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Abstract 
 
The purpose of this paper is to introduce a novel in silico platform for simulating early stage solid 
tumor growth and anti-tumor immune response. We present the model, test the sensitivity and 
robustness of its parameters, and calibrate it with clinical data from exercise oncology experiments 
which offer a natural biological backdrop for modulation of anti-tumor immune response. We then 
perform two virtual experiments with the model that demonstrate its usefulness in guiding pre-clinical 
and clinical studies of immunotherapy. The first virtual experiment describes the intricate dynamics in 
the tumor microenvironment between the tumor and the infiltrating immune cells. Such dynamics is 
difficult to probe during a pre-clinical study as it requires significant redundancy in lab animals and is 
prohibitively time-consuming and labor-intensive. The result is a series of spatiotemporal snapshots of 
the tumor and its microenvironment that can serve as a platform to test mechanistic hypotheses on the 
role and dynamics of different immune cells in anti-tumor immune response. The second virtual 
experiment shows how dosage and/or frequency of immunotherapy drugs can be optimized based on 
the aerobic fitness of the patient, so that possible adverse side effects of the treatment can be minimized.   
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Introduction 
 
Computational modeling is playing increasingly important roles in advancing a system-level 
mechanistic understanding of complex interrelated biological processes. In silico simulations guide and 
underpin experimental and clinical efforts and can advance the knowledge discovery and accelerate 
therapeutic development at an unprecedented rate. Here we present a computational platform that can 
interrogate potential mechanisms underlying the effect of aerobic fitness on anti-tumor immune 
response. These effects, documented in pre-clinical [1,2] and clinical studies [3,4], furnish us with a 
natural backdrop for probing patient variability and support the inclusion of aerobic fitness as a 
biological variable in clinical contexts. Doing so may contribute to the personalization of 
immunotherapy by optimizing dosage and frequency of treatment and by reducing the risk of cardio-
toxicity [5] and other adverse side effects. 
 
The model is based on the open source platform of CompuCell (CC3D) which was used in [6] to 
represent tumor growth as a function of available resources (e.g., glucose). That original model focused 
solely on differential cell-adhesion and somatic evolution. Since the platform is highly modular, we 
used the same framework to build a model that includes immune cell types, cytokines, chemokines, and 
metabolic signals, and employed it to interrogate immune response to tumor progression as a function 
of aerobic fitness. Our model is a 2D spatiotemporal representation of a cross section in the tumor 
microenvironment (TME) that allows visualization of the intricate dynamics between the tumor cells 
and the host immune response. Using data from pre-clinical and clinical studies, we have calibrated the 
model and estimated the range of the necessary parameters, performed sensitivity analysis, tested the 
robustness of the fitness parameter, and checked the biological significance of the model by comparing 
its outcomes to data from clinical and pre-clinical literature, including our own studies. Once it was 
calibrated, the model was used to test several hypotheses in exercise oncology, and to perform a virtual 
experiment that probed the effect of aerobic fitness on cardio-toxicity as a potential adverse effect of 
immunotherapeutic drugs. 

Our basics assumption is that aerobic fitness acts as a tumor suppressor through a systemic 
enhancement of anti-tumor immune response. This systemic effect is a result of metabolic and 
endocrinal modifications, which can be modulated with chronic exercise training. While the exact 
mechanisms behind this effect are currently under investigation, documented pre-clinical experiments 
point at two potential candidates: mechanism (1) increased trafficking of NK cells into the TME, 
triggered by up-regulation of epinephrine [7,8] and mechanism (2) hypoxia-tolerant suppression of the 
recruitment of immune inhibitory cells (Tregs) into the TME which increases cytotoxic T lymphocytes 
(CTLs) efficiency [9,10,11]. In the model presented here we chose to focus on candidate (2),1 but the 
platform can be easily adjusted to incorporate candidate (1) or any other potential mechanism in the 
future. 

Methods 

Motivation. The clinical data that motivated the model was obtained from a pilot study [12] where 
recently diagnosed early stage Invasive Ductal Carcinoma patients were subjected to a short 
submaximal aerobic exercise and were assigned an aerobic score [13]. Tumor size estimated in two 
                                                             
1 Our choice is motivated by the methodological problems that surround the pre-clinical studies behind 
mechanism (1) which in turn make its exercise “dosage” less human-relevant than the one induced in 
mechanism (2). See Discussion. 
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time points (the diagnostic mammogram and an earlier mammogram where the radiologist could 
identify the tumor with hindsight), along with the time between the two mammograms, yielded an 
estimation of tumor doubling time for each patient. A statistically significant correlation was then 
detected between the aerobic score and the tumor doubling time: the more aerobically fit were the 
patients, the longer were their doubling times. Further pre-clinical studies detailed below allowed us to 
replicate this phenomenon and to interrogate the potential mechanisms underlying it. 

Model description. The model is a spatiotemporal representation of a TME of a solid tumor in its early 
stages (T0 to T1) that includes key aspects of the interactions between tumor cells, the TME, and the 
host immune response. In our model, tumor cells adopt four different phenotypes: “oxphos” 
(performing oxidative phosphorylation), “glycolytic” (elevated glycolysis when the surrounding tissue 
becomes hypoxic), “necrotic” and “apoptotic”. Tumor cells grow, divide and invade their environment. 
The growth rate of tumor cells is limited by the availability of oxygen (a field in our model), which 
cells consume from the environment. In addition to representing the level of tumor immunogenicity (via 
its effect, mediated by aerobic fitness, on the host immune response), in our model oxygen serves a dual 
purpose of controlling tumor cell transition from one metabolic phenotype to another (due to 
oxygenation levels) and tumor growth (due to metabolic resources). As oxygen gets depleted, tumor 
cells change their metabolic phenotype from “oxphos” to “glycolytic”. Glycolytic tumor cells can 
change phenotype back to “oxphos” if the oxygenation of the tissue is restored (i.e. the oxygen field 
strength increases). Otherwise, when oxygen is severely depleted, glycolytic cells become necrotic and 
die (this phenomenon is typically observed at the tumor core). Glycolytic cells and necrotic cells secrete 
lactate (chemoattractant L in our model) to the TME that serves as a recruiting signal for the tumor 
promoter cells. 

Our model includes two types of immune cells: Tumor suppressors (“CTLs” in our model) and tumor 
promoters (“Tregs” in our model). “CTLs” are constantly recruited to the tumor site and infiltrate the 
TME and induce apoptosis in the tumor cells they come into contact with. Upon contact with tumor 
cells, “CTLs” also release a cytokine signal to the TME (“IFNγ” field), thus attracting other “CTLs” to 
their vicinity. The acidification of the TME by the glycolytic cells results in recruitment of “Tregs” to 
the tumor site. These recruited “Tregs” move through the tissue to areas of higher concentration of L. 
“Tregs” inhibit the “CTLs” they come in close proximity to. This inhibition prevents “CTLs” from 
inducing apoptosis in cancer cells they come into contact with.   
 
We implemented the model in CompuCell3D (CC3D), an open-source modeling environment that 
allows specification and simulation of multicellular models, diffusing fields and biochemical networks 
[14]. CC3D simulates spatial dynamics using the Cellular Potts Model, a modeling framework where 
cells are represented on a lattice and their spatial properties are governed by an effective energy 
function (See Supplementary Material). Spatial dynamics are decided using a Monte Carlo approach, 
making each independent run stochastic, in which time is measured in Monte Carlo steps (MCS). Our 
model is simulated over 10!!lattice sites representing up to 5×10! individual cells. Diffusion solvers 
integrate partial differential equations describing the diffusion of oxygen, L, and cytokines across the 
whole simulation domain. The different outcomes of the simulation are dependent on the parameter 
values associated with aerobic fitness and with the emergent patterns of TME invasion associated with 
availability of resources and immune response. 
 
Parameters estimation. Simulation parameters corresponding to the spatial properties of human solid 
tumor cells, transport of chemicals and rates of immune response were estimated from the literature 
(See Supplementary Material). Each lattice site corresponds to 16!!! such that the simulation domain 
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represents a 16!!! tissue cross section. We assumed that cancer cells occupy an area of 256!!!, 
which is between twice and 3 times the average size of epithelial cells [15]. We assumed that when 
sufficient resources are available, tumor cells grow and divide every 24 hrs. Conversely, when 
resources are depleted cells die within 12 hrs, and when “CTLs” induce apoptosis, cells die within 8 hrs. 
We estimated the infiltration rates of “CTLs” (1 cell every 1.5 hours) and “Tregs” (1 cell every 1 hour) 
using intramural density data, showing that the “CTL”/“Treg” ratio is 5:1 [16].  

The intrinsic random motility and the contact energy were fixed so that tumor cells can detach from 
each other and invade the surrounding tissue [6]. We assumed that the homeostatic concentration of 
oxygen in tissue is 4.3x10-4 Mol/L [17]. Transport parameters such as oxygen, L and IFNγ diffusion 
coefficients, oxygen uptake rate and L secretion rate were estimated from the literature (See 
Supplementary Material). Aerobic fitness was defined as the oxygen concentration threshold at which 
tumor cells changed from “oxphos” to “glycolytic”. Different populations were defined with respect to 
different thresholds. The more aerobically fit a virtual subject is, the more tolerant its tissue will be to 
hypoxia, and as a result, the threshold for the shift from “oxphos” to “glycolytic” is lower. 

Sensitivity and robustness analysis. We used Indiana University’s large-memory computer cluster 
Carbonate to execute multiple replicates of the simulation [18]. Each replicate is intended to virtually 
represent individual cancer patient. To generate statistically meaningful results, 200 replicates 
representing individual patients across 10 aerobic fitness groups were simulated (20 replicates per 
group). Computational cost, statistical considerations and our own clinical data guided our choice of 
virtual cohort size: n=20 was sufficient to minimize the standard error within groups while allowing a 
reasonable simulation time, and the aerobic fitness spectrum was chosen to resemble the metric which 
was introduced in [13] and applied in [12]).  Sensitivity analysis was performed by comparing 
simulation outcomes for different sets of parameters with respect to the final tumor area per aerobic 
fitness group. The outcomes of the simulation are highly sensitive to key parameters such as the ratio of 
intratumoral “CTL”/“Treg”, the maximum growth rate of tumor cells and the glycolytic threshold. 
Conversely, the outcomes are robust with respect to perturbation of parameters such as cell size or grid 
size. 

Mechanisms  

Glycolysis and hypoxia tolerance. The underlying hypothesis of exercise oncology is that aerobic 
exercise leads to systemic modifications of non-skeletal-muscle tissue. Consistent with several studies 
that point at hypoxia and elevated glycolysis as a hallmark of solid tumor progression [19,20], here we 
hypothesize further that aerobic exercise can modify the tissue’s ability to tolerate hypoxia and to 
degrade HIF1α, a known upstream factor in recruitment of “Tregs” to the TME. To represent this 
biological feature in our model we introduced the L field, secreted by the tumor cells into the TME (Fig. 
2). According to our hypothesis, a solid tumor in aerobically fit (sedentary) hosts will generate weak 
(strong) L field depending on that host’s tolerance to hypoxia. This hypothetical differential in turn 
drives the variation in immune response to the solid tumor. The model presented here thus embodies 
our working hypothesis (supported by clinical and pre clinical studies; see [21] for an accessible 
review) that early stage solid tumors of aerobically fit individuals – who have higher tolerance to 
hypoxia – will go through the shift from the “oxphos” phenotype to the “glycolytic” phenotype in lower 
levels of oxygen in the TME than sedentary individuals, and, as a result, will exhibit less glycolysis-
initiated immunosuppressive response than similar tumors of sedentary subjects for the same levels of 
oxygen in the TME. 
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Immune suppressors and immune promoters dynamics. Clinical studies have shown that 
intratumoral CTLs/Treg ratio is a significant prognostic marker for cancer patients [22] and several pre-
clinical studies have tied this marker to hypoxic conditions in the TME [10,11]. To represent these 
biological features in our model we introduced two types of immune cells (immune suppressors, or 
“CTLs” and immune promoters, or “Tregs”) and implemented two scales of trafficking (Fig. 3). The 
first is the appearance of these cells in the TME, implemented with different “seeding” rates and 
densities; the second is movement within the TME, implemented with a chemotaxis mechanism. The 
seeding rates and densities were calibrated using data on respective densities from hot vs. cold tumors in 
humans [15]. The chemotaxis mechanisms are sensitive to two fields. “CTLs” react to a cytokine 
secreted by tumor cells killed by other “CTLs” (the “IFNγ” field); “Tregs” react to the L field secreted 
into the TME (the more glycolytic is the tumor, the stronger is the “Treg” recruiting signal).  

Calibration 

Effect of aerobic fitness on tumor progression rate. Our model consists of a virtual cohort of 200 
virtual subjects divided into 10 aerobic fitness levels. Sensitivity analysis on the aerobic fitness 
parameter detected its upper and lower bounds below and above which the effects on tumor growth 
remain constant (where the difference between groups above or below those bounds becomes 
statistically insignificant at p>0.35). Reducing the number of fitness groups in between the upper and 
lower bound can reduce the p value between the fitness groups – see supplemental material – but won’t 
change the upper and lower sensitivity bounds (which remain statistically significant at p<0.00001). 
The model connects variations in fitness levels to variations in anti-tumor immune response and 
consequently to variations in tumor growth rates. To calibrate it we matched it to clinical results from 
breast cancer patients (where the aforementioned aerobic score metric was used, and the study relied on 
hindsight from pre-diagnostic screening mammograms to estimate tumor growth rates in 14 recently 
diagnosed patients) [12]. The model yielded a classification of distinct aerobic fitness levels, each of 
which yields a distinct tumor growth curve (Fig. 4). A similar effect of suppression of tumor growth 
when inoculation followed endurance exercise was qualitatively demonstrated in pre-clinical studies 
[23,24]. 

Distribution of tumor doubling time in the population.  Studies based on mammography readings 
[25] have discovered a distribution of tumor growth rates in the population (measured in tumor 
doubling times). We ran a virtual experiment on our platform with 200 virtual subjects divided 
uniformly into different aerobic fitness classes and compared the growth rate distribution to the one 
observed among humans. Both distributions (the virtual and the epidemiological) were lognormal (Fig. 
5).  

Prevalence of clinical tumors in athletes vs. non-athletes.  Finally, to identify a fitness threshold that 
can distinguish in real life aerobically fit from sedentary subjects with the fitness parameter in our 
model we used epidemiological studies on tumor incidence among athletes and non-athletes [3] (Fig. 
6A). The comparison allowed us to designate as “athletes” populations whose fitness parameter value in 
our model is below 0.060, and sedentary whose fitness parameter value in our model is above 0.150 
(the lower this number the higher the aerobic fitness (Fig. 6B)). These values were then matched to the 
fitness score reported in [21] (where athletes were scored below 0.5 and sedentary above 2 based on 
their cardiorespiratory fitness (Fig. 4)). Lacking additional granularity of staging variations upon 
detection in both parameter values groups, we limited this calibration to the identification of a 
biologically significant spatiotemporal scale for the model: the incidence ratio observed in athletes and 
non athletes humans is achieved in our model for tumor size of 2.9mm and after 13,000 MCS 
(equivalent to 54 days in real life, and 7 hrs in our simulation) (Fig. 6B). Assuming a clinical 
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(detectable) tumor threshold is 2!!, we can use the incidence ratio to compare the scale of our virtual 
platform to clinical data: our simulated tumors are at least at a scale of ~ 3:2 (thus within the same 
spatial order of magnitude of a real tumor). Additional data on the staging distribution upon detection in 
both groups could improve this calibration.  

Results 

Time series of anti-tumor immune response in the TME. Our first virtual experiment probes the 
intricate dynamics in the TME between the tumor and the infiltrating immune cells. Such dynamics is 
impossible to probe in humans, and is hard to observe during a pre-clinical study as it requires 
significant of redundancy in lab animals (so to achieve high resolution with statistical significance for 
successive end-points during the experiment), prohibiting such time and labor intensive studies. Our 
simulation generates, with no physical cost, a time series of spatiotemporal snapshots of the TME (Fig. 
7) that can serve as a platform to test several mechanistic hypotheses on the role and dynamics of 
different immune cells in ant-tumor immune response, by comparing it to immunohistochemistry slides 
from different stages of tumor development. While here we focused only on two types of immune cells 
(“CTLs” and “Tregs”), and two types of signaling fields (“IFNγ” and “chemoattractant”, or L), the 
platform is modular and can incorporate many more cells and fields (hence more pre-clinical end 
points) with relatively small modifications.  

Incorporating aerobic fitness into the personalization of immunotherapy. While showing 
remarkable success in some patients, immunotherapy treatments can lead to severe autoimmune adverse 
effects such as myocarditis, pericardial diseases, and vasculitis, including temporal-arteritis and vision 
loss [5]. To mitigate those, careful dosing is essential. If our hypothesis on aerobic fitness as a 
biological variable is correct (and there is some support for it from pre-clinical studies on the 
combination of Immune Checkpoint Inhibitors (ICI) with aerobic exercise [24,26] and from small pre-
treatment exercise intervention in humans [27], and our own clinical pilot study [12], see Fig. 8G), 
aerobically fit patients may require lower dosage of ICI than sedentary patients, which may lead to 
personalization of treatment and reduction of adverse effects. To test this hypothesis we implemented 
ICI in our model as an increased efficacy of “CTLs” killing, by limiting the inhibitory radius of the 
“Trges”. Cytotoxicity was then quantified with the “IFNγ” field, where the probability of an adverse 
effect [28] increases with that field’s strength. Performing a virtual experiment on both aerobically fit 
and sedentary virtual subject populations treated with ICI, the model shows how, without a mitigated 
dosage, aerobically fit subjects are more prone to adverse effects than their sedentary counterparts (Fig. 
8A,B). Conversely, lowering the dosage of ICI for aerobically fit patients can achieve the same 
reduction of tumor growth relative to their sedentary counterparts but with a lower probability for 
adverse effects (Fig. 8C,D). In order to translate this result to a clinical setting as in 8E,F, future studies 
should identify potential markers for aerobic fitness with which such personalization can be 
accomplished and a clinical study could be performed to test the appropriate dosage of ICI in sedentary 
vs aerobically fit patients. 
 
Discussion  

What we have shown. After calibrating our model with clinical and epidemiological data, we 
performed two virtual experiments that showcase the potential usefulness of the platform as a tool for 
improving pre-clinical and clinical studies. We have shown how to generate a time series of TME 
snapshots during anti-tumor immune response, and how to personalize dosing of ICI for aerobically fit 
patients in order to lower the risk of adverse effects. Further collaboration with cancer biologists on in 
vivo studies and clinicians on human studies would allow us to implement the platform for the purpose 
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of improving in vivo experimental design and personalization of clinical outcomes. We have deposited 
the model on a 3rd party open source repository (GitHub), so that users can download it and modify it 
for research purposes. 
Justification. Endurance exercise has been shown to be a systemic modulator of metabolic and 
endocrinal activities, and, through these, a modulator of immune competence and a natural element in 
cancer prevention. Here we propose to treat aerobic fitness as a biological variable that can be 
incorporated into cancer (immuno)therapy and improve personalization of treatment. 

The exact underlying mechanisms behind the suppressive effects of aerobic exercise on early tumor 
progression are currently unknown. Several pre-clinical studies have narrowed the possibility space 
down to two main hypotheses [29]. The first involves exercise-induced up-regulation of epinephrine 
that mobilizes NK cells into the TME [7,8] together with increased trans-signaling of IL-6 [30,31] as a 
re-distributing factor (increased adhesion, infiltration and activation). However, since these effects were 
induced on mice by exposing them to voluntary running, their human relevance is suspect [32]: 
voluntary running in mice mimics high intensity interval training (HIIT) in humans, and no human, 
even an elite athlete, can endure the “dosage” level of HIIT exhibited in those studies [33,34]. Since 
there are currently no experiments testing this hypothesis with more human-relevant, lower HIIT 
“dosage” (in which the voluntary wheel is activated only for a short period per day), and since our 
ultimate goal is to use the model for personalization of patient outcomes, our model focuses on the 
second candidate the human-relevance of which is more significant.  

This second hypothesis, the one that underlies the model presented here, connects exercise-induced 
increased hypoxia-tolerance to more efficient anti-tumor immune response, and requires chronic 
endurance training (CET) which can be achieved in pre-clinical exercise oncology with forced running 
wheels [23,32]. The idea here is that CET induces hypoxia tolerance in the skeletal muscles and in other 
tissues, and as a result, TMEs are more susceptible to the degradation of HIF1α [35]. This degradation 
is an upstream factor in a signaling cascade leading to increased anti-tumor immune efficiency, as 
HIF1α is known to recruit, via myokine signaling [10,11,36], Trges into the tumor micro-environment, 
which suppress CTLs [9]. Our pre-clinical study detected a twofold decrease in intratumoral 
Tregs/CTLs ratio in exercised mice relative to their sedentary counterparts [23]. Support for this second 
potential mechanism in humans that correlates CET with reduced intratumoral Treg density comes also 
from a small pilot study in which recently diagnosed breast cancer patients were subject to a short 
exercise session before treatment, and their excised tumor presented with threefold fewer intratumoral 
Tregs [27] 

Attempts to utilize aerobic fitness as a predictor for patient outcomes are not new. For example, frailty 
indices (which include aerobic fitness, or lack thereof, as one of their components) have been recently 
used to predict adverse health outcomes in cancer patients post surgery or chemotherapy [37,38].2 We 
have not investigated the possible connection between this phenomenon and the effects of aerobic 
exercise on tumor growth, but we believe that as our understanding of the mechanisms that underlie 
these effects will increase, more connections between aging and cancer will be unearthed and will be 
explained with common pathways. 

Limitations. The model presented here includes only two types of immune cells: tumor suppressors and 
immune inhibitors (or tumor promoters). We deliberately chose to start from the simplest model under 
the assumption that any introduction of additional immune cells could increase the ability of the model 
to replicate observed phenomena, rather than decrease it. Given our initial success, work is currently 
underway to include additional types of immune cells in future versions of the model.  
                                                             
2 We thank an anonymous referee for this comment. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.09.04.283416doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.04.283416


 9 

Our platform can perform virtual experiments with no wet-lab or clinical costs, and is proposed here as 
a tool for pre-clinical and clinical researchers. The tool is limited in several ways. First, to obtain 
simulation results in a reasonable time we must limit the computational cost. Consequently, our grid 
size is currently bounded by 5×10! cells. This size allows the simulation to be sensitive to 
spatiotemporal and stochastic features of the dynamics; increasing it will incur computational cost, but 
given the running time of the current simulation (7 hrs per one virtual subject), it shouldn’t be 
prohibitive on a multi-core platform where subjects are run in parallel. Second, the same concerns about 
computational cost limit us to two-dimensional simulations. Specific circumstances may require scaling 
up to 3D (e.g., angiogenesis), which can be done on segments of the grid to reduce complexity. For 
most clinical end-points, however, a cross section of the TME may be a good approximation. Third, 
here we introduced only two types of immune cells and three types of fields. Increasing the number of 
members of both sets will, again, add complexity (and computational cost) to the model. From our 
experience, however, a direct dialogue between model developers and clinicians may help optimize the 
platform for each specific usage so that the computational cost won’t become prohibitive. Finally, note 
that we deliberately calibrated the model solely with quantitative clinical and epidemiological data, and 
limited the usage of pre-clinical studies to qualitatively probing mechanistic hypotheses. We did so 
because our platform faces a challenge prevalent in biomedical research in general, namely, 
spatiotemporal scaling between mice models and human models. Acknowledging this challenge, we 
believe we are better equipped to meet it: once the model is separately calibrated for each modality, it 
allows us to virtually compare time series from pre-clinical simulations to observed clinical end-points 
(a process that is hard to mimic in real-life experiments) and help to characterize the scaling between 
murine and human immunological clocks. 

Insights and future directions. Solid tumor progression is an intricate process that can be 
characterized with population dynamics where tumor cells and immune cells are intertwined in complex 
signaling networks. As such it is sensitive to spatiotemporal factors which are difficult to incorporate 
into current machine-learning-based bioinformatics platforms. Causal multi-scale modeling is a viable 
alternative that can mitigate this shortcoming; our in-silico modeling platform of anti-tumor immune 
response and early stage solid tumor growth presented here is an example. The long-term goal of all 
such modeling, which can only show that a specific underlying mechanism is sufficient to explain the 
observed phenomena, is the development of quantitative, predictive models based on clinical and 
experimental data which will have a positive impact on patient outcomes through improved patient-
specific treatment regimes.  

Perhaps more than any other therapy, cancer immunotherapy is particularly sensitive to timing [39]. 
Efforts invested in examination of combination dose scheduling can yield qualitatively significant 
returns in terms of improved efficacy and decreased toxicity; all without necessitating regulatory 
approval. Our in silico platform is a safe playground for such experimentation in dosage scheduling and 
frequency, as it can easily allow modulation of duration and timing of activation signaling to achieve 
the most effective treatment, thus ruling out extreme scenarios and refocusing the researcher on an 
optimal treatment window, while harmlessly testing different dosage regimes, frequency and duration. 

Finally, our platform can easily incorporate and test combination of different types of immunotherapy 
with other standard-of-care therapies [40] and probe potential synergistic effects. For example, since 
aerobic exercise promotes oxygenation, it can mimic the effects of Anti Angiogenic Therapy, where 
different aerobic fitness levels can be calibrated to represent different dosage of such a therapy.  

To conclude, we presented a small sample of what our integrated platform can offer. To fully achieve 
its potential, it requires careful calibration with clinical data and pre-clinical experiments. To this end, 
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we hope to start a dialogue with interested cancer immunotherapy clinicians and pre-clinical cancer 
researchers who are open to incorporating in silico modeling into their experimental portfolio. 
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Figures Captions 

1. Model Conceptualization. The model simulates the early stage of 2D solid tumor progression 
from which a growth rate (in terms of tumor area) can be calculated. Once initialized, tumor 
cells grow in the TME, and with time become more glycolytic, in a rate that depends on the 
host’s aerobic fitness and tolerance to hypoxia. Tumor cells die through necrosis or apoptosis 
(lack of oxygen or death by immune response, respectively). Tumor suppressors (“CTLs”) and 
tumor promoters (“Tregs”) react to cytokine and chemoattractant fields secreted by tumor cells. 
Tumor cells grow until they saturate the grid. 

 
2. Aerobic fitness modulates hypoxia-tolerance in the TME. While oxygen levels are identical 

in the two examples above, the two representative TME react to them differently: the more 
aerobically fit is the host (FIT), the more tolerant to hypoxia its TME is, and as a result, tumor 
cells are less glycolytic relative to sedentary hosts (SED).  

 
3. Aerobic fitness modulates anti-tumor immune response. The more aerobically fit is the host, 

the less glycolytic its tumor cells are relative to a sedentary host. Consequently, recruitment of 
tumor promoters that can block tumor suppressors is down regulated relative to a sedentary 
host, and tumor growth will be relatively suppressed. Tumor promoters move towards the 
tumor along the chemo-attractant gradient that glycolytic tumor cells secrete. Tumor 
suppressors move towards the tumor along a cytokine gradient (“IFNγ”) that necrotic tumor 
cells secrete.  Once infiltrated into the TME, tumor promoters can inhibit the ability of nearby 
tumor promoters to kill tumor cells. 

  
4. Effect of aerobic fitness on tumor progression rate. The model was run on 200 virtual 

subjects, divided into 10 distinct aerobic fitness levels, each with 20 subjects. Each fitness level 
generated an average growth rate (4A). These average growth rates were plotted against the 
fitness levels on a logarithmic scale (4B). The model behaves qualitatively in accordance with a 
similar plot of tumor doubling times vs. fitness levels from a pilot study in recently diagnosed 
T1 invasive ductal carcinoma patients (4C) [12]. The comparison between the two correlations 
(the observed and the mechanistically generated) can be used to further calibrate model 
parameters (4D). 

 
5. Distribution of tumor doubling time in the population. We ran the model with 200 subjects 

with random fitness levels. The statistical distribution of growth rates (5A,B) was statistically 
indistinguishable in a KS test (p>0.29) from a log normal distribution, such as the one observed 
of growth rates of invasive ductal carcinoma (5C, [25]).  

 
6. Prevalence of clinical tumors in athletes vs. non-athletes. Epidemiological data shows 

prevalence of solid tumors in non-athletes to be around twice the prevalence in athletes (6A) [3]. 
We used this data point to extract a spatiotemporal calibration of the model by running 40 
subjects, aerobically fit and sedentary, and identifying the tumor size (in terms of tumor area) 
and the time after initiation of 200 cells (in model time steps MCS) in which such a prevalence 
ratio is achieved (6B). The prevalence ratio allows us to impose a spatiotemporal scale on our 
model (in this case, a scale of 3:2 between model to reality). 

 
7. Time series of TME sections in early stage progression of a solid tumor. To probe the 

intricate dynamics of anti-tumor immune response in the early stages of a solid tumor 
progression, the model can yield an observation window into the TME in different stages of 
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growth (7A-D), and can be used to test competing hypotheses on tumor immune cells 
population dynamics by comparing these snapshots to real life immunohistochemistry end 
points (7E, [23]), where cross sections from exercised (“FIT”) and sedentary (“SED”) mice 
show different intratumoral CD8+/ CD4+FOXP3+ ratios. Additional plots in Supplemental 
Material (Fig. S3) show the potential of the model to generate quantitative analysis for TME 
markers which can be compared to desired pre-clinical end points. 

 
8. Precision immunotherapy. Aerobically fit patients may require smaller dosage of ICI than 

sedentary patients, which may lead to personalization of treatment and reduction of adverse 
effects. Without a mitigated dosage, aerobically fit subjects are more prone to ICI adverse 
effects than their sedentary counterparts (8A,B). Lowering the dosage of ICI for aerobically fit 
patients relative to their sedentary counterparts can achieve the same reduction in tumor growth 
(8C) but with a lower added toxicity hence lower probability for adverse effects (8D). As a 
result of the ICI, the two tumors in 8E (sedentary and fit hosts), treated with high and low 
dosage, respectively, are of the same size, regardless of their initial immunogenicity. IHC of 
fast and slow growing Invasive Ductal Carcinomas in human females from the study reported 
in [12] show respectively lower and higher ratios of CD4+FOXP3+ to CD8+ T cells (8F). 
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