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Abstract 

Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field 
of immunology by deepening the characterization of immune heterogeneity and leading to the 
discovery of new subtypes.  However, single-cell methods inherently suffer from limitations in the 
recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout 
events. This issue is often compounded by limited sample availability and limited prior knowledge of 
heterogeneity, which can confound data interpretation.   

Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We 
prepared 21 libraries under identical conditions of a defined mixture of two human and two murine 
lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes.  We evaluate 
methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression 
signatures for each cell type.  We observed higher mRNA detection sensitivity with the 10x Genomics 5’ 
v1 and 3’ v3 methods.  We demonstrate that these methods have fewer drop-out events which 
facilitates the identification of differentially-expressed genes and improves the concordance of single-
cell profiles to immune bulk RNA-seq signatures. 

Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which can 
guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-
cell heterogeneity usually found in vivo. 
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Background 

 Understanding the cellular diversity underlying immune responses is an important component 
of immunological research.  Techniques such as FACS and mass cytometry [1] are useful for studying 
cellular diversity according to well-characterized cell-surface-protein markers.  The advent of single-cell 
RNA-seq has expanded the power to characterize individual immune cells from a defined set of cell-
surface markers to the entire transcriptome.  These single-cell technologies have enabled immunologists 
to characterize inflammation [2] and immune responses to cancer [3-7], uncovering previously 
uncharacterized cellular diversity and cell-type specific transcriptional responses.  As recent advances 
have increased cell throughput and lowered per-cell costs, the number of high-throughput techniques 
that can process more than a thousand cells per experiment has increased.   

 Several key factors, such as variable capture and amplification efficiencies during library 
preparation, impact the ability of single-cell RNA-seq techniques to accurately and comprehensively 
characterize immune-cell diversity. Mixtures of different cell sizes are particularly complex as small cells 
contain low total number of transcripts and therefore, are difficult to distinguish from ambient noise. 
The relatively small size and low mRNA content of immune cells may impact the performance of single-
cell RNA-seq methods differently than was previously described using larger cells [8-13].  Immune cells 
constitute a broad range of cell types across various lineages, activation states, and cell sizes. Efficient 
recovery across these diverse cell types impacts the fidelity of cell-composition analyses. Methods that 
recover a larger fraction of cells in a cost-efficient manner benefit studies that sample tissues containing 
few immune cells.  Also, increased sensitivity in detecting individual mRNA transcripts results in more 
comprehensive cellular profiles, which greatly advances the characterization of immune sub-types.  A 
more complete picture of cellular transcriptional activity facilitates the identification of differentially 
expressed (DE) marker genes and positively impacts the mapping of cells against reference immune cell 
signatures.   

Previous benchmarking studies using somatic cell lines or peripheral blood mononuclear cells 
(PBMCs) reported that high-throughput single-cell RNA-seq methods generally enable broader sampling 
of diverse populations at a lower per-cell cost. However, larger sample sizes come at the expense of lower 
mRNA detection sensitivity [8-13].  In this work, we extend previous findings with a focus on the 
application of high-throughput methods to immune-cell profiling. By using a defined mixture of four 
lymphocyte cell lines, we assess the performance of seven high-throughput methods using four 
commercially-available systems to address common concerns in immune-cell profiling.  First, we examine 
library efficiency in terms of cell recovery and cell-assignable reads.  Next, we assess mRNA detection 
sensitivity and the correlation of cellular profiles to immune cell signatures from bulk RNA-seq.  Finally, 
we compare results across cell types in consideration of varying cell sizes and cellular mRNA contents.  
This study serves as useful guidelines for the selection of a suitable single-cell RNA-seq method to study 
immune cells. 
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Results 

Design of Single-cell RNA-seq Benchmarking Experiments 

We benchmarked four commercially-available high-throughput single-cell systems:  the 
Chromium (10x Genomics) [14], the ddSEQ (Illumina and Bio-Rad), the scRNA-Seq System running Drop-
seq (Dolomite Bio) [15], and the ICELL8 cx (Takara Bio) [16] (Figure 1).  We tested three methods 
available for the Chromium (3’ v3, 3’ v2 and 5’ v1) as well as two methods for the ICELL8 (the official 3’ 
DE protocol and an alternate 3’ DE-UMI protocol).  All methods tested perform mRNA end counting by 
tagging mRNA sequences with a barcode containing a cell identifier (CID) and a unique molecular 
identifier (UMI) with lengths that vary by method (Supplemental Table 1).   

All techniques, apart from ddSEQ, amplify full-length cDNA (Supplemental Table 1) using a 
modified Smart-seq protocol [17, 18], which incorporates a 5’ PCR handle by employing a reverse 
transcriptase’s ability to switch templates at the end of a transcript.  Full-length cDNA can be amplified 
with primers in the 5’ template-switch and 3’ poly-T oligonucleotides.  Barcoded cDNA ends are further 
amplified after direct ligation or tagmentation to incorporate Illumina sequencing adapters.  ddSEQ 
contains a single amplification step during adapter incorporation after second strand synthesis without 
amplification of full-length cDNA.  Amplification bias introduced in the multiple rounds of PCR in these 
protocols, is mitigated by the incorporation of UMIs [19].  However, UMI counts are unreliable in the 
ICELL8 3’ DE protocol because cDNA is amplified in the presence of barcoding primers, potentially 
inflating UMI counts.  The alternative ICELL8 3’ DE-UMI protocol is more robust for UMI counting since 
reverse transcription and cDNA amplification are uncoupled by an exonuclease digestion of barcoding 
primers.  

We used a 1:1:1:1 mixture of four lymphocyte cell lines from two species (Figure 1 and 
Supplemental Table 2):  EL4 (mouse CD4+ T cells), IVA12 (mouse B cells), Jurkat (human CD4+ T cells), 
and TALL-104 (human CD8+ T cells).  These cells also vary in morphology: TALL-104 cells (~5 µm 
diameter) are considerably smaller than the other cell types (~10 µm diameter).  These cell lines are 
expected to have distinct expression profiles enabling the classification of each cell type.  Usage of cells 
from two species allowed us to clearly identify cross-species doublet contamination to calculate capture 
rates of cell multiplets. To mirror typical single-cell sequencing runs and to ensure a comparison 
independent of sequencing limitations, we normalized the read depth of our libraries to ~50,000 reads 
per cell (Figure 1, Supplemental Figure 1 and 2).  Cells were identified and classified by correlating 
single-cell expression profiles to bulk RNA-seq.   

 

Evaluation of Cell Capture and Library Efficiency 

One important consideration for single-cell RNA-seq is the capture rate, or the fraction of cells 
recovered in the data relative to input.  This is especially critical when working with precious samples 
with few cells.  To identify recovered cells, we used the curve of the log-total count against the log-rank 
of each CID, which is equivalent to the transposed log-log empirical cumulative density plot of the total 
counts of each CID.  The knee and inflection points in this curve typically define the transition between 
the cell-containing component and the ambient RNA component of the total count distribution. Here, 
we defined a recovered cell as a CID located above the inflection point (Supplemental Figure 2A).  In our 
tests, we find that capture rates are slightly lower than, but track with theoretical rates (Figure 2A and 
Table 1).  As expected, we observed the highest rates with 10x Genomics methods, ranging from ~30 to 
~80%, while ddSEQ and Drop-seq methods recovered < 2% of cells. 
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In addition to the capture rate, we also quantified events capturing multiple cells in a single 
partition. This technical artifact impairs downstream data analysis, as artificial mixtures of 
transcriptomes may be interpreted wrongly as single cells. The extent of this issue is influenced by the 
quality of the single-cell suspension, cell health, and cell loading concentration.  By counting CIDs with a 
significant fraction of both human and mouse transcripts, for all methods, we observed multiplet rates 
around the 5% we had targeted with our cell-loading concentrations (Supplemental Figure 3A and Table 
1).  

Another significant factor in efficiency is the fraction of reads that can be assigned to individual 
cells.  Increased background noise in sequencing libraries results in wasted reads and unnecessarily 
increased sequencing costs.  We observed the highest fraction of cell-associated reads for our ICELL8 
experiments (> 90%), intermediate rates for 10x experiments (~50-75%) and the lowest rates for ddSEQ 
and Drop-seq (< 25%) (Figure 2B and Supplemental Tables 3 & 4).  We also examined the genomic 
locations of aligned reads.  About 75% of aligned bases of each library were mapped to exons and UTRs.  
Notably, the intergenic fraction was lowest in 10x samples, suggesting lower genomic contamination in 
these methods. (Supplemental Figure 3B).  The ddSEQ method exhibited the greatest UTR bias. This is 
likely due to the longest read-length (150 bases) for ddSEQ of each tested technology. 

 

10x 5’ v1 and 3’ v3 Methods Demonstrate the Highest mRNA Detection Sensitivity 

Because immune cells tend to have low levels of mRNA, the mRNA detection sensitivity, or the 
fraction of a cell’s transcriptome detectable, critically impacts downstream analyses. Single-cell RNA-seq 
methods are inherently prone to dropouts due to inefficiencies during library preparation resulting in 
false negative gene expression signals [15].  Although we performed library normalization to obtain a 
consistent read depth across all cells, we found that read distributions of individual cell types varied.  
Since EL4 cells demonstrated the highest consistency between read distributions across experiments 
(Supplemental Figure 1C), we focused our initial analysis on EL4 cells to minimize batch effects due to 
differential sequencing depths.  We observed the highest detection of both transcripts and genes with 
at least one read count using 10x Genomics methods, with the highest levels seen in the 3’ v3 
experiments (median 28,006 UMIs/4,776 genes across all samples) followed by the 5’ v1 and 3’ v2 kits 
(25,988 UMIs/4,470 genes and 21,570 UMIs/3,882 genes, respectively) (Figure 3A-B and Supplemental 
Table 4).  ddSEQ and Drop-seq experiments demonstrated similar detection rates (10,466 UMIs/3,644 
genes and 8,791 UMIs/3,255 genes respectively).  UMI counts generated by the ICELL8 3’ DE method are 
unreliable due to residual barcoding primers during cDNA amplification, so we focused on gene 
detection sensitivity instead.  We observed a significant drop in gene detection between the 3’ DE and 3’ 
DE-UMI methods (2,849 and 1,288 genes respectively) and a low number of UMIs counted in the 3’ DE-
UMI method (2,792 UMIs).  This suggests that many transcripts are lost in the additional primer 
digestion and cleanup steps.  For the other three cell types, rankings of methods by absolute UMI- and 
gene-count distributions slightly differed from EL4 cells, likely due to greater variation in read depth 
across samples for these cell types (Supplemental Figures 1C and 4A). 

To account for varying read distributions across the four cell types (Supplemental Figure 1C), we 
compared the number of detected UMIs and genes relative to the total number of reads per cell.  For 
EL4, IVA12 and Jurkat cells, we see a similar trend across methods with regards to efficiency of transcript 
and gene detection (Figure 3B & 3D).  Again, 10x 3’ v3 (mean±SD reads/UMI = 2.07 ± 0.52, reads/gene = 
9.04 ± 2.65) and 5’ v1 chemistries (mean±SD reads/UMI = 1.98 ± 0.19, reads/gene = 9.51 ± 2.68) were 
the most efficient, requiring fewer reads to detect a single UMI or gene.  These methods are followed by 
10x 3’ v2 (reads/UMI = 2.35 ± 0.33, reads/gene = 11.17 ± 3.03), ddSEQ (reads/UMI = 5.25 ± 1.14, 
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reads/gene = 13.42 ± 3.89), Drop-seq (reads/UMI = 6.40 ± 1.42, reads/gene = 15.97 ± 5.62) and ICELL8 
methods (3’ DE: reads/gene = 29.68 ± 41.48, 3’DE-UMI: reads/UMI = 21.77 ± 5.50 , reads/gene = 47.5 ± 
17.91).  This trend is largely mirrored in TALL-104 cells, albeit less distinct due to the low read depth 
obtained for those cells (Figure 3B-C and Supplemental Figure 1C).  

We further examined the number of genes with at least one sequenced read in pseudo-bulk 
populations.  For this purpose, cells form each cell type were pooled and gene expression 
measurements were merged. We observed similar trends with higher numbers of detected genes with 
the 10x 3’ v3, and 5’ v1 method for EL4, IVA12 and Jurkat cells (Figure 3E).  Although the ICELL8 3’ DE 
method had a low per-cell gene detection rate, when pooling more than 30 cells this method exhibited 
comparable levels of gene detection to 10x 3’ v2, ddSEQ and Drop-seq methods.  This is likely due to the 
high false negative rate of genes with overall low expression levels in the ICELL8 3’ DE method.  The 
cumulative number of genes for TALL-104 cells was lower than the other cell types and the relative 
detection rates across methods did match trends seen in other cell types, possibly due to the low read 
depth and cell recovery for this cell type.  

We also examined the ability of each method to detect genes at various expression levels by 
calculating the dropout rate, the conditional probability that a gene is not detected in a given cell.  The 
dropout rate was modeled as a function of the expression level in bulk RNA-seq (FPKM) for each cell 
type. We used a nonlinear least square fit of the data that accounts for the activity of reverse 
transcriptase described by Michaelis-Menten kinetics [20-22]. Here, higher gene detection sensitivity as 
a function of fewer dropouts at lower expression levels, is indicated by left-shifted curves and lower 
Gene Detection 50 (GD50) value, the point at which this curve reaches a detection probability of 0.5. The 
GD50 metric represents the expression level of a gene we would expect to be detected in half of the 
cells, and can help guide expectations of detection rates for genes of interest based on their expression 
in bulk RNA-seq.  For EL4 cells, 10x Genomics methods were the most sensitive with 10x 3’ v3 having the 
lowest GD50 at 13.6 FPKM, followed by the 5’ v1 and 3’ v2 chemistries (16.8 FPKM and 20.2 FPKM, 
respectively).  The ddSEQ and Drop-seq methods had comparable dropout rates (25.0 FPKM and 26.7 
FPKM respectively), while ICELL8 methods had the lowest sensitivity (37.9 FPKM/3’ DE and 112.1 
FPKM/3’ DE UMI) (Figure 3F and Table 1). We observed similar trends across methods with the other 
three cell types, which had greater variance in read depth and transcript detection (Supplemental 
Figure 4B-D).   

 

mRNA Detection Affects the Fidelity of Single-Cell and Pseudo-Bulk Transcriptomes 

We next investigated how well single-cell expression recapitulates immune signatures from bulk 
RNA-seq. For this purpose, we correlated expression of a set of marker genes (defined using bulk 
RNAseq data; see Methods) between bulk RNAseq and single cells.  In general, cells with more genes 
detected had a better concordance to bulk RNA-seq immune signatures (Supplemental Figure 5).  We 
observed higher Pearson correlation coefficients for 10x 3’ v3, 5’ v1 and ddSEQ methods against EL4, 
IVA12 and Jurkat bulk RNA-seq expression signatures (Figure 4A).  ICELL8 3’ methods, with generally 
fewer genes detected, demonstrated the lowest correlation values.  Overall, poorer correlation to TALL-
104 bulk RNAseq was in line with fewer transcripts and genes detected for this cell type in the single-cell 
data.   

We further examined the correlation between pooled single-cell RNA-seq pseudo-bulk 
transcriptomes and bulk RNA-seq data using all genes.  Averaging gene-expression profiles across single 
cells is commonly performed to compare data across experiments and is thought to resemble bulk data.  
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For EL4, IVA12 and Jurkat, most methods began to plateau around a correlation value of r = 0.9 with a 
pool of 10-20 cells (Figure 4B).  The maximum correlation values were lower for ICELL8 3’ DE (r = 0.90 
and 3’ DE-UMI methods (r = 0.81-0.90) compared to other methods (r=0.92-0.95), and correlation was 
generally lower for TALL-104 cells in all methods, suggesting that lower mRNA detection sensitivity not 
only affects data fidelity at a per-cell level, but also impacts aggregated single-cell data.  Although 
samples were prepared under identical conditions, we cannot rule out any effects of biological 
differences between samples. However, it is likely that higher variance in the detection of lowly 
expressed transcripts drives differences in expression observed in single-cell and bulk RNA-seq.  Notably, 
our data indicates that this technical variance is not necessarily reduced by pooling across single cells 
and results from such analyses should be interpreted cautiously. 

 

Higher mRNA Detection Sensitivity Improves Identification of Differentially Expressed Genes  

To assess the performance of differential expression analysis for each method, we focused on 
the two mouse cell types (EL4 and IVA12), because these cells had more similar sequencing depths 
compared to the two human cell types.  We used the hurdle model proposed by Finak et al. [23] to 
identify differentially-expressed (DE) genes with an FDR < 10-4. For each DE analysis we sampled 199 
cells, the lowest number of recovered cells by any method.  Over 3,000 DE genes were identified in 10x 
Genomics methods, the highest among the methods tested, followed by Drop-seq (avg ~2,700 genes) 
and ddSEQ (avg ~2,800 genes), while the two ICELL8 methods had the fewest number of DE genes (avg 
~1,800 and ~1,000 genes) (Figure 5B and Table 1).  We observed similar trends with two alternative 
commonly-used tests for differential expression, a Mann-Whitney-Wilcoxon test [24] and a likelihood 
ratio test with an negative binomial generalized linear model [24, 25] (Supplemental Figure 6B).  
Performing DE analysis using all the cells obtained in each method increases the number of genes 
passing the significance threshold due to the increased statistical power (Supplemental Figure 6D). 
When we only consider 5,868 genes that have more than a 1.5-fold difference in bulk RNA-seq data, a 
proxy for ground-truth expression differences, the trend remains the same (Figure 5D and Table 1).   

In general, we observed that fold-changes in single-cell data correlated well with gene 
expression differences in bulk RNA-seq data, especially for genes with higher expression levels 
(Supplemental Figure 6A).  In contrast, genes with low expression correlated poorly with smaller fold 
changes observed in the single-cell data, consistent with higher dropout probabilities for lowly-
expressed transcripts.  Also, the distribution of FPKM values is generally higher for DE genes from single-
cell data compared to genes with at least 1.5 fold-change in bulk RNA-seq (Supplemental Figure 6E), 
indicating that all methods exhibit a considerable type II error rate.  Furthermore, we find the lowest 
median FPKM in bulk RNA-seq for DE genes from the methods with the highest detection sensitivity (10x 
3’ v3 (median = 3.43 FPKM) and 10x 5’ v1 (median = 3.45 FPKM), and the highest median FPKM for the 
ICELL8 3’ DE-UMI method (median = 4.91 FPKM), which had the lowest transcript detection sensitivity 
(Figure 5C and Supplemental Figure 6C).   

 

mRNA Detection Sensitivity Varies Across Heterogenous Cell Types 

Many immune single-cell experiments profile an undefined mixture of cell types that potentially 
vary in mRNA content.  Efficient cell recovery across diverse cell types is important to accurately 
characterize the diversity of these populations.  We next compared the differences in cell recovery 
between the four cell types included in our sample mixture.  In particular, TALL-104 cells are smaller 
(5µm diameter) than the other three cell-types (EL4/IVA12 - 11µm, Jurkat - 10µm diameter) and, in our 
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hands, more difficult to culture, with viability rates under 80% and slow growth.  Across all experiments, 
TALL-104 cells had the lowest distribution of reads, UMIs, and genes recovered (Supplemental Figure 1C 
and 4A), such that they were more susceptible to exclusion based on read or UMI thresholding of CIDs 
to distinguish cells from ambient noise.   

We classified cells by correlating their expression profile to gene signatures from bulk RNA-seq. 
This enabled us to examine the recovery of each cell type with common thresholding points on the log-
log curve of total reads or UMI vs rank ordered CIDs.  In droplet-based methods, thresholding removes a 
large fraction of CIDs that are derived from droplets containing a barcoded bead, but no cell.  Two points 
are commonly used as thresholds:  the knee point where the signed curvature is minimized and the 
inflection point where first derivative is minimized [26] within a given range of total reads or UMIs 
(Figure 6A and Figure S2A).  While the fraction of classifiable cells on each side of these two thresholds 
varied across experiments, both thresholds were able to capture EL4, IVA12 and Jurkat cells (Figure 6B). 
Notably, most TALL-104 cells would be removed by thresholding using the stringent knee point, with 
only one experiment having any TALL-104 cells above this threshold. While the more permissive 
inflection point performed better at capturing TALL-104 cells, all TALL-104 cells would be considered 
ambient noise using this threshold in samples (Figure 6B).   

As low mRNA recovery might reflect poor cell health, e.g., due to mechanical stress in cell 
preparation, we also examined the fraction of cells below each threshold that had a high rate of 
mitochondrially encoded UMIs or reads, an indication of broken or poor-quality cells (Figure 6C).   
Accordingly, a large fraction of cells removed by the knee point cutoff had a high mitochondrial rate.  
However, significant numbers of cells had reasonable mitochondrial rates, including many TALL-104 
cells.  This suggests that lower transcript recovery in TALL-104 cells is related, at least in part, to lower 
overall mRNA content and not cellular damage, although we cannot completely rule out other cell-
quality issues that do not affect the mitochondrial rate.  Overall, some cell populations could be lost 
when thresholding based on total UMI or read count is too stringent.  It would be beneficial to include 
more cells at the initial CID selection step and filter cells more stringently in downstream analyses with 
other cell-quality criteria to avoid loss of cell populations with low mRNA content.  Of note, this issue 
does not affect ICELL8 methods as all cell-related barcodes are known a priori when cell-containing wells 
are selected for processing.    

 In heterogeneous populations, mRNA capture rates and read depths may vary across 
subpopulations.  We explored differences in mRNA detection sensitivity across the four cell types in our 
samples.  As it is common in single-cell profiling of mixed populations, we observed differences in read 
and UMI recovery across cell types in each method (Figure 7A).   When the entire data is used to model 
dropout rates, we find that cell types with the lowest read distributions, such as TALL-104 cells, have 
increased dropout probabilities and GD50 levels across all seven methods tested (Figure 7B and 
Supplemental Figures 4B & 4D).  We hypothesized that differences in dropout rates were 
predominantly driven by differences in mRNA detection rates and compared cells from each cell type 
with similar numbers of UMIs.  Cells were separated into six quantile bins based on the number of UMIs 
(Figure 7C) and dropout rates for each cell type were modeled.  Because there were few TALL-104 cells 
recovered in many samples (Supplemental Table 4), we focused on data from the 10x 3’ v3 method 
which had sufficient numbers of cells available for analysis.  We found that with increasing number of 
total UMIs, GD50 values and dropout rates decreased.  Notably, GD50 levels were similar across cell-types 
within a bin (Figure 7D).  Slight differences in GD50 are related to variation in mean number of UMIs for a 
particular cell type.  TALL-104 cells, which fell into the two lowest bins due to the low numbers of 
transcripts detected, had similar dropout rates as other cell types in the same bin (Figure 7D & 7E).  
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Discussion 

In this paper we explored several important quality metrics of single-cell RNA-seq methods:  
efficiency of cell recovery, library efficiency and mRNA detection sensitivity.  High recovery of cells put 
into a system and minimal loss of reads due to noise are important, especially to limited samples with 
few cells.  The differences in performance we observed across these methods are directly related to the 
design of cell and mRNA capture.  To partition cells, the methods we tested either use microfluidics to 
generate nanoliter sized droplets or to partition cells on microwell chips.  Ideally, those microreactors 
contain exactly one bead and one cell. In practice, however, the number of cells per microreactor 
approximately follows a Poisson distribution.  While the loading probability of cells is similar across 
these methods, the distribution of barcoding oligonucleotides varies. The loading statistics of Drop-seq 
and ddSEQ follow a Poisson distribution, while 10x Chromium chips load beads in a sub-Poissonian 
fashion.  The latter enables an increased theoretical capture rate of ~60%.  Sparser loading of barcoding 
beads in ddSEQ and Drop-seq minimizes the occurrence of bead doublets, but at the expense of lower 
maximum recovery rates of ~3% and ~5% respectively.  Oligonucleotide loading is tightly controlled on 
ICELL8 chips with the pre-printing of oligonucleotides, providing a priori knowledge of cell-related CIDs 
when coupled with cell imaging.  The ability of the ICELL8 to selectively process a subset of wells, those 
containing cells identified by fluorescence imaging, greatly improves this method’s library efficiency 
compared to techniques that process all partitions.  Accordingly, we observed the highest fraction of 
cell-related reads in ICELL8 libraries, especially compared to ddSEQ and Drop-seq methods with a large 
fraction of bead containing droplets lacking a cell and increased potential for ambient RNA.  Quality of 
single-cell suspensions are also important factors to these metrics.  Variable cell viability and inefficient 
cell quantification of our samples may negatively impact cell-capture and multiplet rates and explain the 
discrepancy between expected and observed rates.   

In our experiments, we observed the highest mRNA-detection sensitivity in the 10x 3’ v3 and 5’ 
v1 methods, with the highest numbers of transcripts and genes detected and lower probabilities of gene 
dropouts at lower expression levels.  Our results corroborate previous reports about the performance of 
some of the methods assessed in our work [10-13].  Here, we extend these findings by demonstrating an 
increased sensitivity of the more recent 5’ v1 and 3’ v3 methods, which also validates claims made by 
10x Genomics.  Further, we found ICELL8 methods have the lowest mRNA detection sensitivity of the 
methods tested for the assayed immune cell types.  Of note, this is partly in disagreement with two 
papers reporting better performance of the ICELL8 3’ DE method relative to 10x 3’ v2 and Drop-seq [10, 
27].  Differences to the performance we observed may be related to cell types used in each study. For 
example, ICELL8 3’ DE detected significantly fewer genes per cell compared to 10x 3’ v2, ddSEQ and 
Drop-seq in B-cells in Mereu et al.[10], which is on par with our findings. 

Gene detection rates may be increased by greater sequencing depths, particularly for low 
expressed genes (Supplemental Figure 2B and Supplemental Table 3). However, high-throughput 
methods aim to sequence many cells concurrently for a broad exploration of populations, at the 
expense of the completeness of individual transcriptional profiles. Here, libraries are not routinely 
sequenced to full saturation due to high sequencing costs. To be able properly assess mRNA detection 
sensitivity, we normalized samples to a common sequencing depth of ~50,000 reads per cell by 
downsampling raw reads.  Additional iterations of this stochastic process showed little variation in the 
resulting analysis (Supplemental Table 5), suggesting our normalization step did not introduce any 
technical bias.  Notably, the resulting sequencing depth is typical for common high-throughput single-
cell RNA-seq experiments. Therefore, our data can provide expectations for mRNA and gene detection 
rates in experiments with a similar sequencing depth using other immune cells.      
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Multiple aspects of single-cell RNA-seq protocols such as efficiencies in mRNA capture, reverse 
transcription, and cDNA amplification can affect the overall mRNA detection sensitivity.  Efficient mRNA 
capture may be impacted by the template switch mechanism, as only first strand cDNAs which have 
successfully switched templates can be amplified.  ddSEQ, the sole method we tested that does not 
utilize template switching, is not as sensitive as the 10x Genomics methods, possibly due to other 
technical differences.  Another source of inefficiency may arise in the reverse transcription cleanup step 
prior to cDNA amplification.  We found that the addition of a primer digestion step to the ICELL8 3’ DE 
protocol in the 3’ DE-UMI method decreased the mRNA detection sensitivity.  Additional improvements 
to mRNA capture such as improving oligonucleotide chemistry for mRNA capture and cDNA 
amplification may enhance mRNA detection sensitivity and improve single-cell RNA-seq techniques in 
the future. 

Increasing the sensitivity of mRNA detection greatly benefits downstream analyses of immune 
profiling datasets. Sampling transcriptomes with high fidelity results in a greater likelihood of detecting 
rare transcripts for identifying DE genes at lower expression levels.  In general, our results show that 
expression profiles of cells with high mRNA content generated by methods with a high mRNA detection 
rate, correlated well to bulk-RNA-seq data.  Also, the number of DE genes as well as the overall 
correlation in fold-change differences to bulk RNA-seq improved with higher mRNA detection sensitivity.  
Here, all 10x Genomics methods, which had the highest mRNA detection sensitivity, exhibited a high 
correlation to bulk RNA-seq data as well as more DE genes with a lower range of expression levels in 
bulk data.  Notably, our results revealed that the higher variance in the detection of lowly expressed 
transcripts commonly observed in techniques with lower sensitivity is not necessarily overcome by 
pooling across single cells when performing pseudo-bulk analyses.  Strengthening the underlying mRNA 
detection sensitivity can improve downstream analyses to identify marker genes as well as classify 
subtle immune subtypes and cell states with small, but significant differences in gene expression, and 
can facilitate the identification of novel immune subpopulations [28].   

Importantly, our data also provides insight into the performance of single-cell techniques across 
heterogenous populations of immune cells.  Although the immune cell lines used in this study may differ 
from lymphocytes found in-vivo, the standardized cell culture conditions for these cells helps reduce 
expression variability compared to primary cells and facilitated data analysis.  Nonetheless, our results 
provide better guidance for immune profiling in contrast to the higher mRNA content cell lines such as 
carcinoma or stem cells commonly used in previous comparison papers [8, 11, 12].  The inclusion of 
small TALL-104 cells allowed us to assess the sensitivity of these methods in subpopulations with 
comparatively low mRNA levels.  We observed that relaxing CID filtering criteria based on total UMI or 
total read counts can improve recovery of TALL-104 cells for downstream analyses.  Notably, smaller 
immune cells such as TALL-104 cells have a higher gene dropout rate that is related to the number of 
transcripts captured from a cell. Thus, additional quality metrics also need to be calibrated carefully for 
the identification of small immune cell types. Cell imaging on the ICELL8 cx to identify otherwise 
challenging cells of interest such as TALL-104, can also be used to recover populations of small cells.  In 
general, TALL-104 cells exhibited lower mRNA detection rates and higher dropout rates.  Thus, we can 
expect that other immune cell types with low mRNA content exhibit similar dropout rates as other 
immune cells with a comparable rate of transcript detection.  
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Conclusions 

Our comparison of data from seven high-throughput single-cell methods can help guide method 
selection for immune profiling experiments.  Our data can provide reasonable predictions of transcript 
and gene detection rates for immune cells, as well as insight into performance across heterogenous 
lymphocyte populations with varying mRNA content.  Our results suggest looser thresholding of CIDs in 
droplet-based methods can be beneficial to retain cell populations with low-mRNA content.  
Additionally, smaller cells such as TALL-104 cells have a higher gene-dropout rate that is related to the 
number of transcripts captured from a cell. 

Each method we tested showed advantages that could benefit immune cell profiling.  In this 
study, 10x Genomics methods had the highest cell recovery and mRNA detection sensitivity, making 
these techniques particularly suited to experiments with limited samples and experiments that require 
detection of genes with lower expression levels. Here, the performance was comparable between the 
10x 5’ v1 chemistry and 3’ v3 methods, making the 5’ v1 chemistry an appropriate substitute when 
pairing gene expression analysis with TCR/BCR clonotyping.  10x Genomics and Illumina/Bio-Rad (ddSEQ) 
sell reagents in kits, facilitating adoption of these methods, but limiting customization of protocols.  
Takara Bio also sells reagent kits for the ICELL8, however, protocols on the instrument are customizable 
allowing for greater flexibility.  Drop-seq is also an open system that is fully customizable and custom 
reagents such as target-capture oligonucleotide beads [29, 30] can be easily integrated into the 
protocol. The fluorescent imaging capabilities of the ICELL8 cx enable the pairing of sequencing and 
imaging data, in downstream analysis.  Our ICELL8 experiments demonstrated high library efficiencies, 
with a large fraction of reads assignable to cells and potential utility to recover low-mRNA-content cells, 
such as TALL-104 cells, that are more susceptible to stringent read and UMI thresholding.  Overall, our 
data shows that all methods exhibit specific strengths which can be aligned with experimental goals, 
sample limitations, and budgetary constraints. 
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Materials and Methods 
Cell Culture 

 All cell lines were acquired from ATCC.  EL4 (ATCC TIB-39) cells were cultured in RPMI-1640 + 2 
mM L-glutamine + 10% FBS + 1.7 ul 2-mercaptoethanol per 500ml media.  IVA12 (ATCC HB-145) cells 
were cultured in DMEM + 10% FBS + 1X P/S.  Jurkat (ATCC TIB-152) cells were cultured in RPMI-1640 + 
10% FBS + 1X P/S.  TALL-104 (ATCC CRL-11386) cells were cultured in IMDM + 15% FBS + 1x L-Glu + 
200U/ml IL-2. Prior to processing cells, cells were washed in 1X PBS and cell concentration and viability 
were determined using a Countess (Invitrogen).  Cells were mixed at a 1:1:1:1 ratio based on viable 
counts and resuspended in PBS + BSA solution according to manufacturer’s guidelines. 

Chromium 

 Cells were resuspended in PBS with 0.04% BSA at a stock concentration within the 
recommended range (typically ~1e6 cells/mL) and loaded at a volume to target between 2000-6000 cells 
depending on sample.  Libraries were prepared according to manufacturer’s instructions for each 
chemistry.  Libraries were sequenced on a NextSeq500 or NovaSeq (Illumina) according to 
manufacturer’s guidelines:  3’ v3 - 28x8x0x91, 3’ v2 - 26x8x0x98, and 5’ v1 - 26x8x0x110. 

ddSEQ 

 Cells were resuspended in PBS + 0.1% BSA and loaded at a concentration of either 2000 or 2500 
cells/ul.  Libraries were prepared according to manufacturer’s instructions. Libraries were sequenced on 
an Illumina NextSeq500 (68x8x0x150) at a 3pM concentration with provided custom read 1 primers. 

Drop-seq 

 Libraries were prepared following the McCarroll Lab Drop-seq protocol 
(http://mccarrolllab.org/Drop-seq/) [15], with cells and beads encapsulated using the Dolomite scRNA-
Seq system.  Oligo beads (ChemGenes) contained the original Drop-seq polyT primer with a VN anchor 
at the 3’ end 
(TTTTTTTAAGCAGTGGTATCAACGCAGAGTACJJJJJJJJJJJJNNNNNNNNVTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
VN).  Cells were resuspended in PBS + 0.01% BSA and loaded at a concentration of either 150 or 300 
cells/ul.  For encapsulation, cell and bead solutions were loaded at 30 ul/min and encapsulation oil was 
loaded at 200 ul/min.  Libraries were sequenced on a NextSeq 500 (Illumina) (21x8x0x138) at a 3pM 
concentration with custom Read1 Drop-seq primers 
(GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC). 

ICELL8 CX 

 Cells were resuspended in 1X PBS and loaded at a final concentration of 2,800 cells/ml.  Only 
wells containing single cells as determined by the Cell-Select software using default settings were 
processed.  Libraries were prepared using the Takara Bio SMARTER ICELL8 cx 3’ DE user manual or an 
alternate protocol that separates the initial reverse transcription reaction from cDNA amplification.  In 
short, after RT, cDNA was removed from the chip and cleaned and concentrated with a Zymo Clean & 
Concentrator-5 kit.  cDNA was then treated with 20U of Exonuclease for 30 min at 37°C and the enzyme 
was deactivated with 20 min at 80°C.  cDNA was then amplified and tagmented using the Illumina 
Nextera XT kit for the final sequencing libraries.  Libraries were sequenced at 25x8x0x131. 

Bulk RNA sequencing 
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 RNA was isolated from cells using the RNeasy kit (Qiagen).  Libraries were generated using 1ug 
of total RNA using a modified Illumina TruSeq Stranded mRNA protocol.  Reverse transcription was 
performed with the addition of RNaseOut (Invitrogen) and actinomycin-D (MP Biomedicals).  The 
resulting product was cleaned using AMPure RNAClean beads.  Additionally, second-strand synthesis 
was performed using dUTP instead of dTTP and an additional USER (New England Biolabs) digestion step 
was incorporated after size-selection.  Libraries were sequenced at 101x6x0x101 on a HiSeq (Illumina) to 
a minimum depth of 30 million reads per sample. 

Read alignment and transcript counting 

 All sequencing data was aligned to a combined human/mouse reference genome obtained from 
10x Genomics: reference “cellRanger_1.2.0” composed of hg19 with Ensembl 82 and mm10 with 
Ensembl 84.  Bulk data was aligned using STAR v2.5.1b and quantified using featureCounts v1.6.3 [31].   

For normalizing single-cell libraries, we considered the fact that cell types with low mRNA 
content are more prone to drop-outs and thus, may compromise proper normalization based on the 
mean read count per CID.  Thus, robust library scaling factors were derived by using only cells with 
sufficiently high mRNA content.  For this purpose, we calculated Gaussian kernel density estimates with 
a smoothing bandwidth determined via the Normal Reference Distribution method as provided by R 
v4.0.2.  Local maxima of the density function were sorted in decreasing order. The first significant mode, 
𝑑 , was considered the sequencing depth of the cell population with the highest mRNA content for 
sample 𝑖 (Figure S1A).  Scaling factors were then derived by 𝑠 = min (𝑑 )/𝑑 . FASTQ files were 
downsampled by factor 𝑠  using seqtk v1.3-r106.  This resulted in libraries with around 50,000 reads per 
cell.  Downsampling was repeated three times for four representative samples for an assement of the 
margin of error.  Alignment statistics for normalized data were generated using PicardTools CollectRNA-
seqMetrics using the aligned (and filtered) BAM files from each pipeline.   

Downsampled FASTQ files were further processed using method-specific pipelines with 
parameters set as recommended. All pipelines employ STAR [32] for the alignment step, but are tailored 
to identify method-specific barcodes and count transcripts.  Chromium data was processed using 
Cellranger v3.0.2 (with STAR v2.5.1b); ddSEQ, Drop-seq and ICELL8 data were processed using the Drop-
seq_Tools pipeline v2.3.0 (with PicardTools v2.18.14 and STAR v2.4.2a).  ddSEQ CIDs and UMIs were 
extracted using ddSeeker v0.9.0 [33].  ICELL8 read and UMI count matrices was generated using mappa 
v0.9 software (with STAR v2.7.0b). 

 To assess step-wise quality metrics of each method’s original data we applied a uniform pipeline 
(Supplemental Table 3).  First, we demultiplexed and aligned sequenced reads using STAR as 
recommended by each scRNA-seq method. Here, ddSEQ data was processed using SureCell RNA Single-
Cell v1.1.0 (with STAR v2.5.2b).  Then, high-quality reads were filtered by MAPQ scores (MAPQ = 255 for 
10x, Drop-Seq, and ICELL8; MAPQ = 50 for ddSEQ) using samtools 1.9 [34] and mapped against mouse 
(Ensembl 84) and human (Ensembl 82) gene annotations using featureCounts from the subreadpackage 
2.0.1 with parameters “-t exon -g gene_id -C -p --primary”. We wrote custom Java code (v JDK 11.0.1) to 
generate read and UMI count matrices. Here, we considered potential sequencing errors in UMIs and 
corrected these as follows: reads got grouped by <barcode, gene, UMI> tuples. If two groups had the 
same <barcode, gene> pair, but their UMIs differed by a single base, the UMI of the smaller group was 
corrected to the UMI of the larger group.  

Cell classification 

 Cells were assigned to one of four input cell classes by their similarity to cell type signatures 
from bulk RNA-seq data.  First, we selected highly expressed genes with FPKM > 50 in any bulk RNA-seq 
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sample. Next, gene expression was contrasted between bulk RNA-seq samples from the same species 
(EL4 vs IVA12 and Jurkat vs TALL-104) and we filtered 184 highly variable genes (93 mouse, 91 human) 
with a ln fold difference > 3 between the two cell types.  Pearson correlation, 𝑟, was calculated between 
each gene expression vector of each cell 𝐱  ∈ ℝ  and each gene expression vector of each bulk RNA-
seq sample 𝐲  ∈ ℝ : 𝑓  𝐲 = 𝑟(ln (𝐱 + 1), ln (𝐲 + 1)). A cell type was assigned using the 
following four classification rules derived from the correlation coefficient distributions:  

1. 𝑓 (𝒚 ) > 0.60 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) < 0.20 → EL4 
2. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) > 0.60 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) < 0.20 → IVA12 
3. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 > 0.40 & 𝑓 (𝒚 - ) < 0.20 → Jurkat 
4. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) > 0.40 → TALL-104 

We relaxed these rules for ICELL8 data to account for overall lower CID numbers and method-specific 
distribution differences: 

5. 𝑓 (𝒚 ) > 0.40 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) < 0.20 → EL4 
6. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) > 0.40 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) < 0.20 → IVA12 
7. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 > 0.35 & 𝑓 (𝒚 - ) < 0.20 → Jurkat 
8. 𝑓 (𝒚 ) < 0.05 & 𝑓 (𝒚 ) < 0.05 & 𝑓 𝒚 < 0.05 & 𝑓 (𝒚 - ) > 0.25 → TALL-104 

Cells with two or more assigned cell types, were removed.  For each sample, we classified the top 𝑛 CIDs 
ranked by total read count with 𝑛 =  2 ×  number of expected cells. 

 To analyze the thresholding method using the transposed log-log empirical cumulative density 
plot of the total read counts of each CID, we calculated the knee and inflection points as described in 
Lun et al. [26]. Briefly, the knee and inflection points are interpreted as determinants of the range in 
which the curve transitions between cell-containing droplets/wells with high mRNA content and empty 
droplets/wells with ambient RNA. The total count per CID is modeled as a function of decreasing CID 
rank by fitting cubic smooth splines with 20 degrees of freedom. The knee point is defined as the point 
on the curve where the signed curvature is minimized, the inflection point is defined as the point where 
the first derivative of the spline basis functions is minimized. We defined a lower bound for fitting the 
smooth splines as the minimum number of total reads of all classified CIDs. Calculations were performed 
using the R package DropletUtils v1.6.1.  For the analysis of the original (i.e., not down-sampled) data 
described in Supplemental Figure 2, CIDs above the inflection point were considered genuine cells. 

Doublet rate estimation 

 CIDs were classified as multi-species multiplets if the number of total counts from each species 
exceeded the 10th percentile of the distribution for that species.  The total count distributions were 
calculated using cells assigned in the step described above.  Multiplet rates were calculated by taking 
CIDs above the inflection point and dividing the number of multi-species multiplets by the total number 
of cells.  To obtain the true multiplet rate that considers non-detectable intraspecies multiplets and 
accounts for differing proportions of human and mouse cells, this fraction was divided by an adjustment 
factor 𝜆: 

𝜆 = 2
𝑛human𝑛mouse

(𝑛human + 𝑛mouse − 𝑛hm)
 

where 𝑛human is the number of human cells, 𝑛mouse is the number of mouse cells, and 𝑛hm is the number 
of inter-species multiplets. 
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Cell recovery rates 

Cell recovery rates were calculated as the number of CIDs above the inflection point divided by 
the total number of cells loaded onto a system.  Theoretical capture rates for 10x Genomics and ddSEQ 
methods are based on expected recovery numbers given in the user manual.  Theoretical capture rates 
for DropSeq were based on a 5% droplet occupancy of oligo beads.  Theoretical capture rates for iCELL8 
protocols were calculated based on a Poisson distribution of wells with single cells based on an average 
cell occupancy of 1 cell per well. 

Pseudo-bulk analyses 

 Pseudo-bulk analyses analyzing correlation to bulk RNA-seq data and gene detection rates were 
performed by summing UMI counts across multiple cells.  A subsample with at least 100 classified cells 
or the maximum number of classified cells recovered that meet the mitochondrial rate threshold were 
selected from each method.  Mitochondrial rate thresholds were determined on a per-sample basis 
based on distribution of rates (Supplemental Table 4).  Various numbers of cells (1-50) were randomly 
sampled from this pool and expression values were averaged. The aggregated expression matrix was 
used for analyzing its correlation to bulk RNA-seq and for quantifying the number of detected genes.  
Mean values across 50 iterations for these metrics were used for visualization.  

Dropout modeling 

 Dropout rates denote the fraction of missing values in a gene’s expression vector. We estimated 
the dropout rate for each gene from the species of the cell type considered.  Cells included in the 
analysis were filtered by fraction of mitochondrial counts to remove poor quality cells.  Dropout rate of 
bulk RNA-seq data was modeled by fitting the function 𝑓(𝑥)  =  𝑎 ∗ exp(−𝑏 ∗ 𝑥) where 𝑥 is the 
expression level using nonlinear least squares.  GD50 FPKM numbers were calculated as 0.5 =  𝑎 ∗
exp(−𝑏 ∗ 𝑥) using the fitted coefficients 𝑎 and 𝑏.  Dropout rates were similarly calculated for single-cell 
RNA-seq data by binning cells by mRNA detection rates.  10x 3’ v3 cells were placed into six bins based 
on distribution percentiles resulting equivalent numbers of cells in each bin.  Dropout models were 
calculated for a random subset of 50 cells for each cell type with at least 50 cells in each bin and results 
were averaged across 50 iterations.                                                                                                                                                                                                                             

Differentially expressed gene identification 

Statistical differences between gene expression of EL4 and IVA12 cells were identified using the 
hurdle model provided in the MAST R package v1.12.0 [23], a Wilcoxon rank-sum test, or the negative 
binomial generalized linear model available in the MASS R package v7.3-51.5. Genes that had an FDR-
adjusted p-value < 1e-4 were declared differentially expressed.  Cells from multiple replicates from each 
method were pooled in order to maximize sample sizes.  Downsampling of cells was performed to the 
smallest number of observed cells from a single cell type (𝑛 = 199); this step was repeated 10 times to 
assess the error margin.  UMI count data was used for 10x, ddSEQ, Drop-seq, and ICELL8 3’ DE-UMI 
samples, read count data was used for ICELL8 3’ DE samples.  Expression count matrices were 
normalized by library size factors (i.e., total counts per cell), multiplied by 104, and log-transformed by 
log (𝑥 + 1). Log-normalized count matrices were subjected to MAST, normalized count matrices were 
used for the Wilcoxon-rank sum test, and raw count data was input to the negative binomial generalized 
linear model.    
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List of abbreviations: 

RNA-seq: RNA sequencing  

PBMC: Peripheral blood mononuclear cell 

DE: Differentially-expressed 

UMI: Unique Molecular Identifier 

CID: Cell identifier 

cDNA: Complementary DNA 

mRNA: Messenger RNA 

PCR: Polymerization chain reaction 

UTR: Untranslated region 

GD50: Gene detection 50 

FPKM: Fragments per kilobase of transcript per million mapped reads 

TCR: T-cell receptor 

BCR: B-cell receptor 
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Figure Legends 

Figure 1:  Overview of high-throughput single-cell benchmarking experiments.  Experiments were 
performed using four immune cell lines to benchmark cell recovery, transcript detection sensitivity, 
concordance to bulk RNA-seq and differentially-expressed gene identification. 

Figure 2: Library-pool and cell-capture efficiencies. (A) Cell capture efficiency was measured by the 
number of cell identifiers (CIDs) above the inflection point of the rank ordered reads/CID plot (knee plot) 
relative to the number of cells loaded on the instrument.  Horizontal lines indicate theoretical capture 
efficiency based on bead/cell loading concentrations or manufacturer’s guidelines.  (B)  Library pool 
efficiency was measured by the number of reads in CIDs above the inflection point. 

Figure 3:  Transcript detection sensitivity. (A) Distributions of unique molecular identifiers (UMIs) 
detected in EL4 cells by sample are plotted.  (B)  Numbers of UMIs detected versus numbers of reads per 
cell for each cell type are plotted.  (C)  Distributions of genes detected in EL4 cells by sample are plotted.  
(D)  Numbers of genes detected versus numbers of reads per cell are plotted.  (E)  Average number of 
genes detected from aggregated data of subsamples up to 50 cells was plotted.  (F)  Dropout modeling 
(dropout rate versus FPKM of bulk sequencing) for EL4 cells by method are shown.  A left-shifted curve 
indicates higher sensitivity, that is, fewer dropouts at lower expression levels. Sensitivity of methods for 
EL4 cells ranked in the following order:  10x 3’ v3 > 10x 5’ v1 > 10x 3’ v2 > ddSEQ > Drop-seq > ICELL8 3’ 
DE > ICELL8 3’ DE-UMI.  Cells with high mitochondrial expression rates were excluded from this 
calculation.  

Figure 4:  Correlation to bulk RNA-seq.  (A)  Pearson correlation (r) of cell identifiers (CIDs) to bulk RNA-
seq data using highly-expressed variable genes.  Only r values above 0.2 were included in plot.  (B)  
Average Pearson correlation using all genes for aggregated data of 50 subsamples of up to 50 cells are 
plotted.   

Figure 5:  Differentially-expressed (DE) gene detection.   (A)  Fold change (FC) versus false discovery 
rate (FDR) calculated using a hurdle model (MAST) for mouse genes in EL4 vs IVA12 cells.  Shown is a 
representative subsample of mouse cells (n=199) using the 10x 3’ v2 method demonstrating the criteria 
for declaring DE genes (FDR < 10-4); DE genes are highlighted in red.  (B)  Number of significant DE genes 
calculated using MAST between EL4 and IVA12 cells by method.  Error bars represent the 95% 
confidence interval.  The total number of significant DE genes are plotted in red, the number of DE 
genes with > 1.5 fold difference in expression in bulk RNA-seq (5,868 genes) are plotted in cyan.  (C)  
Median bulk RNA-seq expression (FPKM) of all significant DE genes (red) or DE genes with > 1.5 fold 
difference (cyan).  Error bars represent 95% confidence interval.    

Figure 6:  Cell recovery by cell identifier (CID) thresholding.  (A)  Example of using the transposed log-
log empirical cumulative density plot of the total counts of each CID to identify cell-containing droplets .  
Common thresholding points, the ‘knee’ and the ‘inflection’ are indicated with arrows.  The knee is the 
point at which the signed curvature is minimized, the inflection is the point at which the first derivative 
is minimized.  (B) The fraction of cells above the knee or inflection are plotted.  (C) Fraction of cells 
below mitochondrial rate threshold (listed in Supplemental Table 4) relative to knee point.  Samples are 
colored by cell sample mixture listed in Supplemental Table 2.   

Figure 7:  Dropout rates by cell type.  (A)  Distribution of reads across cell types is plotted by method.  
(B)  Dropout rate models for cell types are shown.  (C)  10x 3’ v3 cells were binned by number of unique 
molecular identifiers (UMI) and distributions of nUMIs for each cell type in each bin are plotted.  (D)  
Gene Detection 50 (GD50) rates, expression level at 0.5 probability of the dropout model, are plotted for 
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each cell type in 10x 3’ v3 experiments by bin.  (E)  Dropout models in each bin for EL4, IVA12 and Jurkat 
cells are plotted along with the model for TALL-104 cells in bin 1. 
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Table 1:  Summary of average mRNA/gene detection sensitivities and capture rates for each method. 

 

*: The value with the best performance for each parameter is highlighted 

 

 

Method
Avg Multiplet 

Rate

Avg Cell 
Capture 

Efficiency

Avg Library Pool 
Efficiency 

Median 
nUMIs 
(EL4)

Median 
nGenes 

(EL4)
GD50 (EL4)

Avg nDE 
genes

Avg nDE 
genes (> 1.5 
FC in bulk)

10x 3’ v2 0.46% 29.50% 57.90% 21,570 3,882 20.2 FPKM 3,314 2,711

10x 3’ v3 1.75% 61.90% 75.90% 28,006 4,776 13.6 FPKM 4,005 3,388

10x 5’ v1 0.49% 50.70% 76.50% 25,988 4,470 16.8 FPKM 4,797 3,491

ddSEQ 0.45% 1.01% 18.10% 10,466 3,644 25 FPKM 2,740 2,397

Drop-seq 0.55% 0.36% 17.80% 8,791 3,255 26.7 FPKM 2,824 2,504

ICELL8 3' DE 2.18% 8.63% 93.00% 16,909 2,849 37.9 FPKM 1,815 1,528

ICELL8 3' DE-UMI 0.98% 7.20% 92.90% 2,792 1,288 112.1 FPKM 985 861
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Supplemental Figure 1:  Read-depth normalization and cell classification.  (A) Determined read 
distribution peaks used for read-depth normalization. (B) Normalized read distribution per experiment 
for classified cells.  (C)  Normalized read distributions per experiment and cell type.  (D)  Correlation of 
gene counts to bulk-RNA-seq data for all experiments.  Top cell identifiers by numbers of reads (2x 
number of expected cells) were included in the plot. 

Supplemental Figure 2: Cell metrics of pre-normalized data.  (A) Transposed log-log empirical 
cumulative density plot of the total counts of each CID. The curve is shifted in each plot to highlight each 
cell and cell type that was determined by correlation to bulk RNA-seq using correlation thresholds 
determined in downsampled data. Knee and inflection points are indicated. (B-D) Boxplots show number 
of reads, number of UMIs, and number of detected genes per cell without normalization of library read 
depth. (E) Cell type composition of each sample. 

Supplemental Figure 3:  Library efficiencies.  (A)  Estimates of multiplet rates for each experiment based 
on number of CIDs with significant numbers of transcripts from human and mouse.  Rates were adjusted 
to account for variable recovery of human and mouse cells.  (B)  Fraction of mapped bases aligning to 
intergenic (red), intronic (green), coding (purple), and untranslated (UTR) (cyan) regions by sample. 

Supplemental Figure 4:  Transcript detection sensitivity.  (A)  Distributions of numbers of unique 
molecular identifiers (UMIs) and genes across all classified cells, or by cell-type.  Read distribution was 
most consistent for EL4 cells across samples.  (B)  Models for dropout rate by expression level and cell 
type.  A left shifted curve indicates higher sensitivity.  (C)  Dropout rates for mouse genes by expression 
level in bulk RNA-seq for EL4 cells.  Solid lines indicate modeling curves for all methods.  (D) GD50, the 
FPKM at which the dropout rate is expected to be 0.5, for dropout models by cell type.  A low GD50 

indicates high sensitivity. 

Supplemental Figure 5:  Correlation of single-cell RNA-seq to bulk RNA-seq.  Number of detected genes 
were plotted as a function of the highest correlation coefficient r of CIDs above the inflection point to 
bulk RNA-seq. 

Supplemental Figure 6:  Differentially expressed (DE) genes.  (A)  Comparison of mouse gene fold 
changes in single-cell RNA-seq vs bulk RNA-seq for contrasting EL4 and IVA12 cells.  Genes are colored 
by highest expression value (FPKM) in bulk RNA-seq data.  Black lines indicate an absolute fold change of 
1.5.  While highly expressed genes in green correlate well between single-cell and bulk data, lowly 
expressed genes in red show little difference in expression in single-cell data.  (B)  Number of significant 
DE genes using the Mann-Whitney-Wilcoxon test or a negative binomial generalized linear model 
between EL4 and IVA12 cells.  Error bars represent the 95% confidence interval from ten random sub-
samplings of cells from each method.  The total number of significant DE genes are plotted in red, the 
number of DE genes with > 1.5 fold difference in expression in bulk RNA-seq (5,868 genes) are plotted in 
cyan.  (C)  Median gene expression (FPKM) in bulk sequencing for all significant DE genes (red) or DE 
genes with > 1.5 fold difference in expression in bulk RNA-seq (cyan) are shown.  Error bars represent 
95% confidence interval.   (D)  Number of significant DE genes (FDR < 10-4) between all EL4 and IVA12 
recovered cells for each method.  Genes with > 1.5-fold change in bulk RNA-seq data are plotted in cyan 
with the remainder in red.  (E)  Distribution of gene expression level (FPKM) in bulk RNA-seq for DE 
genes identified using all cells for each method.  All significant DE genes are plotted in red and DE genes 
with > 1.5-fold change in bulk RNA-seq data are plotted in cyan.  Distribution of expression levels for all 
genes with > 1.5-fold change in bulk data are plotted in gray. 
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Supplemental Table 1:  Summary of method designs 

 

 

 

  

Method Partitioning
Transcript 
Coverage

Bead 
Occupancy

Expected 
Cell Recovery

Cell Barcode 
and UMI [bp] 
relative to mRNA

Amplification 
Steps

10x Chromium 
Single Cell 3' v2

Droplet 3' end 90% 58% 5'-Gene[10][16]-3'
Total cDNA + 
adapter PCR

10x Chromium 
Single Cell 3' v3

Droplet 3' end 90% 62.50% 5'-Gene[12][16]-3'
Total cDNA + 
adapter PCR

10x Chromium 
Single Cell 5' v1

Droplet 5' end 90% 58% 5'-[16][10]Gene-3'
Total cDNA + 
adapter PCR

Ilumnina/Bio-Rad 
ddSeq

Droplet 3' end 5% 5%
5'-
Gene[8][3][6][15][
6][15][6]-3'

Nextera PCR

Dolomite scRNA-
Seq (Drop-seq)

Droplet 3' end Undisclosed 3% 5'-Gene[9][12]-3'
Total cDNA + 
Nextera PCR

Takara ICELL8 (3' 
DE, 3' DE-UMI)

Microwell 3' end N/A 25% 5'-Gene[14][11]-3'
Total cDNA + 
adapter PCR
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Supplemental Table 2:  Sample summary 

 

 

  

Sample ID Method Cell Mixture
EL4 % 
viabile

IVA12 % 
viable

Jurkat % 
viable

TALL % 
viable

nCells Input

1 10x 3' v2 A 93 95 96 50 8,700

2 10x 3' v2 A 93 95 96 50 3,500

21 10x 3' v3 F 98 93 99 65 4,800

22 10x 3' v3 G 98 93 99 65 4,800

23 10x 3' v3 F 98 93 99 65 9,600

24 10x 3' v3 G 98 93 99 65 9,600

5 10x 5' v1 B 89 92 99 89 8,700

6 10x 5' v1 B 89 92 99 89 3,500

9 ddSEQ C 98 98 95 71 9,000

10 ddSEQ C 98 98 95 71 9,000

11 ddSEQ C 98 98 95 71 11,250

12 ddSEQ C 98 98 95 71 11,250

13 ddSEQ D 98 98 95 71 11,250

14 ddSEQ D 98 98 95 71 11,250

15 ddSEQ D 98 98 95 71 11,250

16 ddSEQ D 98 98 95 71 11,250

19 Drop-seq E 95 86 92 80 90,000

20 Drop-seq E 95 86 92 80 180,000

27 ICELL8 3' DE H 98 94 97 76 17,920

28 ICELL8 3' DE I 95 63 97 70 17,920

29 ICELL8 3' DE-UMI I 95 63 97 70 17,920
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Supplemental Table 3:  Assessment of non-normalized scRNA-seq data (separate file). Sequenced reads 
were demultiplexed and aligned against a combined human and mouse reference genome with each 
technologies' recommended software pipeline; all pipelines used a version of STAR for the alignment step. 
Aligned reads were MAPQ filtered and uniformly mapped against human and mouse gene annotations; 
read and UMI count matrices were derived using customized scripts. Cells and cell types were determined 
by similarity to bulk RNA-seq data. 

 

Supplemental Table 4:  Results by sample (separate file) 
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Supplemental Table 5:  Read-depth normalization iterations  

 

 

 

EL4

Sample ID Method nCells  ± sd median reads ± sd median UMIs  ± sd median genes ± sd

6 10x 5' v1 655.75 ± 2.63 52,280.88  ±  44.82 27,553.5 ± 43.04 4,613.25 ± 8.05

15 ddSEQ 27.5 ± 0.58 51,201 ± 1342.48 14,679.63 ± 64.47 4,106.88 ± 7.79

19 Drop-seq 40.5  ± 0.58 43,263.625  ± 254.09 12,676.63  ± 217.63 3,742  ± 9.97

27 ICELL8 3' DE 456.5  ± 0.58 49,828.63  ± 63.77 18,691.875  ± 60.74 2,981.75  ± 3.5

IVA12

Sample ID Method nCells  ± sd median reads ± sd median UMIs  ± sd median genes ± sd

6 10x 5' v1 438.5 ± 1.17 47,518.12 ± 19.8 25,095.63 ± 42.59 4,721.125 ± 9.52

15 ddSEQ 34.5 ± 1 36,343.5 ± 1113.78 10,017.25  ± 93.8 3,379.5 ± 16.34

19 Drop-seq 27 ± 0 56,397.75 ± 224.7 14,692  ± 84.7 4,062.25 ± 8.81

27 ICELL8 3' DE 443.75 ± 1.5 40,742.88 ± 120.14 13,242.75 ± 33.44 2,668.38 ± 2.06

Jurkat

Sample ID Method nCells  ± sd median reads ± sd median UMIs  ± sd median genes ± sd

6 10x 5' v1 615.25 ± 1.5 40,019.88 ± 50.9 18,832.5 ± 33.45 4,773.63 ± 1.11

15 ddSEQ 26 ± 0 53,374.5 ± 109.5 11,027.25 ± 19.07 3,887.875 ± 11.78

19 Drop-seq 83 ± 1.83 23,522 ± 421.9 6,335.625 ± 56.45 2,634.38 ± 17.09

27 ICELL8 3' DE 348 ± 1.41 42,004.25 ± 363.66 17,143.25 ± 69.09 2,648.625 ± 7.54

Tall

Sample ID Method nCells  ± sd median reads ± sd median UMIs  ± sd median genes ± sd

6 10x 5' v1 32.75 ± 1.5 5,224.5 ± 83.5 2,485.63 ± 90.57 1,257.88 ± 20.95

15 ddSEQ 14.75 ± 0.5 17,661.875 ± 267.97 3,747.25 ± 127.94 2,086.75 ± 27.07

19 Drop-seq 5 ± 0 4,201.25 ± 30.23 816.75 ± 7.41 581.75 ± 4.86

27 ICELL8 3' DE 177 ± 0.82 10,029.75 ± 86.96 2,986.125 ± 23.48 711.25 ± 0.5
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