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Figure 9. Our models capture biologically plausible voxel tuning properties. (a) Receptive
field of five selected voxels with high SNR from early visual cortex, which indicates their spatial locality in
the image. Panels (b)-(e) show single subject data on the corresponding subject-specific cortical map. (b)
Polar angle. (c¢) Eccentricity tuning, measured by degree of visual angle (DVA). (d) Noise-corrected prediction
accuracy. (e) Prediction accuracy (non-scaled Pearson correlation). For simplicity we show the data on either
left or right hemisphere. Voxel noise ceiling is coded by transparency level (alpha channel) in all cortical maps.

such was imposed. To analyze the receptive field which is reflected through the Decoder, we considered
the Decoder’s fully-connected layer weights. When segregated per voxel, these weight maps reflect the
voxel’s receptive field. Importantly, these receptive field maps were well aligned (per voxel) with those
of the Encoder. These results support the biological plausibility of our model’s predictions.

We sought to analyze the prediction accuracy achieved by of our models. Fig 9d,e show the prediction
accuracy distribution (Pearson correlation) of the modeled voxels when normalized by voxel noise
ceiling (Fig 9d) and when not normalized (Fig 9e). The prediction noise ceiling is used to provide an
estimate of the best possible prediction accuracy obtainable given infinite data [37]. These panels show
high prediction accuracy in LVC, and low in HVC. Furthermore, they show that throughout the visual
cortex our model markedly saturates the noise ceiling of the given data. This indicates sufficient
expressive power to model, enabling it to capture the given data complexity.
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Discussion

We presented state-of-the-art results in image-reconstruction and semantic categorization from fMRI
data. To date, the performance in the task of natural image reconstruction and semantic categorization
from human fMRI recordings is limited by the characteristics of fMRI datasets. In the typical case, the
paired training data are scarce, represent a narrow semantic coverage, and have a different statistics
than the test data. The statistics’ discrepancy in our case, results from the differences between the
train/test repeat-count (SNR) difference.

Our self-supervised training on tens of thousands of additional unpaired images from wide coverage
adapts the decoding model to the statistics of natural images and novel categories. Furthermore,
training on additional unpaired test-fMRI mitigates the impact of the discrepancy between the
statistics of the train/test data. Thus our framework enables substantial improvement in image
reconstruction quality and classification capabilities compared to methods that rely only on the scarce
paired training data. This, together with high-level Perceptual Similarity constrains, leads to
state-of-the-art image reconstructions from fMRI, of unprecedented quality, as supported by
image-metric-based and extensive behavioral evaluations. We accomplish this for two substantially
different fMRI datasets using a single method.

Our self-supervised training on tens of thousands of unpaired external images further leads to
unprecedented capabilities in the semantic classification of fMRI data (and moreover, of classes never
encountered during training). We consider the challenging 1000-way semantic classification task, and
demonstrate a striking leap improvement (more than 2x) in classification performance when applying
our self-supervised approach over a purely supervised approach. To the best of our knowledge, we
are the first to demonstrate such large-scale semantic classification capabilities
(1000-way) from fMRI data . We also show that incorporating the Perceptual Similarity criterion,
with its reconstruction objectives over higher level feature representations, is a strong gain factor to
achieving our high classification rates. Altogether we find that the Perceptual Similarity criterion,
which is harnessed here for reconstruction and semantic classification, greatly benefits both tasks.

Our ablation studies indicate that reconstruction quality is dominated by data originating from Lower
Visual Cortex (V1-V3). The extended architecture of the Encoder, which incorporates high-level
features was designed to improve information-harnessing from the Higher Visual Cortex (HVC) as well.
Indeed prediction accuracy maps show that the noise-ceiling is saturated throughout the visual cortex,
including in higher visual areas. This findings suggests a reasonable representation of HVC by our
model. Nevertheless, the SNR of the data arising from these areas renders them weaker contributors to
overall reconstruction quality.

We provide evidence for the retinotopic organization implicitly learned (on its own) by our
image-to-fMRI Encoder. This suggests that our models are biologically meaningful, as opposed to
tailored and overfit to a limited dataset. Note that while we show data for the Encoder, we verified in
our experiments that model voxels in the Decoder and the Encoder indeed agree (while not explicitly
forced so).

The proposed method currently focuses on data from individual subjects. A natural extension of the
present work is to combine information across multiple subjects. This is part of our future work.
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Methods
Self-supervised Encoder/Decoder alternate training

The motivation behind training the Encoder (E) and Decoder (D) in separate phases (with a fixed
Encoder during Decoder training) is designed to ensure that the middle junction’s representation does
not diverge from its physically meaningful entity by the unsupervised training objectives [Id,e. This
middle junction represents fMRI responses in the combined E-D network, and natural images in the
combined D-E network. Additionally, we start by supervised training of the Encoder in order to allow
it to converge at the first phase, and then serve as strong guidance for the more severely ill-posed
decoding task, which is the focus of the next phase. We next describe each phase in more detail.

Encoder supervised training (Phase I)

The supervised training of the Encoder is illustrated in Fig . Let # = E (s) denote the encoded fMRI
response from image, s, by Encoder . We define fMRI loss by a convex combination of mean square
error and cosine proximity with respect to the ground truth fMRI, . The fMRI loss is defined as:

L, (7,r) =al|f—rly — (1 —a)cos(L(7,1)), (1)

where « is a hyperparameter set empirically (details in Implementation details). We use this loss for
training the Encoder E. However, this loss is also used as the Decoder-Encoder loss (the
self-supervised D-E loss on unpaired fMRI in Phase II), on which we detail in Decoder training.

Notably, in the considered fMRI datasets, the subjects who participated in the experiments were
instructed to fixate at the center of the images. Nevertheless, involuntary eye movements were not
recorded during the scans thus the fixation performance is not known. To accommodate the
center-fixation uncertainty, we introduced small random shifts (+/- a few pixels) of the input images
during Encoder training. This resulted in a substantial improvement in the Encoder performance and
subsequently in the image reconstruction quality. Upon completion of Encoder training, we transition
to training the Decoder together with the fixed Encoder.

Decoder training (Phases II)

The training loss of our Decoder consists of three main losses illustrated in Fig [Bp:

LV +LPP 4 LPF. (2)
LP is a supervised loss on training pairs of image-fMRI. LZP (Encoder-Decoder) and £P¥
(Decoder-Encoder) are unsupervised losses on unpaired images (without fMRIs) and unpaired fMRIs
(without images). All 3 components of the loss are normalized to have the same order of magnitude (all
in the range [0, 1], with equal weights), to guarantee that the total loss is not dominated by any
individual component. We found our reconstruction results to be relatively insensitive to the exact
balancing between the three components. We next detail each component of the loss.

LP: Decoder Supervised Training is illustrated in Fig . Given {fMRI, Image} training
pairs {(r,s)}, the supervised loss £ is imposed on the decoded image, § = D (r), and is defined via
the image reconstruction objective, L, as

L consists of losses on image RGB values, Lrgp, as well as losses on Deep Image Features extracted
from the image using a pretrained VGG16 network [26] (a deep network tailored for the task of object
recognition from images). We denote the deep features extracted from an image, s, by ¢ (s), on which
we apply a Perceptual Similarity criterion, Lperceptual, Which gave a significant performance leap.
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Uunlike our preliminary work [24], where we imposed only a Mean-Square-Error loss on the low level
features alone (hence failed to capture or exploit any "semantic” appearance or interpretation), here we
impose Perceptual similarity [25] on the outputs of all the five feature-extractor blocks of VGG (from
low to high VGG layers, i.e., lower-to-higher “semantic” levels), denoted as @,gg—biocks ($). This metric
is implemented by cosine proximity between channel-normalized ground-truth and predicted features at
each block output. The complete criterion is then a sum of the block-wise contributions. The Image
loss for a reconstructed image § reads:

,CS (§, 8) = ﬁRGB (g, S) + »Cperceptual (§7 8) +R (‘é) (3)

{ﬁRGB (8,5) oc [|8 — sl (4)

A~ 5 N
Acperceptual (S, 8) X = Zb:l cos (Z (@Zgg—blocks (8) ?so'lz;gg—blocks (S))>

The last term, R (8), corresponds to total variation (TV) regularization of the reconstructed (decoded)
image, § = D (r). In addition to defining the Decoder supervised loss, the same Image loss is also used
as the loss for the self-supervised Encoder-Decoder training on unpaired images (images without fMRI),
explained next. We now detail on the main novelty of our method: Unsupervised training with
unpaired data.

LFP: Encoder-Decoder training on unpaired Natural Images is illustrated in Fig . This
objective enables to train on any desired unpaired image (images for which no fMRI was ever recorded),
well beyond the 1200 images included in the fMRI dataset. In particular, we used ~50K additional
natural images from ImageNet’s 1000-class data [23]. This allows adaptation to the statistics of many
more novel semantic categories, thus learning the common higher-level feature representation of various
novel classes. To train on images without corresponding fMRI responses, we map images to themselves
through our Encoder-Decoder transformation,

s+ Spp = D (B (s)).

The unsupervised component £ of the loss in Eq. [2| on unpaired images, s, reads:

»CED - »Cs (§ED7 5) )

where L is the Image loss defined in Eq [3]

LPE: Decoder-Encoder training on unpaired test fMRI is illustrated in Fig . Adding this
objective greatly improved our reconstruction quality compared to training on paired samples only. To
train on fMRI data without corresponding images, we map an fMRI response to itself through
Decoder-Encoder transformation:

7‘}—>72DE :E(D(T))

This yields the following unsupervised component £LPF of the loss in Eq. [2| on unpaired fMRI
responses r:

L:DE - LT ('FDEv T) P

where £, is the fMRI loss defined in Eq. [T

Importantly, the fMRI samples which we used here were drawn from the test cohort (which is
legitimate, since we never use nor know the test images). This enables to adapt the Decoder to the
statistics of the test-fMRI data (which we wish to decode). Once the Decoder is trained using those 3
losses (LP + LFP 4 £PF) we apply it on the test-fMRI to decode it and reconstruct the test image.
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Voxel receptive field visualization and estimation

To generate retinotopy maps (as in Fig[J), we start by visualizing each voxel’s receptive field (pRF)
using the trained Encoder. To this end we follow a gradient-based approach [38,39]; Given a random
input image, we compute the gradient of a particular voxel with respect to this input. This allows to
visualize the image which would drive the maximum change in activity at the target voxel. To produce
a heat-map, the values within the resulting gradient-image are squared, averaged across the
color-channels; and normalized. Next, we define the pRF center as the center of mass of the
preprocessed map. The preprocessing was designed to minimize noise effects. It included map
smoothing with a Gaussian kernel, o = 3, followed by raising the map values to the power of 10. About
15% of the voxels had pRF maps which were not confined spatially around a center of mass, and were
thus discarded in subsequent analysis. The remaining 85% voxels were considered in the retinotopy
maps.

Deep Architecture and Runtime details

An illustration of the Encoder and the Decoder architectures can be found in the
Supplementary-Material. We focused on 112x112 RGB or grayscale image reconstruction (depending
on the dataset), although our method works well also on other resolutions. The Encoder comprises four
parallel branches of representation, built on top of features extracted from blocks 1-4 of VGG19. This
enables to benefit from the hierarchy of “semantic” levels of the pretrained VGG network. The outputs
of the four resulting branches (with their various resolutions) are then fed into branch-specific learned
convolutional modules, which are designed to reduce the representation’s dimensions to more compact
representations of 28x28x32 or 14x14x32 (Height x Width x ConvolutionChannels). These modules
consist of batch normalization, 3x3 convolution with 32 channels, ReLLU, x2 subsampling, and batch
normalization. The first branch preceeds with an additional x2 maxpooling while the fourth branch is
not subsampled. Inspired by the feature-weighted receptive field [40], we designed a locally-connected
layer which acts on the spatial and channel dimensions separately. This separation enables a dramatic
decrease in the number of parameters that would be required to regress the voxel activations. In this
space-feature locally-connected layer, for each spatial coordinate we stack along the channel dimension
the values of the immediate 9 neighboring coordinates. Each resulting tensor (26x26x288 or

12x12x 288, after eliminating the boundaries) is multiplied by a spatially locally-connected layer which
learns the feature-to-voxel receptive field mapping. To encourage the locality of the receptive field
mask (per voxel) we penalize the total variation of these spatial weights. The spatially-reduced tensors
are followed by a cross-channel locally-connected layer, which weights the contribution of each
feature/channel per voxel. Finally the outputs of the 4 branches are concatenated along the channel
dimension and followed by a locally-connected layer, designed to weigh the contribution from each
branch. We initialized all weights using Glorot normal initializer, except for the last layer which was
1-initialized (and forced to remain non-negative).

The Decoder architecture uses a locally-connected layer to transform and reshape the input vector-form
fMRI input into 64 feature maps with spatial resolution 14x14. This representation is then followed by
three blocks, each consists of: (i) x2 up-sampling, (ii) 5x5 convolution with unity stride, 64 channels,
and ReLU activation, and (iii) group normalization (16 groups). To yield the output image we finally
performed an additional convolution, similar to the preceding ones, but with three channels to
represent colors, and a sigmoid activation to keep the output values in the 0-1 range. We used
Glorot-normal [41] to initialize the weights.

Hyperparameters. We trained the Encoder with using Adam optimizer for 50 epochs with an initial
learning rate of le-3, with a 90% learning rate drop using milestones (20, 30, and 35 epochs). During
Decoder training with supervised and unsupervised objectives, each training batch contained 16 pairs
(supervised training), 16 unpaired natural images (randomly sampled from the external image database
— images without fMRI), and 16 unpaired test-fMRI (fMRI without images). We trained the Decoder
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for 150 epochs using Adam optimizer with an initial learning rate of le-3, and 80% learning rate drop
after every 30 epochs.

Runtime. Our system completes the two-stage training within approximately 1.5 hours using a single
Tesla V100 GPU. Once trained, the inference itself (decoding of a new fMRI) is performed in real time.

Experimental datasets

We experimented with two publicly available benchmark fMRI datasets summarized in Table [2] The
same architectures and hyperparameters were used for both datasets. The 1250 images in ‘fMRI on
ImageNet’ were drawn from 200 selected ImageNet categories. 150 categories (classes) were used as
training data (8 images per category — altogether 1200 training images). The 50 remaining image
categories were designated as the novel test categories, represented by 50 test images (1 image from
each test category).

~ fMRI Dataset N train images (K repeats) | N test images (K repeats) | N voxels
fMRI on ImageNet| [21] 1200 (1) 50 (35) 4500
vim-1] 1] 1750 (2) 120 (13) 8500

Table 2. Summary of fMRI datasets used in analyses. Repeat count refers to the number of fMRI
recordings per presented stimulus. Vozel count refers to approximated number of voxels used in analysis.

External (unpaired) images database. For unsupervised training on unpaired images
(Encoder-Decoder objective, Fig ) we used additional 49K natural images from 980 classes of
ImageNet ("ILSVRC”) train-data [23]. We verified that the images and categories in our additional
unpaired external dataset do not overlap with the test-images and test-categories in the ‘fMRI on
ImageNet’ (the inference target). Since the 50 test-classes of ‘{MRI on ImageNet’ [21] partially overlap
with the 1000 original ILSVRC classes, we particularly discarded the 20 overlapping classes.

Behavioral experiments. The participants in the Mechanical Turk behavioral experiments gave
their online informed consent to be recorded, and were granted financial incentives for every completed
survey. The research protocol was reviewed and approved by the Bioethics and Embryonic Stem Cell
Research Oversight (ESCRO) Committee at the Weizmann Institute of Science. In order to assure the
validity of the behavioral data (e.g. bot observers, fatigue along the survey), we screened subjects
according to their score in interleaved sanity check experiments. The sanity check experiments
comprised adding to the actual experiments also 10% unexpected trivial identification tasks of mildly
degraded versions of the ground truth images, instead of the reconstructed images. We further
discarded subjects with MTurk success-score (reputation) lower than 97%. Each survey consisted of 50
or 20 trials corresponding to the number of test-images comparison in ‘‘MRI on ImageNet’ [21] or
‘vim-1’ [IIE], all of which were reconstructed using a single particular method. In each trial subjects
were presented with a reconstructed image and n candidate images, the ground-truth image and n — 1
distractor images, and were prompted ”Which image at the bottom row is most similar to the image at
the top row?”. To assure task difficulty agreement across subjects and reconstruction methods the set
of distractor images was randomly selected for each test-image but remained fixed across surveys; Our
results were insensitive to their re-selection.

Semantic category decoding. We defined the feature vector underlying the class representatives to
be the outputs of block 4 in AlexNet, and used Pearson correlation as the distance metric for ranking
class representatives. Our experiments showed that using this intermediate representation level as the
embedding of choice yields optimal results for classification.

Noise-Ceiling. We estimated the fMRI prediction Noise-Ceiling by half-split over the test data
repeats following [37].

44vim-1’ originally contains 120 test-images, however in the behavioral evaluation we considered only the subset of 20

images that were defined in |13] as test-images
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Statistics. We used Wilcoxon signed-rank (paired) test (two-tailed) for significance testing in the
image-metric-based multi-image identification experiments, as well as in the rank-classification
experiments. For the (unpaired) behavioral experiments we used Mann-Whitney rank test.
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