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Abstract:  Accurate and rapid calculation of protein-small molecule interaction energies is 
critical for computational drug discovery.  Because of the large chemical space spanned by 
drug-like molecules, classical force fields contain thousands of parameters describing atom-pair 
distance and torsional preferences; each parameter is typically optimized independently on 
simple representative molecules. Here we describe a new approach in which small-molecule 
force field parameters are jointly optimized guided by the rich source of information contained 
within thousands of available small molecule crystal structures.  We optimize parameters by 
requiring that the experimentally determined molecular lattice arrangements have lower energy 
than all alternative lattice arrangements. Thousands of independent crystal lattice-prediction 
simulations were run on each of 1,386 small molecule crystal structures, and energy function 
parameters of an implicit solvent energy model were optimized so native crystal lattice 
arrangements had lowest energy.  The resulting energy model was implemented in Rosetta, 
together with a rapid genetic algorithm docking method employing grid based scoring and 
receptor flexibility.  The success rate of bound structure recapitulation in cross-docking on 1,112 
complexes was improved by more than 10% over previously published methods, with solutions 
within <1 Å in over half of the cases.  Our results demonstrate that small molecule crystal 
structures are a rich source of information for systematically improving computational drug 
discovery. 
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INTRODUCTION 
Classical force field parameterization based on liquid thermodynamic data and quantum 
chemistry typically proceeds by fitting different subsets of parameters on individual 
representative molecules independently 1–4.  A challenge with this approach is the transferability 
of the resulting model to systems not included in the parameterization set 5,6.  For example, 
bond torsional parameters are often obtained by computing the energies of a set of 
conformations of test molecules with quantum chemistry, and then subtracting the electrostatic 
and van-der-Waals contributions. However the resulting fitted function is highly dependent on 
the molecules selected for training.  Using such a model to evaluate the energetics under 
different flanking chemical groups often yields inaccurate results 7,8. Roos et al 3 showed that 
this issue could be resolved by expanding to hundreds of thousands of parameters fit to 
reproduce quantum chemistry calculations on many thousands of small molecules. We 
hypothesized that a balanced and transferable energy model involving far few parameters could 
be learned  by utilizing the many thousands of crystal structures of small molecules, which span 
a large diversity of chemical space 9–11.  Since these crystal structures form spontaneously, the 
majority of these must be very low free energy states, and hence the sum of the intra- and inter- 
atomic interaction energies must be low compared to almost all alternative packing 
arrangements and conformations of the molecule in the majority of cases.  
 
The key ideas underlying our approach are: a) generation of large numbers of alternative 
“decoy” lattice packing and conformational arrangements of a set of small molecules with known 
crystal structures; and b) simultaneous optimization of a large set of force field parameters, such 
that the experimentally observed crystal structures have lower energies than all of the 
alternative states.  The advantages of this approach are that parameters are obtained directly 
from structural data of molecules 10,12 that are generally larger and more similar to drug-like 
compounds than the simple molecules traditionally used for QM calculations. Moreover, as the 
energy of a crystal involves tradeoffs between different forces, this approach should yield a 
balanced force field which can (for instance) accurately model the subtle interplay between 
deviations from bonded geometry minima and optimization of non-bonded interactions.  

 
METHODS AND MATERIALS 
 
Overview of the approach 
We sought to develop a generalized force field for drug discovery following these three phases 
sequentially: i) to generate small-molecule docoy lattices, ii) to design and train a force field to 
discriminate native lattices from among these decoys, and iii) to validate our forcefield on 
small-molecule docking experiments.  We first generated alternative packing arrangements for 
small molecules using a diverse set of 1,386 small molecule crystal structures from the 
Cambridge Structural Database (CSD) 10,12 (870 for training and 516 for testing), by adapting 
Rosetta symmetry docking machinery 13 to sample space groups, lattice parameters, rigid-body 
and internal conformation of each small molecule (Fig 1a). We simultaneously fit 175 
non-bonded parameters for a generalized implicit solvent force field with 57 atom types (Table 
S1) plus 269 parameters for a torsion model conditioned on both constituent atom types and 
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bond types 8. The 444 free parameters were optimized to simultaneously maximize the energy 
gap between the experimentally observed lattice and the sampled alternative arrangements, 
and the fit to small molecule thermodynamic and protein-ligand complex structural data (Fig 1b) 
using the Simplex-search-based dualOptE algorithm 15.  Nine iterations of parameter 
optimization followed by crystal lattice regeneration were carried out; the final energy model is 
referred to as RosettaGenFF.  RosettaGenFF  was then tested on ligand docking benchmark 
sets using the newly developed docking tool Rosetta GALigandDock. In the following sections, 
we describe crystal lattice prediction protocol to generate training data, the energy model and 
parameter optimization procedure, and ligand docking method and dataset, in more detail. 
 
Crystal structure prediction protocol 
We developed a lattice-docking protocol to sample small molecules in various crystallographic 
space groups. To handle space groups with mirror symmetries, Rosetta’s symmetry machinery 
16 was extended to allow mirror symmetry operations.  For each space group, we expose as 
degrees of freedom (DOFs) the internal coordinates of the asymmetric unit, the rigid-body 
orientation of the molecule, and the dimensions of the lattice (Fig 1a). The symmetry machinery 
in Rosetta allows these DOFs to be sampled as well as minimized while maintaining the overall 
symmetry of the system. 
 
Each run of structure prediction is carried out by running Metropolis Monte Carlo with 
minimization (MCM) search. At the beginning, lattice parameters are randomly assigned in a 
range of 0.2 to 1.0 on cell dimensions and 60 to 120 degrees on lattice angles. The input ligand 
conformation is also randomized by uniformly sampling all rotatable dihedral angles and rigid 
body placements in the lattice. Starting from this initial lattice, perturbation of one of the 
following sets of DOFs is attempted (Fig 1a) at each MCM cycle: i) translation or rotation of 
molecule, ii) a single dihedral angle in molecule, and iii) all lattice lengths or angles. Perturbation 
magnitudes are randomly selected from normal distributions with standard deviations of 0.5 Å / 
2.5° / 5.0°, for translation / rotation / dihedral angles of ligands, respectively, and 
(0.5* sgmultiplicity) Å for lattice dimensions, where sgmultiplicity tries to capture the number of 
symmetric operators along each axis in a given spacegroup, and is generally larger for space 
groups with higher symmetry.  Lattice angles are sampled by allowing the random axis moves to 
modify the crystal axis direction as well as its magnitude.  Subsequent minimization is made 
simultaneously on all DOFs, and the Metropolis criteria is applied. The lowest energy 
conformation after 50 cycles is returned.  
 
Training and validation sets of crystal structures were collected from the Cambridge Structural 
Database (CSD) 10,12 satisfying the following conditions: (i) has one molecule per asymmetric 
unit; (ii) has solvent content less than 1%; (iii) is composed of only the elements 
H,C,N,O,S,P,F,Cl,Br,I; and (iv) has at least three and at most twelve rotatable bonds. We first 
curated an extended training set consisting of ~4,000 molecules and used for deriving torsion 
and distance statistics (Fig 1b). 870 molecules in the set were taken to generate decoys for 
training. A separate validation set of 516 molecules was later collected from the CSD 
(independent of the extended training set) with the same conditions mentioned above. For each 
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small-molecule crystal lattice, thousands of structures are generated by repeating independent 
MCM structure predictions starting from random assignments of space group and ligand 
conformation. Initial ligand conformations were selected from among a pool of maximum 10 
structures sampled by “confab” mode in openbabel 17. The space group is randomly assigned 
amongst a list of most commonly observed ones in  extended training set according to the 
chirality of the molecule: P 1 2 1/c 1, P 1 2 1/n 1, P-1, C 1 2/c 1, P b c a, P n a 2 1, C 1 c 1, P b c n, 
P c a 2 1, P c c n, and P 1 1 2 for achiral molecules; P 2 1 2 1 2 1, P1 2 1 1, C 1 2 1, and P 2 1 2 1 2 for 
chiral molecules. In addition to these “decoy” structures, near-native conformations were added 
to the conformation pool by running the same protocol without initial randomization. A total of > 
1,000 de novo predictions and > 100 native perturbations were made for each molecule. An 
example command-line for performing crystal lattice prediction can be found in Supplemental 
Data. 
 
RosettaGenFF 
The energy model presented in this study, hereafter RosettaGenFF,  integrates two distinct 
“sub-models.” The first is the previously developed Rosetta protein energy model 15, which is 
applied to any of the 20 canonical amino acids; more details can be found in Ref 15,21.  
 
Non-protein molecules and their interactions with canonical amino acids are described by a set 
of generic energy terms developed in this study: 
 

Egeneralized = ELennard-Jones + ECoulomb + EHydrogen-bond + EImplicit-Solvation+ E Generic-Torsion [1] 
 
with atomic parameters defined for Lennard-Jones (LJ) and implicit solvation following the 
generic atom types (see below and also Table S1). As the partial charges used in Coulomb 
energy calculations are more molecular properties than atomic properties, we obtain them for 
each compound using AM1-BCC calculations 14 and keep them fixed during model fitting. The 
functional forms of these terms are shared between the protein and generic sub-models. An 
exception is for describing torsion preference: in the protein energy model, for LJ and 
Coulombic interactions three or fewer bonds apart are ignored to avoid overlap with statistical 
torsion potentials, while in the generic energy model, only interactions one or two bonds apart 
are ignored. 
 
Generic atom types. Our general strategy for assigning a distinct generalized atom type to 
each ligand atom is inspired from OPLS-AA force field 22.  We consider 35 common and unique 
functional groups containing at least one O,N,S,P in organic molecules listed in Table S1. When 
the atom does not belong to any of these functional groups, more general atom types are 
assigned by looking at element type and hybridization state (similar to Tripos force field 23). 
Then the atom type is further specified based on the number of hydrogens attached in order to 
take into account variations in desolvation penalty, a unique aspect associated with implicit 
solvation energy model. The initial non-bonded parameters were determined by considering the 
“best matching” atom in Rosetta’s protein energy model 15,21, followed by manual corrections on 
9 LJ parameters to better reproduce experimental bulk liquid properties 24. Note that atom types 
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and their definitions were refined in between rounds of parameter optimization. The final list is 
given in Table S1. 
 
Generalized torsion term.  Our generalized torsion energy model follows the Karplus model, 
representing torsion potentials as a series of cosine functions up to 4 th order for an improved 
description of weakly conjugated systems 25. Coefficients are assigned based on the atom types 
of the four constituent atoms and the bond order of the central bond. These parameters are 
optimized through the procedure following. First, the number of torsion occurrences are counted 
in the extended training set of small molecule crystal structures (see Dataset below). Torsion 
types observed at least 50 times were assigned unique torsion coefficients, yielding 150 torsion 
types.  The remaining torsions are handled by atom-type grouping, with a total of 65 additional 
torsion classes.  With 4 th order expansion of the Karplus equation, there are a total of 860 (=215 
x 4) parameters.  We further reduce this parameter set to 269 by restricting the coefficient order 
based on chemical intuition (e.g. torsions with strong preferences to planar conformations may 
only have non-zero first and second-order coefficients). The initial parameter set for optimization 
was brought from the best matching torsion in the OPLS-AA force field 22.  
 
Parameter Optimization 
Energy parameters were optimized by iteratively applying dualOptE 15 primarily to maximize the 
energy gap between near-native and decoy lattices (Fig 1b).  First, crystal lattice conformations 
were generated using the previously described lattice sampling method. Then dualOptE was run 
for 400 to 700 cycles of Nelder-Mead simplex minimization 26, obtaining an optimal parameter 
set for the given atom type definition logic and decoy sets. The objective function used in 
dualOptE is represented as a weighted sum of metrics measuring performance on several 
specific tasks listed below. The number of parameters optimized at each dualOptE run ranged 
from 100 to 150, reduced from the 444 total parameters (269 torsional, 114 LJ, 57 solvation, 
and 4 hydrogen-bonding weight parameters) by grouping or sub-sampling parameters for 
efficiency. Finally, atom-type classification logic was updated by visually inspecting the failures 
originating from mistyping. This procedure -- from decoy generation to parameter optimization -- 
was iterated 9 times until atom typing logic converged. 
 
A first phase of optimization (the “condensed phase”) was carried out for the first 6 iterations. 
Here, LJ, hydrogen bonding, and torsion parameters are optimized considering two tasks: lattice 
discrimination test and  atomic geometry matching (individual tasks are described below). During 
this phase, the solvation term was turned off, and electrostatics and hydrogen bonding terms 
were upweighted to their strength in a dielectric media with electrostatic permittivity of 2.0. A 
second phase (the “solvent phase”) was carried out for the final 3 iterations, beginning with 
parameters from the end of the condensed phase.   Individual solvation and LJ parameters -- 
together with a global weight controlling torsional energies -- were optimized simultaneously. 
Two additional tasks considering solvation energies were added to the overall optimization 
objective function (Fig 1b): ligand pose discrimination and hydration free energy recapitulation. 
These two tasks were critical for balancing components in the energy model.  The ligand pose 
discrimination task ensures: a) a detailed atomic-level balance between desolvation and other 
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non-bonded interactions, and b) a balance between the protein and generalized energy models. 
The hydration free energy recapitulation task regularizes solvation parameters in the same type 
of data as in the protein energetic model 15.  

 
The lattice discrimination task measures how well a given energy function parameterization 
discriminates near-native lattice conformations against alternate “decoy” conformations for a set 
of 870 small-molecules. Discriminative power is measured by Boltzmann probability metric, 
which measures the average probability of selecting near-native conformations 15  with variable 
definitions of “near-natives” of crystal RMSD of 1, 2, 4, 6 Å. The temperature factor (kbT) is 
defined as 0.1 times the gap between 5 percentile and 95 percentile energy values. Crystal 
RMSD is measured considering the asymmetric unit and all symmetry mates within 12 Å. Two 
values are computed and averaged: i) the Boltzmann probability for a set of 100 pre-selected 
conformations (native and non-native) which are only scored; and ii) the Boltzmann probability 
for a set of 20 pre-selected conformations that are minimized with the current energy 
parameters. These decoys are selected at the beginning of dualOptE with initial parameter set 
and always included at least one sub-Angstrom structure with the lowest energy. 
 
The  atomic geometry matching task measures the Kullback-Leibler (KL) divergence in the 
distribution of atomic geometries (non-bonded distances and torsion angles) optimal for an 
energy parameter set against statistics collected from the extended training set of ~4,000 small 
molecules. Atomic geometry optimal for a parameter set is collected from minimized structures 
of predicted crystals (see lattice discrimination task above) individually for each type of atomic 
distance and torsion angle.  

 
The ligand pose discrimination task measures the Boltzmann probability of selecting near-native 
ligand pose against a pool of pre-sampled protein-ligand complexes. Pre-sampled complex set 
comprises both false and near-native poses for 215 various complexes 27, none of which overlap 
with any of the targets in our ligand-docking benchmarks. At the beginning of a dualOptE run, 
30 conformations with lowest energy (including at least one with ligand RMSD < 1Å with lowest 
energy) are chosen for each complex. At each cycle of dualOptE, each complex is minimized 
with the current energy parameterization (fixing the receptor conformation for efficiency), and 
receptor-ligand interface scores are collected. The Boltzmann probability is measured using the 
same criteria as in the lattice discrimination task. 

 
The hydration free energy recapitulation task measures how well a solvation parameter set 
recapitulates experimental hydration free energy values of various small molecules, using a 
dataset of 643 small molecules 28. The hydration free energy of a molecule is calculated by 
summation of polar (dGpolar) and non-polar (dGnonpolar) contributions to the total solvation free 
energy, each of which are estimated as: 

 

G dG , dG  SA d polar = ∑
 

 atoms,i
f ree,i  nonpolar = β [2] 
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Here, SA is the surface area of the molecule, and 𝛼 and 𝛽 are weighing factors on each term. 
These weighing factors are determined by least-square-fit of this equation to experimental free 
energy values of amino-acid analogues 29 by taking dGfree,i  values determined for protein atom 
types. Net agreement is measured as the sum of absolute errors in calculated values (in 
kcal/mol) over these 643 molecules. 
 
Finally, we validated the parameters on a list of thermodynamic liquid properties (density and 
heat-of-vaporization) shown in Fig S5. 
 
GALigandDock: A genetic algorithm based Ligand docking method in Rosetta 
We developed a new small-molecule docking tool within Rosetta, GALigandDock, that enables 
fully automated on-the-fly sampling of both receptor and ligand conformational space. This 
docking tool iteratively evolves a pool of protein/ligand complex conformations against 
RosettaGenFF. It makes use of several key features broadly utilized in the ligand docking field: 
a motif-guided search for initial ligand placements, genetic algorithm optimization, and a 
grid-based energy precomputation. Each run takes 5 to 20 CPU-minutes depending on system 
size and receptor flexibility setup. 
 
Overview of Docking method.  GALigandDock accepts a single complex structure as input, 
and searches for a pool of structures optimal for our generalized energy model through a 
genetic algorithm. While its basic algorithm adopts broadly accepted ideas in the ligand docking 
field, several unique features are also utilized. Only DOFs describing the ligand conformation 
(including 6 rigid body DOFs and DOFs describing rotatable torsions) are encoded into genes. If 
receptor flexibility is used, additional precomputation of the energy values of flexible parts is 
carried out; those “implicit” DOFs are optimized on-the-fly in their internal coordinates for every 
structure generated during genetic algorithm. The protocol starts with optimizing receptor 
side-chains and their protonation states at apo-state (except for self-docking). Then a subset of 
the initial pool was generated by motif-guided ligand conformation search (see below) portion of 
which varying between 50~70% depending on the number of possible motif match combinations 
(more the higher portion), and the rest from randomized genes.  
 
At every iteration in the genetic algorithm, a gene undergoes either mutation (20% chance) or 
crossover (80% chance) with a randomly selected gene. For every generated conformation, 
receptor side-chains are optimized by a Monte Carlo (MC) search in discrete rotameric space 
followed by quasi-Newton minimization in all torsions including those in the ligand, repeating this 
twice by first ramping LJ repulsion scale from 0.1 at the first cycle to 1.0 at the second cycle. 
Both MC and minimization are efficiently carried out using a 3D grid representation of energy 
(see below). In the 10,000 steps of MC search, one-body and two-body energies of rotamers 
precalculated at the beginning are utilized 30. Input rotamers possess constant bonuses of -2.0 
kcal/mol in their one-body energies in order to prevent drifting away too much from the input. 
The 100 “parents” and 100 “children” are then pooled and trimmed to the lowest-energy 100 not 
closer than 1Å to one another; these 100 serve as the next generation’s “parents.” After 10 
iterations, the top 20 structures are further side-chain optimized and backbone- and 
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sidechain-minimized using the ungridded (continuous) energy. A single structure having the 
lowest complex energy is taken as a single representative. 
 
GALigandDock supports a fully automated receptor flexibility logic. Initially, an ellipsoid is 
constructed around the input ligand conformation.  Moments of inertia are computed and are 
scaled by the half size of the ligand box; if the moment of inertia along an axis is < 0.1 it is 
increased to 0.1 (for planar molecules). All protein residues whose average side-chain position 
overlaps this ellipsoid are assigned as flexible. On average 9.8 side-chains are assigned as 
flexible in the cross-docking benchmark set. There could be a possible caveat that assignments 
can be sensitive to initial ligand placement for an elongated ligand. 
 
The simulation is repeated 5 and 16 times with median runtime running single simulations of 
self-docking and cross-docking are 8.5 and 19.7 minutes, respectively. Multiplying by the 
number of repeats made per task, median core-hours per target in this study are 0.7, 5.3 hours, 
respectively. All the computational performances were benchmarked in Intel E5-2650 v2 2.2 
GHz processors.  Examples of running GALigandDock can be found in Supplemental Data.  

 
3D grid representation of energy. RosettaGenFF is represented in 3D energy grids around 
the ligand pocket, which allows over 10-fold speed-up of docking simulations 31. For each atom 
type in the ligand, a per-atom “energy field” is computed on a 0.25 Å grid in a cubic box 
covering the pocket.  The size of the cubic box is allocated depending on the maximum heavy 
atom distance from center-of-mass of the ligand (rmax), more specifically, as 
 

Box-width = 2 (rmax + 4.5 Å) [3] 
 

This results on average 24 Å of cell dimensions in a cubic box.  The energy field summarizes 
the interaction of all rigid receptor atoms to an atom at a particular grid point, allowing ligands to 
be scored against the grid without explicit enumeration over individual atomic pairs. 3D spline 
interpolation is used to compute and minimize off-grid points.  Flexible side-chains do not 
contribute to grid energetics. 
 
Our full RosettaGenFF energy model was reproduced in a grid representation.  Special 
treatment was required for several orientation dependent terms (as graphical illustrations shown 
in Fig 2a ) highlighted below.  For each of attractive and repulsive contributions to ELennard-Jones, 
and the isotropic portion of EImplicit-Solvation(see Eq. 1), separate grid tables were generated for 
each of the flexible atom types present. Grid table for the Coulombic term is unified into one 
representing the electric field.  For the orientation-dependent hydrogen-bond term, the sparsity 
of interactions was exploited: a 3D hash table of receptor donors and acceptors was 
precomputed, allowing hydrogen bonds to be quickly identified and scored exactly with full 
consideration of orientation.  For the orientation-dependent solvation terms, we could not exploit 
similar sparsity.  Instead, these were approximated as the sum of two isotropic terms per-atom: 
one based on the atom position, and one based on a “water-binding” virtual position. 
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Comparing exact to grid-computed energies, we see a Pearson correlation of 0.95, with most of 
the error coming from the orientation-dependent solvation terms (0.84 Pearson correlation). 
 
Motif-guided ligand conformation search.  It is critical for the genetic algorithm to start with a 
pool of genes that are promising but are also diverse.  In initial testing, we found that fully 
randomized starting conformations had difficulty with ligands making hydrogen bonds deep 
inside the pocket. Therefore, a motif-guided placement strategy was applied for about 2/3 of our 
starting pool (50-70 models out of 100, with greater numbers for receptors with many pocket 
hydrogen bond donors or acceptors).  All non-solvent-exposed hydrogen bonding sites in the 
receptor are identified, and “ideal waters” are built from these sites representing possible 
hydrogen-bonding ligand atom positions. These waters are clustered using a 4Å radius, and the 
N clustered motifs with best sum-of-grid-scores having at least two members are selected.  N is 
always between 5 and 15, if too large, stricter criteria for solvent exposure are used; if too small, 
1-member “clusters'' are also considered. Groups of hydrogen-bonding atoms in ligands are 
defined as ligand motifs with the same clustering criteria. Motif matching and optimization of 
ligand conformation is then carried out for every possible pair combination of M 
receptor-to-ligand motif matches (M <= 70): for each motif-match, we first translate the ligand to 
the position where the center of mass of selected motifs overlap, followed by random sampling 
of ligand orientation and torsion angles; the best after 200 random trials is then minimized 
against the grid with distance restraints favoring designated motif match. Maximum 70 ligands 
conformations are generated, each from a unique motif match, prioritizing those matches with 
higher sum-of-grid-score. if M <= 50, search on the matches with higher sum-of-grid-score are 
repeated until 50 conformations are generated. 
 
Ligand Docking Dataset.  We used Astex diverse 32 and non-native 33 sets for self- and 
cross-docking benchmarks, respectively. Ligand protonation states are fixed as provided in the 
original mol2 files. When testing ligand docking using a conformation directly built from its 
chemical connectivity (i.e. SMILES string), its initial conformation was generated by CORINA 34 
with a few corrections to the protonation states in the output: carboxylic acids and protonated 
phosphates are deprotonated (as protonation overly preferred by CORINA).  We then further 
optimized the geometry with AM1 calculation 35 using Antechamber in AMBER suite. An 
extended self-docking benchmark set consisting of 212 complexes was brought from a subset 
of previous work 27 (list in Supplemental Data ). 
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RESULTS  
Small molecule crystal lattice discrimination 
We evaluated the parameterized force field by predicting the crystal structures of 516 small 
molecules from CSD not used in training. We define “success” as selecting a crystal lattice less 
than 1 Å RMSD to the experimentally observed lattice as one of the 10 lowest energy 
structures (crystal lattice prediction is a quite non-trivial challenge) 5. We compared performance 
to the generalized Amber force field (GAFF) 1, which, like our energy function, is sufficiently fast 
that it can be used for drug discovery studies 36,37. GAFF had an advantage over other such 
force fields, in addition to its popular and broad usage, for validation as it could be readily 
implemented in Rosetta for direct comparison to  RosettaGenFF; note that GAFF was not 
optimized using small molecule crystal data.  On the validation set, RosettaGenFF outperformed 
GAFF in both the Boltzmann weight 15 of the observed crystal structure in the population of 
sampled structures, and in the success rate with the definition aforementioned (Table 1; 58% by 
RosettaGenFF compared to 30% by GAFF). Two classes of functional groups stand out when 
the performances of RosettaGenFF and GAFF were compared on a per-group basis (Fig 1c, 
Fig S1-2 ). Improved results were obtained for polar conjugating groups (e.g. esters or 
aryl-nitros) likely because of the improved balance between torsional and non-bonded energy 
parameters leading to better transferability across different chemical contexts. Improved results 
with hydrogen-bonding groups are likely due to the explicit treatment of the orientation 
dependence of hydrogen-bonding in RosettaGenFF, an improvement over the GAFF isotropic 
point-charge model. 
 
Even with explicit fitting to lattice data, there is clear room for improvement in our energy model. 
Proper consideration of polarization effects, in particular a general and higher-level description 
of anisotropic hydrogen bonding and orbital conjugations in torsions, is an important future 
direction. Methods with proper treatment of polarization effects -- such as density functional 
theory (DFT) methods or polarizable force fields 5 -- achieve better performances in crystal 
structure prediction, with success rates of 70-80%.  However, such methods are too slow for 
large-scale drug discovery problems. A force field with similar efficiency to ours by Broo et al 38, 
specifically designed for crystal lattice docking, performed similarly to ours (50% success rate 
on their own test set, compared to 51% with RosettaGenFF on the same set). One possible 
future avenue for improvement would be introducing off-atom charges 39,40. 

 
Small molecule docking with RosettaGenFF 
We investigated the use of RosettaGenFF for small-molecule docking calculations using the 
newly developed Rosetta GALigandDock. Accurate ligand pose prediction through molecular 
docking is of great importance in drug discovery as it provides detailed information about 
interacting protein residues, and is critical for accurate estimation of relative or absolute binding 
free energy of potential binders 6,41,42. A unique strength of our approach comes from the 
grid-representation of water-bridging effects 20  and hydrogen bonding in RosettaGenFF, both 
are orientation-dependent and are identified as important features in ligand/protein energetics.  
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We first tested the new energy function and docking method on 85 complexes from the Astex 
diverse self-docking set 32 keeping the protein backbone and side-chain fixed. RosettaGenFF 
incorporated into GALigandDock produced lowest energy models with a median RMSD of 0.45 
Å, with success rates of 86/94% predicting ligand conformations within 1/2 Å RMSD of the 
crystal conformation, and 31/56% within 0.3/0.5 Å of the crystal structure, respectively. This 
high success rate and atomic accuracy suggests that the new energy model successfully 
identifies both the correct minima in large conformational space as well as precise geometry 
within the energy basin (Fig 2d-g). When docking calculations were performed on a set of 
ligand conformations directly built from scratch using chemical connectivity (i.e. SMILES) 43, 
results are slightly worse, giving a median RMSD of 0.59 Å and success rates of 80/92% using 
1/2 Å criteria. Despite failures arising from input ligand structures not well handled in our 
docking simulations (Fig S3), in both cases the results were better than the other methods on 
the same set (Fig 2b ) 44–46. The combination of RosettaGenFF and GALigandDock on an 
extended docking set of 212 complexes -- non-overlapping with any target in other 
protein-ligand training/test sets -- again showed a performance superior to GOLD 47 with 10% 
difference in success rates (Fig S4). 
 
We then repeated the test with variants of the energy function. A clear improvement was 
observed (Fig 2c) throughout the course of optimization of RosettaGenFF. This alone is a 
somewhat surprising result as the docking benchmark is quite different from the crystal structure 
training set (contribution from ligand-pose discrimination test used in training was very minor). 
We also tested the same docking benchmark i) taking GAFF energy parameters or ii) replacing 
the torsion term into  the empirical torsion term used in GOLD, while keeping the energy model 
on the receptor unchanged in both tests. Poorer performance was obtained for both tests (Fig 
2e-f).  
 
We next tested the effectiveness of our energy model and docking protocol on the more realistic 
cross-docking problem, in which compounds are docked onto independently determined 
structures. GALigandDock allows any residue that can potentially interact with the ligand to 
sample alternative backbone and side-chain conformations, resulting in as many as 20 pocket 
residues to be optimized along with the ligand conformation. This flexibility is enabled by the 
ability of the underlying Rosetta protein force field 15,21 to model the energetics of protein 
conformational changes, and Rosetta’s tools for side-chain conformational sampling and energy 
minimization 30.  We tested cross-docking performance on the Astex non-native set 33, a 
standard benchmark set consisting of 1,112 protein-ligand complexes. On this set, 
RosettaGenFF incorporated into GALigandDock achieved a median RMSD of 0.86 Å with 
success rates of 52/74% (using the criteria of ligand RMSD within 1/2 Å, respectively). This is 
an over 10% improvement in success rate over any previously reported study reported to date 
on the set 27,33,48–51 (Fig 3a ).  
 
Comparing these results to those without receptor flexibility showed that improvements in ligand 
pose accuracy primarily came from complexes in which pocket side-chain accuracy also 
increased (Fig 3b); relieving small clashes (Fig 3c), correcting wrong sidechain rotameric states 
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(Fig 3d ), and modeling small backbone conformational changes (Fig 3e); note that all of these 
were achieved by fully automated flexibility annotations. Of 277 complexes with initial models 
having relatively accurate backbones (RMSD < 1 Å) but for which rigid-receptor docking failed, 
about half (139) were successfully docked (ligand RMSD < 2 Å) following incorporation of 
receptor flexibility. The balance between protein and non-protein energetics is clearly important 
for flexible backbone docking 40. 
 
DISCUSSIONS 
The small molecule docking results described in this paper demonstrate the power of using 
prediction of small molecule crystal lattices, a new source of data, to drive energy model 
parameterization for accurate molecular docking studies. RosettaGenFF outperforms previously 
reported approaches when tested on a range of structure-based drug discovery applications. In 
the context of the functional forms used, the current energy model may be quite close to optimal 
for protein/ligand docking: when any of energy components or flexibility was varied from current 
implementation, around 10% worsening was observed in cross-docking (Table S2).  Avenues 
for future improvement include improving the underlying physical model, for example: a) 
introducing an efficient polarizable and/or multipole electrostatic model 52,53 and b) additional 
bonded terms for ring systems 54. A large amount of small molecule crystal data that was not 
used in this study could be utilized for this further development, which could improve coverage 
in chemical diversity. Incorporation of quantum chemistry data during training could further 
improve the model, particularly for binding free energy calculations.  
 
The combination of RosettaGenFF and  GALigandDock can be readily applied to high-precision 
virtual screening problems; to this aim, it will be beneficial to enhance its computational 
efficiency for high-throughput predictions. Both computational advances, such as 
GPU-accelerated calculation, and algorithmic improvements, such as a “competition-style” 
model where ligand identity can change along with ligand conformation in the genetic algorithm, 
should improve run-time, allowing for screening against very large ligand libraries. 
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Table 1. Performance on various training tasks following optimization 

 Tasks Measure Pre-optimi
ze 

Optimize
d 

GAFF 

Training Small-molecule Xtal 
docking 

Boltzmann 
Probability1) 

0.470 0.652 - 

Success rate (%)2) 39.3 63.6 - 

Dihedral distribution Mean 
KL-divergence 

0.355 0.225 - 

Distance distribution 0.173 0.162 - 

Ligand pose prediction Boltzmann 
Probability1) 

0.529 0.610 - 

Hydration free energy Error (kcal/mol) 6.4 2.0 - 

Validati
on 

Small-molecule Xtal 
docking 3) 

Boltzmann 
Probability1) 

0.321 0.640 0.386 

Success rate(%)2) 23.5 58.3 29.9 

1) Boltzmann probability selecting near-native structure against non-native ones 15. Values 
reported are values averaged over 4 criteria of near-native definitions, each 
corresponding to 1,2,4,6 Å of crystal-interface RMSD measured on the central 
asymmetric unit and all symmetry mates within 12 Å. 

2) Success defined as any sub-Angstrom structure within 10 lowest energy structures 
sampled. 

3) Compared against a common set of 430 molecules having at least 5 of sub-Angstrom 
structures sampled in all cases. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

https://paperpile.com/c/IFMHxl/w9PMA
https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure captions 

Fig1. Force field optimization using small molecule crystal structures.  a) Structure 
perturbation operations in Monte Carlo conformational search used for small molecule crystal 
structure prediction. Random space group assignment is done at the start of each simulation, 
followed by 50 cycles of interspersed lattice parameter and intramolecular perturbation followed 
by minimization over all degrees of freedom. b) Schematic overview of iterative parameter 
optimization procedure integrating small molecule crystal structure prediction, the KL divergence 
of sampled dihedral angle and distance distributions compared to reference distributions derived 
from ~4,000 small molecule crystal structures, ligand-protein docked pose discrimination tests 
on 215 complexes each containing hundreds of pre-sampled conformations 27, and agreement 
with experimental hydration free energy for 643 small molecules 28. At every iteration, new force 
field parameters are obtained by simplex optimization using dualOptE 15, atom type 
classification logic is updated as necessary, and new low energy decoy lattice structures are 
generated.  c) Comparison of performance against generalized Amber force field (GAFF1), 
decomposed by functional groups (left) or by interaction types across symmetry units (right). 
Statistics are collected from all molecules containing corresponding features and hence 
individual molecules can be counted multiple times. 
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Fig2. Improved force field leads to more accurate small-molecule pose predictions. a)  
Schematic description of Rosetta GALigandDock protocol. Graphical illustrations of steps 
highlighted in colors are shown in insets with corresponding colors (details in Methods). b) 
Self-docking results using RosettaGenFF and GALigandDock compared to the best reported 
results using state-of-the-art docking tools 44–46 tested on the Astex diverse set 32. Success rate 
as assessed by ligand RMSD < 1 Å and  < 2 Å in solid and patterned bars respectively. 
“v.GAFF'' stands for GALigandDock runs using GAFF instead of RosettaGenFF. c)  Success 
rate using energy parameters from different stages of optimization; preopt, pre-optimized 
version; round1.3, after 3rd iteration; round1.6, after 6th iteration; round2.1, after first iteration of 
solvation parameter optimization (7th iteration in total); RosettaGenFF, the final parameter set. 
d-g)  Examples of structures with highly accurate docked ligand poses. Ligand models are 
colored in gold for RosettaGenFF, in magenta for GAFF, and cyan for RosettaGenFF with the 
torsion term replaced with ChemPLP used in GOLD 47, respectively. d) A high accuracy 
prediction with ligand RMSD of 0.2 Å for a molecule with 12 rotatable internal torsions. e) An 
example showing the importance of balance between torsion angle preference and non-bonded 
interactions, 1t40. Right panels, ligand internal energy profiles as a function of 𝜒1 and 𝜒2 torsions 
are shown for different energy functions. The torsion angles in the predicted pose are indicated 
by arrows using the color scheme of d-g), the values in the crystal structure are indicated by 
black arrows. f) An example highlighting the importance of orientation-dependent hydrogen 
bonding term, 1uou. RosettaGenFF prefers a ligand pose with rich hydrogen bonding (RMSD 
0.3 Å) while GAFF prefers one with more solvent exposure (RMSD 5.4 Å). g) An example of 
benefit provided by orientation-dependent water-bridging energy term 20. Crystal water depicted 
in red sphere is not modeled explicitly in docking simulation, but still the water-bridging term 
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gives a bonus when virtual water sites overlap (bottom inset) leading to RMSD 0.2 Å prediction; 
best pose by GAFF lacking this term clashes with this water position (RMSD 1.4 Å). 
 

 
Fig3. Incorporating receptor flexibility improves cross-docking. a)  Success rates in 
cross-docking benchmark for various methods 27,33,48–51 tested on Astex non-native set 33. Blue 
and red bars represent results from docking runs with and without receptor flexibility, 
respectively; solid and patterned bars show results by two criteria, ligand RMSD < 2 Å and < 1 
Å, respectively. Sub-Angstrom success rates are not achieved with other methods. b) 
Per-protein cross-docking results compared between with (Y-axis) and without receptor flexibility 
(X-axis). Size of points represent number of alternative protein conformations from largest (>50) 
to smallest (<10); colors represent fraction of conformations with pocket RMSD improved or 
unchanged by flexibility, from 0.0 (black) to 0.8 (yellow). c-e) Examples in which flexible docking 
improves prediction. Top and bottoms panels are predictions without and with receptor flexibility, 
respectively. Crystal poses shown in gold, predicted ligand poses starting from multiple receptor 
conformations in blue (top panels) or white (bottom panels). c) 1hww, clash with arginine is 
relieved, increasing fraction of predictions within sub-Angstrom accuracy from 18% to 95%. d) 
1g9v, rotameric search on lysine helps increase sub-Angstrom accuracy from 22% to 60%. e) 
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1lpz, starting conformation from PDB ID 1f0s, backbone flexibility allows to correct the 
orientation of tyrosine leading to ligand RMSD 0.9 Å (10.4 Å without receptor flexibility) 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 

(1) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and 
Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25  (9), 1157–1174. 

(2) Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr. Automation of the CHARMM 
General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic 
Charges. J. Chem. Inf. Model. 2012, 52  (12), 3155–3168. 

(3) Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu, C.; Dahlgren, M. K.; 
Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R. A.; Harder, E. D. OPLS3e: 
Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 
2019, 15  (3), 1863–1874. 

(4) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and 
Performance of MMFF94. Journal of Computational Chemistry. 1996, pp 490–519. 
https://doi.org/3.0.co;2-p.">10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-
p. 

(5) Reilly, A. M.; Cooper, R. I.; Adjiman, C. S.; Bhattacharya, S.; Boese, A. D.; Brandenburg, J. 
G.; Bygrave, P. J.; Bylsma, R.; Campbell, J. E.; Car, R.; Case, D. H.; Chadha, R.; Cole, J. 
C.; Cosburn, K.; Cuppen, H. M.; Curtis, F.; Day, G. M.; DiStasio, R. A., Jr; Dzyabchenko, 
A.; van Eijck, B. P.; Elking, D. M.; van den Ende, J. A.; Facelli, J. C.; Ferraro, M. B.; 
Fusti-Molnar, L.; Gatsiou, C. A.; Gee, T. S.; de Gelder, R.; Ghiringhelli, L. M.; Goto, H.; 
Grimme, S.; Guo, R.; Hofmann, D. W. M.; Hoja, J.; Hylton, R. K.; Iuzzolino, L.; Jankiewicz, 
W.; de Jong, D. T.; Kendrick, J.; de Klerk, N. J. J.; Ko, H. Y.; Kuleshova, L. N.; Li, X.; 
Lohani, S.; Leusen, F. J. J.; Lund, A. M.; Lv, J.; Ma, Y.; Marom, N.; Masunov, A. E.; 
McCabe, P.; McMahon, D. P.; Meekes, H.; Metz, M. P.; Misquitta, A. J.; Mohamed, S.; 
Monserrat, B.; Needs, R. J.; Neumann, M. A.; Nyman, J.; Obata, S.; Oberhofer, H.; 
Oganov, A. R.; Orendt, A. M.; Pagola, G. I.; Pantelides, C. C.; Pickard, C. J.; Podeszwa, R.; 
Price, L. S.; Price, S. L.; Pulido, A.; Read, M. G.; Reuter, K.; Schneider, E.; Schober, C.; 
Shields, G. P.; Singh, P.; Sugden, I. J.; Szalewicz, K.; Taylor, C. R.; Tkatchenko, A.; 
Tuckerman, M. E.; Vacarro, F.; Vasileiadis, M.; Vazquez-Mayagoitia, A.; Vogt, L.; Wang, Y.; 
Watson, R. E.; de Wijs, G. A.; Yang, J.; Zhu, Q.; Groom, C. R. Report on the Sixth Blind 
Test of Organic Crystal Structure Prediction Methods. Acta Crystallogr B Struct Sci Cryst 
Eng Mater 2016, 72  (Pt 4), 439–459. 

(6) Yin, J.; Henriksen, N. M.; Slochower, D. R.; Shirts, M. R.; Chiu, M. W.; Mobley, D. L.; 
Gilson, M. K. Overview of the SAMPL5 Host-Guest Challenge: Are We Doing Better? J. 
Comput. Aided Mol. Des. 2017, 31  (1), 1–19. 

(7) Boulanger, E.; Huang, L.; Rupakheti, C.; MacKerell, A. D.; Roux, B. Optimized 
Lennard-Jones Parameters for Druglike Small Molecules. Journal of Chemical Theory and 
Computation. 2018, pp 3121–3131. https://doi.org/10.1021/acs.jctc.8b00172. 

(8) Mobley, D.; Bannan, C. C.; Rizzi, A.; Bayly, C. I.; Chodera, J. D.; Lim, V. T.; Lim, N. M.; 
Beauchamp, K. A.; Shirts, M. R.; Gilson, M. K.; Eastman, P. K. Open Force Field 
Consortium: Escaping Atom Types Using Direct Chemical Perception with SMIRNOFF 
v0.1. https://doi.org/10.1101/286542. 

(9) Velec, H. F. G.; Gohlke, H.; Klebe, G. DrugScore(CSD)-Knowledge-Based Scoring 
Function Derived from Small Molecule Crystal Data with Superior Recognition Rate of 
near-Native Ligand Poses and Better Affinity Prediction. J. Med. Chem. 2005, 48  (20), 
6296–6303. 

(10) Groom, C. R.; Allen, F. H. The Cambridge Structural Database in Retrospect and 
Prospect. Angew. Chem. Int. Ed Engl. 2014, 53  (3), 662–671. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/utRf
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/fj7b
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/5cRS
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/7Pr2
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/B0zBu
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/vosr0
http://paperpile.com/b/IFMHxl/yUycX
http://paperpile.com/b/IFMHxl/yUycX
http://paperpile.com/b/IFMHxl/yUycX
http://paperpile.com/b/IFMHxl/yUycX
http://paperpile.com/b/IFMHxl/yUycX
http://dx.doi.org/10.1021/acs.jctc.8b00172.
http://paperpile.com/b/IFMHxl/M4pIe
http://paperpile.com/b/IFMHxl/M4pIe
http://paperpile.com/b/IFMHxl/M4pIe
http://paperpile.com/b/IFMHxl/M4pIe
http://dx.doi.org/10.1101/286542.
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/aB3FE
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
http://paperpile.com/b/IFMHxl/bHBUl
https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/


(11) Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. Small Molecule Conformational 
Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis. 
J. Chem. Inf. Model.  2008, 48  (1), 1–24. 

(12) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural 
Database. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016, 72  (Pt 2), 171–179. 

(13) André, I.; Bradley, P.; Wang, C.; Baker, D. Prediction of the Structure of Symmetrical 
Protein Assemblies. Proc. Natl. Acad. Sci. U. S. A.  2007, 104 (45), 17656–17661. 

(14) Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic 
Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002, 23 
(16), 1623–1641. 

(15) Park, H.; Bradley, P.; Greisen, P., Jr; Liu, Y.; Mulligan, V. K.; Kim, D. E.; Baker, D.; 
DiMaio, F. Simultaneous Optimization of Biomolecular Energy Functions on Features from 
Small Molecules and Macromolecules. J. Chem. Theory Comput. 2016, 12  (12), 
6201–6212. 

(16) DiMaio, F.; Leaver-Fay, A.; Bradley, P.; Baker, D.; André, I. Modeling Symmetric 
Macromolecular Structures in Rosetta3. PLoS One 2011, 6  (6), e20450. 

(17) O’Boyle, N. M.; Vandermeersch, T.; Flynn, C. J.; Maguire, A. R.; Hutchison, G. R. 
Confab - Systematic Generation of Diverse Low-Energy Conformers. J. Cheminform. 2011, 
3, 8. 

(18) Lazaridis, T.; Karplus, M. Effective Energy Function for Proteins in Solution. Proteins 
1999, 35  (2), 133–152. 

(19) Yanover, C.; Bradley, P. Extensive Protein and DNA Backbone Sampling Improves 
Structure-Based Specificity Prediction for C2H2 Zinc Fingers. Nucleic Acids Res. 2011, 39 
(11), 4564–4576. 

(20) Pavlovicz, R. E.; Park, H.; DiMaio, F. Efficient Consideration of Coordinated Water 
Molecules Improves Computational Protein-Protein and Protein-Ligand Docking. 
https://doi.org/10.1101/618603. 

(21) Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; O’Meara, M. J.; DiMaio, F. P.; Park, H.; 
Shapovalov, M. V.; Renfrew, P. D.; Mulligan, V. K.; Kappel, K.; Labonte, J. W.; Pacella, M. 
S.; Bonneau, R.; Bradley, P.; Dunbrack, R. L., Jr; Das, R.; Baker, D.; Kuhlman, B.; 
Kortemme, T.; Gray, J. J. The Rosetta All-Atom Energy Function for Macromolecular 
Modeling and Design. J. Chem. Theory Comput. 2017, 13  (6), 3031–3048. 

(22) William L. Jorgensen, *.; David S. Maxwell; Tirado-Rives, J. Development and Testing of 
the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic 
Liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225–11236. 

(23) Clark, M.; Cramer, R. D.; Van Opdenbosch, N. Validation of the General Purpose Tripos 
5.2 Force Field. Journal of Computational Chemistry. 1989, pp 982–1012. 
https://doi.org/10.1002/jcc.540100804. 

(24) Wang, J.; Tingjun, H. Application of Molecular Dynamics Simulations in Molecular 
Property Prediction I: Density and Heat of Vaporization. J. Chem. Theory Comput. 2011, 7 
(7), 2151–2165. 

(25) Dahlgren, M. K.; Schyman, P.; Tirado-Rives, J.; Jorgensen, W. L. Characterization of 
Biaryl Torsional Energetics and Its Treatment in OPLS All-Atom Force Fields. Journal of 
Chemical Information and Modeling. 2013, pp 1191–1199. 
https://doi.org/10.1021/ci4001597. 

(26) Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7 
(4), 308–313. 

(27) Baek, M.; Shin, W.-H.; Chung, H. W.; Seok, C. GalaxyDock BP2 Score: A Hybrid 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/S950p
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xkNfn
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/xqQR
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/N370F
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/w9PMA
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/8HtTf
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/g0Jcy
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/sG2bM
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/JGi1n
http://paperpile.com/b/IFMHxl/222Ss
http://paperpile.com/b/IFMHxl/222Ss
http://paperpile.com/b/IFMHxl/222Ss
http://dx.doi.org/10.1101/618603.
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/Xfslr
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/edOIo
http://paperpile.com/b/IFMHxl/k8tso
http://paperpile.com/b/IFMHxl/k8tso
http://paperpile.com/b/IFMHxl/k8tso
http://paperpile.com/b/IFMHxl/k8tso
http://paperpile.com/b/IFMHxl/k8tso
http://dx.doi.org/10.1002/jcc.540100804.
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/fux7s
http://paperpile.com/b/IFMHxl/EearF
http://paperpile.com/b/IFMHxl/EearF
http://paperpile.com/b/IFMHxl/EearF
http://paperpile.com/b/IFMHxl/EearF
http://paperpile.com/b/IFMHxl/EearF
http://paperpile.com/b/IFMHxl/EearF
http://dx.doi.org/10.1021/ci4001597.
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/2KJFh
http://paperpile.com/b/IFMHxl/c5lgE
https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scoring Function for Accurate Protein–ligand Docking. Journal of Computer-Aided 
Molecular Design. 2017, pp 653–666. https://doi.org/10.1007/s10822-017-0030-9. 

(28) Mobley, D. L.; Guthrie, J. P. FreeSolv: A Database of Experimental and Calculated 
Hydration Free Energies, with Input Files. J. Comput. Aided Mol. Des. 2014, 28  (7), 
711–720. 

(29) Radzicka, A.; Wolfenden, R. Comparing the Polarities of the Amino Acids: Side-Chain 
Distribution Coefficients between the Vapor Phase, Cyclohexane, 1-Octanol, and Neutral 
Aqueous Solution. Biochemistry 1988, 27  (5), 1664–1670. 

(30) Leaver-Fay, A.; Tyka, M.; Lewis, S. M.; Lange, O. F.; Thompson, J.; Jacak, R.; Kaufman, 
K.; Renfrew, P. D.; Smith, C. A.; Sheffler, W.; Davis, I. W.; Cooper, S.; Treuille, A.; Mandell, 
D. J.; Richter, F.; Ban, Y.-E. A.; Fleishman, S. J.; Corn, J. E.; Kim, D. E.; Lyskov, S.; 
Berrondo, M.; Mentzer, S.; Popović, Z.; Havranek, J. J.; Karanicolas, J.; Das, R.; Meiler, J.; 
Kortemme, T.; Gray, J. J.; Kuhlman, B.; Baker, D.; Bradley, P. ROSETTA3: An 
Object-Oriented Software Suite for the Simulation and Design of Macromolecules. Methods 
Enzymol. 2011, 487, 545–574. 

(31) Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking with Grid-Based Energy 
Evaluation. Journal of Computational Chemistry. 1992, pp 505–524. 
https://doi.org/10.1002/jcc.540130412. 

(32) Hartshorn, M. J.; Verdonk, M. L.; Chessari, G.; Brewerton, S. C.; Mooij, W. T. M.; 
Mortenson, P. N.; Murray, C. W. Diverse, High-Quality Test Set for the Validation of 
Protein−Ligand Docking Performance. Journal of Medicinal Chemistry. 2007, pp 726–741. 
https://doi.org/10.1021/jm061277y. 

(33) Verdonk, M. L.; Mortenson, P. N.; Hall, R. J.; Hartshorn, M. J.; Murray, C. W. 
Protein−Ligand Docking against Non-Native Protein Conformers. Journal of Chemical 
Information and Modeling. 2008, pp 2214–2225. https://doi.org/10.1021/ci8002254. 

(34) Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic Three-Dimensional 
Model Builders Using 639 X-Ray Structures. Journal of Chemical Information and Modeling. 
1994, pp 1000–1008. https://doi.org/10.1021/ci00020a039. 

(35) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. Development and Use of 
Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum 
Mechanical Molecular Model. Journal of the American Chemical Society. 1985, pp 
3902–3909. https://doi.org/10.1021/ja00299a024. 

(36) Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.; 
Narumi, T.; Taiji, M. High-Performance Drug Discovery: Computational Screening by 
Combining Docking and Molecular Dynamics Simulations. PLoS Comput. Biol. 2009, 5  (10), 
e1000528. 

(37) Suenaga, A.; Okimoto, N.; Hirano, Y.; Fukui, K. An Efficient Computational Method for 
Calculating Ligand Binding Affinities. PLoS One 2012, 7  (8), e42846. 

(38) Broo, A.; Nilsson Lill, S. O. Transferable Force Field for Crystal Structure Predictions, 
Investigation of Performance and Exploration of Different Rescoring Strategies Using 
DFT-D Methods. Acta Crystallographica Section B Structural Science, Crystal Engineering 
and Materials. 2016, pp 460–476. https://doi.org/10.1107/s2052520616006831. 

(39) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. 
Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 
1983, 79  (2), 926–935. 

(40) Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, 
D.; Dahlgren, M. K.; Knight, J. L.; Kaus, J. W.; Cerutti, D. S.; Krilov, G.; Jorgensen, W. L.; 
Abel, R.; Friesner, R. A. OPLS3: A Force Field Providing Broad Coverage of Drug-like 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

http://paperpile.com/b/IFMHxl/c5lgE
http://paperpile.com/b/IFMHxl/c5lgE
http://paperpile.com/b/IFMHxl/c5lgE
http://paperpile.com/b/IFMHxl/c5lgE
http://dx.doi.org/10.1007/s10822-017-0030-9.
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/T2L7o
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/oPvSW
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/k9YrN
http://paperpile.com/b/IFMHxl/SIadO
http://paperpile.com/b/IFMHxl/SIadO
http://paperpile.com/b/IFMHxl/SIadO
http://paperpile.com/b/IFMHxl/SIadO
http://paperpile.com/b/IFMHxl/SIadO
http://dx.doi.org/10.1002/jcc.540130412.
http://paperpile.com/b/IFMHxl/nnjMG
http://paperpile.com/b/IFMHxl/nnjMG
http://paperpile.com/b/IFMHxl/nnjMG
http://paperpile.com/b/IFMHxl/nnjMG
http://paperpile.com/b/IFMHxl/nnjMG
http://paperpile.com/b/IFMHxl/nnjMG
http://dx.doi.org/10.1021/jm061277y.
http://paperpile.com/b/IFMHxl/jDEXw
http://paperpile.com/b/IFMHxl/jDEXw
http://paperpile.com/b/IFMHxl/jDEXw
http://paperpile.com/b/IFMHxl/jDEXw
http://paperpile.com/b/IFMHxl/jDEXw
http://dx.doi.org/10.1021/ci8002254.
http://paperpile.com/b/IFMHxl/POJiR
http://paperpile.com/b/IFMHxl/POJiR
http://paperpile.com/b/IFMHxl/POJiR
http://paperpile.com/b/IFMHxl/POJiR
http://paperpile.com/b/IFMHxl/POJiR
http://dx.doi.org/10.1021/ci00020a039.
http://paperpile.com/b/IFMHxl/McHdJ
http://paperpile.com/b/IFMHxl/McHdJ
http://paperpile.com/b/IFMHxl/McHdJ
http://paperpile.com/b/IFMHxl/McHdJ
http://paperpile.com/b/IFMHxl/McHdJ
http://paperpile.com/b/IFMHxl/McHdJ
http://dx.doi.org/10.1021/ja00299a024.
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/eqaqg
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/GPmmS
http://paperpile.com/b/IFMHxl/8aD5s
http://paperpile.com/b/IFMHxl/8aD5s
http://paperpile.com/b/IFMHxl/8aD5s
http://paperpile.com/b/IFMHxl/8aD5s
http://paperpile.com/b/IFMHxl/8aD5s
http://paperpile.com/b/IFMHxl/8aD5s
http://dx.doi.org/10.1107/s2052520616006831.
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/s9sKL
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/


Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12  (1), 281–296. 
(41) Lyu, J.; Wang, S.; Balius, T. E.; Singh, I.; Levit, A.; Moroz, Y. S.; O’Meara, M. J.; Che, T.; 

Algaa, E.; Tolmachova, K.; Tolmachev, A. A.; Shoichet, B. K.; Roth, B. L.; Irwin, J. J. 
Ultra-Large Library Docking for Discovering New Chemotypes. Nature 2019, 566 (7743), 
224–229. 

(42) Wang, L.; Berne, B. J.; Friesner, R. A. On Achieving High Accuracy and Reliability in the 
Calculation of Relative Protein-Ligand Binding Affinities. Proc. Natl. Acad. Sci. U. S. A. 
2012, 109 (6), 1937–1942. 

(43) Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to 
Methodology and Encoding Rules. Journal of Chemical Information and Modeling. 1988, pp 
31–36. https://doi.org/10.1021/ci00057a005. 

(44) Repasky, M. P.; Murphy, R. B.; Banks, J. L.; Greenwood, J. R.; Tubert-Brohman, I.; 
Bhat, S.; Friesner, R. A. Docking Performance of the Glide Program as Evaluated on the 
Astex and DUD Datasets: A Complete Set of Glide SP Results and Selected Results for a 
New Scoring Function Integrating WaterMap and Glide. J. Comput. Aided Mol. Des. 2012, 
26 (6), 787–799. 

(45) Liebeschuetz, J. W.; Cole, J. C.; Korb, O. Pose Prediction and Virtual Screening 
Performance of GOLD Scoring Functions in a Standardized Test. Journal of 
Computer-Aided Molecular Design. 2012, pp 737–748. 
https://doi.org/10.1007/s10822-012-9551-4. 

(46) Spitzer, R.; Jain, A. N. Surflex-Dock: Docking Benchmarks and Real-World Application. 
J. Comput. Aided Mol. Des. 2012, 26  (6), 687–699. 

(47) Korb, O.; Stützle, T.; Exner, T. E. Empirical Scoring Functions for Advanced 
Protein-Ligand Docking with PLANTS. J. Chem. Inf. Model. 2009, 49  (1), 84–96. 

(48) Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; 
Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. rDock: A Fast, Versatile and Open 
Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Comput. Biol. 
2014, 10  (4), e1003571. 

(49) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method Using an 
Incremental Construction Algorithm. J. Mol. Biol. 1996, 261 (3), 470–489. 

(50) Gaudreault, F.; Najmanovich, R. J. FlexAID: Revisiting Docking on Non-Native-Complex 
Structures. J. Chem. Inf. Model.  2015, 55  (7), 1323–1336. 

(51) Tanchuk, V. Y.; Tanin, V. O.; Vovk, A. I.; Poda, G. A New, Improved Hybrid Scoring 
Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina. 
Chemical Biology & Drug Design. 2016, pp 618–625. https://doi.org/10.1111/cbdd.12697. 

(52) Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell, A. D., Jr. An Empirical Polarizable Force 
Field Based on the Classical Drude Oscillator Model: Development History and Recent 
Applications. Chem. Rev. 2016, 116 (9), 4983–5013. 

(53) Jakobsen, S.; Jensen, F. Systematic Improvement of Potential-Derived Atomic 
Multipoles and Redundancy of the Electrostatic Parameter Space. J. Chem. Theory 
Comput. 2014, 10  (12), 5493–5504. 

(54) Jain, A. N. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring 
flexibility, and knowledge-based search. - PubMed - NCBI 
https://www.ncbi.nlm.nih.gov/pubmed/17387436  (accessed Jun 6, 2019). 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 7, 2020. ; https://doi.org/10.1101/2020.09.06.285239doi: bioRxiv preprint 

http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/QjWzq
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/uo2VY
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/ARJzj
http://paperpile.com/b/IFMHxl/TNX8B
http://paperpile.com/b/IFMHxl/TNX8B
http://paperpile.com/b/IFMHxl/TNX8B
http://paperpile.com/b/IFMHxl/TNX8B
http://paperpile.com/b/IFMHxl/TNX8B
http://dx.doi.org/10.1021/ci00057a005.
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/VYvjt
http://paperpile.com/b/IFMHxl/BKc7U
http://paperpile.com/b/IFMHxl/BKc7U
http://paperpile.com/b/IFMHxl/BKc7U
http://paperpile.com/b/IFMHxl/BKc7U
http://paperpile.com/b/IFMHxl/BKc7U
http://paperpile.com/b/IFMHxl/BKc7U
http://dx.doi.org/10.1007/s10822-012-9551-4.
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/Aa2Zl
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/QeHgR
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/Elu71
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/KEWXv
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/XboWb
http://paperpile.com/b/IFMHxl/gBFLT
http://paperpile.com/b/IFMHxl/gBFLT
http://paperpile.com/b/IFMHxl/gBFLT
http://paperpile.com/b/IFMHxl/gBFLT
http://dx.doi.org/10.1111/cbdd.12697.
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/tjnCE
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/qgJBn
http://paperpile.com/b/IFMHxl/tJczy
http://paperpile.com/b/IFMHxl/tJczy
https://www.ncbi.nlm.nih.gov/pubmed/17387436
http://paperpile.com/b/IFMHxl/tJczy
https://doi.org/10.1101/2020.09.06.285239
http://creativecommons.org/licenses/by-nc-nd/4.0/

