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Abstract

Low-cost, high-throughput sequencing has led to an enormous increase in the number of
sequenced microbial genomes, with well over 100,000 genomes in public archives today.
Automatic genome annotation tools are integral to understanding these organisms, yet
older gene finding methods must be retrained on each new genome. We have developed
a universal model of prokaryotic genes by fitting a temporal convolutional network to
amino-acid sequences from a large, diverse set of microbial genomes. We incorporated
the new model into a gene finding system, Balrog (Bacterial Annotation by Learned
Representation Of Genes), which does not require genome-specific training and which
matches or outperforms other state-of-the-art gene finding tools. Balrog is freely
available under the MIT license at https://github.com/salzberg-lab/Balrog.

Author summary

Annotating the protein-coding genes in a newly sequenced prokaryotic genome is a
critical part of describing their biological function. Relative to eukaryotic genomes,
prokaryotic genomes are small and structurally simple, with 90% of their DNA typically
devoted to protein-coding genes. Current computational gene finding tools are therefore
able to achieve close to 99% sensitivity to known genes using species-specific gene
models.

Though highly sensitive at finding known genes, all current prokaryotic gene finders
also predict large numbers of additional genes, which are labelled as “hypothetical
protein” in GenBank and other annotation databases. Many hypothetical gene
predictions likely represent true protein-coding sequence, but it is not known how many
of them represent false positives. Additionally, all current gene finding tools must be
trained specifically for each genome as a preliminary step in order to achieve high
sensitivity. This requirement limits their ability to detect genes in fragmented sequences
commonly seen in metagenomic samples.

We took a data-driven approach to prokaryotic gene finding, relying on the large and
diverse collection of already-sequenced genomes. By training a single, universal model of
bacterial genes on protein sequences from many different species, we were able to match
the sensitivity of current gene finders while reducing the overall number of gene
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predictions. Our model does not need to be refit on any new genome. Balrog (Bacterial
Annotation by Learned Representation of Genes) represents a fundamentally different
yet effective method for prokaryotic gene finding.

Introduction

One of the most important steps after sequencing and assembling a microbial genome is
the annotation of its protein-coding genes. Methods for finding protein-coding genes
within a prokaryotic genome are highly sensitive, and thus have seen little change over
the past decade. Widely used prokaryotic gene finders include various iterations of
Glimmer [1, 2], GeneMark [3, 4], and Prodigal [5], all of which are based on Markov
models and which utilize an array of biologically-inspired heuristics. Each of these
previous methods requires a bootstrapping step to train its internal gene model on each
new genome. This requirement also limits their ability to detect genes in fragmented
sequences commonly seen in metagenomic samples [6].

The lack of recent advances in ab initio bacterial gene finding tool development is
partly due to the perception that bacterial gene finding is a solved problem. Currently
available tools achieve near 99% sensitivity for known genes (i.e., genes with a functional
annotation), so there appears to be little room for improvement. However, all current
software tools predict hundreds or thousands of “extra” genes per genome, i.e., genes
that do not match any gene with a known function and are usually given the name
“hypothetical protein.” Many of these hypothetical genes likely represent genuine protein
coding sequences, but many others may be false positive predictions. It is difficult if not
impossible to prove that a predicted open reading frame is not a gene; thus these
hypothetical proteins have remained in genome annotation databases for many years.
However, systematically annotating false positives as genes may create problems for
downstream analyses of genome function [7]. Thus, we would prefer a method that
makes fewer overall predictions while retaining very high sensitivity to known genes.

Currently available gene finders were developed in the late 1990’s and 2000’s, when
relatively few prokaryotic genomes were available. Today, tens of thousands of diverse
bacterial genomes from across the prokaryotic tree of life have been sequenced and
annotated. We hypothesized that it should therefore be feasible to build a data-driven
gene finder by training a machine learning model on a large, diverse collection of
high-quality prokaryotic genomes. The program could then be applied, without any
further re-training or adjustment, to find genes in any prokaryotic species. Balrog was
developed with this strategy in mind. In the experiments below, we show that Balrog,
when trained on all high-quality prokaryotic genomes available today, matches the
sensitivity of current state-of-the-art gene finders while reducing the total number of
hypothetical gene predictions. By integrating protein-coding gene predictions from
Balrog, standard prokaryotic annotation and analysis pipelines such as NCBI PGAP
(Prokaryotic Genome Annotation Pipeline) [8], MGnify [9], or Prokka [10] may improve
their genome annotation quality.

Results

Gene prediction sensitivity

We compared the performance of Balrog, Prodigal, and Glimmer3 by running each tool
with default settings on a test set of 30 bacteria and 5 archaea that were not included in
the Balrog training set. Following the conventions established in multiple previous
studies, we considered a protein-coding gene to be known if it was annotated with a
name not including “hypothetical” or “putative.” For most bacterial genomes, more
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than two-thirds of their annotated genes fall into the “known” category, with the rest
being hypothetical. The hypothetical genes include a mixture of true genes and false
positive predictions. In our experiments, we measured the total number of genes
predicted in each genome and calculated the sensitivity of each program to known,
non-hypothetical genes. Predictions were considered correct if the stop codon was
correctly predicted, i.e., if the 3’ position of the gene was correct. Results for this gene
finder comparison can be found in Table 1.

All three tools achieved similar sensitivity on the bacterial genomes in the test set.
On average, Balrog found 2 non-hypothetical genes fewer than Prodigal (2,248 vs.
2,250) and 3 genes more than Glimmer3 (2,248 vs. 2,245). This represents a difference
of less than 0.1% in sensitivity. Balrog predicted the fewest genes overall, reducing the
number of “extra” gene predictions by 11% vs. Prodigal (664 vs. 747) and 30% vs
Glimmer3 (664 vs. 949).

Balrog predicted more genes than Prodigal for only one bacterial genome, E. coli
K-12 MG1655 (the standard laboratory strain). On that genome, Balrog predicted 3
more extra genes than Prodigal, but at the same time it found 43 more true annotated
genes. It is worth noting here that all organisms in the Escherichia and Shigella genuses
were excluded from the Balrog training data set.

On the five genomes in the archaea test set, we observed more pronounced
differences in the number of extra gene predictions. Glimmer3 found the most known
genes, averaging 1670, versus 1663 for Prodigal and 1661 for Balrog. However, Balrog
predicted the fewest genes overall, 18% fewer extra genes than Prodigal and 40% fewer
than Glimmer3.

Materials and Methods

Training and testing data

In selecting genomes on which to train our gene model, we aimed to cover as much
microbial diversity as possible while limiting sequence redundancy. We randomly
selected one genome for each bacterial and archaeal species within the Genome
Taxonomy Database (GTDB, https://gtdb.ecogenomic.org) for the training set [11].
Only high-quality genomes were selected, defined by GTDB as over 90% complete with
less than 5% contamination. Because high-quality protein annotations were also
necessary, we required selected genomes to be available in RefSeq or GenBank with the
tag “Complete Genome” and without the tag “Anomalous assembly.” From this set of
high-quality complete genomes with gene annotations, 29 bacterial and five archaeal
species were randomly selected to serve as a test set. Escherichia coli was also put in
the test set because it is often used as a benchmark organism to compare gene finders.
All genomes sharing a GTDB genus with any species in the test set were excluded from
the training set. Though many gene sequences likely overlap between training and test
data, we feel this test set should allow a reasonably conservative estimate of
generalization error when predicting genes on a newly sequenced prokaryotic genome,
which likely shares many gene sequences with previously seen genomes. Overall, this
genome selection process yielded 3290 genomes in the training set and 36 in the test set.

From all genomes, we extracted amino-acid sequences from annotated
non-hypothetical genes. All genes with a description containing “hypothetical” or
“putative” were removed from analysis, as many of these are not true genes but instead
are the predictions of other gene finding programs. Additionally, genes with descriptions
containing “hypoth” or “etical” were excluded in an effort to catch the most common
misspellings of hypothetical. All non-hypothetical gene sequences were translated in all
five alternative reading frames, and from these translations we extracted open reading
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Table 1. Non-hypothetical gene prediction comparison

Genome Balrog Prodigal Glimmer3

GC genes 3′ matches extra 3′ matches extra 3′ matches extra

Bacteria % # # % # # % # # % #

T. narugense 30 1570 1559 99.3 271 1557 99.2 302 1559 99.3 367
C. fetus 31 1486 1476 99.3 216 1475 99.3 248 1473 99.1 279
T. wiegelii 33 2359 2265 96.0 505 2255 95.6 557 2267 96.1 715
Nat. thermophilus 34 2419 2397 99.1 479 2401 99.3 554 2403 99.3 648
D. thermolithotrophum 34 1360 1336 98.2 197 1336 98.2 220 1332 97.9 257
D. thermophilum 37 1630 1607 98.6 250 1609 98.7 281 1609 98.7 333
P. UFO1 38 3873 3834 99.0 725 3829 98.9 970 3831 98.9 1134
T. takaii 40 1496 1484 99.2 322 1486 99.3 373 1485 99.3 422
K. pacifica 41 1608 1597 99.3 405 1596 99.3 441 1594 99.1 543
B. bacteriovorus 42 1897 1883 99.3 840 1887 99.5 921 1884 99.3 1027
P. HL-130-GSB 45 1882 1804 95.9 515 1809 96.1 604 1810 96.2 783
C. thermautotrophica 46 2137 2107 98.6 508 2116 99.0 595 2114 98.9 696
A. aeolicus 46 885 884 99.9 784 883 99.8 826 879 99.3 840
M. thermoacetica 49 2299 2227 96.9 679 2233 97.1 808 2238 97.3 1134
Nov. thermophilus 49 2850 2769 97.2 789 2754 96.6 929 2771 97.2 1103
T. oceani 49 1998 1941 97.1 305 1932 96.7 375 1943 97.2 533
D. indicum 50 2178 2152 98.8 461 2154 98.9 492 2134 98.0 679
L. boryana 50 4031 3947 97.9 1588 3956 98.1 1868 3953 98.1 2423
D. multivorans 51 3128 3061 97.9 667 3064 98.0 796 3065 98.0 1585
E. coli K-12 MG1655 52 3529 3451 97.8 914 3408 96.6 911 3368 95.4 1110
D. acetoxidans 52 2322 2273 97.9 554 2268 97.7 698 2268 97.7 1165
C. parvum 54 1780 1753 98.5 301 1752 98.4 348 1746 98.1 489
T. ammonificans 56 1382 1373 99.3 306 1377 99.6 354 1373 99.3 362
A. acidocaldarius 58 2499 2393 95.8 617 2397 95.9 724 2397 95.9 908
R. radiotolerans 60 2196 2155 98.1 563 2166 98.6 608 2160 98.4 742
D. desulfuricans 62 2889 2849 98.6 578 2853 98.8 619 2854 98.8 858
S. thermophilum 63 2612 2564 98.2 652 2567 98.3 730 2562 98.1 847
V. incomptus 65 2498 2451 98.1 1131 2465 98.7 1176 2447 98.0 1540
C. bipolaricaulis 65 1022 997 97.6 237 1008 98.6 260 1000 97.8 286
S. amylolyticus 73 4880 4778 97.9 3631 4821 98.8 3887 4728 96.9 4789

Averages: 49 2289 2248 98.2 664 2250 98.3 747 2245 98.1 949

Archaea

M. ruminantium 36 1710 1678 98.1 455 1682 98.4 517 1687 98.7 570
A. GW2011 AR10 39 621 618 99.5 607 621 100.0 720 621 100.0 778
M. sp. WWM596 46 2757 2567 93.1 840 2545 92.3 1123 2581 93.6 1999
M. labreanum 50 1390 1372 98.7 379 1370 98.6 446 1376 99.0 581
H. lacusprofundi 61 2047 2001 97.8 613 2017 98.5 731 2015 98.4 884

Averages: 46 1705 1661 97.4 565 1663 97.6 691 1670 97.9 949

“genes” refers to all protein-coding genes in the NCBI annotation where the description does not contain “hypothetical” or “putative.”
Genes with descriptions containing “hypoth” or “etical” are also excluded to catch the most common misspellings of hypothetical.
“3′ matches” counts the number of genes with stop sites exactly matching between the annotation and prediction on the same strand.
“extra” counts the number of genes predicted by each program that do not share strand and stop site with an annotated
non-hypothetical gene. The lowest number of extra genes and the highest number of 3′ matches are bolded for each organism. Full
organism names and accession numbers are available in S1 Appendix.

frames (ORFs) longer than 100 amino acids to use as training examples of non-protein
sequence.
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Efficiently training a temporal convolutional network requires sequences of the same
length. Therefore, we extracted amino-acid shingles (overlapping subsequences) in the 3’
to 5’ direction of length 100 and overlapping by 50 from all protein and non-protein
sequences. These were used as positive and negative gene examples, respectively. In
total, ≈27 gigabases (9 billion amino acids) of translated gene and non-gene sequence
was generated to train the gene model.

Training the gene model

A temporal convolutional network (TCN) was trained using the methods and open
source Python framework of Bai et al. [12], slightly modified to enable binary
classification of protein sequence. We use the state of the last node of the linear output
layer as representative of the binary classifier, with a value close to 1 predicting a
protein-coding gene sequence and 0 predicting an out-of-frame sequence. During
training, binary cross-entropy loss was calculated on the state of this last node.
Backpropagation from this loss minimizes gene prediction error based on the full
context of our 100 amino-acid sequence shingles. This works because we set parameters
such that the receptive field size of the network was sufficient to cover the whole length
of a sequence shingle. Fig 1 shows an example TCN with each parameter explained.

Fig 1. Example temporal convolutional network. A temporal convolutional
network (TCN) with 2 hidden layers and a convolutional kernel size of 2. The number
of connections exponentially increases as hidden layers are added, enabling a wide
receptive field. Notice the output of a TCN is the same length as the input. Balrog’s
TCN used 8 hidden layers, a convolutional kernel size of 8, and 32 ∗ L hidden units per
layer where L is the length of the amino-acid sequence.

During inference, we use the output from the pre-trained TCN to predict a single
score for an ORF of any given length. To predict a single probability between 0 and 1,
we combine all output scores from the TCN according to equation 1, where L is the
length of the ORF and pi is the predicted gene probability by the TCN model at
position i. This represents taking a weighted average predicted gene probability, then
applying the logistic sigmoid function to map back from (−∞,∞) to (0, 1). This method
has the effect of more heavily weighing TCN predictions that are close to 0 or 1 [13, 14].
We expect certain regions of a gene may contain recognizable protein sequence motifs,
causing the TCN to predict a probability near 1. Other regions of a gene may contain
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little recognizable information, causing the TCN to predict near 0.5. By combining
scores using this function, a single prediction near 1, caused by a recognizable protein
motif, can force the combined gene score closer to 1. Simply put, this equation allows us
to improve gene scores based on the presence of conserved motifs in true proteins.

Predicted gene probability =
1

1 + e−x
, x =

1

L

L∑
i=1

ln

(
pi

1− pi

)
(1)

Our gene model TCN used 8 hidden layers, 32 ∗ L hidden units per layer, and a
convolutional kernel size of 8. Dropout was performed on 5% of nodes during training
to mitigate overfitting. We used adaptive moment estimation with decoupled weight
decay regularization (AdamW) [15] to minimize loss during initial training, while final
loss minimization was performed by stochastic gradient descent with a learning rate of
10-4 and Nesterov momentum of 0.90 [16,17]. We performed all training on Google
Colab servers with 32GB of RAM and a 16GB NVIDIA Tesla P100 GPU over the
course of 48 hours.

Training the translation initiation site model

Though not the main focus of this work, a good start site model provides a boost in
accuracy for a prokaryotic gene finder. In bacteria, the initiation of translation is
usually marked by a ribosome binding site (RBS), which manifests as a conserved 5-6
bp sequence just upstream of the start codon of a protein-coding gene.
Experimentally-validated start sites are not available for the vast majority of bacterial
genes, so we made the assumption (also used in previous methods [2]) that the
annotated start sites of known genes would usually, but not always, be correct. Thus to
create a RBS model, we extracted 16 nucleotides upstream and downstream from all
annotated non-hypothetical gene start sites in the training set genomes. For each start
site, we also found the closest downstream start codon within the gene and extracted
the same sized windows for use as examples of false start sites.

Similar to the gene model, we trained a TCN on the positive and negative examples
of gene start sites. A slightly smaller model was used due to the reduced complexity
and length of the start site sequence data. Our start site model used 5 layers with
25 ∗ L hidden units per layer and a convolutional kernel size of 6. The model was
trained for 12 hours on the same Google Colab server type as the gene model.

Gene finding

A powerful gene sequence model is necessary for finding genes, but additional features
such as open reading frame (ORF) length can also be taken into account. In particular,
longer ORFs are more likely to be protein-coding genes, by the simple argument that a
long stretch of DNA without stop codons is less likely, in random DNA sequence, than a
short stretch. Balrog begins by identifying and translating all ORFs longer than a
user-specified minimum. Its task is to determine for each of these ORFs whether it
represents a protein-coding gene.

We also developed an optional kmer-based filter, using amino-acid sequences of
length 10, which runs before the gene model to positively identify genes. This filtering
procedure simply identifies all amino-acid 10-mers found in annotated non-hypothetical
genes from the training data set and flags any ORF containing at least two of these
10-mers 32 ∗L hidden units per layer, and as a true protein. This initial step finds many
common prokaryotic genes with a very high specificity and near-zero false positive rate.
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Next, ORFs are scored by the pre-trained temporal convolutional network in the 3’
to 5’ direction. The region surrounding each potential start site of each ORF is then
scored by the start site model. A directed acyclic graph is constructed for each contig,
with nodes representing all possible ORFs. Edges are added between compatible ORFs
overlapping by less than a user-specified minimum. To avoid creating a graph with
O(n2) edges, we only connect a constant number of nodes to each node. Because
prokaryotes are gene dense, we do not expect any large region with a significant number
of non-gene ORFs. Therefore, we can keep the number of edges to O(n ∗ C) where
C=50 was empirically found to be sufficient for all tested genomes. Edge weights are
calculated by a linear combination of the gene model score of the ORF, the gene start
site model of the potential start site, a bonus for ATG vs. GTG vs. TTG start codon
usage, and penalties for overlap depending on the 3’/5’ orientation of the overlap.

Fig 2. Example ORF connection graph. A directed acyclic graph with nodes
representing open reading frames (ORFs) and edges representing possible connections.
Each edge is weighted by the ORF score at the tip of the arrow minus any penalty for
overlap. ORFs that overlap by too much are not connected. In this example, the
maximum score is achieved by following the bolded path connecting 0-2-3. ORF 1 is not
included because it is mutually exclusive with ORF 0 and results in a lower score due to
overlap with ORF 2.

The global maximum score of the directed acyclic graph is computed by finding the
longest weighted path through the graph. Because we are searching for the maximum
score and some ORFs can receive negative scores, Dijkstra’s algorithm does not work in
this context [18]. Instead, we take advantage of the fact that our genome is implicitly
topologically sorted to find the longest weighted path in two steps. First, we sweep
forward along the genome, keeping track of the maximum attainable score at each node
as well as its predecessor node. Then, we simply backtrack along the predecessors from
the global maximum attainable score to find the longest weighted path. This is similar
to finding the “critical path” in a task scheduling problem [19]. In practice, ORFs must
only be connected locally to a relatively small set of other ORFs because no real
prokaryotic genome should have a very large gap between genes. This makes the
complexity of finding the maximum score scale linearly with the size of the genome.
The highest scoring path through the graph represents the best predicted set of all
compatible genes in the genome and is converted into an annotation file for the user.
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Parameter optimization

In the spirit of building a data-driven model, nearly all parameters were optimized with
respect to the data rather than being hand-tuned. Ten genomes were randomly selected
from the training data set to use for optimization of weights used in the scoring function
for genome graph construction.

The score for each ORF node was calculated by a linear combination of features
including the gene model score, start site model score, start site codon usage, and the
length of the ORF. Additionally, final scores for edges between nodes are penalized by
the length and direction of overlap, if any, between the connected ORFs. Depending on
the type of overlap, per-base penalties are multiplied by the length of the overlap and
subtracted from the edge connection score. Different penalties are learned for divergent
overlap (3’ to 3’), convergent overlap (5’ to 5’), and unidirectional overlap (3’ to 5’ or 5’
to 3’).

This scoring system was used to combine features so the linear weights can be
learned with respect to the data to maximize gene finding sensitivity. Optimization of
all weights with respect to gene sensitivity was accomplished using a tree-structured
Parzen estimator [20] and a covariance matrix adaptation evolution strategy [21].
Because ORFs do not need to be re-scored by the TCN during parameter optimization,
only the graph construction and longest path finding steps must be iterated to maximize
gene sensitivity. All optimization was carried out using the Optuna framework [22] over
the course of 9 hours on two 10 core Intel Xeon E5-2680 v2 processors at 2.8GHz.

Filtering with MMseqs2

Our gene model is tuned to maximize sensitivity to known genes without regard to the
total number of predictions. In order to keep down the number of false positive
predictions, users may optionally run a post-processing step with MMseqs2 [23]. In this
step, we run all predictions against non-hypothetical protein coding gene sequence from
a set of 177 diverse bacterial genomes. All reference genomes in this step do not share a
genus with any of the test set organisms. Predictions are also run against the
SWISS-PROT curated protein sequence database [24]. Any Balrog prediction that maps
to a known gene with an E-value less than 0.001 is marked as a predicted gene. Finally,
any gene below a set cutoff ORF score is discarded unless it was found by the kmer
filter or MMseqs2. This process allows low-scoring predictions to be discarded as false
positives while retaining many low-scoring genes that easily map to conserved known
genes. All genomes used in this step can be found in S3 Appendix.

Discussion

Balrog demonstrates that a data-driven approach to gene finding with minimal
hand-tuned heuristics can match or outperform current state-of-the-art gene finders. By
training a single gene model on nearly all available high-quality prokaryotic gene data,
Balrog matches the sensitivity of widely used gene finders while predicting fewer genes
overall. Balrog also requires no retraining or fine-tuning on any new genome.

Balrog predicted consistently fewer genes than both Prodigal and Glimmer3 on both
the bacterial and archaeal genome test sets. The sensitivity of all three gene finders was
nearly identical and likely well within the range of noise in our sample on average,
though Prodigal appears to achieve higher sensitivity than both Balrog and Glimmer3
on high-GC% genomes. A stronger bias against short ORFs, similar to Prodigal’s
penalty on ORFs shorter than 250bp, may help Balrog perform better in genomes with
particularly high GC content. However, incorporating a bias against small genes may
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provide higher specificity at the cost of sensitivity to small genes. Heuristics used by
current gene finders, including default minimum ORF lengths of 90 for Prodigal and 110
for Glimmer3, have led to a blind spot around functionally important small prokaryotic
proteins [25]. Balrog’s default minimum ORF length is 60 nucleotides. Further work on
finding small genes without significantly increasing false positive predictions may help
illuminate this underappreciated category of prokaryotic genome function.

Our test set deliberately represented a near-worst-case scenario for Balrog, where no
organism from the same genus was used to train the model. On organisms closely
related to those in the large and diverse training set, we expect Balrog may perform
better as a result of overfitting. Overfitting of a gene model in this context is a complex
issue. Simply memorizing and aligning to all known genes can be thought of as the
ultimate overfit model, yet that strategy would likely prove effective at finding
conserved bacterial genes. Finding prokaryotic genes is not a standard machine learning
task where memorization inevitably leads to higher generalization error. Conserved
amino-acid sequences in prokaryotic genes may represent functionally important protein
motifs and memorization of short amino-acid sequences as indicators of protein coding
sequence may prove useful in finding genes even in novel organisms. Still, we attempted
to be as fair as possible to competing gene finders by removing all organisms with a
shared genus. We felt this should provide a conservative estimate of the true
generalization error of our model to relatively distant genomes.

Balrog in its current form is relatively slow. While tools like Prodigal and
GeneMarkS-2 may analyze a genome in a matter of seconds, Balrog may take 5-10
minutes per genome. This is due to a wide range of factors including the complexity of
the gene model, Balrog’s implementation in Python as a Colab notebook rather than as
a compiled program, and the optional gene filtering step with MMseqs2. A highly
optimized version of Balrog could be significantly faster than the current
implementation by streamlining the core steps of the algorithm and implementing it in
a compiled language. However, we felt 10 minutes was a reasonable amount of time to
wait for high-quality genome annotation given the amount of effort that may go into
finding and sequencing a new microbial organism. Distribution as a Colab notebook
also provides users with a stable web interface and a free GPU instance. Optimization
of run time represents a possible future improvement for Balrog.

Balrog was designed primarily to find genes without much regard for identifying the
exact location of their translation initiation site (TIS). TIS identification is a
challenging problem with relatively little available ground-truth data. A reasonably
accurate start site predictor helps to guide a gene finder, so Balrog does include a small
TIS model, but accurate start site prediction was not a primary focus of this work.
Further complicating the issue, nearly all available start site locations are based solely
on predictions of previous gene finders. Demonstrating true improvement in start site
prediction would require comparing Balrog to other gene finders on a large ground-truth
data set which is simply not currently available. Incorporating TIS models used by
Prodigal or GeneMark may enable improvement in start site identification in the future.

Supporting information

S1 Appendix Gene model testing organism information Full organism names
and accession numbers of all genomes used in the gene finder comparison in Table 1.

S2 Appendix Gene model training organism information Full organism
names and accession numbers of all genomes used to train the gene model.
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S3 Appendix MMseqs2 and kmer filter organism information Full organism
names and accession numbers of all genomes used in the protein kmer and MMseqs2
filtering steps.
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