUS 191 

and CaMIN conditions.   192 

D. Immunolocalization of AUX1 in 3 day-old seedling roots after BFA or BFA/NAA treatments in CaPLUS 193 

and CaMIN conditions.  194 

E. WAVE131(NPSN12)-YFP localisation in 3 day-old seedling roots after BFA or BFA/NAA treatments in 195 

CaPLUS and CaMIN conditions. Concentrations used for PIN2 and WAVE131-YFP BFA: 25μM, NAA: 196 

10μM, 1h; Concentrations used for AUX1 BFA: 50μM, NAA: 10μM, 90min.   197 

F. Quantification of the proportion of cells that have PIN2 (n=32;28;22;19 roots in total), AUX1 198 

(n=30;26;26;22 roots in total) or WAVE131-YFP (n=31;24;24;27 roots in total) in BFA bodies, 199 

corresponding to experiments in Figure 2C-E. Center lines show the medians; box limits indicate the 200 

25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th 201 

percentiles, outliers are represented by dots. Different lowercase letters indicate significant differences 202 

(P ≤ 0.05, Wald-type test). White arrows in figures indicate proteins accumulated in BFA bodies. Scale 203 

bars represents 20 µm.  204 

 205 

The TIR1/AFB-CNGC14 module is not required for NAA’s inhibitory effect on internalization 206 

TIR1/AFB-based auxin perception was demonstrated to be required for IAA-induced Ca2+ signaling via 207 

the Ca2+ permeable cation channel CNGC14 (Shih et al., 2015; Dindas et al., 2018). Assuming an auxin-208 

trigerred Ca2+ signal being part of the mechanism for regulation of PIN internalization, we predicted that 209 

the defective auxin-induced Ca2+ signaling in tir1/afb or cngc14 mutants would result in NAA-insensitive 210 

PIN internalisation. Contrary to expectations based on CaMIN and Ca2+ signaling inhibitors, none of the 211 

tested mutants showed NAA-insensitive internalisation in CaPLUS, suggesting that the TIR1/AFB-CNGC14 212 

Ca2+ signaling module is not essential for this effect. Surprisingly, PIN1 internalization was inhibited by 213 

NAA in tir1afb1afb3, tir1afb2afb3 and three different cngc14 alleles also in CaMIN conditions, unlike in 214 

WT and other tir1/afb mutants (Figure 3B-E; Supplemental Figure S3A-E). In contrast to tir1/afb and 215 

cngc14 mutants, the NAA-sensitive internalization in CaMIN was not observed in the auxin biosynthesis 216 

defective mutant yuc3,5,7,8,9 (yucQ) (Chen et al., 2014) (Supplemental Figure S3F). Thus, the restored 217 
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NAA sensitivity in CaMIN-treated tir1/afb and cncg14 mutants does not seem to be related to changes in 218 

auxin levels but is rather specific to TIR1/AFB-CNGC14-mediated auxin signaling. Jointly, these data 219 

demonstrate that in CaPLUS, NAA inhibits internalisation independently of TIR1/AFB-CNGC14-mediated 220 

auxin signaling. 221 

 The discrepancy between the exogenous Ca2+ manipulations and the mutant analyses, raised the 222 

hypothesis that NAA may induce Ca2+ signaling via a TIR1/AFB-CNGC14-independent mechanism. 223 

Therefore, we transformed the ratiometric Ca2+ indicator NES-YC3.6 in tir1/afb2,3 and cngc14-1 and 224 

analysed the Ca2+ responses to a pulse of NAA in these mutants. We  found that the NAA-induced Ca2+ 225 

response was strongly reduced in tir1afb2,3 triple mutants and was completely absent from cngc14-1 226 

(Figure 3A), suggesting that NAA elicits Ca2+ signaling through the same mechanism as IAA. Also in the 227 

absence of exogenously supplied Ca2+, the  NAA-induced Ca2+ responses in tir1afb2,3 and cngc14-1 228 

mutants were strongly defective (Figure 3B), excluding compensatory Ca2+ signaling mechanisms under 229 

low Ca2+ availability, as reported for pathogen-triggered immunity-associated Ca2+ signaling in cngc2 and 230 

cngc4 mutants (Tian et al., 2019).  These data show that NAA-induced Ca2+ signaling is fully dependent 231 

on the TIR1/AFB-CNGC14 module. Notably, the YC3.6 Ca2+ indicator did not allow detecting the obvious 232 

differences in the NAA-induced Ca2+ response between CaMIN and CaPLUS that we observed when using 233 

R-GECO1 (Figure 1D). This probably reflects fundamental differences in Ca2+ binding properties and 234 

dynamic ranges that exist between both Ca2+ indicators’ properties (Nagai et al., 2004; Zhao et al., 2011; 235 

Keinath et al., 2015; Waadt et al., 2017). This also suggests that the reduction in Ca2+ response caused by 236 

CaMIN treatment is weaker than the one in tir1afb2afb3 and cngc14-1. The normal NAA sensitivity of 237 

PIN internalisation in these mutants, that are strongly defective in auxin-induced Ca2+ signaling, thus 238 

provides further evidence that auxin-induced Ca2+ signaling is not an essential part of the mechanism by 239 

which auxin affects trafficking. This is in direct contrast to the conclusions drawn using exogenous Ca2+ 240 

signaling manipulations, highlighting an important lack of specificity of these treatments. 241 
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 242 

 243 

Figure 3. Analysis of inhibition of internalization and auxin-induced Ca2+ signaling in tir1/afb and 244 

cngc14 mutants 245 

A. Immunolocalization of PIN1 in 3 day-old roots co-treated for BFA and NAA in wild type, tir1/afb1,3, 246 

tir1/afb2,3, cngc14-1 and cngc14-2, in CaPLUS and CaMIN conditions. White arrows indicate PIN1-247 

accumulating BFA bodies. Scale bar is 20 µm.  248 

B. Quantification of the proportion of cells that accumulate PIN1 in BFA bodies visualized by 249 

immunolocalisation in 3 day-old roots of indicated genotypes co-treated for BFA and NAA, in CaPLUS, 250 

CaMIN as depicted in c. Total numbers of roots analyzed in wild type (n=11; n=12 in total), tir1afb1afb3 251 

(n=9; n=12 in total), tir1afb2afb3 (n=11; n=11 in total), cngc14-1 (n=12; n=13 in total) and cngc14-2 252 

(n=10; n=7 in total), representing the sum of two independent experiments. Significant differences (P ≤ 253 

0.05, Wald-type test) are indicated by different lowercase letters. Center lines show the medians; box 254 

limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 255 

25th and 75th percentiles, outliers are represented by dots.  256 

C,D. The Ca2+ dynamics (NES-YC3.60 Cameleon) in WT, tir1afb2afb3, cngc14-1 in response to a pulse of 257 

10µM NAA in medium containing (C) 1.5mM CaCl2 or (D) 0mM CaCl2. 258 
 259 

DISCUSSION 260 

Auxin-mediated regulation of trafficking is considered an important aspect of auxin’s self-regulating 261 

properties in plant growth and development. However, the underlying molecular mechanisms remain 262 

largely unclear. The synthetic auxins such as NAA displays a strong effect on trafficking, as illustrated by 263 
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strong interference with accumulation of plasma membrane cargoes in BFA bodies (Paciorek et al., 264 

2005). This effect was reported to be very fast, not requiring transcriptional changes and independent of 265 

canonical auxin signaling (Robert et al., 2010). Instead, an extracellular auxin perception mechanism was 266 

proposed based on the activities of AUXIN BINDING PROTEIN1 (Robert et al., 2010). Using updated 267 

genetic tools, however, the latter was put into question (Gao et al., 2015). Given the immediacy of the 268 

response, we hypothesized that auxin-induced Ca2+ signaling could be involved in auxin’s inhibitory 269 

effect on internalization. We established that NAA activates Ca2+ responses at the plasma membrane via 270 

a TIR1/AFB-CNGC14-dependent mechanism, similarly as was recently described for the endogenous 271 

auxin IAA (Shih et al., 2015; Dindas et al., 2018). Using mutants and pharmacology we interfered with 272 

auxin-induced Ca2+ signaling and evaluated of the impact on internalization. The pharmacological 273 

interference revealed a good correlation between intensity of auxin-induced Ca2+ signaling and NAA’s 274 

ability to inhibit internalization, supporting our original notion. In striking contrast, genetic disruption of 275 

auxin-induced Ca2+ signaling did not affect NAA’s ability to inhibit internalization. These data 276 

unequivocally show that auxin-induced Ca2+ signaling does not inhibit internalization. It does however, 277 

not exclude roles for TIR1/AFB-CNGC14-mediated Ca2+ signaling in the auxin-regulated vacuolar 278 

trafficking of PIN proteins, that depends on TIR1/AFB function (Baster et al., 2013), or PIN polarization 279 

(Sauer et al., 2006; Prat et al., 2018; Mazur et al., 2020; Mazur et al., 2020). The contrasting results 280 

obtained using mutants versus the currently available Ca2+ pharmacology or manipulating Ca2+ 281 

availability illustrate that Ca2+ signaling in plants is a highly interconnected system, not allowing for easy, 282 

specific manipulations. Instead, the current lack of highly specific pharmacology imply that the most 283 

reliable conclusions can be drawn through genetic analysis. 284 

 285 

CONCLUSION 286 
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Auxin is well-known to trigger a Ca2+ response. However, its physiological role remains poorly 287 

understood. Here, we evaluated auxin-induced Ca2+signaling in the context of regulating internalization 288 

of plasma membrane cargoes. Pharmacological evidence indicated its requirement. However, genetics 289 

demonstrated unequivocally that NAA’s effect on internalization is independent of auxin-induced Ca2+ 290 

signaling.  291 

 292 

MATERIALS AND METHODS 293 

Plant Growth Conditions  294 

Arabidopsis thaliana seeds were sterilized by using bleach gas (8mL concentrated HCl to 150mL bleach) 295 

overnight, afterwards the seeds were sown on Petri dishes (12 cm X 12 cm) containing sterile half-296 

strength Murashige and Skoog (½ MS) medium (0.5 x MS salts, 0.8% sucrose, 0.5 g/L 2-(N-morpholino) 297 

ethanesulfonic acid, pH 5.7, and 1% w/v agar), and grown under continuous light (21℃, continuous 298 

light), after 2 days vernalization at 4℃ in the dark. To prepare 2L liquid CaMIN medium following 299 

components were dissolved in MilliQ: 100mL MS basal salt micronutrient solution (catalog Nr), 20 g 300 

sucrose, 0.20 g myoinositol, 1.00 g MES, 1.652g NH4NO3,  0.180g MgSO4, 1.920g KNO3, 0.152g KH2PO4 301 

and pH 5.7. The liquid CaPLUS medium contains an additional 0.332g CaCl2 per 2L. 302 

Chemicals 303 

The following hormones/chemicals were used: 10μM NAA (catalog Nr N0903; Duchefa Biochemie). 304 

25μM Brefeldin A (BFA, catalog Nr B6542-25MG). All hormones/drugs were dissolved in 100% 305 

dimethylsulfoxide (DMSO; catalog Nr D4540-500ML) and obtained from Sigma Aldrich. 306 

Plant Lines Used 307 
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The Arabidopsis used as control in this study was Columbia (Col-0) ecotype. We used the following 308 

mutants and transgenic lines were described previously: tir1-1 (Ruegger et al., 1998), afb2-3 (Parry et al., 309 

2009) , afb3-4 (Parry et al., 2009), tir1-1afb2-3 (Parry et al., 2009), tir1-1afb3-4 (Parry et al., 2009), tir1-310 

1afb1-3afb3-4 (Parry et al., 2009),  tir1-1afb2-3afb3-4 (Parry et al., 2009), yucQ (Chen et al., 2014), 311 

cngc14-1  and cngc14-1 (Shih et al., 2015), cngc6,9, cngc6,14, cngc9,14 and cngc6,9,14 (Brost et al., 312 

2019), WAVE131-YFP (Geldner et al., 2009), R-GECO1 (Keinath et al., 2015), NES-YC3.6 (Krebs et al., 313 

2012), PM-YC3.6 (Krebs et al., 2012), CRT-D4ER (Bonza et al., 2013), 4mt-YC3.6 (Loro et al., 2012). The 314 

NES-YC3.60 (Krebs et al., 2012) reporter was transformed directly into tir1-1afb2-3afb3-4 (Parry et al., 315 

2009) and cngc14-1 (Shih et al., 2015). Transformants were selected based on uniform expression, and 316 

expression levels comparable to the control NES-YC3.60. Analyses of the Ca2+ response was done on T2 317 

generation seedling roots showing strong and uniform expression.  318 

Immunodetection and Confocal Microscopy 319 

The seedlings used for Immunodetection are 3-day-old and pre-treated in liquid CaPLUS, CaMIN in 320 

presence or absence of chemicals as indicated for 30 minutes. The samples were fixed by 321 

paraformaldehyde (4%) in PBS for 1 hour in vacuum. The following steps of the immunostaining were 322 

performed by the immuno-robot InsituProII, as described by Sauer et al. (2006). The dilutions of the 323 

primary antibodies were: goat anti-PIN1 (1:600) (sc-27163, SantaCruz), rabbit anti-PIN2 (1:600) (Abas et 324 

al., 2006) and anti-AUX1 (1:400) (AS 12 1868, Agrisera). The secondary antibodies used were 325 

AlexaFluor488 donkey anti-goat (1:600) (A-11055, ThermoFisher) and AlexaFluor555 donkey anti-rabbit 326 

(1:600) (A-31572, ThermoFisher).  327 

 328 

Microscopy and image analysis 329 
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R-GECO1- based Ca2+ imaging experiments and analysis were performed as described (Himschoot et al., 330 

2018). Yellow Cameleon-based experiments were performed and analyzed as described (Behera et al., 331 

2013). Confocal laser scanning microscopes Leica SP2 (Leica) or Zeiss 710 CLSM microscopes were used 332 

to analyze the immunolocalisations, and imaging of R-GECO1. Fluorescence emission of Alexa488 (ex 333 

488 nm/em 500-545nm), Alexa555 (ex 561nm/em 555-610nm), YFP (ex 514nm/em 520-565nm), was 334 

detected using a 63x water objective. Images were analyzed using Fiji (Schindelin et al., 2015).  Fiji was 335 

used to rotate, crop images and label the region of all the roots for quantification. The proportion of 336 

cells with BFA bodies was scored manually and calculated by using Excel. The BoxPlotR was used to 337 

generate the box plots figures (Spitzer et al., 2014). 338 

Statistical analysis 339 

For statistical analysis of the Ca2+ imaging data, unpaired two-tailed t-tests with Welch correction for 340 

unequal standard deviations between populations where performed using GraphPad Prism (GraphPad 341 

Prism 8 for Windows 64-bit, version 8.4.1).  342 

For statistical analysis of the immunolocalization experiments, a logistic regression was performed to 343 

compare the presence of BFA bodies in root cells of treated versus untreated roots or wild type versus 344 

mutant. A random effect was added to the model for the experiments with multiple repeats to take into 345 

account the correlation between measurements done at the same time. The analysis was performed 346 

with the glimmix procedure from SAS (Version 9.4 of the SAS System for windows 7 64bit. Copyright 347 

2002-2012 SAS Institute Inc. Cary, NC, USA (www.sas.com)). Maximum likelihood estimation was done 348 

with the default estimation method. A Wald-type test was performed to estimate the 349 

treatment/genotype effect on the presence of BFA bodies in the root cells.  350 

 351 

 352 

 353 
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