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Abstract 26 
Detailed descriptions of microbial communities have lagged far behind physical and chemical 27 
measurements in the marine environment. Here, we present 720 globally distributed surface 28 
ocean metagenomes collected at high spatio-temporal resolution. Our low-cost metagenomic 29 
sequencing protocol produced 2.75 terabases of data, where the median number of base pairs 30 
per sample was 3.48 billion. The median distance between sampling stations was 26 km. The 31 
metagenomic libraries described here were collected as a part of a biological initiative for the 32 
Global Ocean Ship-based Hydrographic Investigations Program, or “Bio-GO-SHIP.” One of the 33 
primary aims of GO-SHIP is to produce high spatial and vertical resolution measurements of 34 
key state variables to directly quantify climate change impacts on ocean environments. By 35 
similarly collecting marine metagenomes at high spatiotemporal resolution, we expect that 36 
this dataset will help answer questions about the link between microbial communities and 37 
biogeochemical fluxes in a changing ocean.  38 
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Background & Summary 40 
A growing list of coordinated scientific efforts have produced deep metagenomic 41 

libraries of the surface ocean. Projects such as the Global Ocean Survey, Tara Oceans, and 42 
bioGEOTRACES1-3 have significantly advanced our understanding of marine microbial 43 
biogeography and biodiversity. However, this ever-increasing abundance of metagenomic 44 
data raises the question of how do we move beyond analyses of biodiversity to linking 45 
microbial traits with ecosystem function and elemental fluxes4. In oceanography, it has been 46 
widely acknowledged that sparse sampling results in high noise and error rates that in turn 47 
prevent the characterization of dynamic chemical balances and limit biogeochemical models5. 48 
Thus, we propose that an increased emphasis on high resolution spatiotemporal sampling of 49 
marine microbial communities would allow for a more mechanistic understanding of the 50 
relationship between microbes and ocean biogeochemistry.  51 
 The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) seeks to 52 
produce high spatial and vertical resolution measurements of physical, chemical, and 53 
biological parameters over the full water column. This internationally-organized program 54 
coordinates a network of sustained hydrographic sections that are repeatedly measured on 55 
an approximately decadal time scale. Compared to autonomous programs such as Argo, which 56 
has significantly increased the spatial and temporal resolution of ocean observations6, ship-57 
based programs have the advantage of a much broader range of biogeochemical 58 
measurement capabilities. To date, repeat hydrography programs have largely focused on 59 
physical (light, currents, water column thermohaline structure, etc.) and chemical (nutrients, 60 
oxygen, dissolved organic and inorganic carbon, pH, etc.) state variables. This work has 61 
significantly improved our understanding of the response of oxygen7, pH8, calcium carbonate 62 
saturation depth9, and sea level rise10 to global warming and anthropogenic carbon 63 
accumulation11. By comparison, systematic and sustained biological measurements of the 64 
microbial component of ocean ecosystems has lagged far behind.  65 
 Here, we present a dataset of 720 ocean surface water metagenomes collected at high 66 
spatiotemporal resolution in an effort to more mechanistically link marine microbial traits and 67 
biodiversity to both chemical and hydrodynamic ecosystem fluxes as a part of a novel Bio-GO-68 
SHIP sampling program. Samples were collected in the Atlantic, Pacific, and Indian Ocean 69 
basins (Fig 1, Table 1). This effort has been supported by GO-SHIP, the Plymouth Marine 70 
Laboratory Atlantic Meridional Transect (PML AMT), and three National Science Foundation 71 
(NSF) Dimensions of Biodiversity funded cruises (AE1319, BVAL46, and NH1418) (Table 2). 72 
Whereas the median distance between Tara Oceans sampling stations was 709 km and the 73 
median distance between bioGEOTRACES sampling stations was 191 km, the median distance 74 
between sampling stations in the current Bio-GO-SHIP dataset is 26 km (Fig 2). In addition, the 75 
majority of Bio-GO-SHIP samples were collected every 4-6 hours, allowing for analysis of diel 76 
fluctuations in microbial composition and gene content12. We anticipate that our high-77 
resolution sampling scheme will allow for a more detailed examination of the relationship 78 
between the broad range of geochemical parameters measured across the various cruises 79 
(Table 2) and microbial diversity and traits.  80 
 Due to their rapid generation times and high diversity, microbial genomes integrate 81 
the impact of environmental change13 and can be used a ‘biosensor’ of subtle biogeochemical 82 
regimes that cannot be identified from physical parameters alone12, 14-16. Thus, the fields of 83 
microbial ecology and oceanography would benefit from coordinated, high resolution 84 
measurements of marine ‘omics products (i.e., metagenomes, metatranscriptomes, 85 
metaproteomes, etc.). This dataset provides an important example of the benefits of a high 86 
spatial and temporal resolution sampling regime. Specifically, our data highlights the need for 87 
increased sampling of marine metagenomes in the Central and Western Pacific Ocean (Fig 1), 88 

areas above 50N and 50S (Fig 2), and below the euphotic zone. We hope and expect that 89 
these challenges will be addressed by the scientific community in the coming decade.  90 
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Figure 1: Distribution of global surface microbial metagenomes from Bio-GO-SHIP (circles) in 
comparison to Tara Oceans (squares) and bioGEOTRACES (ovals).  

Figure 2: Comparison of the distance between stations, station latitudes, and station 
longitudes for global surface ocean metagenomes. Individual station locations from (A) Bio-
GO-SHIP, (B) bioGEOTRACES and (C) Tara Oceans were examined. Plots are labelled with the 
median value, M. Station distance was calculated as the distance to the nearest station.  
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Table 1: Sampling protocols and read counts for global Bio-GO-SHIP surface ocean 95 
metagenomes. 96 

Cruise DNA 
Collection 

DNA 
Volume 

Station 
Count 

Total 
Reads 

Total 
Bases 

Median 
Bases 
Per 
Sample 

Range of Bases  
Per Sample 

I09N Underway 10 L 242 5.73x109 8.64x1011 3.10x109 4.71x108 – 1.22x1010 

I07N Underway, 
CTD 

4 L,  
2-4 L 

248 
6.20x109 9.36x1011 3.27x109 2.47x108 – 1.42x1010 

P18 CTD 2 L 104 3.22x109 4.86x1011 4.46x109 6.14x107 – 1.77x1010 

AMT-28 CTD 2 L 63 2.18x109 3.29x1011 4.95x109 1.62x109 – 1.22x1010 

BVAL46 CTD 2 L 12 2.01x108 3.04x1010 2.73x109 2.33x109 – 4.88x109 

AE1319 CTD 2 L 13 2.01x108 3.03x1010 4.69x109 2.15x109 – 7.43x109 

NH1418 CTD 2 L 23 5.41x108 8.17x1010 3.03x109 2.42x109 – 1.08x1010 

 97 

 98 

Methods 99 
On all cruises, whole (i.e., no size fractionation) surface water was collected via either 100 

the Niskin rosette system (depth ~3-5m) or the ship’s circulating seawater system (depth 101 
~7m). Between 2-10 L of surface water (Table 1) was collected in triple-rinsed containers and 102 
gently filtered through a 0.22 μm pore size Sterivex filter (Millipore, Darmstadt, Germany) 103 
using sterilized tubing and a Masterflex peristaltic pump (Cole-Parmer, Vernon Hills, IL). DNA 104 

was preserved with 1620 l of lysis buffer (4 mM NaCl, 750 μM sucrose, 50 mM Tris-HCl, 20 105 

mM EDTA) and stored at -20C before extraction.  106 
To extract DNA (modified from Bostrom et al. 2004)17 Sterivex filters were incubated 107 

with 180 μl lysozyme (3.5 nM) at 37C for 30 minutes followed by an overnight 55C incubation 108 
with 180 μl Proteinase K (0.35 nM) and 100 μl 10% SDS buffer. DNA was extracted from the 109 
Sterivex with 1000 μl TE buffer (10 mM Tris-HCl, 1 mM EDTA), precipitated in an ice-cold 110 
solution of 500 μl isopropanol (100%) and 1980 μl sodium acetate (3 mM, pH 5.2), pelleted via 111 

centrifuge for 30 mins at 4C, and resuspended in TE buffer in a 37oC water bath for 30 min. 112 
Next, DNA was purified using a genomic DNA Clean and Concentrator kit (Zymo Research 113 
Corp., Irvine, CA). Finally, DNA concentrations were quantified using a Qubit dsDNA HS Assay 114 
kit and Qubit fluorometer (ThermoFisher, Waltham, MA). 115 
 A total of 720 metagenomic libraries were prepared using Illumina-specific Nextera 116 
DNA transposase adapters and a Tagment DNA Enzyme and Buffer Kit (Illumina, San Diego, 117 
CA, cat. no. 20034197) (modified from Baym et al. 2015)18-20. Nextera adapter sequences to 118 
be used for bioinformatic quality trimming are: 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG 119 
AGA CAG-3’ and 5′-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3’. Custom Nextera 120 
DNA-style 8bp unique dual index (UDI) barcodes I7 (5’-CAA GCA GAA GAC GGC ATA CGA GAT 121 
[NNN NNN NN]G TCT CGT GGG CTC GG-3’) and I5 (5’-AAT GAT ACG GCG ACC ACC GAG ATC 122 
TAC AC[N NNN NNN N]TC GTC GGC AGC GTC-3’) were used to multiplex the metagenomic 123 

libraries. A total of 1 l of 2 ng/l DNA was added to 1.5 l tagmentation reactions (1.25 μl TD 124 

buffer, 0.25 μl TDE1) and incubated at 55C for 10 minutes. After tagmentation, product (2.5 125 

l) was immediately added to 22 l reactions (1.02 M per UDI barcode, 204 M dNTPs, 126 
0.0204 U Phusion High Fidelity DNA polymerase and 1.02X Phusion HF Buffer [ThermoFisher, 127 
Waltham, MA] final concentration). Barcodes were annealed to tagmented products using the 128 

following polymerase chain reaction (PCR): 72C for 2 min., 98C for 30 s., followed by 13 129 

cycles of 98C 10 s., 63C 30 s., 72C 30 s., and a final extension step of 72C for 5 min.  130 
To quality control tagmentation products, dimers that were less than 150 nucleotides 131 

long were removed using a buffered solution (1 M NaCl, 1 mM EDTA, 10 mM Tris-HCl, 44.4 M 132 
PEG-8000, 0.055% Tween-20 final concentration) of Sera-mag SpeedBeads (ThermoFisher, 133 
Waltham, MA). Metagenomic libraries were quantified using a Qubit dsDNA HS Assay kit 134 
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(ThermoFisher, Waltham, MA) and a Synergy 2 Microplate Reader (BioTek, Winooski, VT). 135 
Libraries were then pooled at equimolar concentrations. Pooled library concentration was 136 
verified using a KAPA qPCR platform (Roche, Basel, Switzerland). Finally, dimer removal as well 137 
as read size distribution were checked using a 2100 Bioanalyzer high sensitivity DNA trace 138 
(Agilent, Santa Clara, CA).  139 
 54 samples were sequenced on two Illumina HiSeq 4000 lanes using 150 bp paired-140 
end chemistry with 300 cycles (Illumina, San Diego, CA). All remaining samples were 141 
sequenced on three Illumina NovaSeq lanes using S4 150 bp paired-end chemistry with 300 142 
cycles. The sequencing strategy produced a total of 1.83x1010 reads, or 2.75x1012 bp. The 143 
median number of bases per sample was 3.48 billion (range: 61,400,000 – 17.7 billion). The 144 
sequencing cost per bp in US dollars was $8.2x10-9. 145 
 146 

 147 

Data Records 148 
The majority of the samples here were collected under the auspices of the international GO-149 
SHIP program and the national programs that contribute to it21-24. A comprehensive data 150 
directory of metadata resources is available at https://www.go-ship.org/. Bottle data and 151 
cruise report links are provided in Table 1.  152 
 153 
Metadata variables from the AMT-28 cruise (https://www.amt-uk.org/) are hosted by the 154 
British Oceanographic Data Centre, and may be requested through the following URL: 155 
https://www.bodc.ac.uk/. Select metadata are also available through GO-SHIP24. 156 
 157 
The BVAL46, AE1319, and NH1418 cruises were collected as a part of the “Biological Controls 158 
on the Ocean C:N:P Ratios” project funded by the NSF Division of Ocean Sciences25-28. Data 159 
associated with these deployments are hosted by the NSF Biological and Chemical 160 
Oceanography Data Management Office (BCO-DMO). A comprehensive list of metadata 161 
resources is available at https://www.bco-dmo.org/project/2178. 162 
 163 
All sequencing products associated with the Bio-GO-SHIP program can be found under 164 
BioProject ID PRJNA656268 hosted by the National Center for Biotechnology Information 165 
Sequence Read Archive (SRA)29. SRA accession numbers associated with each metagenome file 166 
are provided in Supplementary Table 1.   167 
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Table 2: Complete list of metadata variables collected on Bio-GO-SHIP cruises 168 
Campaign Metadata Access Metadata Variables  

I09N / 
GO-SHIP 
 

https://cchdo.ucsd.edu
/cruise/33RR20160321 
 

Temperature, Dissolved O2, Conductivity, Density, Salinity, 
Nutrients (NO3, NO2, NH4, PO4, SiO4), Chlorofluorocarbons 
(CFCs) /SF6, Dissolved Inorganic Carbon (DIC), 13C and 14C of 
DIC, Total pH, Total Alkalinity, Stable gases (N2, N2O, Ar), 
18O, Chromophoric Dissolved Organic Matter (CDOM), 
Pigment HPLC, variable chlorophyll fluorescence, Dissolved 
Organic Carbon, underway Particulate Organic C N and P, 
underway pCO2, Lowered Acoustic Doppler Current Profiler, 
Chipods, Dissolved/ particulate/ cellular P and Fe, N P and 
Fe uptake rates, Prochlorococcus/ Synechococcus/ 
Picoeukaryotes/ Nanoeukaryotes cell counts 

I07N / 
GO-SHIP 

https://cchdo.ucsd.edu
/cruise/33RO20180423 
 

Temperature, Dissolved O2, Conductivity, Density, Salinity, 
Chlorophyll, Nutrients (NO3, NO2, PO4, SiO4), Dissolved 
Inorganic Carbon (DIC), Chlorofluorocarbons (CFCs) /SF6, 14C 
of DIC, Dissolved Organic Carbon, Black Carbon, DO14C, 
Total pH, Total Alkalinity, Calcium, Dissolved Organics, 
Biomarkers, underway Particulate Organic C N and P, 
underway pCO2 

P18 /  
GO-SHIP 

https://cchdo.ucsd.edu
/cruise/33RO20161119 
 

Temperature, Dissolved O2, Conductivity, Density, Salinity, 
Nutrients (NO3, NO2, PO4, SiO4), Chlorofluorocarbons (CFCs) 
/N2O /SF6, Helium isotopes and noble gases (Ne, Ar, Kr, and 
Xe), Dissolved Inorganic Carbon (DIC), 13C and 14C of DIC, 
Total pH, Total Alkalinity, Stable gases (N2, O2, Ar), Dissolved 
Organic Carbon / Total Dissolved Nitrogen, Tritium, Black 
Carbon, DO14C/DO14C, Dissolved Organics, Biomarkers, 
underway Particulate Organic C N and P, underway pCO2, 

Wind speed, Wind direction, Air temperature 

AMT-28 /  
PML AMT 
/ GO-SHIP 

https://www.bodc.ac.u
k/data/hosted_data_sy
stems/amt/ 
 
https://amt-
uk.org/Cruises/AMT28 
 
https://cchdo.ucsd.edu
/cruise/74JC20180923 
 

Temperature, Dissolved O2, Conductivity, Salinity, Nutrients 
(NO3, NO2, PO4, SiO4), biogenic silica/silicon uptake, Total 
pH, Total Alkalinity, Pigment HPLC, Chlorophyll a, Dissolved 
Organic C N and P, Prochlorococcus/ Synechococcus/ 
Picoeukaryote/ Nanoeukaryote/ Heterotrophic bacteria cell 
counts, FlowCAM, 15N/13C, Respiration (total, bacterial, 
size-fractionated), Bacterial production, underway 
Particulate Organic C N and P, underway wave radar 
(Cband), Sky Infrared Brightness temperature, 
Hyperspectral radiance/irradiance, Wind speed, Wind 
direction, Aerosol size/composition 

BVAL46 /  
NSF / 
BATS 

https://www.bco-
dmo.org/project/2178 
 

Temperature, Dissolved O2, Conductivity, Salinity, PAR 
irradiance, Chlorophyll a, NO3 + NO2, NO2, PO4, SiO4, Soluble 
Reactive Phosphorus (SRP), Particulate Organic C N and P, P 
uptake (max. uptake, half saturation conc.), 
Prochlorococcus/ Synechococcus/ Picoeukaryote/ 
Nanoeukaryote cell counts 

AE1319 / 
NSF 

https://www.bco-
dmo.org/project/2178 
 

Temperature, Dissolved O2, Conductivity, Salinity, PAR 
irradiance, Chlorophyll a, NO3 + NO2, NO2, PO4, SiO4, Soluble 
Reactive Phosphorus (SRP), Particulate Organic C N and P, P 
uptake (max. uptake, half saturation conc.), 
Prochlorococcus/ Synechococcus/ Picoeukaryote/ 
Nanoeukaryote cell counts 

NH1418 /  
NSF 

https://www.bco-
dmo.org/project/2178 
 

Temperature, Dissolved O2, Conductivity, Salinity, Density, 
Fluorescence, PAR irradiance, Chlorophyll a, NO3 + NO2, 
NO2, Soluble Reactive Phosphorus (SRP), Particulate Organic 
C N and P, Prochlorococcus/Synechococcus/ Picoeukaryote/ 
Nanoeukaryote / Croccosphera cell counts 
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Technical Validation 169 
To ensure that no contamination of metagenomes occurred, negative controls were used. To 170 
ensure optimum paired-end short read sequencing, a 2100 Bioanalyzer high sensitivity DNA 171 
trace (Agilent, Santa Clara, CA) was used for each library to confirm that 90% of the sequence 172 
fragments were above 250 bp and below 600 bp in length. Qubit (ThermoFisher, Waltham, 173 
MA) and a KAPA qPCR platform (Roche, Basel, Switzerland) were used to ensure that all pooled 174 
libraries were submitted for sequencing at a concentration >15 nM.  175 
 176 

 177 

Usage Notes 178 
The genomic data described here have not been pre-screened or processed in any way. We 179 
recommend quality control parameters. Prior to our sequence analysis in subsequent projects, 180 
we removed adapter sequences, performed sequence quality control, and ensured there was 181 
no contamination from common genomic add-ins such as Phi-X using the following code 182 
parameters:  183 
 184 
Trimmomatic (v0.35): PE ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 SLIDINGWINDOW:4:15 185 
MINLEN:36 186 
BBMap (v37.50): bbduk.sh -Xmx1g ref=/BBMap/37.50/resources/phix174_ill.ref.fa.gz k=31 187 
hdist=1 188 
 189 

 190 

Code Availability  191 
Custom scripts were not used to generate or process this dataset. Software versions and non-192 
default parameters used have been appropriately specified where required. 193 
  194 
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