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Abstract.8

Significance: Light-field microscopy (LFM) enables fast, light-efficient, volumetric imaging of neuronal activity with9

calcium indicators. Calcium transients differ in temporal signal-to-noise ratio (tSNR) and spatial confinement when10

extracted from volumes reconstructed by different algorithms.11

Aim: We evaluated the capabilities and limitations of two light-field reconstruction algorithms for calcium fluores-12

cence imaging.13

Approach: We acquired light-field image series from neurons either bulk-labeled or filled intracellularly with the red-14

emitting calcium dye CaSiR-1 in acute mouse brain slices. We compared the tSNR and spatial confinement of calcium15

signals extracted from volumes reconstructed with synthetic refocusing and Richardson-Lucy 3D deconvolution with16

and without total variation regularization.17

Results: Both synthetic refocusing and Richardson-Lucy deconvolution resolved calcium signals from single cells18

and neuronal dendrites in three dimensions. Increasing deconvolution iteration number improved spatial confinement19

but reduced tSNR compared to synthetic refocusing. Volumetric light-field imaging did not decrease calcium signal20

tSNR compared to interleaved, widefield image series acquired in matched planes.21

Conclusions: LFM enables high-volume rate, volumetric imaging of calcium transients in single cells (bulk-labeled),22

somata and dendrites (intracellular loaded). The trade-offs identified for tSNR, spatial confinement, and computa-23

tional cost indicate which of synthetic refocusing or deconvolution can better realize the scientific requirements of24

future LFM calcium imaging applications.25

Keywords: light-field microscopy, calcium imaging, fluorescence imaging, deconvolution.26
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1 Introduction28

Understanding how neuronal networks learn, process, and store information requires imaging tech-29

niques capable of monitoring the activity of hundreds to thousands of neurons simultaneously in30

three-dimensional (3D) tissues. Capturing rapid neuronal calcium dynamics requires high tem-31

poral resolution at cellular or subcellular spatial resolution.1 The development of synthetic and32

genetically-encoded fluorescent indicators of intracellular calcium concentration2, 3 and membrane33

voltage4, 5 enables functional imaging on these scales.34
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The optical sectioning capability of confocal and multi-photon scanning microscopes adapts35

them well to 3D imaging of scattering brain tissues. However, scanning limits the fluorescence36

bandwidth and hence the acquisition speed and temporal signal-to-noise ratio (tSNR). tSNR de-37

scribes the ability to discriminate transient changes in fluorescence from baseline noise. For shot38

noise-limited systems, tSNR is proportional to the square-root of the collected fluorescence photon39

flux. That is why applications requiring high acquisition rates and/or SNR typically rely on wide-40

field, single-photon imaging to maximize photon flux by exciting fluorescence simultaneously in41

all illuminated structures. Widefield excites fluorescence efficiently throughout a volume, how-42

ever, only one axial plane is imaged. In this configuration, fluorescence excited above and below43

the imaging plane is not only unnecessary, but contributes spurious fluorescence to the in-focus44

image, degrading contrast and confusing the functional signals.645

Light-field microscopy (LFM) exploits out-of-focus fluorescence simultaneously excited through-46

out the volume. LFM combined with widefield, single-photon fluorescence excitation enables vol-47

umetric collection, maximizing the photon budget. LFM is a 3D imaging technique, which encodes48

both lateral position and angular information, unlike conventional imaging that focuses on objects49

in a single plane.7 A microlens array (MLA) at the microscope’s native image plane enables image50

reconstruction at different planes and perspectives from a single light-field image. This increases51

light efficiency and speed at the cost of spatial resolution as the cameras pixels now divide over52

four-dimensions (x,y,θx,θy) rather than two (x,y). The four-dimensional light-field can be used to53

reconstruct a volume around the native focal plane, slice by slice. Two methods for reconstruct-54

ing volumes from LFM images are commonly used: synthetic refocusing7 and 3D deconvolution.855

Synthetic refocusing extracts single planes from a light-field that correspond to widefield images.56

Multiple planes can be reconstructed orthogonal to the optical axis to generate a z-stack. Synthetic57
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refocusing is computationally fast as each pixel in the output volume is simply the weighted sum58

of a subset of pixels in the light-field. However, similar to widefield imaging, this technique lacks59

optical sectioning such that out-of-focus sources reduce the contrast of in-focus sources. In con-60

trast, 3D deconvolution reconstructs a volume by deconvolving its light-field measurements with61

a 3D light-field Point Spread Function (PSF) based on a wave optics model9 of the LFM. This can62

be achieved by using iterative deconvolution methods, such as the Richardson-Lucy10, 11 or Im-63

age Space Reconstruction Algorithms.12 3D deconvolution can achieve a higher spatial resolution64

than synthetic refocusing because the individual projections through the volume sample the object65

more finely than the microlens array, thus improving the discrimibility of signals in 3-dimensions.66

However, 3D deconvolution approaches are computationally intensive and amplify noise.13
67

LFM’s capacity to capture volumetric data from 2D frames has recently motivated its applica-68

tion to imaging neuronal activity in non-scattering specimens such as C. Elegans and Zebrafish,14–19
69

and in mammalian brain in vivo.20–22 Seeded iterative demixing20, 22 and compressive LFM15 in-70

crease the speed of neuronal localization and single-cell time series analysis by identifying and71

localizing somatic signals. Notably, these techniques improved performance in scattering brain72

tissues compared to volume reconstruction methods that only account for ballistic photons. How-73

ever, volume reconstruction is still necessary to image the generation and propagation of voltage74

and calcium transients spatially extended structures such as axons and dendrites.75

Here we show that LFM can resolve calcium transients simultaneously in axially separated76

somata and dendrites of neurons loaded with a red-emitting calcium dye, CaSiR-1.23 We exam-77

ined trade-offs between the tSNR and the spatial signal confinement of calcium signals localized in78

volumes reconstruction from light fields by synthetic refocusing and 3D deconvolution. A compar-79

ison of calcium signals extracted from interleaved light-field and widefield imaging trials showed80
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no penalty to tSNR for light-field trials, which additionally enabled localization of calcium signals81

in 3D. These results demonstrate the power of LFM for simultaneously tracking calcium transients82

in axially separated neurons and neuronal subcompartments. By distilling the trade-offs between83

spatial signal confinement and tSNR, these results underline the importance of selecting a volume84

reconstruction method adapted to the scientific goals of future experiments.85

2 Materials and Methods86

Parts of the following methods and preliminary SNR quantification results were published in Howe87

et al. (2020).24
88

2.1 Optical System89

We designed our LFM following Levoy et al. (2006).7 Imaging was performed with a custom-built90

epifluorescence microscope with a MLA (125 µm pitch, f/10, RPC Photonics) placed at the imag-91

ing plane of a 25×, Numerical Aperture (NA)=1.0 water immersion objective lens (XLPLN25XSVMP,92

Olympus) and 180 mm tube lens (TTL180-A, Thorlabs), illustrated in Figure 1A. The MLA was93

imaged onto a scientific complementary metal-oxide-semiconductor (sCMOS) camera (ORCA94

Flash 4 V2 with Camera Link, 2048×2048 pixels, 6.5 µm pixel size, Hamamatsu) with a 1:1 relay95

macro lens (Nikon 60 mm f2.8 D AF Micro Nikkor Lens).96

The LFM image consists of circular subimages (Figure 1B) which are parameterized by the 4D97

function L(u, v, x, y), where each lenslet is L(u, v, ·, ·) and the same pixel in each lenslet subimage98

isL(·, ·, x, y). Each circular subimage represents the angular content of the light at a specific spatial99

location.100

The ‘native LFM spatial resolution’ is given by the microlens pitch divided by the objective101
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magnification. Therefore, an MLA was chosen such that the lateral resolution of our LFM was102

5 µm, roughly half the diameter of a cortical neuron (10 µm). The axial resolution of a LFM is103

defined by the number of resolvable diffraction-limited spots behind each microlens.7 Using the104

Sparrow criterion and assuming a peak emission wavelength of 664 nm (λ) for CaSiR-1,23 the spot105

size in the camera plane is 7.64 µm. So, with a 125 µm pitch MLA, we are able to resolve Nu = 13106

distinct spots under each microlens. The depth of field when synthetically refocusing is given by107

eq. (1), resulting in a depth of field of 6.52 µm7 compared to 0.8 µm in a conventional widefield108

microscope with the same imaging parameters.109

D =
(2 +Nu)λn

2NA2
(1)

where n is the refractive index.110

2.2 Brain slice preparation111

This study was carried out in accordance with the recommendations of the UK Animals (Scientific112

Procedures) Act 1986 under Home Office Project and Personal Licenses (project license 70/9095).113

400 µm slices were prepared from 33 to 196 day old mice using the ‘protective recovery’ method.25
114

Slices were cut in Na-aCSF containing (in mM): 125 NaCl, 25 NaHCO3, 20 glucose, 2.5 KCl, 1.25115

NaH2PO4, 2 MgCl2, 2 CaCl2. After cutting, the slices were transferred for a period of 12 minutes to116

a solution containing (in mM) 110 N-Methyl-D glucamine, 2.5 KCl, 1.2 NaH2PO4, 25 NaHCO3,117

25 Glucose, 10 MgCl2, 0.5 CaCl2, adjusted to 300 – 310 mOsm/kg, pH 7.3 – 7.4 with HCl at118

36◦C, before being transferred back to the first solution for at least an hour before imaging trials.119

All solutions were oxygenated with 95% O2/5% CO2.120
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Fig 1 A) Optical system schematic. A microlens array is placed at the native imaging plane of a widefield microscope
and the back focal plane is imaged onto a sCMOS camera enabling 3D reconstructions from a 2D frame. B) Example
widefield and light-field images from both a single neuron intracellularly loaded with the synthetic calcium dye,
CaSiR-1 via a micropipette. Close-up views of the raw light-field images show the circular subimages encoding the
4D spatial and angular information. The light-field is parameterized by a 4D function, L(u, v, x, y), where each lenslet
is L(u, v, ·, ·) and the same pixel in each lenslet subimage is L(·, ·, x, y). C) Example images from bulk-labeled slices
where CaSiR-1 AM was bath applied to many neurons.

After resting the slices were either bulk-labeled with CaSiR-1 AM-ester dye or used for single-121

cell labeling with CaSiR-1 potassium salt.122

For bulk-labeled slices 50 µg, CaSiR-1 AM (GC402, Goryo Chemicals)23 was dissolved in 10 µl123

of dimethyl sulfoxide (DMSO) with 10% w/v Pluronic F-127 (Invitrogen) and 0.5% v/v Kolliphor124

EL (Sigma-Aldrich).26 The slices were then incubated for 40 minutes at 37◦C in 2 ml of Na-125

aCSF with the CaSiR-1 AM/DMSO mixture pipetted onto the surface of each slice, oxygenated126

by blowing 95% O2/5% CO2 onto the surface. After loading, the slices rested in room temperature127

Na-aCSF for at least 20 minutes before use.128
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2.3 Imaging129

For single-cell labeling, cortical cells were patched using 6 – 8 MOhm patch pipettes containing130

intracellular solution consisting of (in mM): 130 K-Gluconate, 7 KCl, 4 ATP-Mg, 0.3 GTP-Na, 10131

Phosphocreatine-Na, 10 HEPES, 0.1 CaSiR-1 potassium salt (GC401, Goryo Chemicals).23 After132

sealing and breaking in, the calcium dye was allowed to diffuse into the cell (Figure 1B). For bulk-133

labeled slices (Figure 1C), cortical cells were patched containing the same intracelluar solution134

without the addition of the CaSiR-1 potassium salt.135

Cells were patched under oblique light-emitting diode (LED) infrared illumination (peak 850136

nm). The signals were recorded with a Multiclamp 700B amplifier (Axon Instruments) and digi-137

tized with a Power 1401 (Cambridge Electronic Design).138

Imaging trials were taken at 20 frames/s at room temperature. Stimulation consisted of five139

current pulses for 10 ms at 0.5 Hz where the current was adjusted to stimulate a single action140

potential. For single cells, this stimulus was applied to the labeled cell with the dye-loading pipette.141

For bulk-labeled slices, the stimulus was applied to a cell in the field of view causing broader142

activation of multiple neurons in the local network. Widefield and light-field trials were interleaved143

by removing and replacing the MLA from a precision magnetic mount (CP44F, Thorlabs). The144

removal and addition of the MLA shifted the focal sample plane. We calculated this focal plane145

shift using the thin lens equation to be ±2 µm.146

Fluorescence was excited with a 660 nm LED (M660L2, Thorlabs) powered by a constant147

current source (Keithley Sourcemeter 1401) to illuminate the sample between 2.3-14.1 mW/mm2.148

The 660 nm LED was collimated with an f = 16 mm aspheric lens (ACL25416U0-A, Thorlabs)149

and filtered with a 628/40 nm excitation filter (FF02-628/40, Semrock). Collected fluorescence150
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was filtered with a 660 nm long-pass dichroic (FF660-Di02, Semrock) along with a 692/40 nm151

emission filter (FF01-692/40, Semrock). Imaging data were acquired with Micromanager.27
152

Single-cell labeled somata laid between 46 and 49 µm below the slice surface, with a median153

depth of 47 [IQR, 46.2, 48.6] µm. Whereas bulk-labeled somata were between 29 and 36 µm below154

the slice surface, with a median depth of 34 [30, 34.8] µm.155

2.4 Light-field volume reconstruction156

We reconstructed light-field source volumes from the raw light-fields (Figure1B&C) using syn-157

thetic refocusing7 and Richardson-Lucy (RL) 3D deconvolution.8, 10, 11 Images synthetically refo-158

cused at a plane f ′ = αf0, where f0 is the native focal plane, were calculated from a light-field159

image parameterized by L(x, y, u, v) using the formula derived in28 as160

I(x, y) =
∑
u,v

L(x+ u(1− 1/α), y + v(1− 1/α), u, v), (2)

where I(x, y) represents the refocused image. This process can be interpreted as a summation over161

different shifted angular ‘views’ of the sample represented byL(x, y, ·, ·) such that the rays forming162

the views intersect at the desired refocus plane. We synthetically refocused ‘stacks’ of images or163

image time series, I(x, y, z, t) at 1 µm z-intervals using linear interpolation of the collected light-164

field images or videos.165

Stacks from the same light-field images were also calculated using RL deconvolution. The 3D166

light-field PSF was calculated using the method described in,9 by considering how a LFM collects167

fluorescence from a dipole oscillating with a wavelength of 550 nm. The total PSF was calculated168

as an incoherent sum of dipoles oriented along x, y, and z. PSF values were calculated on a 5× 5169
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grid relative to the microlens. A low resolution PSF was calculated by averaging over the PSF170

values weighted by a 2D Hamming window of a width equal to the MLA pitch and coaxial with171

the lens. The estimated volume, x, is recovered from the measured light-field image, y, and the172

PSF, H using the following iterative update scheme in matrix-vector notation:173

xk+1 =
1

a

[
HT y

Hxk

]
xk, (3)

where the fraction y/Hxk is computed element-wise and a =
∑

iH(i, :). Stacks were recon-174

structed using this method as with synthetic refocusing for varying numbers of iterations of eq.175

3.176

Additionally, to enhance edges and reduce noise, we slightly modified the objective function177

of RL to include a total variation (TV) term, as in.29 To incorporate this regularization prior, we178

modified the standard RL as follows179

xk+1 = HT (
y

Hx
.

xk

a− λdiv( ∇x
k

|∇xk|)
), (4)

where div is the divergence operator,∇ is the gradient operator, and λ is a regularization factor set180

to 0.01, determined by visual inspection of the volumes.181

2.5 Time Series Analysis182

2.5.1 SNR183

Signals were extracted from widefield or light-field time series reconstructed with synthetic refo-184

cusing or RL 3D deconvolution.185
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We calculated ∆F/F using eq. (5) where F was the raw fluorescent signal, F0 was the baseline

fluorescence taken as an average prior to the action potential, and Fd was the camera’s dark signal

(all in counts).

∆F

F
=

F − F0

F0 − Fd

(5)

An ‘activation map’ was produced from the variance over time to indicate the pixels containing186

the greatest temporal signal from the ∆F/F map. Regions of interest (ROI) were defined by187

extracting the top 2 percentile of signal containing pixels (somatic and dendritic).188

The SNR was calculated by dividing the peak signal (%) by the baseline noise (%), given by189

the square-root of the variance of the baseline fluorescence taken as an average prior to the action190

potential (20 samples, 1 second).191

2.6 Statistics192

All statistics are reported as median [inter-quartile range (IQR)]. Wilcoxon matched-pairs signed-193

rank test was performed between synthetically refocused and 3D deconvolved light-field time se-194

ries. These reconstructions were generated from the same image series, removing independent195

variables such as bleaching and changes in dye loading in the case of single-cell labeling. Statisti-196

cal analysis was performed using Python SciPy.30
197

2.7 Signal Confinement198

2.7.1 Spatial Profiles199

To compare the signal confinement spatial profiles were generated. To produce the widefield axial200

profile a z-stack was collected manually. At the end of an imaging trial the micropipette was201
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removed and a z-stack was collected by moving the plane of focus through the sample between -40202

to 40 µm in steps of 1 µm using a stepper motor. Light-field axial profiles (xz, yz) were generated203

by synthetically refocusing and deconvolving at different depths of focus from the light-field taken204

with the cell in the native imaging plane. Lateral profiles (xy) were then generated by taking a line205

plot through the cell on widefield or reconstructed light-field images at the plane of best focus. The206

spatial signal confinement is reported from the Full-Width at Half-Maximum (FWHM). Friedman’s207

Two-Way Analysis of Variance by Ranks was performed between the FWHMs from widefield and208

light-field volumes reconstructed with synthetic refocusing and 3-iteration RL 3D deconvolution.209

The spatial profiles from single-cells were generated from either a single static image in the case210

of light-field frames or a stack of widefield frames. However, in bulk-labeled slices the background211

signal was very large and the spatial profiles were generated from the activation map described in212

Section 3. Maximum intensity projections were taken through xy, xz, and yz.213

2.7.2 Temporal Spatial Profiles214

Temporal spatial profiles were produced from single cells to determine the axial spread of the215

calcium fluorescence response. Light-field axial profiles were generated as in Section 2.7.1. Time216

courses were extracted for each depth from either a somatic or nearby dendritic ROI. ∆F/F was217

calculated using eq. 5 in Section 2.5.1. A line plot across the axial range was generated from the218

sum over time.219
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Fig 2 A comparison of calcium transient tSNR for widefield (WF) and light fields reconstructed with temporal refo-
cusing or RL 3D deconvolution. A1 and B1 show the calcium activation maps of planes reconstructed from light fields
containing a single labeled cell (A1) and multiple cells in bulk-labeled slices (B1) using synthetic refocusing and RL
3D deconvolution (3-iteration) algorithms. Calcium transient time series (A2,B2) were extracted from the mean pixel
intensities of the ROIs (outlined in red). As deconvolution iteration number increases, so does the peak signal (C1) and
noise (C2) respective to time series reconstructed with synthetic refocusing for matching ROIs, ultimately reducing the
SNR (C3). The gray traces are from separate single-cell experiments and the red line is the average (n=4 cells). C1-C3
are normalized by the signal, noise, and SNR of signals extracted from the same ROIs in the synthetically refocused
planes. D and E compare peak signal (%), noise (%), and SNR between time series extracted from WF images series,
refocused and deconvolved (3-iteration RL) light fields.
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3 Results220

3.1 Synthetic refocusing enables fast, high SNR light-field reconstruction221

We compared the performance of light-field reconstruction techniques on the tSNR of CaSIR-1222

signals extracted from both single-cell (intracellularly loaded) and bulk-labeled slices. We recon-223

structed volumetric light-field time series from 4 single cells (Figure 2A & Supplementary videos224

S2A & B) and 4 bulk-labeled slices (Figure 2B) with synthetic refocusing and Richardson-Lucy 3D225

deconvolution. For single-cell trials, calcium transients were stimulated by applying suprathresh-226

old current pulses (red lines) to the soma in whole-cell current clamp (Figure 2A2). Calcium227

transients from bulk-labeled slices were captured after a single cell was stimulated within the field228

of view (Figure 2A2). We interleaved widefield and light-field acquisitions to facilitate comparison229

of functional signals extracted from matched ROIs. Time courses were extracted from a ROI taken230

from the top 2 percentile of pixels at the native focal plane. The SNR, peak signal, and baseline231

noise were compared between the two light-field reconstruction algorithms and widefield image232

series.233

Iterative 3D deconvolution algorithms including Richardson-Lucy are known to amplify noise29
234

which increases with iteration number. Therefore, we quantified the effect of iteration number on235

the peak signal, noise, and SNR from single-cell trials. light-field time series were deconvolved236

with between 1 and 21 iterations. The deconvolved time series were normalized to synthetically237

refocused time series generated from the same raw light-fields. On average, the peak signal (%)238

increases with iteration number with respect to synthetically refocused light-field time series (Fig-239

ure 2C1). Between 1 and 7 iterations, the deconvolved peak signal increases after which it plateaus240

with a peak signal around 2× greater than that achieved by synthetic refocusing. In all trials, as241
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iteration number increases, the noise (%) increases compared to synthetically refocused light-field242

time series (Figure 2C2). The deconvolved time series noise was on average the same as synthet-243

ically refocused light-field time series after 1 iteration increasing to 5× greater with 21 iterations.244

Therefore, on average, as iteration number increases the SNR reduces (Figure 2C3). The SNR245

from deconvolved light-field time series after 1 iteration is on average 1.5×larger than that of syn-246

thetically refocused light-field time series. The SNR from deconvolved and synthetically refocused247

trials is the same around 9 iterations. Deconvolution tSNR decreases to half that of synthetically248

refocused after 21 iterations.249

Next, we compared the performance of light-field reconstruction techniques on the SNR from250

all trials for both single-cell and bulk-labeled slices. Three-iteration RL deconvolution was chosen251

to give the best lateral signal confinement at the highest possible SNR, as detailed in the next252

section.253

The peak signal from single-cell trials (8 trials, 4 cells, 3 mice) was significantly larger when254

extracted from light-field time series reconstructed with three-iteration Richardson-Lucy 3D de-255

convolution (13.9 [2.4, 23.9]%) compared to synthetic refocusing (8.6 [1.2, 11.8]%; Wilcoxon256

matched pairs signed rank, n = 8, w = 36.0, p = 0.01) and single-plane widefield time series (3.2257

[1.7, 5.6]%; Figure 2D1). The baseline noise did not differ between light-field time series re-258

constructed with three-iteration 3D deconvolution (0.21 [0.17, 0.29]%), those reconstructed with259

synthetic refocusing (0.15 [0.11, 0.31]%; Wilcoxon matched pairs signed rank, n = 8, w = 28.0, p260

= 0.02), and those from widefield time series (0.10 [0.04, 0.26]%; Figure 2D2). The SNR of times261

series from three-iteration RL-deconvolved frames (47.6 [13.3, 120.0]) was significantly greater262

than that of synthetically refocused frames (32.5 [12.6, 73.0]; Wilcoxon rank sum, n = 8, w = 25.0,263

p = 0.03) and single-plane widefield time series (21.9 [16.8, 86.2]; Figure 2D3).264
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In bulk-labeled slices (5 trials, 4 cells, 2 mice), the peak signal was significantly greater for265

light-field time series reconstructed with three-iteration RL 3D deconvolution (8.0 [4.1, 10.3]%)266

compared to synthetically refocused (3.5 [2.3, 4.4]%; Wilcoxon rank sum, n = 5, w = 15, p =267

0.04) and widefield time series (1.7 [0.8, 5.1]%; Figure 2E1). The baseline noise was significantly268

larger in three-iteration deconvolved bulk-labeled slices (0.18 [0.12, 0.35]%) compared to synthetic269

refocusing (0.06 [0.04, 0.23]%; Wilcoxon rank sum, n = 5, w = 15, p = 0.04), and widefield time270

series (0.12 [0.05, 0.22]%; Figure 2E2). The SNR from light-field time series reconstructed with271

synthetic refocusing (54.5 [16.3, 114.5]) did not differ from deconvolution-reconstructed trials272

(37.4 [18.7, 68.7]; Wilcoxon rank sum, n = 5, z = 2.0, p = 0.14) or widefield trials (21.1 [4.9,273

51.7]), Figure 2E3).274

To enhance edges and reduce noise in bulk-labeled volumes, we modified the objective function275

of RL to include a TV regularization term (Figure S1A). Inclusion of the TV term in the RL276

deconvolution reduced the total variation of the deconvolved stacks from 0.16 to 0.123 after 10277

iterations. However, the mean squared error between TV and non-TV reconstructed volumes was278

very small, resulting in identical peak signal, noise, and SNR in the extracted calcium time series279

(Figure S1B). Increasing iteration number up to 30 reduced peak signal, and thus SNR, for the280

TV-regularized volume (Figure S1C).281

3.2 Deconvolution reconstruction algorithms provide enhanced spatial signal confinement282

We compared the lateral and axial signal confinement of single cells intracellularly labeled with283

calcium dye between widefield z-stacks and 3D light-fields reconstructed with synthetic refocus-284

ing (Figure 3A2) and RL 3D deconvolution (Figure 3A3 & Supplementary video S2C). To assess285

the impact of deconvolution iteration number on spatial confinement, we measured the FWHM of286
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Fig 3 Deconvolution enhances spatial signal confinement compared to widefield stacks and light-field volumes recon-
structed with synthetic refocusing. Lateral and axial profiles from a single-cell filled with CaSiR-1 dye are shown.
The lateral profiles are plotted at the native focal plane from widefield stacks (A1), and light-field volumes recon-
structed with synthetic refocusing (A2) and 3-iteration Richardson-Lucy deconvolution (A3). The axial profiles have
been extracted from the lateral position intersected by the red dashed lines at depths ranging from -40 to +40 µm. In-
creasing deconvolution iteration number increases both the lateral (B1) and axial (B2) signal confinement compared to
synthetically refocused volumes. The deconvolved FWHMs are normalized to that of synthetic refocusing. The gray
lines are from three different cells, and the red line is the average. Deconvolved light-fields (3-iteration RL) features
better lateral (C1) and axial (C2) spatial confinement than widefield z-stacks and synthetically refocused light-field
volumes.
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lateral and axial profiles, normalized to the FWHM the same profiles in synthetically refocused287

volumes. Both the lateral (Figure 3B1) and axial (Figure 3B2) signal confinement increase with288

increasing deconvolution iteration number. The red line shows the average for the three cells. The289

lateral signal confinement (Figure 3B1) for one iteration is 1.6× better than synthetically refo-290

cused light-field images and plateaus around 7 iterations with a 2× improvement. The axial signal291

confinement (Figure 3B2) for one deconvolution iteration is 1.4× better than synthetic refocusing292

increasing to 2.5× after 21 deconvolution iterations. Three-iteration Richardson-Lucy deconvolu-293

tion was chosen for further analysis as it maximized lateral confinement while maintaining a high294

tSNR.295

The 2D spatial profiles (Figure 3A1-3) clearly show that the light-field images reconstructed296

with 3D deconvolution have better spatial signal confinement, both laterally and axially compared297

to both those reconstructed with synthetic refocusing and widefield stacks. The spatial profile for298

refocused volumes looks similar to widefield, which is expected due to the nature of the reconstruc-299

tion. A line plot was taken through the lateral and axial profiles, and the FWHM was calculated300

for each of the imaging configurations from 3 cells (Figure 3C1&2). The results are summarized301

in Table 1.302

The lateral signal confinement (xy & yx; Figure 3C1) from light-field images reconstructed303

with 3D deconvolution (3-iteration RL) was not significantly better than that of synthetically refo-304

cused or widefield stacks (Friedman’s Two-Way Analysis of Variance by Ranks; xy: n=3, w=2.67,305

p = 0.26 yx: n=3, w=4.67, p = 0.10). However, 3D deconvolution significantly improved axial sig-306

nal confinement (xz; Figure 3C2) compared to that of synthetically refocused or widefield stacks307

(Friedman’s Two-Way Analysis of Variance by Ranks; n=3, w=6, p ¡ 0.05).308

For the bulk-labeled slices, the low contrast of the raw images precluded segmentation of in-309
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Table 1 Summary of FWHM from single-cell labeled spatial profiles. Reported as median [IQR], n=3. *3-iteration
Richardson-Lucy.

Widefield Refocused Deconvolved*

xy 10.3 [7.1, 19.6] 13.5 [10.7, 15.6] 7.3 [6.8, 7.7] µm
yx 13.1 [9.0, 21.6] 10.7 [8.7, 14.6] 7.0 [6.3, 8.6] µm
xz 17.9 [19.2, 34.4] 11.8 [9.3, 16.5] 7.4 [5.9, 9.7] µm

dividual cells. The cellular spatial profiles were therefore generated from an activation map (the310

variance over time). Maximum intensity projections through xz and yz are shown (Figure 4). The311

signal confinement for both synthetically refocused and 3D deconvolved light-field volumes en-312

abled resolution of a number of active neurons across different focal planes spanning about 9 µm,313

which is unachievable with any widefield imaging system. The center of mass of each neuron314

ranges from depths of -5 to +4 µm. The image contrast is higher for 3D deconvolved than for315

refocused volumes.316

Additionally, maximum intensity projections through xz and yz were generated with the TV317

term (Figure S1D). The TV term at both 10 and 30 iterations did not change the spatial signal318

confinement.319

3.3 Light-field microscopy resolves calcium signals from neuronal dendrites in 3D320

Light-field microscopy enables single-frame 3D imaging; therefore, we investigated its application321

to resolving calcium signals from neuronal processes in three spatial dimensions. We reconstructed322

4D (x,y,z,t) light-field volumes from time series and extracted temporal signals from ROIs manu-323

ally defined over the cell soma and two dendrites from the activation map.324

Depth-time plots were extracted from ROIs taken from light-field time series reconstructed325

with synthetic refocusing (Figure 5B) and 3D deconvolution (3-iteration RL; Figure 5C). A depth326

map cannot be produced from widefield images focused on a single axial plane (Figure 5A).327

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2020.09.07.285585doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.07.285585
http://creativecommons.org/licenses/by/4.0/


Refocused DeconvolvedA) B)

0

30

-30
Signal (%

)

Signal (%
)

Depth (μm) Depth (μm)

D
ep

th
 (μ

m
)

50 μm 

Fig 4 Reconstructed light-field volumes can distinguish cells from different axial planes in bulk-labeled slices. Planes
from bulk-labeled slices were reconstructed from light-field volumes with synthetic refocusing (A) and 3D deconvo-
lution (B, 3-iteration Richardson-Lucy) between -30 and +30 µm in steps of 1 µm. An activation map was generated
from the variance over time to identify active neurons. A maximum intensity projection through z was generated. A
xz and yz maximum intensity projection shows multiple cells in the field of view spanning different axial planes. The
lower right plot in each panel shows the z-profiles of cellular ROIs circled in the same colors on the image. The center
of mass of each neuron ranges in depth from -5 to +4 µm.

Somatic calcium transients can be seen across multiple planes in light-field time series recon-328

structed with synthetic refocusing (Figure 5B2) and 3D deconvolution (Figure 5C2). The signal as329

a function of depth has been summed over time (Figure 5D1). The somatic peak signal is greater330

in deconvolved volumetric light-field time series compared to those synthetically refocused, in331

agreement with the results from Section 3.332

The increase in peak signal seen at the extremes of the axial range in the deconvolved light-field333

volumes is an artifact of the deconvolution algorithm and how the signal is calculated (eq. 5). The334

low baseline fluorescence and small dark signal is overpowered by the large out-of-focus dendritic335

fluorescent signal.336

The peak signal seen in both of the dendrites is greater in deconvolved volumetric light-field337

time series (Figure 5C3,4) compared to those synthetically refocused (Figure 5B3,4), in agreement338
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Fig 5 Calcium signals in dendrites can be observed across axially distinct planes from single-cell light-field volumes.
A) shows the activation (or variance) map from a widefield image series with time courses extracted from a somatic
ROI (red) and twol nearby dendrites (orange, pink). Depth-time plots are shown from the same ROIs reconstructed
from a light-field time series with synthetic refocusing (B) and 3D deconvolution (C). D1-3 show the sum of the signal
over time as a function of depth in the somatic and dendritic ROIs.

with the results from Section 3. From the depth plots it appears that the center of mass from both339

of the dendrite ROIs lie close to the native focal plane (∼5 µm) whereas the soma signal peaks at340

about 10 microns superficial to the native focal plane (Figure 5D2,3). This indicates that calcium341

transients can be resolved from neuronal subcompartments in axially distinct planes. Furthermore,342

the somatic signals spans a larger depths than the dendritic signals, corresponding the difference343

in their sizes.344

The decay time, measured by the FWHM of somatic calcium transients at the native focal345
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plane is the same between widefield (0.23 [0.20, 0.27]s, n=3 cells) and light-field time series346

reconstructed with synthetic refocusing (soma: 0.24 [0.21, 0.32]s, n=3 cells) and 3D deconvolution347

(soma: 0.22 [0.20, 0.40]s, n=3 cells). Moreover, there is no significant difference between the348

decay time of somatic and dendritic signals of synthetically refocused (dendrite: 0.139 [0.136,349

0.141]s, n=3 cells) or deconvolved (dendrite: 0.132 [0.126, 0.167]s, n=3 cells) light-field time350

series.351

4 Discussion352

We resolved CaSiR-1 fluorescence transients in single cells and bulk-labeled live mouse brain353

slices. We found that calcium transient tSNR from bulk-labeled slices did not differ between354

widefield and light-field time series reconstructed with synthetic refocusing and three-iteration355

Richardson-Lucy 3D deconvolution. For single-labeled cells the tSNR was significantly larger for356

light-field time series reconstructed with three-iteration Richardson-Lucy 3D deconvolution com-357

pared to synthetic refocusing. Increasing the number of deconvolution iterations increased signal358

size and noise but reduced tSNR. Increased iteration number also increased axial confinement.359

Both light-field reconstruction algorithms, synthetic refocusing and Richardson-Lucy deconvolu-360

tion, enabled 3D localization of calcium transients in single dye-loaded neurons and bulk-labeled361

slices. Extracting calcium transients from light fields, compared to widefield image time series,362

did not incur any penalty in terms of tSNR, while enabling volumetric imaging.363

The reduction in SNR seen from deconvolved volumes arises from noise amplification due to364

lack of regularization.29 To reduce noise amplification, fewer iteration numbers provide a regu-365

larizing effect on the deconvolution.13 For higher iteration numbers, we attempted to overcome366

noise amplification by implementing TV-regularization in the RL deconvolution.29 However, this367
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yielded no benefit in terms of signal, noise, or SNR in the extracted calcium time series.368

Richardson-Lucy deconvolution at high iteration numbers decreases tSNR, and moreover in-369

creases computational cost compared to synthetic refocusing. In our implementation and hardware,370

reconstructing a volume (20 µm) with synthetic refocusing took 40 seconds per frame while RL371

deconvolution took 20 seconds per iteration per frame (Processor i7 CPU @ 3.6 GHz, RAM 32372

GB). A typical time series consisted of 200 frames (2048×2048 pixels, 20 Hz for 10 seconds).373

Reconstructing volumes (20 µm) for the full time series took approximately 2 hours with synthetic374

refocusing, 3.5 hours 3-iteration RL deconvolution, and 22 hours with 20-iteration RL decon-375

volution. Methods to increase speed without the need to use high performance computing are376

desirable. Reconstruction speed has been improved by a number of groups through deep learning377

solutions.19, 31 However, the improved lateral and axial signal confinement achieved by iterative378

deconvolution methods may still motivate its use. We have shown that 3D deconvolution achieves379

higher spatial signal confinement than synthetic refocusing with axial confinement increasing at380

high iteration numbers. Therefore, to maximize spatial signal confinement a time-consuming iter-381

ative deconvolution technique could be beneficial.382

Deconvolution algorithms leverage the fine sampling of individual projections through the vol-383

ume, whereas refocusing cannot. Here we used a coarse deconvolution approach. Lateral oversam-384

pling can further improve the lateral signal confinement, providing lateral sampling rates greater385

than the native LFM resolution. However, oversampling increases computational cost and was386

unnecessary here as the LFM was designed for cellular resolution. We used the original light-387

field microscope design.7 Fourier light-field microscopy, where the microlens array is placed at388

the aperture stop of the microscope objective instead of the image plane, has also been shown to389

improve the lateral sampling rate even in the degenerate native focal plane.32–34
390
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Both synthetic refocusing and 3D deconvolution reconstruction algorithms rely on ballistic391

photons, limiting their application in highly scattering mammalian brains. To minimize scattering,392

we used a red-emitting calcium dye, CaSiR-1 whose emission is less scattered than shorter wave-393

length emitting fluorophores. Furthermore, deep near-infrared indicators can be combined with394

blue-light sensitive opsins to achieve spectrally cross-talk free all-optical neurophysiology35, 36 or395

combined with shorter wavelength emitting fluorophores for imaging in multiple spectral chan-396

nels.37 Nonetheless, scattering limited calcium signal extraction from reconstructed volumes to397

depths of approximately 50 microns, within the photon mean free path. Methods to improve signal398

extraction in scattering tissue have been demonstrated by computationally extracting fluorescence399

sources without reconstruction,15, 20, 22, 38–40 although reconstruction-less signal extraction cannot400

resolve the propagation of calcium signals throughout spatially extended structures such as den-401

drites. Combining the principles of confocal microscopy with LFM,41 selective-volume illumi-402

nation,19, 42, 43 and/or spatially sparse labelling with genetically-encoded indicators can increase403

contrast to enable calcium signal extraction from reconstructed volumes at greater depths.404

We detected dendritic calcium signals, evoked by back-propagating action potentials, in intra-405

cellularly dye loaded single cells. Limited dye diffusion precluded activity detection in distant406

processes. Applying LFM to neuronal tissues expressing genetically encoded calcium indica-407

tors (GECI) sparsely and strongly may enable tracing of functional signals through dendrites in408

three-dimensions, or synaptic mapping. Similar analyses have been performed for sparsely labeled409

genetically encoded voltage indicators (GEVIs) with a much lower baseline fluorescence, ∆F/F ,410

and tSNR than that of the CaSIR-1 calcium dye.44, 45 Quicke et al. (2020) also demonstrated ax-411

ial resolution of GEVI signals from dendrites at different depths. In combination with the present412

study, these results describe the LFM’s capacity to resolve function neuronal signals volumetrically413
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at subcellular resolution in both low and high SNR regimes.414

LFM captures 3D information with significantly reduced imaging time and bleaching com-415

pared to widefield. Generating similar 3D volumes in widefield would require physical refocusing416

of the objective in between trials. Our comparison of widefield trials to light-field trials recon-417

structed at the same axial plane revealed no penalty in terms of extracted calcium transient tSNR418

for light fields, which additionally enabled extraction of “in-focus” calcium transients from axially419

separated planes. Optically, implementing LFM is simple and low-cost, requiring only the intro-420

duction an off-the-shelf MLA at the native imaging plane of a standard widefield epifluorescence421

microscope. Cost-effective sCMOS cameras feature sensitivities and bandwidths well adapted to422

calcium LFM. Calcium imaging applications requiring high volume acquisition rates can readily423

benefit from LFM’s ability to trade spatial resolution for the ability to excite and image fluores-424

cence simultaneously throughout a volume.425

These results demonstrate the capabilities and limitations of two light-field reconstruction al-426

gorithms for high SNR calcium fluorescence imaging. The trade-offs described above highlight427

the importance of adapting the volume reconstruction strategy to the scientific goals and require-428

ments of future neurophysiology experiments. For example, applications requiring online analysis429

to guide the experimental protocols would benefit from the speed and simplicity of synthetic re-430

focusing or low iteration-number 3D RL deconvolution. We found that calcium signal extraction431

from volumes reconstructed with 3-iteration 3D RL deconvolution yielded high tSNR while bring-432

ing lateral signal confinement near to the maximum. However, higher iteration numbers, while433

decreasing tSNR, continued improving the axial confinement. These results demonstrate the im-434

portance characterizing and balancing tSNR, spatial signal confinement, and computational cost435

when selecting a volume reconstruction method for functional LFM applications.436
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